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1. Introduction1

This paper is concerned with the relation between chaos theory and the dynamics2

of Delone sets. Introduced by Delone in the context of mathematical crystallogra-3

phy, Delone sets have been studied also from the viewpoints of arithmetics, topology4

and foliated spaces. Let us recall the definition of a Delone set and some associated5

constructions; the reader may consult standard references such as [5, 21] for further6

details about these ideas.7

Definition 1.1. Let ε, δ > 0. A subset S of a metric space X is (ε, δ)-Delone if,8

(i) for every x ∈ X, there is some y ∈ S with d(x, y) ≤ ε (S is ε-relatively9

dense), and10

(ii) we have d(x, y) ≥ δ for every x, y ∈ S, x 6= y (S is δ-separated).11

Given ε, δ ∈ R+, let Delε,δ denote the set of (ε, δ)-Delone subsets of Rn. The
set Delε,δ has a canonical, compact, metrizable topology (the local rubber topology)
such that the action of Rn given by

Rn ×Delε,δ −→ Delε,δ

(v, S) 7−→ S − v := { s− v | s ∈ S }

is a continuous action [8, Lem. 2.5]. Definition 1.1(ii) makes this action locally12

free, so that the orbits inherit a canonical smooth structure compatible with the13

topology.14

There is a canonical way of obtaining a dynamical system from such a Delone set15

[4, p. 10]. Let S ∈ Delε,δ and write [S] for the orbit S+Rn. Then [S], the closure of16

[S] in the aforementioned topology, is a compact space endowed with an Rn-action.17

Roughly speaking, it consists of the Delone sets whose bounded subsets have an18

approximate replica in S; when S is repetitive, these are the Delone sets which are19

locally indistinguishable from S, sometimes called the local isomorphism class of S20

[19], but in general [S] contains more Delone sets than this local isomorphism class.21

The main class of Delone sets we consider in this paper will not be repetitive. Since22

S determines [S], we may think of dynamical properties of [S] as properties of S.23

Chaos for group actions is usually characterized by three conditions [12]: topo-24

logical transitivity, density of periodic orbits, and sensitivity on initial conditions,25

of which the first one is trivially satisfied in our situation by the presence of a dense26

orbit. In the case of dynamical systems generated by a continuous map on a metric27

space, sensitivity on initial conditions follows from the topological transitivity and28

density of periodic orbits [6]. This result was generalized to continuous actions of29

topological semigroups on uniform spaces [25], which directly applies to our set-30

ting. So we can omit this condition about sensitivity on initial conditions in our31

definition of chaos, cf. [9]. Note that, as detailed in the previous paragraph, we will32

be dealing with continuous group actions on compact spaces, so the definition of33

periodic orbit used in [25] becomes simpler: a Delone set S is periodic if the orbit34

[S] is compact. This is easily seen to be equivalent to the stabilizer being a lattice35

in Rn.36

This discussion leads us to the following definition, analogous to that in [7].37

Definition 1.2. A Delone set S is almost chaotic if the union of the periodic orbits38

is dense in [S]. We say that S is chaotic if it is almost chaotic and aperiodic; that39

is, S − v 6= S for all v ∈ Rn \ {0}.40
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To the authors’ knowledge, such Delone sets have not been studied before. How-1

ever, the analogous definition in the case of shift spaces is satisfied for well-known2

objects, such as subshifts of finite type (see [18] for the definition and a nice expo-3

sition on the subject).4

Also note that, by simple topological arguments, a repetitive tiling cannot satisfy5

the obvious analogous condition. In particular, this immediately rules out examples6

arising from familiar aperiodic constructions such as primitive substitutions and7

non-singular canonical Euclidean cut-and-project schemes.8

If S is almost chaotic, then [S] satisfies the aforementioned requirements of9

topological transitivity and density of periodic orbits. We require aperiodicity in10

our definition of chaos because almost chaotic Delone sets include the degenerate11

case where there is a single compact orbit.12

Recall that a property is topologically generic if it holds on a residual subset—i.e.,13

a subset containing a countable intersection of open dense sets. This notion is well-14

behaved for Baire spaces, which in particular include compact, metrizable spaces15

by the Baire Category Theorem. The first main result of the paper establishes the16

topological genericity of chaos for (ε, δ)-Delone subsets of Rn when ε ≥ δ.17

Theorem 1.3. If ε ≥ δ, then being chaotic is a generic property in Delε,δ.18

This result is similar to that obtained for colored graphs in [7]. The reason19

why we impose the condition ε ≥ δ is that it is necessary for extension properties20

(Lemmas 2.3 and 2.4) that are essential ingredients in our proof. It is also easy21

to come with examples where ε < δ and Theorem 1.3 does not hold—e.g., all22

(δ/2, δ)-Delone sets in R are periodic.23

The second aim of this paper is to obtain examples of chaotic Delone sets us-24

ing a so-called cut-and-project construction on the Poincaré disk. Being discrete25

subsets of manifolds, Delone sets lie in a sort of middle ground between geometry26

and discrete mathematics. There are well-known examples of symbolic dynamical27

systems satisfying the obvious analogue of Definition 1.2—e.g., a two-sided version28

of Champernowne’s number [10]. A less trivial family of examples comes from the29

symbolic coding of geodesics in hyperbolic surfaces. This research was initiated30

by Hadamard in [14] and continued by Morse in [22, 23], among others. In the31

particular case of the modular surface, there is an approach for symbolic coding of32

geodesics that is closer to number theory. In [17] the reader can enjoy a nice expo-33

sition of these methods and their historical development. All of the aforementioned34

approaches take advantage of the well-known chaotic properties of the geodesic flow35

in compact hyperbolic surfaces to construct chaotic symbolic dynamical systems.36

Our method, while related to that described in the previous paragraph, is more37

geometrical in nature, and naturally yields subsets of R instead of a coding of Z.38

It is also inspired by the projection method in tiling theory, see [13]. In our case,39

we will orthogonally project subsets of an orbit of torsion-free uniform lattices Γ40

in the hyperbolic plane H2 onto a geodesic. This construction is not guaranteed41

to produce Delone sets in the general case. We prove a necessary and sufficient42

condition for this to hold, and present a specific example.43

Let us fix a torsion-free uniform lattice Γ of PSL(2;R), a positive number ρ and a44

point x on H2. For a geodesic ` on H2, let p` : E` → ` be the orthogonal projection45

from the open tubular neighbourhood of ` of radius ρ, and define46

S` = p`(E` ∩ Γx)
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(see Figure 1).1

Figure 1. Construction of S` in H2.
The black dots represent points in Γx,
the blue area is E`, the red dots rep-
resent points in S`.

Figure 2. The
disks represent the
inverse image of
∆. The projection
of k1 to Σ has
one-sided tangency,
while the projection
of k2 to Σ does not.

In order to state our result, we need to fix the following terminology: From now2

on, let Σ = Γ\H2 be a compact hyperbolic surface. Given a closed disk D on Σ, a3

geodesic σ on Σ is said to have one-sided tangency with ∂D if σ is tangent to ∂D4

at every point in σ ∩ ∂D, and we can take an orientation of the normal bundle of5

σ so that the outward vector of ∂D at every tangential is positive. In Section 4 we6

prove the following result.7

Theorem 1.4. With the above notation, assume that the orbit of the geodesic flow8

that consists of the unit tangent vectors of the projection of ` to Σ is dense in9

S1(TΣ) and d(`, y) 6= ρ for every y ∈ Γx. Then S` is Delone if and only if:10

(A) We have ρ < inj(Σ, x0). Here x0 = Γx and inj(Σ, x0) is the injectivity11

radius of Σ at x0, which is clearly equal to 1
2 min{ d(y, z) | y, z ∈ Γx, y 6=12

z }.13

(B) Any geodesic on Σ intersects the closed disk ∆ of radius ρ centred at x0,14

and there exists no geodesic with one-sided tangency with ∂∆.15

If S` is Delone, then it is chaotic.16

By Hedlund’s theorem ([15], see also [16] and references therein), the orbits of17

the geodesic flow that are dense in the unit tangent bundle of Σ form a conull set18

in the space of geodesics.19

It is not easy to check Condition (B) in the last theorem with given Γ, ρ, x and20

`, but it is possible for the following example.21

Example 1.5. Let us construct a Riemann surface Σ of genus two as follows:22

Take a hyperbolic 12-gon P with alternating internal angles π/3 and 2π/3, all side23

lengths the same. Identify the sides via the pattern24

A−B − C −A−D − C − E −D − F − E −B − F
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going around the boundary (see Figure 3). There are 3 orbits of vertices, two made1

up of three vertices and one made up of 6. It is easy to see that the quotient has2

genus 2 by using the Euler characteristic 3− 6 + 1 = −2.3

Figure 3. A 12-gon P Figure 4. A triangle T

Let Γ < PSL(2;R) be the lattice that corresponds to Σ. Take x ∈ H2 so that x is4

projected to the barycentre x0 of P . Let µ denote the injectivity radius of Σ at x0.5

Let ρ be a positive number such that 0 < µ−ρ� 1. In the sequel we will see that, for6

any geodesic ` on H2 that satisfies the assumptions of Theorem 1.4, the quadruple7

consisting of Γ, x, ρ and ` satisfies Conditions (A) and (B) in Theorem 1.4. Firstly,8

note that our choice of ρ ensures that Condition (A) is satisfied. For r > 0, let ∆r9

be the closed disk on Σ centred at x0 of radius r. By the symmetry of the 12-gon10

P , the disk ∆µ is tangent to all edges of P . In order to show that Condition (B)11

holds, it is sufficient to show that any geodesic on H2 intersects π−1(∆̊ρ), where12

π : H2 → Σ is the universal covering projection and ∆̊ρ is the interior of ∆ρ. Assume13

that there exists a geodesic k on H2 contained in H2 \ π−1(∆̊ρ). Here π−1(∂∆µ)14

is a circle packing of H2. Since each angle of P is equal to either of π/6 or π/3,15

we can see that any connected component of H2 \ π−1(∆µ) is either a triangle or16

a hexagon. Since each hexagon is adjacent to triangles, k intersects a triangle T .17

Since ρ is sufficiently close to µ, the geodesic k should be close to two vertices v, w18

of T . Thus k is close to the geodesic segment vw. Since ∆µ is geodesically convex,19

the segment vw is contained in π−1(∆µ) (see Figure 4). It follows that k intersects20

π−1(∆̊ρ).21

It is easy to modify this example to construct an example with Σ a closed Rie-22

mann surface of arbitrary genus > 1.23

Remark 1.6. If µ ≤ ρ, then S` is not r-separated for any r > 0 by the last theorem.24

But in some cases we can obtain almost chaotic Delone sets in R or Z by modifying25

S`. We can see that, if ρ is close to µ/2, there cannot be three points in S` that are26

close to each other. Replacing every pair of points which are close to each other27

with their midpoint, we have a chaotic Delone set in `.28
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Finally, in the last section, we include a short and elementary proof of the fact1

that, if S is a chaotic Delone sets on R, then Sn is a chaotic Delone set on Rn.2

This shows that take we can take powers of the above examples to obtain chaotic3

Delone sets in any dimension.4

2. Preliminaries5

Let X be a metric space, let x ∈ X and r > 0. We will use DX(x, r) and SX(x, r)6

to denote, respectively, the disk or closed ball and the sphere of centre x and radius7

r. We will omit subscripts when no confusion may arise.8

The canonical topological structure on Delε,δ has received several names, includ-9

ing “natural topology” [20], “vague topology” [24], and “local rubber topology” [4].10

Let ~0 ∈ Rn denote the origin, and let U and U ′ denote open neighbourhoods of ~0,11

with U precompact. The local rubber topology mentioned in the introduction is12

induced by the entourage base determined by the sets13

NU,U ′ := { (S, S′) ∈ Delε,δ ×Delε,δ | S ∩U ⊂ S′+U ′ and S′∩U ⊂ S+U ′ } . (2.1)

For notational convenience, let Nr denote the set NB(~0,r),B(~0,1/r) for r > 0. For

S ∈ Delε,δ, let

NU,U ′(S) = {S′ ∈ Delε,δ | (S, S′) ∈ NU,U ′ } ,
Nr(S) = {S′ ∈ Delε,δ | (S, S′) ∈ Nr } .

For A,B,C,D open neighbourhoods of ~0, with A and B relatively compact, one14

has [4, p. 9]15

NA+B,B ◦NC+D,D ⊂ NA∩C,2(B∪C) , (2.2)

where 2(B ∪ C) = (B ∪ C) + (B ∪ C).16

Once we have provided neighbourhood bases for Delε,δ, the following lemma17

follows trivially from Definition 1.2.18

Lemma 2.1. An (ε, δ)-Delone set S is almost chaotic if and only if, for every19

r ∈ N, there is a periodic Delone set S′ ∈ Delε,δ such that (S, S′) ∈ Nr and, for20

any s ∈ N, there is a point x ∈ Rn satisfying (S − x, S′) ∈ Ns.21

The following lemmas will be used in the next section. The first one follows by22

applying Zorn’s lemma to ε-relatively dense sets (see Álvarez-Candel [1, Proof of23

Lemma 2.1]).24

Lemma 2.2. Every δ-separated subset of Rn is contained in a (δ, δ)-Delone set.25

Lemma 2.3. Let ε ≥ δ, let A ⊂ Rn, and let S be an (ε, δ)-Delone set in Rn. There26

is an (ε, δ)-Delone set S′ on A such that S and S′ coincide over the subset27

Aε := {x ∈ Rn | D(x, ε) ⊂ A } .
Proof. Consider the collection of δ-separated subsets M of A such that M ∩ Aε =28

S ∩ Aε. By Zorn’s Lemma, S ∩ A is contained in a maximal such subset S′. We29

only need to prove that S′ is ε-relatively dense in A, so let x ∈ A and let us prove30

d(x, S′) ≤ ε. If x ∈ Aε, the assumption that S is a Delone set in Rn means that31

there is some s ∈ S with d(x, s) ≤ ε. But s ∈ A by the triangle inequality and32

S ∩ A ⊂ S′, so s ∈ S′ and d(x, S′) ≤ ε. Consider now the case where x ∈ A \ Aε,33

and suppose by absurdity that d(x, S′) > ε ≥ δ. Then S′ ∪ {x} is a δ-separated34

subset of M strictly containing S′ and satisfying (S′ ∪ {x}) ∩ Aε = S ∩ Aε. This35

contradicts the maximality of S′, so d(x, S′) ≤ ε. �36
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Lemma 2.4. Suppose ε ≥ δ, and let A be a subset of either Rn or Tn. Then, for1

any (ε, δ)-Delone set N in A, there is an (ε, δ)-Delone set S in Rn or Tn such that2

S ∩A = N .3

Proof. We will write the proof for A ⊂ Rn, the case where A ⊂ Tn being identical.4

Consider the collection of subsets M ⊂ Rn \ A such that N ∪M is δ-separated.5

By Zorn’s Lemma, there is such a subset L that is maximal by inclusion. Then6

S := N ∪ L trivially satisfies S ∩A = N and is δ-separated by the definition of N .7

Let us prove that it is also a ε-relatively dense, so let x ∈ Rn. If x ∈ A, then by8

hypothesis d(x,N) ≤ ε. If x /∈ A and d(x, S) > ε ≥ δ, then S ∪ {x} is δ-separated,9

contradicting the maximality of L. �10

3. Genericity of chaotic Delone sets11

This section contains the proof of Theorem 1.3. We start by proving that ape-12

riodicity is a generic property. Let 0 < α < δ/4 and, for q ∈ Qn, let13

Vq = {S ∈ Delε,δ | ∃x ∈ S, D(x− q, α) ∩ S = ∅ } . (3.1)

Intuitively, Vq contains all Delone sets S containing a point s such that S fails to14

have period q at s with respect to some error parameter α > 0. We now show that15

the sets Vq are open and dense and
⋂
q∈Qn Vq consists of aperiodic Delone sets.16

Proposition 3.1. The subsets Vq ⊂ Delε,δ are open for q ∈ Qn.17

Proof. Let S ∈ Vq, so that there is some x ∈ S such that d(x− q, S) = β > α. Let18

r ∈ N be large enough depending on x, q, α, and β, and let S′ ∈ Nr(S). If r > |x|,19

then the definition of Nr(S) ensures that there is some y ∈ S′ with d(x, y) < 1/r.20

Suppose that there exists some z ∈ B(y − q, α) ∩ S′. If21

r − 1/r > |x|+ |q|+ α ,

then z ∈ B(0, r). Therefore, by the definition of Nr(S), there is some z′ ∈ S with22

d(z, z′) < 1/r. We may assume that α + 2/r < β. Then the triangle inequality23

yields d(x − q, z′) < β, a contradiction. Therefore S′ ∈ Vq and, since S′ was an24

arbitrary element of Nr(S), we get Nr(S) ⊂ Vq. �25

Proposition 3.2. The sets Vq are dense in Delε,δ for q ∈ Qn.26

Proof. Let us start by proving that there is some S ∈ Vq satisfying the condition27

in (3.1) with x = ~0 ∈ Rn. Assume first that q has all coordinates equal to 0 except28

the first one. If |q|+ α < δ, then any S ∈ Delε,δ with ~0 ∈ S satisfies the condition29

in (3.1) with x = ~0 because it is δ-separated, so assume that |q| + α ≥ δ. Let30

y = q + (2α, 0, . . . , 0), and let S be a (δ, δ)-Delone set containing ~0 and y, which31

exists by Lemma 2.2. Since32

D(q, α) ⊂ D(y, 3α) ⊂ D(y, δ)

by the triangle inequality, we get that S satisfies (3.1) with x = ~0. The same33

strategy applies for general q ∈ Qn after applying a suitable rotation.34

Let us prove that Vq is dense, so let S′ ∈ Delε,δ. By Lemma 2.4, for r, s ∈ N and35

y far enough from ~0, there is an (ε, δ)-Delone set S′′ such that36

S′ ∩B(~0, r) = S′′ ∩B(~0, r)

and37

y + (S ∩B(~0, s)) = S′′ ∩B(y, s) ,
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where S is the Delone set constructed in the previous paragraph. It is clear that,1

for s > δ + α, S′′ satisfies the condition in (3.1) with x = y. Therefore, given an2

arbitrary S′ ∈ Delε,δ and r > 0, we have produced a Delone set S′′ ∈ Vq such that3

S′′ ∈ Nr(S′), and the lemma follows. �4

Proposition 3.3. The set
⋂
q∈Qn Vq consists of aperiodic Delone sets.5

Proof. Suppose on the contrary that there are S ∈
⋂
q∈Qn Vq and v ∈ Rn \ {0}6

such that S − v = S. In particular, this implies that, for every q ∈ Qn and z ∈ S,7

d(z−q, S) ≤ |v−q|. When |q−v| < α, we obtain a contradiction with the definition8

of Vq in (3.1). �9

Corollary 3.4. Aperiodicity is a generic property in Delε,δ for ε ≥ δ.10

Proof. By Propositions 3.2, 3.1, and 3.3,
⋂
q Vq is a residual subset consisting of11

aperiodic Delone sets. �12

In order to complete the proof of Theorem 1.3, we will now show that being13

almost chaotic is also a generic property. Let vi, i = 1, . . . , n, denote the standard14

basis of Rn.15

Definition 3.5. For m,m′ ∈ N, let Wm,m′ ⊂ Delε,δ be the subset of (ε, δ)-Delone16

sets satisfying the following conditions:17

(i) there is some x ∈ Rn such that (S, S − x) ∈ Nm, and18

(ii) for any integer coefficients a1, . . . , an with |ai| ≤ m′ for i = 1, . . . , n, we19

have20 (
S − x, S − x− (m+ δ + ε)

∑
i=1,...,n

aivi

)
∈ Nm′ .

The intuitive idea behind the definition of Wm,m′ is as follows: a Delone set S21

belongs to Wm,m′ if there is some x such that S is similar to S − x with respect22

to the parameter m, and S − x is close to being a periodic Delone set, where m′23

measures how close to being periodic S − x is. We will see that Wm,m′ are open24

dense sets, and
⋂
m,m′∈NWm,m′ consists of almost periodic Delone sets.25

Proposition 3.6. The sets Wm,m′ are open for m,m′ ∈ N.26

Proof. Let S ∈ Wm,m′ . We will show that there is some l ∈ N such that Nl(S) ⊂27

Wm,m′ . By the definition of Wm,m′ , there is some x ∈ Rn satisfying Defini-28

tion 3.5(i)–(ii). Since the sets Nr are open for r > 0 and any Delone set in Rn29

is locally finite, there are m > m̃ > 0 and m̃′ > m′ > 0 such that30

(S, S − x) ∈ Nm̃,
(
S − x, S − x− (m+ ε+ δ)

∑
i=1,...,n

aivi

)
∈ Nm̃′

for |ai| ≤ m′, i = 1, . . . , n. By (2.2), we can choose l large enough so that Nl ◦Nm̃ ◦31

Nl ⊂ Nm and Nl ◦Nm̃′ ◦Nl ⊂ Nm′ . It is now a trivial matter to check that every32

S′ ∈ Nl(S) satisfies Definition 3.5. �33

Proposition 3.7. If ε ≥ δ, then the subsets Wm,m′ are dense in Delε,δ for m,m′ ∈34

N.35
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Figure 5. The picture on the left represents T ⊂ Tn; the right
one its lift to Rn following a grid pattern.

Proof. Let S ∈ Delε,δ and l ∈ N. Identify the n-torus Tn with the quotient of the1

square [−m−δ−ε,m+δ+ε]n that identifies opposite faces. Let π : Rn → Tn denote2

the quotient map. By Lemma 2.3 there is a (ε, δ)-Delone set S′ on [−m− ε,m+ ε]3

satisfying4

S′ ∩ [−m,m]n = S ∩ [−m,m]n .

Then π(S′ ∩ [−m − ε,m + ε]n) is a δ-separated subset and ε-relatively dense in5

π([−m− ε,m+ ε]n), so applying Lemma 2.4 we may enlarge it to an (ε, δ)-Delone6

set T on Tn that satisfies7

π(S ∩ [−m,m]n) = T ∩ π([−m,m]n) .

Choose x ∈ Rn sufficiently far from 0, and lift T ⊂ Tn to an (ε, δ)-Delone set T̂8

on a “grid” of fundamental domains given by the squares with centres x +
∑
aivi9

and length 2(m+ δ+ ε), as illustrated in Figure 5. Using Lemma 2.4, complete the10

disjoint union11

T̂ t (S ∩ [−l, l]n)

to an (ε, δ)-Delone set Ŝ satisfying12

Ŝ ∩ [−l, l]n = S ∩ [−l, l]n

and

Ŝ ∩ [x−m′(m+ δ + ε), x+m′(m+ δ + ε)]n

= T̂ ∩ [x−m′(m+ δ + ε), x+m′(m+ δ + ε)]n .

Then Ŝ satisfies the conditions of Definition 3.5 with x ∈ Rn. We have shown that,13

for every S ∈ Delε,δ and l ∈ N, there is Ŝ ∈ Wm,m′ ∩ Nl(S). This establishes the14

density of Wm,m′ . �15

Lemma 3.8. The set
⋂
m,m′ Wm,m′ consists of almost chaotic Delone sets.16

Proof. Let S ∈
⋂
m,m′ Wm,m′ and fix a neighbourhood Nl(S) (l ∈ N). Let m > l.17

For every m′ there is a point xm′ ∈ Rn such that (S, S − xm) ∈ Nm and, for any18

integer coefficients a1, . . . , an with |ai| ≤ m′, we have19 (
S − xm′ , S − xm′ − (m+ δ + ε)

∑
i=1,...,n

aivi

)
∈ Nm′ .



10 J.A. ÁLVAREZ LÓPEZ, R. BARRAL LIJÓ, J. HUNTON, H. NOZAWA, AND J.R. PARKER

Since Delε,δ is compact, the sequence (S − xm′)m′∈N has a subsequence converging1

to some S′ ∈ [S], and (S, S′) ∈ Ul because l < m. Moreover, for m′ large enough2

and |ai| ≤ m′, we have3 (
S − xm′ , S − xm′ − (m+ δ + ε)

∑
i=1,...,n

aiei

)
∈ Nm′ .

By continuity we obtain4 (
S′, S′ − (m+ δ + ε)

∑
i=1,...,n

aiei

)
∈ Nm′

for every m′ ∈ N. This means (m+ δ+ ε)
⊕

i aiZn ⊂ Aut(S′), hence S′ is periodic.5

We have proved that, for any S ∈
⋂
m,m′ Wm,m′ , there are periodic Delone sets in6

[S] arbitrarily close to S, and the result follows. �7

Corollary 3.9. Being almost chaotic is a generic property in Delε,δ for ε ≥ δ.8

Proof. The set
⋂
m,m′ Wm,m′ is a residual subset consisting of almost chaotic Delone9

sets by Propositions 3.6 and 3.7 and Lemma 3.8. �10

The combination of Corollaries 3.4 and 3.9 gives Theorem 1.3.11

4. Cut-and-project construction on the Poincaré disk12

In this section we will present a geometric example of a chaotic Delone set on R13

by proving Theorem 1.4.14

As we will see in the course of the proof of Theorem 1.4, it turns out that it15

is more natural to consider a variant of the hyperbolic cut-and-project set S` in16

Theorem 1.4. Let us fix some notation first: Fix a torsion-free uniform lattice Γ of17

PSL(2;R), a positive number ρ and a point x in H2 throughout this section. Let18

Σ = Γ\H2 be the compact hyperbolic surface obtained from Γ. From now on, all19

geodesics on H2 and Σ are assumed to be parametrised by arc-length. The image20

of a geodesic k : R → H2 is denoted by the same symbol k, and it is identified21

with R via the arc-length parametrisation. Thus subsets of the image of geodesics22

on H2 are regarded as subsets of R. We orient the normal bundle of k with the23

orientation induced from the standard orientation of H2 and the orientation of k.24

We will consider the following variant of S` in Theorem 1.4.25

Definition 4.1. Let k be a geodesic on H2. Let Ek be the open tubular neigh-26

bourhood of k of radius ρ in H2. Let ∂+Ek be the connected component of the27

boundary of Ek that is the positive with respect to the orientation of the normal28

bundle of k. Let29

E
+

k = Ek ∪ ∂+Ek , S+
k = pk(E

+

k ∩ Γx),

where pk : H2 → k is the orthogonal projection.30

We fix throughout this section a geodesic ` on H2 such that the orbit of the31

geodesic flow that consists of the unit tangent vectors of the projection of ` is dense32

in the unit tangent bundle of Σ. As we will see, S+
` always has a chaotic nature.33

However, it may not be Delone in general. We will show the following generalization34

of Theorem 1.4 to S+
` , which characterises when it holds.35

Theorem 4.2. With the above notation, S+
` is Delone if and only if:36
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(A) ρ < inj(Σ, x0), where x0 = Γx and inj(Σ, x0) is the injective radius of Σ1

at x0.2

(B) Any geodesic on Σ intersects the closed disk ∆ of radius ρ centred at x0,3

and there exists no geodesic with one-sided tangency with ∂∆.4

If S+
` is Delone, then it is chaotic.5

This result is slightly more general than Theorem 1.4. Indeed, in Theorem 1.4,6

we assume that d(`, y) 6= ρ for any y ∈ Γx which implies that S+
` = S`.7

First we show the chaotic nature of S+
` . In order to do so, we will use a classical8

result of Anosov on the chaotic nature of the geodesic flow on Σ.9

Theorem 4.3 ([2], for English translation, see [3]). The union of closed orbits is10

dense in the unit tangent bundle of Σ.11

We will say that a geodesic k on H2 is Σ-closed if k is projected on a closed geo-12

desic on Σ. For a Σ-closed geodesic k, it is easy to see the sets Sk and S+
k associated13

with k is periodic. We will prove that S+
` is almost chaotic by approximating S+

`14

with such periodic Sk or S+
k based on the characterisation of the almost chaotic15

property in Lemma 2.1. However, if there are y ∈ Γx such that d(k, y) = ρ, it may16

violate the approximation of S+
` by Sk with Σ-closed geodesics k. As we will see,17

the set S+
k behaves better than Sk in this approximation (see Remark 4.5).18

In the following lemma we will use Nr (r > 0) in a situation more general than19

in Section 2: let Nr be the set consisting of all pairs (T, T ′) of subsets of R such20

that21

T ∩ [−r, r] ⊂ T ′ + [−1/r, 1/r] , T ′ ∩ [−r, r] ⊂ T + [−1/r, 1/r].

Now we will show the following, which implies the chaotic nature of S+
` .22

Lemma 4.4. (i) For any r > 0, there exists a Σ-closed geodesic k such that23

(S+
` , S

+
k ) ∈ Nr.24

(ii) For any s > 0 and any geodesic k on H2, there exists a ∈ R such that25

(S+
` − a, S

+
k ) ∈ Ns.26

Proof. Take any r > 0 and consider the interval I = `([−r, r]). Let v = d`
dt

∣∣
t=0

.27

By Theorem 4.3, we can take a unit vector w tangent to a Σ-closed geodesic k28

and arbitrarily close to −v. Let Z be the subset of all points z in Γx such that29

d(I, z) ≤ ρ. For m = k, `, let E
+

m be the union of the open tubular neighbourhood30

of m of radius ρ in H2 and its positive boundary, as in Definition 4.1. We may31

assume that the tangent vector w of k at t = 0 is sufficiently close to −v, so that I32

is contained in the positive component of Ek \ k and J is contained in the positive33

component of E` \ `, where J = k([−r, r]). Since Z is finite, by replacing k with a34

Σ-closed geodesic closer to I, we can assume the following:35

• for any z ∈ Z, we have z ∈ E+

` if and only if z ∈ E+

k ,36

• d(ι(y), y) < 1/2r for any y ∈ J , where ι : J → I is the unique orientation37

reversing isometry, and38

• d(pk(z), p`(z)) < 1/2r for any z ∈ Z, where pk : H2 → k is the orthogonal39

projection.40

By the first condition, we have S+
` ∩I ⊂ p`(Z) and S+

k ∩J ⊂ pk(Z). For any z ∈ Z,41

by the second and third conditions, we have42

d(p`(z), ι(pk(z))) < d(p`(z), pk(z)) + d(pk(z), ι(pk(z))) < 1/r.
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Since ι(`(0)) = k(0), it follows that (S+
` , S

+
k ) ∈ Nr. This completes the proof of (i).1

For (ii), take any s > 0 and any geodesic k on H2. Let w = dk
dt

∣∣
t=0

. Since the2

unit tangent vectors of the projection of ` is dense in S1(TΣ) by assumption, we can3

take γ ∈ Γ and a unit tangent vector v of ` so that γ∗v is arbitrarily close to −w,4

where γ∗ is the tangent map of the action H2 → H2 of γ. Let I ′ = k([−r, r]). Let5

Z ′ be a subset of Γx which consists of all points z′ ∈ Γx such that d(z′, I ′) ≤ ρ. The6

rest of the argument is parallel to the proof of (i). Since Z ′ is finite, by taking γ ∈ Γ7

and the unit tangent vector v′ of ` at parameter t = a so that γ∗v
′ is sufficiently8

close to −w, we have (S+
` − a, S

+
k ) ∈ Ns. �9

Remark 4.5. The last lemma is not true for S` in general. If there exists no y ∈ Γx10

with d(y, `) = ρ, then (i) is true for S`. Similarly (ii) is true for a geodesic k such11

that there exists no y ∈ Γx with d(y, `) = ρ.12

Figure 6. Approximation of S+
` by S+

k : The vectors ν+(`) and
ν+(k) represent the orientations of the normal bundles of ` and k,
respectively. Two circles with dotted lines represent the boundary
of the ρ-neighbourhoods of I and J , respectively. The dots repre-
sent points in Γx. The blue dots belong to both E+

` and E+
k . But

the black dots do not because they belong to the negative side of
the boundary of E` or Ek, respectively.

Once S+
` is proved to be Delone, the following consequence of the last lemma13

shows that S+
` satisfies the characterisation of an almost chaotic Delone set in14

Lemma 2.1.15

Corollary 4.6. For every r ∈ N, there exists a Σ-closed geodesic k on H2 such that16

(S+
` , S

+
k ) ∈ Nr, and for any s ∈ N, there exists a ∈ R such that (S+

` − a, S
+
k ) ∈ Ns.17

Let us characterize now when S+
` is Delone.18

Proposition 4.7. The subset S+
` is Delone if and only if Conditions (A) and (B)19

in Theorem 4.2 are satisfied.20

Let us prove Proposition 4.7 by showing the following two lemmas. In the first21

one, we characterize the discreteness of S+
` in terms of ρ, based on the density of22

the unit tangent vectors of the projection of ` in S1(TΣ).23

Lemma 4.8. Let µ denote the injectivity radius of Σ at x0 = Γx.24

(i) If ρ < µ, then S+
` is δ-separated, where δ = 2µ− 2ρ.25
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(ii) If µ ≤ ρ, then S+
` is not δ-separated for any δ > 0.1

Proof. First note that 2µ = min{ d(y, z) | y, z ∈ Γx, y 6= z }. Here (i) follows2

directly from the triangle inequality. Indeed, for every yi in S+
` , choose ỹi ∈ Γx so3

that d(ỹi, yi) < ρ and p(ỹi) = yi. If yi 6= yj , then4

2µ ≤ d(ỹi, ỹj) ≤ d(ỹi, yi) + d(yi, yj) + d(yj , ỹj) < 2ρ+ d(yi, yj),

which implies that d(yi, yj) > 2µ− 2ρ = δ.5

In order to prove (ii), let us assume µ ≤ ρ. We consider the case µ < ρ first.6

Let y and z be a pair of distinct points in Γx such that d(y, z) = 2µ, and let v be7

a unit tangent vector at the midpoint of the segment yz which is perpendicular to8

yz. Let k be the geodesic on H2 such that dk
dt

∣∣
t=0

= v. Assume that we can take9

γ ∈ Γ so that γ∗v is very close to a tangent vector of ` at t = t0. Since `(t0) is10

close to the midpoint of yz and we assume µ < ρ, we have d(`(t0), γ(y)) < ρ and11

d(`(t0), γ(z)) < ρ. Hence p`(γ(y)) and p`(γ(z)) belong to S+
` . Since ` is almost12

tangent to the bisector of the segment γ(y)γ(z) near the middle point of yz, we13

can see that p`(γ(y)) and p`(γ(z)) are close to each other. Since we can take γ ∈ Γ14

so that γ∗v is arbitrarily close to a tangent vector of `, it follows that S is not15

ε-separated for any ε > 0. The case where ρ = µ follows by a slight modification of16

the proof. Note that, even if we take a geodesic k1 on H2 so that a tangent vector17

of k1 is close to v, we may have d(k1, z) > ρ or d(k1, y) > ρ in general. Instead of18

approximating v with a tangent vector of `, first we take a tangent vector v′ close19

to v such that d(k′, y) < ρ and d(k′, z) < ρ, where k′ is the geodesic tangent to v′.20

We can take γ ∈ Γ so that γ∗v
′ is close to a tangent vector of `. Then, we can do21

the same argument to see that p`(γ(y)) and p`(γ(z)) are close to each other. �22

Let us characterize the density of S+
` in the following lemma. In the proof, we23

say that a geodesic σ on Σ has two-sided tangency with ∂∆ if σ is tangent to ∂D at24

every point in σ ∩ ∂D, but it does not have one-sided tangency with ∂∆; namely,25

there exists a pair of outward vectors of ∂∆ at tangential points in σ∩∂D that are26

in the opposite directions.27

Lemma 4.9. The subset S+
` is ε-relatively dense for some ε > 0 if and only if28

Condition (B) in Theorem 4.2 is satisfied.29

Proof. The “only if” part follows from Lemma 4.4. Indeed, if Condition (B) is not30

satisfied, then there exists a geodesic on Σ which does not intersect ∆, or there31

exists a geodesic on Σ with one-sided tangency with ∂∆. If a geodesic k on H2 does32

not intersect ∆, then we have S+
k = ∅. If k has one-sided tangency with ∂∆, then33

we have S+
k = ∅ after changing the orientation of k if necessary. Since (S+

` , ∅) ∈ Ns34

means that ` has an interval I of length 2(s− 1
s ) such that I ∩S+

` = ∅, in any cases,35

it follows that S+
` is not ε-relatively dense for any ε > 0.36

Let us prove the “if” part. First consider the case where any geodesic on Σ37

intersects ∆̊, where ∆̊ is the open disk of radious ρ in Σ centred at Γx ∈ Σ. For38

v ∈ S1(TΣ), let τ(v) ∈ R≥0 be defined by39

τ(v) = inf{ |t| ∈ R≥0 | `v(t) ∈ ∆̊ },

where `v is the geodesic on Σ such that d`v
dt

∣∣
t=0

= v. Since any geodesic intersects40

∆̊, it follows that τ : S1(TΣ) → R≥0 is well-defined. It is easy to see that it is41

upper semicontinuous. Then, since S1(TΣ) is compact, τ is bounded from above.42
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This implies that τ is bounded on `, which implies that S+
` is ε-relatively dense for1

some ε.2

Let us consider the general case. We will show that, if Condition (B) in Theo-3

rem 4.2 is satisfied, there are finitely many closed geodesics on Σ that have two-sided4

tangency with ∂∆, and any other geodesics on Σ intersect ∆̊. Under Condition (B)5

in Theorem 1.4, for any geodesic σ on Σ, either σ intersects ∆̊ or σ has two-sided6

tangency with ∂∆. Since any geodesic sufficiently close to a geodesic with two-sided7

tangency intersects ∆̊, the set of unit tangent vectors of ∂∆ which are tangent to8

geodesics with two-sided tangency with ∂∆ is discrete, and hence finite. It follows9

that there are only finitely many geodesics on Σ with two-sided tangency with ∂∆,10

and all of them are closed. Let C be the union of closed orbits in S1(TΣ) given by11

the tangent vectors of all geodesics on Σ that have two-sided tangency with ∂∆.12

Since a geodesic close to a geodesic with two-sided tangency with ∂∆ intersects ∆̊,13

for a sufficiently small open neighbourhood U of C, we see that the function τ is14

bounded on U \C. It follows that τ is bounded on S1(TΣ) \C, and hence so is on15

`. Then we can conclude that S+
` is ε-relatively dense for some ε as in the above16

case. �17

Proposition 4.7 follows from Lemmas 4.8 and 4.9.18

Finally, we will show the aperiodicity of S+
` by applying Lemma 4.4 and a result19

of Dal’bo for the non-arithmeticity of the length spectrum of Riemann surfaces.20

Recall, the length spectrum of a Riemann surface M is the set of the lengths of21

all closed geodesics on M . Dal’bo [11] proved that the length spectrum of any22

Riemann surface cannot be of the form aN for any a > 0.23

Lemma 4.10. If Condition (B) of Theorem 4.2 is satisfied, then S+
` is aperiodic.24

Proof. Assume that S+
` is periodic with period ω. Take any closed geodesic σ on Σ25

and a geodesic k on H2 which is projected to σ. By assumption, S+
k is non-empty.26

Since σ is closed, the set S+
k is periodic with period |σ|/m for some m ∈ N, where27

|σ| is the length of σ. It follows from Lemma 4.4-(ii) that S+
` and S+

k have the28

same period, which means |σ| = ωm. Hence, the length spectrum of Σ is contained29

in ωN. But this contradicts a result of Dal’bo [11, Proposition 2.1]. �30

Theorem 4.2 is the combination of Corollary 4.6 and Lemma 4.10.31

5. Powers of chaotic Delone sets on R32

This section is devoted to the proof of the following result.33

Proposition 5.1. If S is a chaotic Delone subset of R, then Sn is a chaotic Delone34

subset of Rn for every n ≥ 1.35

Proof. Let S be a chaotic (ε, δ)-Delone set for some ε, δ > 0, and let n > 1. To36

avoid ambiguity, we denote the elements R by smallcase letters x, y, s . . . and the37

elements of R as vectors ~x, ~y,~s . . . Let38

~s = (s1, . . . , sn), ~t = (t1, . . . , tn) ∈ Sn

and suppose ~s 6= ~t, then there is some 1 ≤ i ≤ n so that si 6= ti. Since S is39

δ-separated, we have dR(si, ti) ≥ δ, and therefore dRn(~s,~t) ≥ δ; this shows that Sn40

is δ-separated.41



CHAOTIC DELONE SETS 15

Let us prove that Sn is also
√
nε-relatively dense: Let ~x = (x1, . . . , xn) ∈ Rn.1

Since S is ε-relatively dense, for every i = 1, . . . , n, there is some si ∈ S so that2

dR(xi, si) ≤ ε. Let ~s = (s0, . . . , sn), then3

dRn(~x,~s) =

(
n∑
i=1

|xi − si|

)1/2

≤ (nε)1/2 =
√
nε,

showing that Sn is a (δ,
√
nε)-Delone subset of Rn.4

To see that Sn is aperiodic, assume for the sake of contradiction that Sn−~v = Sn5

for some ~v = (v1, . . . , vn) ∈ Rn. This means that, for every ~s = (s1, . . . , sn),6

~s− ~v ∈ Sn if and only if ~s ∈ Sn. In particular, for every s ∈ S, s ∈ S if and only if7

s− v1 ∈ S, contradicting the hypothesis that S is aperiodic.8

Finally, to prove that Sn is almost chaotic, recall that the sets Nr(S
n) (r > 0)9

form a neighbourhood basis at Sn (see Section 2). Also, arguing as before, we get10

that, for every Delone subset R of R and r > 0,11

(R+BR(0, r))n ⊂ Rn +BRn(~0,
√
n/r).

Now (2.1) yields12

S ⊂ Nr(R) =⇒ Sn ⊂ Nr/√n(Rn) (5.1)

for every r > 0 and Delone set R.13

By the assumption that S is almost chaotic and Lemma 2.1, there is a sequence14

of periodic Delone sets Ti (i ≥ 1) in R and, for each i, a sequence xi,j (j ≥ 1) in R15

so that16

S ∈ N1/i(Ti) and S − xi,j ∈ N1/j(Ti).

For i, j ≥ 1, let ~xi,j = (xi,j , . . . , xi,j). Now (5.1) yields17

Sn ∈ N√n/i(Tni ) and S − ~xi,j = (S − xi,j)n ∈ N√n/j(Tni ).

Arguing as in the beginning of the proof, we get that the sets Tn are Delone, and18

since they are obviously periodic, the result now follows from Lemma 2.1. �19
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