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Abstract

Recent advancements in remote sensing technology and the increasing size of satel-
lite constellations allow for massive geophysical information to be gathered daily on a
global scale by numerous platforms of different fidelity. The auto-regressive co-kriging
model provides a suitable framework for the analysis of such data sets as it is able to
account for cross-dependencies among different fidelity satellite outputs. However, its
implementation in multifidelity large spatial data sets is practically infeasible because
the computational complexity increases cubically with the total number of observations.
In this paper, we propose a nearest neighbor co-kriging Gaussian process (GP) that cou-
ples the auto-regressive model and nearest neighbor GP by using augmentation ideas.
Our model reduces the computational complexity to be linear with the total number of
spatially observed locations. The spatial random effects of the nearest neighbor GP are
augmented in a manner which allows the specification of semi-conjugate priors. This
facilitates the design of an efficient MCMC sampler involving mostly direct sampling
updates. The good predictive performance of the proposed method is demonstrated in
a simulation study. We use the proposed method to analyze High-resolution Infrared
Radiation Sounder data gathered from two NOAA polar orbiting satellites.

Keywords: Augmented hierarchically nested design, Autoregressive Co-kriging, Nearest neigh-
bor Gaussian process, Remote sensing.
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1 Introduction

Due to the advancement of remote sensing technology and the growing size of satellite con-

stellations, it has become increasingly common for geophysical information to be measured

by numerous platforms at similar times and locations. Aging and exposure to the harsh

environment of space results in sensor degradation over the satellite’s lifetime causing a de-

crease on performance reliability. This results in inaccuracy of the data as a true measure for

long term trend analysis (Goldberg, 2011). Generally, newer satellites with more advanced

sensors provide information of higher fidelity than older models. Different platforms often

collect large amounts of observations with varying fidelity for spatial areas that may or may

not overlap or have the same spatial footprint. Over the years multiple methods have been

developed with the overarching goal of enabling the intercomparison amongst satellite plat-

forms including: use of ground-based observations and leveraging temporally stable targets

(e.g. moon, desert sites, deep convective clouds) to assess satellite sensor performance and

consistency (Chander et al., 2013; Xiong et al., 2010; National Research Council, 2004). But

to date, these methods fail to account for differing fidelity levels between satellite platforms

with statistical rigor.

As a specific example of how the remote sensing community currently manages this chal-

lenge, we consider the strategy applied to the high-resolution infrared radiation sounder

(HIRS) which provides measurements from multiple satellite platforms. As described in Cao

et al. (2004, 2005), the intersatellite calibration of HIRS sensors is based on calculating dif-

ferences between all the near-nadir overlapping points from two satellites within a period of

time. These differences are assessed in separated 10-degree brightness temperature bins as

an aggregated mean, with no spatial or temporal dependencies. The current intersatellite

calibration of the observations is simply a least square bias correction term based on a linear

relationship of the differences in brightness temperature in the adjacent satellite (assumed to
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have the higher fidelity). However, this naive approach ignores spatial dependency by assign-

ing the same bias correction across the spatial domain, which can possibly yield misleading

results. A single composite feature, which includes adequate information from multiple data

sources in space, is preferred for statistical inference.

In geostatistics, co-kriging is a suitable framework for analysis of spatially correlated ran-

dom processes (Davis and Greenes, 1983; Aboufirassi and Mariño, 1984; Ver Hoef and Cressie,

1993; Furrer and Genton, 2011; Genton and Kleiber, 2015). Complex cross-covariance func-

tions can lead to infeasible computational complexity, even for moderate amounts of data.

To address this issue, Kennedy and O’Hagan (2000) proposed an autoregressive co-kriging

model which is simple, but yet flexible, to model complex dependency structures. The au-

toregressive co-kriging framework has gained popularity in computer experiments (Qian and

Wu, 2008; Han et al., 2010; Le Gratiet, 2013; Koziel et al., 2014) due to its computational

convenience. Its framework fits well with the multi-sensor geographical information system,

since the hierarchy is established based on age and technology of the sensors. Most of the

computational benefits of autoregressive co-kriging are lost when the multi-fidelity data are

not observed in a hierarchically nested structure. Multi-sensor geographical information sys-

tems are usually observed irregularly in space and are hierarchically non-nested. Recently,

Konomi and Karagiannis (2021) proposed a Bayesian augmented hierarchical co-kriging pro-

cedure which makes the analysis of partially-nested and/or non-nested structures possible

with feasible computational cost by splitting the augmented likelihood into conditionally

independent parts. Despite this simplification, the method cannot be applied directly to

large data sets. Each conditional component of the likelihood requires evaluation of the

determinant as well as inversion of a large co-variance matrix.

Recently, statistical methods for large spatial data sets have received much attention.

Many of the most popular techniques rely on low-rank approximation (Banerjee et al., 2008;

Cressie and Johannesson, 2008), approximate likelihood methods (Stein et al., 2004; Gramacy
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and Apley, 2015), covariance tapering methods (Furrer et al., 2006; Kaufman et al., 2008; Du

et al., 2009), sparse structures (Lindgren et al., 2011; Nychka et al., 2015; Datta et al., 2016),

multiple-scale approximation (Sang and Huang, 2012; Katzfuss, 2016), and lower dimensional

conditional distributions (Vecchia, 1988; Stein et al., 2004; Datta et al., 2016; Katzfuss and

Guinness, 2021). A number of these methods have been generalized to handle large data

from multiple sources. For example, Nguyen et al. (2012, 2017) have proposed data fusion

techniques based on fixed ranked kriging (Cressie and Johannesson, 2008). The accuracy

of this approach relies on the number of basis functions and can only capture large scale

variation of the covariance function. When the data sets are dense, strongly correlated, and

the noise effect is sufficiently small, low rank kriging techniques have difficulty accounting for

small scale variation (Stein, 2014). More recently, Taylor-Rodriguez et al. (2018) embedded

the nearest-neighbor Gaussian process (NNGP) into a spatial factor model and used NNGP

to model the resulting independent GP processes. This method assumes that data sets from

different sources follow an overlapping structure, limiting its use for real applications.

In this paper, we propose a new computationally efficient autoregressive co-kriging method

based on the nearest neighbor Gaussian process (NNGP), which is called the nearest neigh-

bor Co-kriging Gaussian process (NNCGP). The proposed method is applicable to large

non-nested and irregular spatial data sets from different platforms having varying quality.

NNCGP utilizes an approximate imputation procedure based on a nested reference set to

address large data sets of non-nested observations. This formulation allows the evaluation of

the likelihood and predictions with low computational cost, as well as allows the specification

of conditional conjugate priors. Compared to the aforementioned models, it exhibits both

computational efficiency and flexibility. This method enables the analysis of high-resolution

infrared radiation sounder (HIRS) data sets gathered daily from two polar orbiting satel-

lite series (POES) of the National Oceanic and Atmospheric Administration (NOAA). We

show that the proposed method is both more accurate and computationally more efficient
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for these type of data sets. Furthermore, the NNCGP model shows significant improvement

in prediction accuracy over the existing NNGP approach, based on our simulation study and

the analysis for the real data application.

The layout of the paper is as follows. In Section 2, we introduce a spatial representation

of the autoregressive co-kriging model. In Section 3, we introduce our proposed NNCGP

as an extension of the existing autoregressive co-kriging model. In Section 4, we design an

MCMC approach tailored to the proposed NNCGP model that facilitates parametric and

predictive inference. In Section 5, we investigate the performance of the proposed procedure

on a toy example. In Section 6, we apply the proposed method to HIRS data sets from two

satellites, NOAA-14 and NOAA-15. Finally, we summarize our findings in Section 7.

2 Spatial Co-kriging Gaussian Process

We consider T platforms which gather spatial observations with similar footprint. We assume

that: (a) observations from different platforms are correlated, (b) platform t provides a

more accurate representation of the ground truth than platform t − 1, and (c) prior belief

about observations from a platform can be modeled by a Gaussian process. We refer to the

observations of platform t as the observations of fidelity level t. Let yt(s) denote the output

at the spatial location s at fidelity level t = 1, ..., T . Here, the fidelity level index t runs from

the least to most accurate platform. We consider that the observed output zt(s) at location

s is contaminated by additive random noise εt(s) ∼ N(0, τt) with unknown variance τt, and

yt(s) depends on the fidelity level output yt−1(s) via an autoregressive co-kriging model.

Specifically, we model the observation zt(s) as:

zt(s) = yt(s) + εt(s)

yt(s) = ζt−1(s)yt−1(s) + δt(s), (2.1)

δt(s) = hTt (s)βt + wt(s),

5



for t = 2, . . . , T , and y1(s) = hT1 (s)β1 + w1(s). Here, ζt−1(s) and δt(s) represent the scale

and additive discrepancies between the output of platforms with fidelity levels t and t − 1,

and ε(s) are uncorrelated pure error terms with variance τ 2t . Moreover, ht(·) is a vector of

basis functions and βt is a vector of coefficients at fidelity level t. We model, a priori, wt(s) as

Gaussian processes, mutually independent for different t; i.e. wt(·) ∼ GP (0, Ct(·, ·,θt)) where

Ct(·, ·,θt) is a covariance function with parameters θt at fidelity level t. This implies that

y1, δ2, . . . , δT are a priory mutually independent Gaussian processes. The unknown scale

discrepancy function ζt−1(s) is modeled as a basis expansion ζt−1(s|γt−1) = gt−1(s)Tγt−1

(usually with low degree), where gt(s) is a vector of basis functions and {γt−1} is a vector

of coefficients for the scale discrepancies, for t = 2, . . . , T .

The statistical model in (2.1) is different from the co-kriging model of Kennedy and

O’Hagan (2000), which was developed for the analysis of deterministic computer models,

because it accounts for a nugget effect through ε(s). The introduction of a nugget effect can

play an important role by accounting for measurement errors in spatial statistics as well as

modeling the error in stochastic computer models (Baker et al., 2020). The benefits of con-

sidering a nugget effect in spatial data models has been previously noticed by Cressie (1993)

and Stein (1999). Gramacy and Lee (2012) argued that the use of a nugget can also mitigate

poor fitting when there is deviation from the GP model assumptions. Finally, Kennedy and

O’Hagan (2000) originally used a constant scalar discrepancy based on stationarity argu-

ments. We use a more general polynomial format for the scalar discrepancy (Qian et al.,

2005) for model flexibility and to improve predictions when needed. To avoid identifiability

issues, it is recommended to use low degree basis expansions for both the additive and scalar

discrepancy.

For each level of fidelity, we choose a product exponential covariance function: Ct(s, s′|θt) =

σ2
t exp

(
−
∑d

i=1

|si−s′i|
φt,i

)
, where θt = {σ2

t ,φt} = {σ2
t , φt,1, φt,2, . . . , φt,d}, σ2

t is the variance pa-

rameter and φt,i control the spatial dependence strength in Rd at fidelity level t and direction
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i. The product covariance function is equivalent to a diagonal anisotropic covariance func-

tion. More intricate covariance functions, such as the stationary ones from the Matérn family

(Cressie, 1993; Stein, 1999; Banerjee et al., 2014) or the non-stationary ones of (Paciorek

and Schervish, 2006; Konomi et al., 2014) can also be used in this model.

Let’s assume the system is observed at nt locations at each fidelity level t. Let St =

{st,1, . . . , st,nt} be the set of nt observed locations and Zt = zt(St) = {zt(st,1), . . . , zt(st,nt)}

represent the observed outputs at fidelity level t. The joint sampling distribution of the obser-

vations at all levels Z1:T = {Z1, . . . ,ZT} is Gaussian, hence the likelihood L(Z1:T |θ1:T ,β1:T ,γ1:T−1, τ1:T )

is a multivariate Normal density function with mean vector µ and covariance matrix Λ that

cannot easily be computed. Specifically, if the data are observed in non-nested locations for

each fidelity level, the calculation of the likelihood requires O((
∑T

t=1 nt)
3) flops to invert the

covariance matrix Λ and an additional O((
∑T

t=1 nt)
2) memory to store it as explained in

Konomi and Karagiannis (2021). Thus the likelihood evaluation is computationally costly, if

not practically impossible, when nt is large. For instance, in our application, for each satel-

lite we have ∼ 105 observations at non-nested locations making the practical implementation

impossible.

3 Nearest Neighbor Co-kriging Gaussian Process

To deal with the computational complexity of the co-kriging model, we propose to ap-

ply a set of independent nearest-neighbor Gaussian process (NNGP) priors (Datta et al.,

2016) at the spatial process of each level of fidelity. NNGP is a fully dimensional GP with

sparse representation in the precision matrix of the spatial process. Let wt = wt(St) =

{wt(st,1), . . . , wt(st,nt)} denote the vector of the spatial process over the observed locations

St at fidelity level t. Based on the independent assumptions in (2.1), the joint density of
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w1:T can be written as the product of conditional Normal densities:

p(w1:T |θ1:T ) =
T∏
t=1

p(wt|θt) =
T∏
t=1

nt∏
i=1

p(wt(st,i)|wt,<i), (3.1)

where p(wt|θt) = N(wt|0,C(θt)) ,
∏nt

i=1 p(wt(st,i)|wt,<i) is the conditional representation of

the joint distribution of wt, wt,<i = {wt(st,1), wt(st,2), . . . , wt(st,i−1)} for 2 ≤ i ≤ nt, and

wt,<1 = ∅. We specify a multivariate Gaussian distribution over a fixed set of points in

the domain, to which we refer to as the reference set. For simplicity and computational

efficiency, the reference set is chosen to coincide with the set of observed locations St. As

demonstrated in (Datta et al., 2016), based on the reference set, we can extend this finite-

dimensional multivariate Normal distribution to a stochastic process over the domain.

Let Nt(st,i) be a subset of locations from St,<i = {st,1, st,2, . . . , st,i−1}. Nt(st,i) is con-

structed by choosing at most m “nearest neighbors” of location st,i from St,<i such that:

Nt(st,i) =


∅ , for i = 1,

{st,1, st,2, . . . , st,i−1} , for 2 ≤ i ≤ m,

m nearest neighbors among{st,1, st,2, . . . , st,i−1} , for i > m.

Given the above specification of nearest neighbors, and its ordering mechanism, the density

p(wt|θt) is approximated by p̃(wt|θt) =
∏nt

i=1 p(wt(st,i)|wt,Nt(st,i)). It can be shown that

wt(st,i)|wt,Nt(st,i) ∼ N(Bt,st,iwt,Nt(st,i), Ft,st,i), where Bt,st,i = CT
st,i,Nt(st,i)

C−1Nt(st,i)
, Ft,st,i =

C(st,i, st,i) − CT
st,i,Nt(st,i)

C−1Nt(st,i)
Cst,i,Nt(st,i), Cst,i,Nt(st,i) is the covariance matrix of wt(st,i)

and wt,Nt(st,i), and CNt(st,i) is the covariance matrix of wt,Nt(st,i). Thus the nearest neighbor

density p̃(wt|θt) is Normal with mean zero and covariance C̃(θt), where C̃−1(θt) is a sparse

matrix with at most 1
2
ntm(m+ 1) non-zero elements (Appendix A).

With NNGP prior specification for wt and general prior formulation for Θt = (φt,σ
2
t ,βt,γt−1, τt),

the posterior distribution is

p(Θ1:T ,w1:T |Z1:T ) ∝ L(Z1:T |θ1:T ,β1:T ,γ1:T−1, τ1:T ,w1:T )
T∏
t=1

p(Θt)p̃(wt|θt) (3.2)
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while the likelihood kernel is a multivariate Normal density with mean µ and covariance

Λ, which are defined in Appendix B. The covariance matrix Λ is not sparse since the cross

covariance in St′\St for t′ > t is not zero. So the likelihood, conditional on the nearest

neighbor spatial random effects, cannot be simplified unless St′\St = ∅ (or equivalently

St′ ⊆ St, that is the observation locations are in a nested hierarchical structure). Thus, the

direct implementation of NNGP on w1:T when observed locations are not fully nested (such

that St\St′ = ∅ for t > t′) may still lead to infeasible computational complexity.

To overcome the computational issue, we introduce new evaluations of the spatial process

wt(·) for each level. The new evaluations of wt(·) are done in such a way that the reference set

of level t is nested within the reference set of level t+ 1. Choosing this fully nested structure

allows the likelihood and the posterior to be factorized into T conditionally independent

parts. Moreover, each of the conditionally independent parts of the factorized likelihood has

a diagonal covariance matrix similar to NNGP. We call this new computationally efficient

procedure the Nearest Neighbor Co-kriging Gaussian Process (NNCGP). NNCGP utilizes

the computational advantages of both the auto-regressive co-kriging model and the NNGP.

The proposed NNCGP is a well-defined process derived from a parent co-kriging Gaussian

process. For any fidelity level t and finite set V ∈ D, p̃(wt,V ) is the density of the realizations

of a Gaussian process over V .

Consider observed data sets {Zt,St}, with the corresponding spatial process vectors and

output vectors yt = yt(St) = {yt(st,1), . . . , yt(st,nt)}. Set S∗t =
T⋃

i=t+1

Si\St = {s∗t,1, . . . , s∗t,n∗t }

as an additional reference set of fidelity level t, which contains the observed locations that are

not in the tth level but are in higher fidelity levels. Denote w∗t = {wt(s∗t,1), . . . , wt(s∗t,n∗t )} as

the spatial interpolants with corresponding y∗t . By construction, S∗t is the smallest collection

of sets of spatial locations required to be added to the original observations St in order to

obtain hierarchically nested locations. Consequently, S∗1 consists of all locations observed

in higher fidelity levels but not at the first fidelity level and S∗T = ∅. Let w̃t = w∗t ∪ wt,
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y11 y12 y∗11
y13 y∗12

y14 y15

y21 y22 y23 y24

Graphical representation of NNCGP

Figure 1: Toy example of the NNCGP for two fidelity levels (T=2) with n1 = 5, n2 = 4,
n∗1 = 2. Left: directed acyclic graphical representation of the noiseless part of the NNCGP
model. Right: covariance matrix sparsity of the model (white squares represent zero cross-
covariance).

ỹt = yt(S
∗
t ) ∪ yt(St), S̃t = S∗t ∪ St, and ñt = nt + n∗t . Thus the complete set of observed

locations S̃t and St′ have a nested hierarchical structure with St′ ⊆ S̃t when t′ ≥ t. By

sequentially adding w∗t to each level, we can construct a fully nested hierarchical model.

Figure 1 illustrates the proposed procedure in a directed acyclic graph (DAG) representation

of a toy example with two fidelity levels.

Using the Markovian property of the co-kriging model, the joint likelihood can be factor-

ized as a product of likelihoods from different fidelity levels conditional on augmented spatial

interpolants, i.e.:

L(Z1:T |·) = p(Z1|w1,β1, τ1)
T∏
t=2

p(Zt|wt,βt, yt−1(St),γt−1, τt)

= N(Z1|h1(S1)β1 + w1, τ1I)
T∏
t=2

N(Zt|ζt−1(St) ◦ yt−1(St) + δt(St), τtI), (3.3)

where ◦ is the Hadamard production symbol and yt−1(St) ⊂ ỹt−1. Based on the NNGP prior

on the w1:T described above, we can write the joint prior distribution of w̃1:T as:

p̃(w̃1:T |θ1:T ) =
T∏
t=1

p̃(w∗t |wt,θt)p̃(wt|θt). (3.4)

Given the above representation of the likelihood and prior, the joint posterior density function
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of NNCGP for a T level system is:

p(Θ1:T ,w̃1:T |Z1:T ) ∝ p(Θ1)p̃(w1|θ1)p̃(w∗1|w1,θ1)N(Z1|h1(S1)β1 + w1, τ1I)

×
T∏
t=2

{p(Θt)p̃(wt|θt)p̃(w∗t |wt,θt)N(Zt|ζt−1(St) ◦ yt−1(St) + δt(St), τtI)} . (3.5)

The computational complexity of implementing the NNCGP model is dominated by the

evaluation and storage of T sparse matrices (C̃−11 (θ1), . . . , C̃
−1
T (θT )). Thus, the joint pos-

terior distribution of the NNCGP model can be calculated using O(
∑T

t=1 ñtm
3) flops and

needs O(
∑T

t=1 ñtm
2) dynamic memory storage. Introducing w∗1:T reduces the computational

complexity as well as enables the specification of semi-conjugate priors for (σ2
t ,βt,γt−1, τt)

which facilitates tractability of posterior marginals and conditionals, as we explain below.

An alternative approach is to use a common reference set for all of the fidelity levels. How-

ever, this may result into a more expensive procedure since each level will have the same

computational complexity as the first level O(T ñ1m
3).

4 Bayesian Inference

In this section, we present the MCMC sampler for the inference of parameters Θ1:T for a T

level NNCGP with observations Z1:T and spatial location input sets S1:T . We also present

the prediction procedure for output Zt(sp) at an unobserved location sp for any specified

fidelity level t.

NNCGP model representation allows us to construct an efficient MCMC sampler to facili-

tate parameter and prediction inference. Since the components of w∗t |wt are independent, we

can update w∗t individually. For locations su ∈ S∗t , the full conditional posterior distribution

of wt(su) ∼ N(V ∗t (su)µ
∗
t (su), V

∗
t (su)) with V ∗t (su) and µ∗t (su) are specified in Equation C3 in

the Appendix. The introduction of the spatial interpolant w∗t−1 provides the full conditional
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posterior distribution of a spatial random process wt as

wt(su)|βt,θt, τt,Zt, ỹt−1,γt−1 ∼ N(Vwt(su)µwt(su), Vwt(su))

where

Vwt(su) =
(
F−1t,su + τ−2t

)−1
,

µwt(su) = τ−2t [zt(su)− hTt (su)βt − ζt−1(su)yt−1(su)] + F−1t,suBt,suwt,Nt(su), (4.1)

for t = 2, . . . , T , su ∈ St. The full conditional distribution of w1 is similar to the univariate

case of the full conditional distribution of the spatial process (Datta et al., 2016), see Equation

D.1 in the Appendix.

To take full advantage of the posterior representation in (3.5), we chose independent prior

distributions for parameters at different levels such as:

p(Θ1:T ) =
T∏
t=1

p(σt)p(φt)p(βt)p(τt)p(γt−1). (4.2)

The above prior representation coupled with (3.5) results in T separate conditional parts

for the posterior. To facilitate further computations, we assign conditional conjugate pri-

ors: σ2
t ∼ IG(at, bt), βt ∼ N(µβt ,Vβt), τ

2
t ∼ IG(ct, dt) for t = 1, 2, . . . , T and γt−1 ∼

N(µγt−1 , Vγt−1) for t = 2, 3, . . . , T , which leads to standard full conditional posteriors

βt|wt, ỹt−1,γt−1, τt,Zt ∼ N(V∗βt
µ∗βt

,V∗βt
),

γt|ỹt,βt+1, τt+1,Zt+1 ∼ N(V∗γtµ
∗
γt ,V

∗
γt),

σ2
t |w̃t,φt ∼ IG(a∗σt , b

∗
σt),

τ 2t |βt,wt, ỹt−1,Zt,γt−1 ∼ IG(aτt , bτt), (4.3)

where the parameters are specified in Equations D.2-D.6 of the Appendix. For the range

parameter p(φt,j), we chose the bounded prior p(φt,j),∼ U(0, lt,j) to avoid numerical insta-

bilities, where lt,j is defined from the researcher and is usually associated with the maximum

distance in the jth direction. The conditional posterior distribution for φt in NNCGP model
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is

p(φt|w̃t, σ
2
t ) ∝ p(φt)|C̃(θt)|−1/2exp

{
−1

2
w̃T
t C̃
−1(θt)w̃t

}
, (4.4)

where φt appears in the sparse cross covariance matrix C̃(θt) and it cannot be sampled

directly. The Metropolis-Hasting algorithm (Hastings, 1970) can be used to update φt in

the full conditional distribution.

For a new input location sp 6∈ S̃t, the prediction process is to generate zt(sp) based on

its predictive distribution. Subsequently, we generate wt′(sp) independently for each level

from sampler wt′(sp) ∼ N(Vt′,spµt′,sp , Vt′,sp) for t′ = 1, ..., t; where Vt′,sp , µt′,sp are specified in

(D.7), while yt′(sp) are generated by yt′(sp) = ζt′−1(sp)yt′−1(sp) + ht′(sp)βt′ + wt′(sp). The

zt(sp) is generated by the MCMC sampler zt(sp)|· · · ∼ N(yt(sp), τt).

5 Synthetic data example

This section conducts a simulation study to evaluate the performance of the proposed

NNCGP model in comparison to the NNGP model using the highest fidelity level data only

(denoted as the single level NNGP model) and using both fidelity level data sets combined as

a single data-set (denoted as the combined NNGP model). Details about the metrics used for

the comparison can be found in Appendix E. The simulations were performed in MATLAB

R2018a, on a computer with specifications (intelR i7-3770 3.4GHz Processor, RAM 8.00GB,

MS Windows 64bit).

We consider a two-fidelity level system in a two dimensional unit square domain, parame-

terized as an auto-regressive co-kriging Gaussian process as specified in (2.1). For simplicity,

the mean of y1(s), the mean of the additive discrepancy δ2(s), and the scalar discrepancy

ζ1(s) are assumed to be constant. The covariance function of y1(s) and δ2(s) are assumed

to be exponential. The true values of the model parameters are listed in the first column
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of Table 1. Based on the above statistical model, we generated 5, 000 observations for each

fidelity level Z1 and Z2 at randomly selected locations S1 and S2 such that S1 ∩ S2 = ∅.

The 10, 000 generated observations are shown in Figures 2(a-c). To assess predictive perfor-

mance, we randomly selected two small square subregions for testing from the high fidelity

level dataset (Figure 2b).

For the Bayesian inference of NNCGP on the unknown parameters β1, β2 and γ1, we

assigned independent Normal prior distributions with zero mean and large variances. We

used inverse Gamma priors for the spatial and noise variances σ2
t ∼ IG(2, 1) and τ 2t ∼

IG(2, 1), respectively. The range correlation parameters φ1 and φ2 each used a uniform

prior U(0, 100). Similar non-informative priors were used for both the single level NNGP as

well as the combined NNGP model. For all three models, we ran the Markov chain Monte

Carlo (MCMC) sampler as described in Section 4 with 40, 000 iterations where the first

5, 000 iterations were discarded as burn-in. The convergence of the MCMC sampler for each

parameter was assessed from their associated trace plots.

In Table 1, we report the Monte Carlo estimates of the posterior means and the associated

95% marginal credible intervals of the unknown parameters using the three different NNGP

based procedures with m = 10 neighbors. All but τ 21 true values of the parameters are

successfully included in the 95% marginal credible intervals. The introduction of spatial

interpolants may have caused a slight over estimation of τ2, however, the true values of

the nugget variances are successfully captured in the 95% marginal credible intervals. The

uncertainty in the parameter estimations can be improved with a semi-nested or nested

structure between the observed locations for the different fidelity levels, as shown for the

auto-regressive co-kriging model in Konomi and Karagiannis (2021).

In Table 2, we report standard performance measures (defined in Appendix E) for the

proposed NNCGP, single level NNGP, and combined NNGP models with m = 10 neighbors.

All performance measures indicate that NNCGP has better predictive ability than the single
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Model
True Single level NNGP Combined NNGP NNCGP

β1 10 10.82 (9.84, 11.27) 10.15 (9.57, 10.71) 9.71 (9.36, 10.16)
β2 1 - - - - 0.87 (0.39, 1.36)
σ2
1 4 3.79 (2.97, 5.19) 4.89 (3.65, 6.27) 3.51 (2.71, 4.52)
σ2
2 1 - - - - 1.05 (0.18, 2.31)

1/φ1 10 13.29 (9.33, 17.51) 8.75 (6.49, 11.94) 10.77 (8.07, 13.91)
1/φ2 10 - - - - 12.61 (3.93, 24.07)
γ1 1 - - - - 0.995 (0.983, 1.051)
τ21 0.1 0.138 (0.115, 0.183) 0.478 (0.451, 0.508) 0.125 (0.097, 0.148)
τ22 0.05 - - - - 0.158 (0.041, 0.232)
m 10 - - - - - -

Table 1: Unknown parameters are in the 1st column; their true values in the 2nd column;
their Bayesian point estimates and marginal credible intervals for the single level NNGP,
combined NNGP, and NNCGP models are in the 3rd, 4th and 5th columns, respectively.
The level 2 data set is used in the single level NNGP model, while both the level 1 and 2
data sets are used in the combined NNGP model and are treated as following a one level
system. The estimated parameters by the single level NNGP and combined NNGP models
are treated as level 1 parameters.

level NNGP and combined NNGP. NNCGP produces a significantly smaller effective number

of model parameters (PD) and Deviance Information Criterion (DIC) than the single level

and combined NNGP, which suggests that NNCGP provides a better fit when complexity

is considered. The root mean square prediction error (RMSPE) produced by NNCGP is

approximately 40 - 50% smaller than that of the single level NNGP and 20 - 30% smaller

than that of the combined NNGP. The Nash-Sutcliffe model efficiency coefficient (NSME)

of NNCGP is closer to 1 than that of both other methods, which suggests that NNCGP

provides a substantial improvement in the prediction.

In Figure 2 we observe that, for the testing regions, the NNCGP has more accurately

captured the roughness and sharp changes in the response surface while it also provides a

better representation of the patterns in the prediction surface. Applying NNGP directly

to the high-fidelity dataset provides a smoother prediction surface due to the lack of the

information from the low-fidelity dataset; while it fails to produce reliable predictions in the

15



Model
Single level NNGP Combined NNGP NNCGP

RMSPE 2.1325 1.5202 1.0987
NSME -1.1349 0.0888 0.5108

CVG(95%) 0.8216 0.7136 0.9573
ALCI(95%) 5.2024 3.0856 3.2265

PD 12706 5883 2544
DIC 18136 9659 5551

Time(Hour) 1.4 2.9 4.1

Table 2: Performance measures for the predictive ability of the NNCGP model, single level
NNGP model and combined NNGP model. (Definitions are given in Appendix E.)

(a) Low-fidelity observations (b) High-fidelity observations (c) High-level testing data

(d) NNCGP prediction (e) Single level NNGP prediction (f) Combined NNGP prediction

Figure 2: Non-nested observations with a two (low- and high-) fidelity level structure. White
boxes in (b) indicate the testing regions. Original testing data (c) along with predictions of
the high fidelity level data-set by the (d) multifidelty Nearest Neighbor Co-Krigging Gaussian
Process (NNCGP), (e) single level nearest neighbor Gaussian process (NNGP), and (f) the
combined nearest neighbor Gaussian process (NNGP) under the non-nested structure.
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blank regions. Applying NNGP to the combined dataset with both high- and low- fidelity

levels (combined NNGP) also provides an unreliable prediction surface that is similar to the

observations in low level regions. Modeling the scalar and additive discrepancies between

different levels helps improve predictions. Moreover, NNCGP has produced a CVG closer

to 0.95 and a 95% ALCI smaller than that of the single level NNGP and combined NNGP

(Table 1). This indicates that NNCGP produces more accurate predictions with a higher

probability to cover the true values in narrower credible intervals.

To test the sensitivity of the proposed NNCGP method to the number of neighbors m, we

compare the RMSPEs of the three different methods for m = {1, 2, 3, 4, 5, 10, 15}, and 20 in

Figure 3(a). We use the same prior specifications and computational strategies as described

above. In terms of prediction accuracy, the NNCGP outperforms both the single level NNGP

and the combined NNGP for all m. The decrease of the RMSPE is smaller as m becomes

greater than 10. The computational time is longer for the NNCGP than both the single

level NNGP and combined NNGP (Figure 3(b)). The NNCGP uses data from both levels

and also expands the reference set to ensure the nested structure between different levels.

The single NNGP model only uses data from the high-fidelity level. The combined NNGP

uses the same dataset as the NNCGP. However, the reference set of the combined NNGP is

equal to the reference set of the first fidelity level of NNCGP. It is worth mentioning that

if the observation locations are nested or semi-nested the computational complexity of the

NNCGP can be further reduced since ñ1 < (n1 + n2).

6 Application to intersatellite calibration

Satellite soundings have been providing measurements of the Earth’s atmosphere, oceans,

land, and ice since the 1970s to support the study of global climate system dynamics. Long

term observations from past and current environmental satellites are widely used in devel-

oping climate data records (CDR) (National Research Council, 2004). We examine here one
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(a) (b)

Figure 3: Sensitivity analysis to number of nearest neighbors m: a) Root mean square
prediction error (RMSPE) and b) Running time for the NNCGP, single level NNGP, and
combined NNGP models for a range of m values over a two fidelity level non-nested synthetic
dataset.

instrument in particular, the high-resolution infrared radiation sounder (HIRS) instrument

that has been taking measurements since 1978 on board the National Oceanic and Atmo-

spheric Administration (NOAA) polar orbiting satellite series (POES) and the meteorological

operational satellite program (Metop) series operated by the European Organization for the

Exploitation of Meteorological Satellites (EUMETSAT). This series of more than a dozen

satellites currently constitutes over 40 years of HIRS observations, and this unique longevity

is valuable to characterize climatological trends. Examples of essential climate variables

derived from HIRS measurements include long-term records of temperature and humidity

profiles (Shi et al., 2016; Matthews and Shi, 2019).

HIRS mission objectives include observations of atmospheric temperature, water vapor,

specific humidity, sea surface temperature, cloud cover, and total column ozone. The HIRS

instrument is comprised of twenty channels, including twelve longwave channels, seven short-

wave channels, and one visible channel. Among the longwave channels, Channels 1 to 7 are in

the carbon dioxide (CO2) absorption band to measure atmospheric temperatures from near-
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surface to stratosphere, Channel 8 is a window channel for surface temperature observation

and cloud detection, Channel 9 is an ozone channel, and Channels 10–12 are for water vapor

signals at the near-surface, mid-troposphere, and upper troposphere, respectively. There

have been several versions of the instruments where there is a notable change in spatial

resolution. In particular, for the HIRS/2 instrument, with observations from the late 1970s

to mid-2007, the spatial footprint is approximately 20 km. HIRS/3, with observations from

1998 to mid-2014, has a spatial footprint of approximately 18 km. The currently operational

version, HIRS/4, improved the spatial resolution to approximately 10 km at nadir with ob-

servations beginning in 2005. The dataset being considered in this study is limb-corrected

HIRS swath data as brightness temperatures (Jackson et al., 2003). The data is stored as

daily files, where each daily file records approximately 120,000 geolocated observations. The

current archive includes data from NOAA-5 through NOAA-17 along with Metop-02, cov-

ering the time period of 1978-2017. In all, this data archive is more than 2 TB, with an

average daily file size of about 82 MB.

The HIRS data record faces some common challenges when developing CDRs from the

time series. Specifically, there are consistency and accuracy issues due to degradation of

sensors and intersatellite discrepancies. Furthermore, there is missing information caused by

atmospheric conditions such as thick cloud cover. As early as 1991, to address some of these

challenges, the co-kriging technique has been applied to remotely sensed data sets (Bhatti

et al., 1991). As an improvement to these techniques, we consider using the NNCGP model

as a method for intersatellite calibration, data imputation, and data prediction.

We examine HIRS Channel 5 observations from a single day, March 1, 2001, as illustrated

in Figure 4. On this day, we may exploit a period of temporal overlap in the NOAA POES

series where two satellites captured measurements: NOAA-14 and NOAA-15. The HIRS

sensors on these two satellites have similar technical designs which allow us to ignore the

spectral and spatial footprint differences. NOAA-14 became operational in December 1994
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(a) Observations of NOAA 14 (b) Training data of NOAA 15

Figure 4: Brightness temperature observations by HIRS Channel 5 on March 1, 2001 by
(a) NOAA-14 and (b) NOAA-15.

while NOAA-15 became operational in October 1998. Given the sensor age difference, it is

reasonable to consider that the instruments on-board NOAA-15 are in better condition than

those of NOAA-14. Therefore, we treat observations from NOAA-14 as a dataset of low

fidelity level, and those from NOAA-15 as a dataset of high fidelity level. A small region of

observations from NOAA-15 are treated as testing data, and the remainder of the NOAA-15

observations are treated as training data.

We model our data based on the two-fidelity level NNCGP model as described in Sections

3 & 4. We consider a linear model for the mean of the Gaussian processes in y1(·) and δ2(·)

with a linear basis function representation {h(st)} and coefficients βt = {β0,t, β1,t, β2,t}T .

We consider the scalar discrepancy ζ(s) to be an unknown constant and equal to γ. The

number of nearest neighbors m is set to 10, and the spatial process wt is considered to have

a diagonal anisotropic exponential covariance function as described in Section 3.

We assign independent normally distributed priors with zero mean and large variances

for β0,t, β1,t, β2,t and γ. We assign independent uniform prior distributions U(0, 1000) to the

range correlation parameters (φt,1, φt,2) for t = 1, 2. Also, we assign independent IG(2, 1)

prior distributions for the variance parameters σ2
t and τ 2t . For the Bayesian inference of the
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NNCGP, we run the MCMC sampler described in Section 4 with 35, 000 iterations where

the first 5, 000 iterations are discarded as a burn-in.

Model
NNCGP Single level NNGP Combined NNGP

RMSPE 1.2044 1.8153 1.6772
NSME 0.8439 0.5499 0.6726

CVG(95%) 0.9255 0.8350 0.9197
ALCI(95%) 3.094 4.214 5.778
Time(Hour) 38 20 32

Table 3: Performance measures for the predictive ability of the NNCGP model, single level
NNGP model and combined NNGP models for Channel 5 NOAA-14 and NOAA-15 obser-
vations on March 1, 2001. (Definitions are given in Appendix E.)

The prediction performance metrics of the three different methods are given in Table

3. Compared to the single level NNGP and combined NNGP models, the NNCGP model

produced an approximately 30% smaller RMSPE and its NSME is closer to 1. The NNCGP

also produced a larger CVG and a smaller ALCI than the single level and combined NNGP

models. The results suggest that the NNCGP model provides a substantial improvement

in terms of predictive accuracy in real data analysis. The NOAA-15 testing data shown in

Figure 5 shows that the NNCGP model is more capable of capturing the spatial patterns

of the testing data than either a single level or a combined NNGP model. Unlike the single

level NNGP, the proposed NNCGP uses additional information from NOAA-14. Compared

to a combined NNGP, the proposed NNGCP benefits from modeling the discrepancy of

observations from the different satellites. With the fully non-nested structure, the computa-

tional complexity of the single level NNGP model is O(n2m
3) and for the NNCGP model is

O((n1 + n2)m
3); this is consistent with the running times of the models shown in Table 3.

Baseline observations of brightness temperature are used as inputs for so-called remote

sensing retrieval algorithms wherein thematic climate variables (e.g. precipitation rates,

cloud cover, surface temperature, etc.) are derived. These retrieval algorithms are typically

highly nonlinear, so a small change in the input brightness temperature value can have
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(a) NOAA-15 testing data-set (b) Prediction means by NNCGP model

(c) Prediction means by single level NNGP model (d) Prediction means by combined NNGP model

Figure 5: Predictions of NOAA-15 Brightness Temperatures(K) testing data-set by NNCGP,
single level NNGP and combined NNGP under fully non-nested experimental design.

a large impact on the value of derived climate variables. The significant improvement in

the prediction accuracy to the brightness temperatures provided by the NNCGP model is

therefore critical to the downstream climate variables because of this sensitivity. So although

the computation by the NNCGP model is costly compared to the single level NNGP model,

it is still worthwhile to apply the NNCGP model.

We applied the NNCGP model to gap-fill predictions based upon a discrete global grid.

We chose to use 1◦ latitude by 1.25◦ longitude (1◦ × 1.25◦) pixels as a grid structure with

near-global spatial coverage from −70◦ to 70◦N. By applying the NNCGP model, we pre-
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Figure 6: Gap-filled global brightness temperature predictions of NOAA-15 data on a regular
grid.

dict gridded NOAA-15 brightness temperature data on the center of the grids, based on

the NOAA-14 and NOAA-15 swath-based spatial supports. The prediction plot (Figure 6)

illustrates the ability of the NNCGP model to handle large, irregularly spaced data sets and

produce a gap-filled composite gridded data-set.

7 Summary and conclusions

In this manuscript we have proposed a new, computationally efficient Nearest Neighbor

Autoregressive Co-Kriging Gaussian process (NNCGP) method for the analysis of large

irregularly spaced and multi-fidelity spatial data. The proposed NNCGP method extends

the scope of the classical auto-regressive co-kriging models (Kennedy and O’Hagan, 2000;

Konomi and Karagiannis, 2021) to deal with large data sets. To deal with this complexity, we

used independent NNGP priors at each level in the auto-regressive co-kriging model where

the neighboors are simply defined within each level. However, when the observed locations

are hierarchically non-nested, the likelihood does not simplify; this makes the computational

complexity of this approach infeasible. To overcome this issue, we augment the spatial
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random effects such that they can form a suitable nested structure. The augmentation of

the spatial random effects facilitates the computation of the likelihood of NNCGP. This

is because it enables the factorization of the likelihood into terms with smaller covariance

matrices and gains the computational efficiency provided by the nearest neighbors within

each level. The proposed method is at most computationally linear in the total number of

all spatial locations of all fidelity levels. In our simulations, we observed that computations

were faster when the observed locations at higher fidelity were nested within those at lower

fidelity levels. Moreover, the nested design of the reference sets allows the assignment of

semi-conjugate priors for the majority of the parameters. Based on these specifications, we

develop efficient and independent MCMC block updates for Bayesian inference. As in the

original NNGP paper (Datta et al., 2016), our results indicate that inference is very robust

with respect to values of neighbors.

We compared the proposed NNCGP with NNGP in the single level of highest-fidelity with

a simulation study and a real data application of intersatellite calibration. We observed that

the NNCGP was able to improve the prediction accuracy of HIRS brightness temperatures

from the NOAA-15 polar-orbiting satellite by incorporating information from an older version

of the same HIRS sensor onboard the polar-orbiting satellite NOAA-14. Beyond HIRS, the

proposed methodology can be used for a variety of large multi-fidelity level remotely sensed

data sets with overlapping observations from sensors of similar design. Furthermore, we

propose that the proposed methodology can be used in a wide range of applications in

physical science and engineering when multiple computer models with large simulation runs

are available.

Several extensions of the proposed NNCGP method can be pursued in future work. Based

on the resulting conditional posterior distributions, the Bayesian inference can be derived in

parallel for each fidelity level similarly to how is done for the NNGP (Datta et al., 2016). In

this case, if parallel computing is available, the computational complexity of the approach
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can be reduced up to O(ñ1m
3). Another possible extension is to accelerate our inferential

method with a reference or conjugate NNCGP based on ideas given in Finley et al. (2019).

The proposed model may also be extended in the multivariate setting by using parallel

partial autoregressive co-kriging (Ma et al., 2019). Finally, the proposed NNCGP model can

be extended to spatial-temporal settings with discretized time steps, as both autoregressive

structures and the NNGP approach are capable of incorporating temporal dependence.
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Appendix

A NNGP specifications

The posterior distribution of

p̃(wt|·) ∝ exp

[
−1

2

nt∑
i=1

{
wt(st,i)−Bt,st,iwt,Nt(st,i)

}T
F−1t,st,i

{
wt(st,i)−Bt,st,iwt,Nt(st,i)

}]

= exp
(
−1

2
wT
t B

T
t F
−1
t Btwt

)
, (A.1)

where Ft = diag(Ft,st,1 , Ft,st,2 , . . . , Ft,st,nt
), Bt = (BT

t,1,B
T
t,2, . . . ,B

T
t,nt

)
T , and for each ele-

ment in Bt, we have Bt,i = (BT
t,st,i,1

,BT
t,st,i,2

, . . . ,BT
t,st,i,nt

)
T and

Bt,st,i,j =


1, if i = j,

−Bt,st,i [, k], if st,j is the kth element in Nt(st,i),

0, Others.
(A.2)

B Mean and Variance Specifications

The mean vector µ = (µ1(s1,1), . . . , µ1(s1,n1), . . . , µT (sT,nT
)) is

µt(st,k) =1{t>1}(t)
t−1∑
i=1

{
t−1∏
j=i

ζj(st,k)

}{
hTi (st,k)βi + 1{st,k∈Si}(st,k)wi(st,k)

}
+ hTt (st,k)βt + wt(st,k), (B.1)

for t = 1, . . . T , i = 1, . . . , nt. 1{·}(·) is the indicator function, and covariance matrix Λ is a
block matrix with blocks Λ(1,1), . . . ,Λ(1,T ), . . . ,Λ(T,T ), and the size of Λ is

∑T
t=1 nt×

∑T
t=1 nt.

The Λ(t,t) components are calculated as:

Λ
(t,t)
k,l = cov(zt(st,k), zt(st,l)|·) =

t−1∑
i=1

1{st,k,st,l /∈Si}(st,k, st,l)

{
t−1∏
j=i

ζj(st,k)
T ζj(st,l)

}
Ci(st,k, st,l|θi)

+ 1st,k=st,l(st,k, st,l)τ
2
t ,
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for t and t′ = 1, . . . , T ; k = 1, . . . , nt; l = 1, . . . , nt′ , and

Λ
(t,t′)
k,l = cov(zt(st,k), zt′(st′,l)|·) =

min(t,t′)−1∑
i=1

1{st,k,st′,l /∈Si}(st,k, st′,l)


min(t,t′)−1∏

j=i

ζj(st,k)
T ζj(st′,l)


× Ci(st,k, st′,l|θi) + 1{st,k,st′,l /∈Smin(t,t′)}(st,k, st′,l)Cmin(t,t′)(st,k, st′,l|θmin(t,t′)),

(B.2)

for t 6= t′, Λ(t,t′).

C Alternative form of joint posterior distribution

The joint posterior density function of NNCGP for a T level system is:

p(Θ1:T , w̃1:T |Z1:T ) =
T∏
t=1

[
p(Θt)p̃(wt|θt)p̃(w∗t |wt,θt)

]
L(Z1:T |β1:T , τ

2
1:T ,γ1:T−1, w̃1:T ), (C.1)

The conditional joint likelihood is

L(Z1:T |β1:T , τ
2
1:T ,γ1:T−1, w̃1:T ) =

T∏
t=1

nt∏
i=1

N
(
zt(st,i)|µt(st,i), τt

)
,

µt(st,i) = 1{t6=1}(t)×
t−1∑
j=1

{
[
t−1∏
k=j

ζk(st,i)]× [hj(st,i)
Tβj + wj(st,i)]

}
+ ht(st,i)

Tβt + wt(st,i).

(C.2)

We assume w∗t |wt are independent from each other so they can be updated individually.
For locations su ∈ S∗t , the full conditional posterior distribution of wt(su) ∼ N(V ∗t (su)µ

∗
t (su), V

∗
t (su))

with

V ∗t (su) =
[ T∑
q=t+1

(

q−1∏
i=t

I{Ut,q}(su)ζ
2
i (su)τ

−2
q ) + F−1t,su

]−1
,

µ∗t (su) =
T∑

q=t+1

q−1∏
i=t

I{Ut,q}(su)ζi(su)τ
−2
q

(
zq(su)− [ζq−1(su)yq−1(su)−

q−1∏
i=t

ζi(su)wt(su)]
)

+ F−1t,suBt,suwt,Nt(su), t = 1, 2, . . . , T − 1, (C.3)

where I{U}(su) is an indicator function with value 1 for location su ∈ U and 0 for su /∈ U ,
UA,B = SA ∩ SB.
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D Gibbs Sampler

The full conditional distribution of w1 is

w1(su)|Θ1,Z1 ∼ N(Vw1(su)µw1(su), Vw1(su)),

Vw1(su) =
(
F−11,su + τ−21

)−1
,

µw1(su) = τ−21 [z1(su)− hT1 (su)β1] + F−11,suB1,suw1,N1(su), (D.1)

for su ∈ S1.
With the specification of priors, the posterior distributions of the parameters are:

βt|wt, ỹt−1,γt−1, τt,Zt ∼ N(V∗βt
µ∗βt

,V∗βt
),

γt|ỹt,βt+1, τt+1,Zt+1 ∼ N(V∗γtµ
∗
γt ,V

∗
γt),

σ2t |w̃t,φt ∼ IG(a∗σt , b
∗
σt),

τ2t |βt,wt, ỹt−1,Zt,γt−1 ∼ IG(aτt , bτt), (D.2)

For βt, we have:

p(βt|·) ∝ N(βt|µβt ,Vβt)×N(Zt|1t>1(t)ζt−1 ◦ yt−1(St) + δt, τtI)

∝ exp
{
− 1

2
(βt − µβt)

TV−1βt
(βt − µβt)

}
×

exp
[
− 1

2τ 2t

{
Zt − 1t>1(t)ζt−1 ◦ yt−1(St)− δt

}T{
Zt − 1t>1(t)ζt−1 ◦ yt−1(St)− δt

}]
∝ exp

{
− 1

2

{
V−1βt

+
1

τ 2t
hth

T
t

}
βTt βt+[

µTβt
V−1βt

+
1

τ 2t
(Zt − 1t>1(t)ζt−1 ◦ yt−1(St)−wt)

ThTt

]
βt

}
,

and we have:

βt|wt, ỹt−1,γt−1, τt,Zt ∼ N(V∗βt
µ∗βt

,V∗βt
),

µ∗βt
= µTβt

V−1βt
+

1

τ 2t
(Zt − 1t>1(t)ζt−1 ◦ yt−1(St)−wt)

ThTt ,

V∗βt
=

(
V−1βt

+
1

τ 2t
hth

T
t

)−1
, (D.3)

where 1t>1(t) is an indicator function equals 1 for t > 1, otherwise 0. The full conditional
distribution for parameter σ2

t is:

p(σ2
t |at, bt, wt(S̃t),φt) ∝ IG(at, bt)× p̃(wt)× p̃(wt(S∗t )|wt).
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From nearest neighbor Gaussian process approach, we have

p̃(wt) =
nt∏
i=1

p(wt(st,i)|wt,Ntst,i)),

wt(st,i)|wt,Nt(st,i)) ∼N(Bst,iwt,Nt(st,i), Fst,i),

where Bst,i = CT
st,i,N(st,i)

C−1N(st,i)
, Fst,i = Cst,i,st,i−CT

st,i,N(st,i)
C−1N(st,i)

Cst,i,N(st,i), here C is the
covariance matrix. Denote Ct(., .|σ2

t , φt) = σ2
tρt(., .|φt), we have:

Fst,i = σ2
t (ρ(st,i, st,i)− ρst,i,N(st,i)ρ

−1
N(st,i)

ρst,i,N(st,i)) = σ2
t F̃st,i ,

and the following full conditional distribution for σ2
t is:

p(σ2
t |at, bt, w̃t,φt) ∝ (σ2

t )
−at−1exp(− bt

σ2
t

)× p̃(wt)× p̃(wt(S∗t )|wt)

∝ (σ2
t )
−at−1− 1

2
(nt+n∗t )exp

[
− 1

2σ2
t

nt∑
i=1

{
wt(st,i)−Bst,iwt,Nt(st,i)

}T
(F̃st,i)

−1 {wt(st,i)−Bst,iwt,Nt(st,i)

}
− 1

2σ2
t

n∗t∑
i=1

{
wt(s

∗
t,i)−Bs∗t,i

wt,Nt(s∗t,i)

}T
(F̃s∗t,i)

−1
{
wt(s

∗
t,i)−Bs∗t,i

wt,Nt(s∗t,i)

}
− bt
σ2
t

]
,

which is a IG(a∗t , b
∗
t ) distribution and

a∗σt = at +
1

2
(nt + n∗t ),

b∗σt = bt +
1

2

nt∑
i=1

{
wt(st,i)−Bst,iwt,Nt(st,i)

}T
(F̃st,i)

−1 {wt(st,i)−Bst,iwt,Nt(st,i)

}
+

1

2

n∗t∑
i=1

{
wt(s

∗
t,i)−Bs∗t,i

wt,Nt(s∗t,i)

}T
(F̃s∗t,i)

−1
{
wt(s

∗
t,i)−Bs∗t,i

wt,Nt(s∗t,i)

}
. (D.4)

For τt, we have the full conditional distribution for each level:

p(τt|·) = IG(τt|ct, dt)×
nt∏
i=1

N(Zt|·).

This structure gives us the inverse gamma distribution with:

p(τt|·) ∼ IG(a∗τt , b
∗
τt)

a∗τt = ct +
1

2
nt,
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b∗τt = dt +
1

2

∑
u∈St

(zt(su)− ζt−1(su)yt−1(su)− δt(su))2. (D.5)

For γt, we have:

p(γt|·) ∝ N(γt|µγt ,Vγt)×N(Zt+1|gTt γtyt(St+1) + ht+1βt+1 + wt+1, τt+1I)

∝ exp
{
− 1

2
(γt − µγt)TV−1γt (γt − µγt)

}
×

exp
[
− 1

2τ 2t+1

{
Zt+1 − gTt γtyt(St+1)− δt+1

}T{
Zt+1 − gTt γtyt(St+1)− δt+1

}]
∝ exp

[
− 1

2
γTt V−1γt γt −

1

2τ 2t+1

yt(St+1)
Tyt(St+1)(g

T
t γt)

T (gTt γt)+{
µTγtV

−1
γt +

1

τ 2t+1

[
(Zt+1 − δt+1)

Tyt(St+1)
]
gTt

}
γt

]
so that:

γt|ỹt,βt+1, τt+1,Zt+1 ∼ N(V∗γtµ
∗
γt ,V

∗
γt),

µ∗γt = µTγtV
−1
γt +

1

τ 2t+1

[
(Zt+1 − δt+1)

Tyt(St+1)
]
gTt ,

V∗γt =

(
V−1γt +

1

τ 2t+1

yt(St+1)
Tyt(St+1)gtg

T
t

)−1
. (D.6)

For a new input location sp 6∈ S̃t, we have the predictive distribution of wt(sp):

wt(sp) ∼N(Vt,spµt,sp , Vt,sp),

Vt,sp =(τ−2t + F̃−1t,sp)
−1,

µt,sp =τ−2t [zt(sp)− hTt (sp)βt − ζt−1(sp)yt−1(sp)] + F̃−1t,spB̃t,spw̃t,Ñt(sp)
, t = 1, 2, . . . , T − 1,

(D.7)

with B̃t,sp = CT
sp,Ñt(sp)

C−1
Ñt(sp)

, F̃t,sp = C(sp, sp)−CT
sp,Ñt(sp)

C−1
Ñt(sp)

Csp,Ñt(sp)
, Ñt(sp) is the m

nearest neighbors in S̃t,<p, and w̃t,Ñt(sp)
is the corresponding nearest neighbor subset of w̃t.

E Performance Metrics

In the empirical comparisons, we used the following performance metrics:
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1. Root mean square prediction error (RMSPE) is defined as

RMSPE =

√√√√ 1

n

n∑
i=1

(ypred
i − yobs

i )2

where yobs is the observed value in test data-set and ypred
i is the predicted value from

the model. It measures the accuracy of the prediction from model. Smaller values of
RMSPE indicate more a accurate model.

2. Nash-Sutcliffe model efficiency coefficient (NSME) is defined as:

NSME = 1−
∑n

i=1(y
pred
i − yobs

i )2∑n
i=1(y

obs
i − ȳobs)2

where yobs is the observed value in test data-set and ypred
i is the predicted value from

the model. NSME gives the relative magnitude of the residual variance from data and
the model variance. NSME values closer to 1 indicate that the model has a better
predictive performance.

3. 95% CVG is the coverage probability of 95% equal tail prediction interval. 95% CVG
values closer to 0.95 indicate better prediction performance for the model.

4. 95% ALCI is average length of 95% equal tail prediction interval. Smaller 95% ALCI
values indicate better prediction performance for the model.

5. Deviance Information Criterion (DIC) and the effective number of parameters of the
model(pD) are defined as:

D(θ) = −2log(p(y|θ)) + C,

pD = D(θ)−D(θ̄),

DIC = pD +D(θ)

It is used in Bayesian model selection. Models with smaller DIC and pD are preferable.
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