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Abstract: A Polycrystalline sample of Pb2NiOsO6 was synthesized by high-pressure (6 

GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a 

monoclinic double perovskite structure with a centrosymmetric space group P21/n at 

room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single 

antiferromagnetic (AFM) transition at TN = 58 K. Pb2NiOsO6 is a new example of a 

metallic and antiferromagnetic oxide with three-dimensional connectivity. Neutron 

powder diffraction and first-principle calculation studies indicate that both Ni and Os 

moments are ordered below TN and the antiferromagnetic magnetic order breaks 

inversion symmetry. This loss of inversion symmetry driven by antiferromagnetic order 

is unusual in metallic systems and the 3d-5d double-perovskite oxides represent a new 

class of noncentrosymmetric AFM metallic oxides.
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Introduction

The transition metal oxides (TMOs) exhibit unique correlations between 

magnetism and electrical conductivity: ferromagnetism (FM) in TMOs usually coexists 

with metallic conductivity, whereas insulating TMOs usually exhibit 

antiferromagnetism (AFM)1. Exceptions from this behavior, such as FM insulating 

oxides and AFM metallic oxides, are less common. CaCrO3 and Nb12O29 are examples 

of AFM metallic oxide with three-dimensional crystal structures2-4. Other AFM 

metallic oxides such as La2-2xSr1+2xMn2O7 and Ca3Ru2O7 crystallize in layered crystal 

structures and FM couplings are dominant within the layer5, 6. Recently, RuO2, and 

LaNiO3, which had been described as paramagnetic metals, were found to be AFM 

ordered and are new examples of AFM metallic oxides with three-dimensional crystal 

and electronic structures7-9.   

5d TMOs are unique correlated systems because of the spatial extent of the 5d 

electrons, generally giving 5d TMOs wider bandwidths (W), stronger spin-orbit 

coupling (SOC), and smaller on-site Coulomb repulsion (U) compared with 3d 

TMOs10. For instance, metal-insulator transitions driven by AFM orders were proposed 

in 5d oxides, Pb2CaOsO6
11, Cd2Os2O7

12, 13, and NaOsO3
14, and a ferroelectric-like 

structural transition breaking inversion symmetry has been observed in metallic 

LiOsO3
15. Recent studies on a 5d metallic oxide Pb2CoOsO6 demonstrated that the 

AFM order breaks inversion symmetry16,17. In this work we have built on this, 

synthesizing a new 5d hybrid double perovskite oxide Pb2NiOsO6 which is a new 

example of AFM metallic oxide. Characterization using neutron powder diffraction 

(NPD) and property measurements suggest that magnetic order breaks inversion 

symmetry (similar to reports on Pb2CoOsO6
16). First-principle calculations confirm that 

both Ni and Os moments are ordered, allowing us to confirm the nature of the ground 

state (which has not been fully explored previously). The 3d-5d double-perovskite 

oxides establish a new class of noncentrosymmetric AFM metallic oxides, and our 

symmetry analysis of Pb2NiOsO6 explores how this understanding can be applied more 

widely to design new magnetoelectrics. 
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2. EXPERIMENTAL

Polycrystalline Pb2NiOsO6 was synthesized via a solid-state reaction from powders 

of PbO2 (99%, Alfa), Os (99.95%, Heraeus Materials), NiO (99.997%, Alfa), and 

KClO4 (99.99%, Alfa). The powders were thoroughly mixed in a stoichiometric ratio 

in an Ar-filled glove box, followed by sealing in a Pt capsule. The Pt capsule was 

statically and isotropically compressed in a belt-type high-pressure apparatus (Kobe 

Steel, Ltd., Japan 18), and a pressure of 6 GPa was applied while the capsule was heated 

at 1400 °C for 1 h, followed by quenching to room temperature in less than a minute. 

The pressure was then gradually released over several hours. 

A dense and black polycrystalline pellet was obtained, and several pieces were cut 

out from it. A selected piece was finely ground for a synchrotron X-ray diffraction 

(SXRD) study, which was conducted in a large Debye–Scherrer camera in the BL15XU 

beamline, SPring–8, Japan19, 20. The SXRD pattern was collected at room temperature 

and the wavelength was confirmed to be 0.65298 Å by measurement of a standard 

material, CeO2. The absorption coefficient was measured in the same line. The SXRD 

data were analyzed by the Rietveld method with the RIETAN–VENUS software21. The 

crystal structure was depicted by VESTA22. 

The electrical resistivity (ρ) of a polycrystalline pellet of Pb2NiOsO6 was measured 

by a four-point method at a gauge current of 0.1 mA in a physical properties 

measurement system (PPMS, Quantum Design, Inc.). Electrical contacts were made 

with Pt wires and Ag paste in the longitudinal direction. The temperature dependence 

of the specific heat capacity (Cp) was measured in the same PPMS by a thermal 

relaxation method at temperatures between 2 and 300 K with Apiezon N grease 

thermally connecting the material to the holder stage. 

The magnetic susceptibility (χ) of Pb2NiOsO6 powder was measured in a magnetic 

properties measurement system (MPMS, Quantum Design, Inc.). The measurement 
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was conducted in field cooled (FC) and zero-field cooled (ZFC) conditions in the 

temperature range between 2 and 390 K. The applied magnetic field was 10 kOe. 

Time-of-flight neutron powder diffraction data were collected at the WISH 

diffractometer (target station 2) at the ISIS Neutron and Muon Source.23 For the neutron 

powder diffraction (NPD) data collection, 3.26 g of Pb2NiOsO6 powder were placed in 

a 6 mm diameter cylindrical vanadium can under helium and sealed using indium wire. 

The sample was loaded into a helium cryostat and cooled to base temperature (1.5 K). 

A high-quality data set was collected at 1.5 K (~ 1 hour, ~40 µAmp hr) and shorter 

scans (~ 15 minutes, ~10 µAmp hour) were collected every 2.5 K on warming to 100 

K. A final higher quality scan (~ 1 hour, ~40 µAmp hour) was collected at 98 K in the 

paramagnetic phase. Data were analyzed and Rietveld refinements carried out using 

TopasAcademic,24, 25 and the web-based ISODISTORT software26 was used for 

symmetry analysis. Rietveld refinements for the antiferromagnetic system were carried 

out with a nuclear phase and a magnetic-only phase, with atomic displacement 

parameters for the magnetic sites constrained to be equal to those sites in the nuclear 

phase. A separate peak shape was refined for the magnetic-only phase.

The density functional theory (DFT) calculation was performed on Pb2NiOsO6 

with the all-electron full-potential linearized augmented plane-wave (FLAPW) method 

implemented in the WIEN2k code27. Generalized gradient approximation (GGA) of 

Perdew-Burke-Ernzerhof (PBE)28 was used for the exchange-correlation functional. 

The spin-orbit coupling was taken into account in the second variation method. To 

consider the correlation effect, GGA + U was adopted within fully localized limits 29, 

30. The on-site Coulomb interaction parameters U = 4 and 2 eV for Ni and Os, 

respectively, and the Hund’s coupling JH = 0.8 eV, which was shown to describe the 

similar compound, Ca2NiOsO6 properly31.

Results

Crystal structure. Room-temperature SPXD data of Pb2NiOsO6 were successfully 
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refined in a monoclinic double perovskite structure with space group P21/n (see 

Supporting Information) similar to that reported for Pb2CoOsO6
16, Pb2MnReO6

32, and 

Pb2CoTeO6
33. Due to the weak X-ray scattering power of O (especially in the presence 

of strong scatterers Os and Pb), complementary neutron powder diffraction (NPD) data 

were used to confirm this nuclear structure at 98 K. NPD data collected at 98 K (above 

TN) are consistent with the SPXD results and can be well fitted with a model of P21/n 

symmetry (see Supporting Information). The Ni and Os ions occupy 2a and 2b sites, 

respectively. Allowing for anti-site disorder in the model during the refinement (with 

constraints to maintain stoichiometry) revealed complete B-site ordering (100(6) %). 

Refinement of the occupancies of Pb and O sites (with a single global atomic 

displacement parameter) indicated that the material is very close to stoichiometric 

(Pb1.940(1)NiOsO5.90(1)). This stoichiometry was assumed for further analysis. Trace 

amounts of PbO2 and NiO impurities were identified and included in the refinement (no 

Os impurity was detected). Final refined atomic parameters and selected bond lengths 

and angles are summarized in the Supporting Information. The bond valence sum 

calculations34, 35 support the nominal Ni2+ and Os6+ oxidation states (see Supporting 

Information). The refined crystal structure is shown in Figure 1a, where the corner-

linked NiO6 and OsO6 octahedra are ordered in the rock salt manner. The inter-

octahedral Ni-O-Os bond angles are 159.20(9)°, 161.3(4)°, and 160.5(4)°, which 

significantly deviate from 180° and imply substantial rotations of BO6 octahedra. 

Figure 1 Illustration of the nuclear (a) and magnetic structures (b) of Pb2NiOsO6 at 1.5 K 
from Rietveld refinement using NPD data; Pb, Ni, Os, and O sites are shown in 
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purple, blue, green, and red, respectively; Ni and Os moments are shown by 
arrows. The nuclear unit cell is shown by solid black lines and the larger, 
monoclinic Pac magnetic unit cell by solid red lines.

Electrical and magnetic properties. The temperature dependence of resistivity (ρ) 

data decreases with cooling as shown in Figure 2a, and shows the metallic nature of 

Pb2NiOsO6. The temperature dependence of magnetic susceptibility (χ) data shows a 

typical AFM transition with a peak at 58 K (see Figure 2b), which indicates the Néel 

temperature (TN). The long-range AFM transition was further confirmed by specific 

heat data which display a λ-type anomaly at TN (see Figure 2c). The χ-1 vs. T data above 

the TN shows the Curie-Weiss behavior. Fitting the CW law to the data between 100 to 

380 K results in an effective moment (μeff) of 3.66 μB per formula unit (f.u.) and a Weiss 

temperature (θW) of -102 K. The obtained effective moment is comparable to that in 

other Ni2+-Os6+ double perovskites, 3.44 μB/f.u. for Sr2NiOsO6
36, and 3.46 μB/f.u. for 

Ba2NiOsO6
37. These values are smaller than the spin-only moments of 4.0 μB per 

formula unit for the Ni2+ (3d8: S = 1) and Os6+ (5d2: S = 1), which may be due to the 

SOC of Os6+. The negative θW corroborates that AFM interactions are dominant in 

Pb2NiOsO6, which is consistent with the AFM order. The low-temperature part of 

specific heat data is plotted in the CP/T vs. T2, and the lowest temperature part can be 

characterized by an approximated Debye model (CP/T = γ + β0T2). The fitting gives a 

Sommerfeld coefficient (γ) of 63.5 mJ mol-1 K-2. The large γ value is consistent with 

the metallic nature of Pb2NiOsO6. The deviation from linearity above 30 K2 could be 

due to the lattice contribution.
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Figure 2 (a) temperature-dependent resistivity, (b) temperature-dependent magnetic 
susceptibility, and (c) temperature-dependent specific heat of Pb2NiOsO6.

Magnetic structure. To study the magnetic structure of Pb2NiOsO6, NPD data were 

collected from 1.5 K to 98 K. On cooling below 57 K, additional reflections were 

observed in NPD patterns which increased smoothly in intensity on cooling (see 

Supporting Information). These were consistent with magnetic ordering described by 

magnetic propagation vector k = (½ 0 ½). As described for the double perovskites 

Pb2CoOsO6
16 and for the k1 propagation vector for Sc2NiMnO6,38 there are four irreps 

associated with the magnetic propagation vector k = (½ 0 ½): mY1
± and mY2

±. The 

mYn
+ (mYn

-) irreps describe magnetic order on the Ni (Os) sites only. Magnetic 

susceptibility and heat capacity measurements for Pb2NiOsO6 (Figures 2b and 2c) and 

the evolution of magnetic Bragg intensity in NPD data collected on cooling (see 

Supporting Information) suggest a single magnetic ordering transition which could 

Page 8 of 22

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9

result from one of three possible scenarios: (1) only Ni2+ moments order at TN; (2) only 

Os6+ moments order at TN or (3), both Ni2+ and Os6+ moments order simultaneously at 

TN. As described for related double perovskites,36, 38-40 the magnetic moments on the 

two B sites are strongly correlated in refinements and NPD cannot unambiguously 

distinguish between these three scenarios. However, given the strong coupling between 

nearest Ni2+ and Os6+ ions in Ca2NiOsO6, it seems most likely that both Ni and Os 

sublattices order magnetically below TN.31 Experiments on Pb2CoOsO6 including muon 

spin rotation experiments support magnetic ordering of both Co2+ and Os6+ moments16, 

consistent with our analysis for Pb2NiOsO6. Mode inclusion analysis41, 42 using 1.5 K 

data suggested that the greatest improvement in fit was obtained with moments on the 

Os sites described by mY2
- (Rwp decreased from 7.71% for a non-magnetic model to 

6.42% for the mY2
- model) with Os moments close to [001] direction of the P21/n 

nuclear unit cell. Magnetic ordering described by the mY2
- irrep on the Os sites and the 

mY1
+ (mY2

+) irrep on the Ni sites breaks inversion symmetry and the ferroelectric mode 

Γ2
- (Γ1

-) is coupled to both magnetic order parameters, allowing polar displacements in 

the ac plane ([010] direction) of the P21/n nuclear unit cell. These two possible 

structures are very similar, and our NPD data do not allow us to confirm which is more 

appropriate to describe the low temperature nuclear and magnetic structure of 

Pb2NiOsO6. Attempts to investigate the polar distortions using both NPD analysis and 

electron diffraction were not successful, suggesting that these distortions are very subtle. 

Consistent with DFT calculations (see below), the mY2
- mY1

+ Γ2
- model was assumed 

for all further analysis. This magnetic structure is described by the monoclinic unit cell 

of symmetry Pac which is related to the P21/n nuclear unit cell by the basis vectors (-

200) (0-10) (101) with an origin shift of (0 ¼ 0) (see Figure 1b). Given the complexity 

of the system, the moments on Ni and Os sites were constrained to be collinear (as 

observed in related systems16, 31, 34, 38-40, 43) and the moments on Os sites were 

constrained to be eight times smaller than those on Ni sites, as might be expected for 

Ni2+ (d8) and Os6+ (d2) with significantly covalent bonding.16, 31, 36, 39 Allowing the 

moment direction to refine freely gave moments close to [001] of the P21/n nuclear unit 
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cell and constraining the moments to lie exactly along this direction gave a similar fit 

(Rwp was the same to three decimal places) and was used in subsequent analysis. 

Allowing atomic displacement parameters (ADPs) to refine anisotropically did not give 

a significant improvement in fit and ADPs were found to be fairly isotropic. The final 

refinement profiles and parameters are given in the supporting information. 

Sequential Rietveld refinements were carried out using NPD data collected on 

warming to study the evolution of nuclear and magnetic structures. The 1.5 K model 

described above was used and this sequential analysis suggested a fairly smooth 

expansion of the structure on warming (see Supporting Information). 

First-principles calculations. Density functional theory (DFT) calculations were 

carried out to explore whether both Ni and Os moments are ordered in the magnetic 

phase of Pb2NiOsO6, and to differentiate between the possible magnetically ordered 

structures. Firstly, the total energies were calculated for magnetic models with either 

AFM order on both Ni and Os sublattices, or AFM order on only the Ni sublattice (see 

Supporting Information). These calculations indicate that the model with AFM order 

on both Ni and Os sublattices is 0.102 eV per formula unit more stable than that with 

only Ni ordered moments. These calculations support the non-centrosymmetric AFM 

models in which both sublattices are ordered.

As discussed above, group theory calculations assuming the propagation 

vector (½ 0 ½) and magnetic order on both Ni and Os sublattices (from magnetic irreps 

mY1
+ and mY2

+ on Ni sites, mY1
- and mY2

- on Os sites) give four possible isotropy 

subgroups (Figure 3). These models give comparable fits to the NPD data and we are 

not able to unambiguously determine the magnetic ground state from our experimental 

work. Although the relative orientation of magnetic spins is similar in these four 

structures (they all have the ↑↑↓↓↑↑ sequence of moments on the Ni – Os chains along 

the [001] direction of the nuclear unit cell), the superposition of the magnetic order on 

the nuclear structure (with monoclinic symmetry arising from rotations of NiO6 and 

OsO6 octahedra) results in different final symmetries and, as a consequence, in different 
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distortions (e.g. polar degrees of freedom, bond distances and angles) and hence 

different macroscopic properties.44-46 Since the four models derive from different 

combination of irreducible representations these are distinct structures and not 

translational domains.

DFT calculations were carried out to differentiate between these similar 

magnetic structures and to determine the ground state. Calculations were carried out 

using the GGA(PBE)+SOC+U scheme to determine the energy of the four magnetic 

structures shown in Figure 3 and the relative energies are given in Table 1. Model 2 

(described above from analysis of NPD data, Figure 1b) is found to be the lowest in 

energy for calculations including spin-orbit coupling (Table 1). These results suggest 

that the ground state of Pb2NiOsO6 is best described by Pac magnetic symmetry, with 

Γ2
- polar degrees of freedom, consistent with the ground state reported for Pb2CoOsO6

16. 

Notice that the same ground state was found for Pb2NiOsO6 from calculations without 

accounting for spin-orbit coupling. Mode decomposition of the relaxed structures from 

these DFT calculations was carried out using ISODISTORT26 but the amplitudes of 

polar displacements were very small (≤0.00035); this is consistent with NPD and 

electron diffraction analysis both unable to confirm these displacements. The subtlety 

of these polar distortions (and that they are secondary rather than primary order 

parmeters) is born out by the fact that the two lowest energy structures (models 1 and 

2) allow different polar distortions, suggesting that these distortions play a minor role 

in giving the non-centrosymmetric ground state structure.
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Figure 3 Four magnetic structures that result from the k = (½ 0 ½) magnetic propagation 
vector for P21/n nuclear structure for Pb2NiOsO6 with magnetic order on both Ni 
(blue) and Os (green) sites. To help visualize the difference between the four 
magnetic structures, the magnetic order around a PbO12 site (purple) viewed 
down the [-1 1 0] direction of the nuclear unit cell is highlighted for each model. 
(Note that for model 2, the magnetic order around the PbO12 site is viewed along 
[0 -1 0] of the magnetic unit cell to show the magnetic moments about the same 
point in the nuclear structure.)

Table 1 The total energy and magnetic moment calculated for Pb2NiOsO6 for models 
shown in Figure 3. The unit of the energy is meV per atom and is calculated by 
dividing the DFT total energy by the number of atoms in the unit cell (40 for the 
magnetic unit cells shown in Figure 3). Model 1 is chosen as the reference energy. 
Details about magnetic moments are discussed in the main text.
Energy (meV/atom) Total moment 

(µB)
spin moment 
(µB)

orbital 
moment (µB)

Model 1 0 Ni: 1.85
Os: 0.78

Ni: 1.70
Os: 0.99

Ni: 0.15
Os: -0.21

Model 2 -0.36 Ni: 1.86 Ni: 1.70 Ni: 0.16
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Os: 0.78 Os: 0.99 Os: -0.21
Model 3 +0.18 Ni: 1.85

Os: 0.77
Ni: 1.70
Os: 0.99

Ni: 0.15
Os: -0.22

Model 4 +0.42 Ni: 1.85
Os: 0.76

Ni: 1.70
Os: 0.99

Ni: 0.15
Os: -0.23

The electronic structure of Pb2NiOsO6 for model 2 (total and partial) is shown in 

Figure 4. Since Ni and Os atoms have local magnetic moments (Table 1), they show 

local spin polarization as shown in Figures 4 (b) and (c). These local spin polarizations 

are summed to be zero, that is, the net total magnetic moment is zero, reflecting that 

Pb2NiOsO6 is antiferromagnetic, as demonstrated in Figure 4 (a).

The major contributions to the total DOS around the EF are attributed to the Os-5d 

orbitals in both spin channels, which hybridize strongly with the O-2p orbitals. 

Occupation numbers for Ni 3d and Os 5d are 7.81 and 3.80, respectively. The huge 

hybridization indicated between Os 5d and O 2p orbitals suggests Ni2+ and Os6+ formal 

oxidation states in Pb2NiOsO6, consistent with the magnetic susceptibility experiment. 

Spin and orbital moments for Ni are 1.70 and 0.16 μB, respectively, thereby giving a 

total magnetic moment of 1.86 μB per Ni. For Os, spin and orbital moments are 0.99 

and -0.21 μB respectively, where the minus sign indicates that the orbital moment is 

opposite the spin direction, thus the total moment is 0.78 μB per Os. These calculated 

moments are comparable with those obtained from NPD analysis (see above). The 

calculated γ is 7.1 mJ mol-1 K-2. This is much smaller than the one obtained from the 

fitting of low-temperature specific heat data (63.5 mJ mol-1 K-2), which may be due to 

the fact that DFT underestimates the electronic correlations in the correlated systems, 

resulting in a relatively small gamma value.
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Figure 4 Total and partial density of states (DOS) of Pb2NiOsO6 for model 2 from 
GGA+SOC+U calculation. (a) The black solid line corresponds to the total DOS. 
Red solid, blue solid, and green dash-dotted lines represent total Ni 3d, total Os 
5d, and O 2p partial DOS, respectively. (b) Partial DOS for each Ni 3d: Ni1 (Ni2) 
is presented for the spin majority as spin up (down). (c) Partial DOS for each Os 
5d: Os1 (Os2) is presented for the spin majority as spin up (down). The positive 
and negative values in DOS correspond to spin up and down, respectively.

Discussion

The A2NiOsO6 (A = Ca2+, Sr2+, Ba2+ and now Pb2+) oxides adopt B-site ordered 

double perovskite structures and span a range of properties, from insulating (A = Ca31) 

to metallic (A = Pb), and from ferromagnetic (A = Ba at low temperatures37) to 

antiferromagnetic (A = Sr36). While all these analogs adopt the rock-salt ordering of 

NiO6 and OsO6 octahedra, the degree of tilting of these octahedra increases with 

decreasing A cation radius: Ba2NiOsO6 is cubic with 180° Ni – O – Os bond angles; in 

tetragonal Sr2NiOsO6, octahedra are tilted about the long axis giving 180°/166° Ni – O 

– Os angles36, while Ca2NiOsO6 adopts the monoclinic P21/n structure (with a-a-c+ tilts) 

with Ni – O – Os angles of ~151°.36 Pb2NiOsO6 also adopts this P21/n structure despite 

the ionic radius of Pb2+ (1.49 Å) being comparable to that of Sr2+ (1.44 Å)47; this might 

in part be due to the inert pair Pb2+ ion favoring the lower symmetry coordination 

environment48 possible in the P21/n structure: Pb occupies the 4e site of 1 symmetry in 

P21/n compared with the higher symmetry 4d site of -4.. symmetry in the I4/m structure 

of Sr2NiOsO6.

The magnetic structure described here for Pb2NiOsO6 is of the same symmetry as 

that reported for Pb2CoOsO6
16, although with a slightly different orientation of 
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moments, likely resulting from the different magnetic anisotropies of Co2+ and Ni2+ 

ions in octahedral coordination environments. In both Pb2NiOsO6 and Pb2CoOsO6, the 

magnetic order on the Ni/Co and Os sublattices breaks inversion symmetry and follows 

an ↑↑↓↓ sequence along [001] of the nuclear unit cell. Magnetic ordering has been 

shown to break inversion symmetry in other perovskites, including Sr2NiMnO6, but 

with weak coupling between Ni and Mn sublattices,38 in contrast to Pb2BOsO6 (B = Co, 

Ni) which seem to have collinear moments on both B and Os sublattices and a single 

magnetic ordering transition. These observations are consistent with strong couplings 

between Co/Ni and Os sublattices. This ↑↑↓↓ magnetic structure observed in 

Pb2NiOsO6 is significantly different to those reported for other A2NiOsO6 double 

perovskites. Previous work has highlighted the importance of both nearest-neighbor 

(likely FM) and next-nearest-neighbor (likely AFM) interactions in these systems.31, 49 

The balance between these (competing) interactions gives some magnetic frustration in 

Sr2NiOsO6 and makes the magnetic structure of A2NiOsO6 phases very sensitive to 

bond angles.31

The symmetry requirements for magnetic order to break inversion symmetry have 

been explored by Perez-Mato et al50 and provide a recipe for designing new 

magnetoelectrics. If the magnetic k vector is not compatible with the screw axes or glide 

planes of the nuclear (paramagnetic) unit cell (when time reversal symmetry is 

considered), then full magnetic order on a lattice of magnetic atoms on special sites (of 

-1 symmetry) will break inversion symmetry, resulting in non-centrosymmetric 

structures.50

The double perovskites considered here have rocksalt ordering of B and B’ cations 

on sites related by an origin shift (and typically with symmetries including inversion 

centers). If a single magnetic propagation vector k describes the magnetically ordered 

phase, and full magnetic order is expected on both B and B’ sublattices, then depending 

on k, the irreps to describe the magnetic order on each sublattice may be of opposite 

parity with respect to an inversion centre at the origin. These irreps couple to a non-

centrosymmetric distortion (Γx
-), breaking inversion symmetry. This is the case 
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described here for Pb2NiOsO6 for k = (½ 0 ½) and also for k = (-1 ½ ½). Likewise for 

a cubic double perovskite A2BB’O6 of Fm-3m nuclear symmetry (with magnetic B and 

B’ ions on 4a and 4b sites, respectively), a magnetic k = (½ ½ ½) would have a similar 

effect. This is also observed in the hexagonal Ca3CoMnO6 (R-3c nuclear symmetry, 

Mn3+ and Co3+ ions on 6a (0 0 ¼) and 6b (0 0 0) sites respectively) with magnetic 

k = (0 0 0) giving the well-known ↑↑↓↓ polar magnetic structure.51

If suitable cation ordered structures with strong magnetic coupling between the 

two sublattices (to favor them ordering with the same magnetic k vector) can be 

identified, then new magnetoelectrics might be designed if the magnetic exchange 

interactions can be balanced to give the desired k vector. We note that the improper 

ferroelectricity described here does not require additional ordering of A-site cations (e.g. 

the AA’NiOsO6 phases explored recently).52

It is striking that both Pb2NiOsO6 and Pb2CoOsO6
16 are metallic, in contrast to the 

SOC Mott-insulating nature of Ca2NiOsO6 and Ca2CoOsO6,31 despite the structural 

similarities between these Pb and Ca analogs. Firstly, we note that although Pb2NiOsO6 

is metallic, its resistivity is several orders of magnitude higher than that of Pb2CoOsO6 

(300 K resistivity is ~0.07 Ω cm (Figure 2a) and ~3.5 × 10-4 Ω cm for Ni and Co16 

analogs, respectively). This is similarly observed for Ca2NiOsO6 and Ca2CoOsO6 and 

is ascribed to the full occupancy of the Ni2+ t2g band reducing delocalization of Os6+ t2g 

electrons.31

The half-metallic nature proposed for Sr2NiOsO6 results from the partially-

occupied Os t2g states crossing the Fermi level, with spin-orbit coupling broadening the 

Os 5d bands.53 This scenario can be applied to A2NiOsO6 (A = Ca, Pb) and our PDOS 

calculations (Figure 4) are qualitatively similar to those reported for Ca2NiOsO6 31 (with 

Ni t2g states below ~-2eV and a narrow band of Ni eg states at ~2 eV, with Os 5d and O 

2p bands crossing EF). However, the bandwidth in these double perovskites is also 

influenced by Ni – O – Os bond angles: in Ca2NiOsO6 with small Ca2+ ions, the Ni – O 

– Os angles (~149.3-150.6° at 4 K)36 show much larger deviations from the ideal 180° 

bond angles than in Pb2NiOsO6 (158.8-161.0° at 1.5 K). The more distorted structure 
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reported for the Ca analogs is likely to decrease the orbital overlap and bandwidth, 

giving wider band gaps than the less distorted Pb analogs. This is consistent with the 

insulating and more localized nature of Ca2NiOsO6 and its higher magnetic ordering 

temperature (158 K, compared with TN = 58 K for Pb2NiOsO6). 

Conclusion 

A new 5d oxide Pb2NiOsO6 was synthesized under high-pressure. Pb2NiOsO6 

crystallizes in a monoclinic double perovskite structure with a centrosymmetric space 

group P21/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and displays an 

AFM transition with TN = 58 K. Pb2NiOsO6 is a new example of AFM metallic oxide 

with three-dimensional crystal and electronic structures. NPD and DFT calculations 

indicate that both the Ni and Os moments are ordered below TN, breaking inversion 

symmetry, which is similar to recently-reported Pb2CoOsO6
16, 17. The magnetically 

driven loss of center of symmetry is similar to the type-II multiferroics. The discovery 

of 5d oxides Pb2NiOsO6 together with Pb2CoOsO6 establishes a new class of 

noncentrosymmetric AFM metallic oxides. 
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