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Abstract: For the modelling of count data, aggregation of the raw data over certain subgroups or predictor
configurations is common practice. This is, for instance, the case for count data biomarkers of radiation
exposure. Under the Poisson law, count data can be aggregated without loss of information on the Poisson
parameter, which remains true if the Poisson assumption is relaxed towards quasi-Poisson. However, in
biodosimetry in particular, but also beyond, the question of how the dispersion estimates for quasi-Poisson
models behave under data aggregation have received little attention. Indeed, for real data sets featuring
unexplained heterogeneities, dispersion estimates can increase strongly after aggregation, an effect which
we will demonstrate and quantify explicitly for some scenarios. The increase in dispersion estimates implies
an inflation of the parameter standard errors, which, however, by comparison with random effect models,
can be shown to serve a corrective purpose. The phenomena are illustrated by 𝛾-H2AX foci data as used for
instance in radiation biodosimetry for the calibration of dose-response curves.

Keywords: heterogeneity; overdispersion; quasi-Poisson; radiation biomarker; random effect.

1 Introduction

The aggregation of count data prior to analysis or modelling is a very common procedure in several fields,
including for instance the aggregation of clickstream data in e-commerce [1], or of species counts in ecology
[2]. Furthermore, in biodosimetry, which is the context in which this paper is set, it is common to aggregate
counts of certain biomarkers, such as chromosomal aberrations, over samples of blood cells, and use the
aggregated count for the estimation of dose-response curves, or the estimation of dose given an existing curve.

A particular protein-based biomarker, based on the 𝛾-H2AX histone, has motivated this work. H2AX is a
key factor in the DNA damage and repair mechanisms. It is recruited to damage sites, which in turn recruit other
DNA repair machinery. DNA is normally wrapped around a core histone molecule forming the nucleosome
complex. Histone cores are made up of individual histone proteins: H2A, H2B, H3 and H4. The H2A protein
family has the greatest number of variants including H2A1, H2A2, H2AX and H2AZ. Depending on the cell type,
H2AX constitutes 2–20% of the H2A protein. The H2AX histone is a DNA-repair protein; that is, once a cell gets
exposed to ionising radiation and a double-strand break (DSB) has occurred, it coordinates the repair of the
damaged DNA and in this process phosphorylates, becoming 𝛾-H2AX [3]. This phosphorylation leads, after
addition of fluorophore-labelled antibodies, to fluorescent dots which can be counted under a microscope.
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The suitability of this histone as a biomarker for DSBs [4, 5], and by extension, ionising radiation exposure
[6–9], has long been established in the literature. However, statistical work to quantify this relationship and
facilitate the actual dose estimation has only been carried out quite recently [10–12]. It should be noted that
𝛾-H2AX foci data is not only used for biological dosimetry but much more prominently for several research
questions in radiation biology [13–16].

In order to establish dose-response calibration curves, laboratory experiments are carried out where
blood samples are exposed to known degrees of radiation. The data arising from a series of such experiments
conducted at the Bundesamt für Strahlenschutz (BfS), Germany, are displayed in Figures 1 and 2. For the
production of the data, whole blood samples were irradiated with one of six design doses (0.1, 0.2, 0.3,
0.4, 0.5 and 1 Gy), always with 195 kV X-radiation. One hour after exposure, blood samples consisting of
approximately 2000 cells were then placed on slides under an immunoflourescence microscope, and the
number of foci on each slide was counted in a semi-automatic way using MetaCyte software. (Additional
information on the generation of these data set is deferred to Appendix A).

In total, measurements from 116 slides are available, corresponding to a total of 233,220 frequencies of
foci per cell. Figure 1 gives an excerpt of the raw data, in the form of a frequency distribution of foci counts
for three specific slides. One sees clearly how the distribution of the foci counts is shifted to the right for
increasing doses, underlining their suitability as a radiation biomarker (note again that all cells on a given
slide always share the same design dose). The full data set is displayed in Figure 2 in aggregated form, with
each point corresponding to the mean foci count for a specific slide. From this one can deduce some sort of
empirical dose-response relationship, which appears roughly linear over a considerable dose range, noting a
saturation effect [17] for higher doses.
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Figure 1: Distribution of the number of observed foci, for three selected slides with dose levels 0.1, 0.5 and 1 Gy, respectively. As
one reaches a higher level of dose, the number of foci tends to increase, yielding a reduced percentage of zero counts.
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Figure 2: Slide-wise dispersions (left) and foci yields (right) recorded for various levels of dose. The three points highlighted as
triangles indicate the specific slides which have been displayed in Figure 1.

It has been observed in the literature [12, 18], and can also be hinted at from Figure 2, that overdispersion is
present in H2AX foci data so that, for instance, quasi-Poisson or negative binomial models appear adequate.
The quasi-Poisson model is essentially a Poisson model which allows for variance/mean ratios different
from one. A simple practical question arising is whether the model fitting can be carried out without loss of
information using only the aggregated data, as displayed in Figure 2, or whether the raw data, as exemplified
in Figure 1, should be used. This question is of greater depth than one would expect: while we demonstrate
in the next section, that, in theory, one would anticipate the dispersion to be unaffected by the aggregation,
for these data set the dispersion estimate resulting from a quasi-Poisson fit using the raw data is 1.223,
while the one resulting from the fit to the aggregated data is 147.99! In a further twist, we will also see
that the inflated dispersion of the aggregated model is not necessarily useless: it is a manifestation of a
problem which lies elsewhere, namely dependency structures within the raw data, and eventually leads to
the estimation of parameter standard errors which are more correct than those of the raw data model. Even
though the connection of data aggregation to overdispersion is not an unknown phenomenon (in fact, in the
ecological literature, the term ‘aggregated’ is often used synonymous to ‘overdispersed’ [2]), we believe that
the implications of count data aggregation on dispersion estimates and ensuing inferential purposes, are, so
far, poorly appreciated in the biodosimetric community, and also lack explicit study in the statistical literature.

The exposition is organised as follows. Section 2 summarises the statistical and conceptual basics of
Poisson and quasi-Poisson models, including the estimation of the dispersion parameter for the latter, as well
as its variance. Section 3 reports the results of the analysis of the above mentioned 𝛾-H2AX data set as well
as a bootstrap simulation (also including comparison to random effect models), which facilitates insight into
the presence of heterogeneities as the source of inflation of the dispersion estimates, as well as the impact of
this effect on standard errors of model parameters. Section 4 focuses on the special case of mixture-driven
heterogeneity, deriving and validating through simulation the inflation of dispersion explicitly. Lastly, Section
5 concludes the paper, and discusses practical implications of our results. An Appendix which gives several
addendums concerning data, code, derivations, and extensions, is also provided.

We close this introduction by outlining some notation. We refer to a set of foci counts (constituting a
specific histogram such as in Figure 1) as a slide. The jth observation in the ith slide is denoted as yij, for
k slides with respective size ni, i = 1,… , k. Averaging over the ith slide, we obtain the means yi =

∑
yij∕ni,

which are also referred to as yields in the dosimetry literature. The convention to speak of slides and yields
is simply with reference to the data application considered, and is not implying a restriction of the validity
of the results to this particular field of application. In particular, the section which follows is, statistically,
written in a general context, albeit still using the terms laid out in this paragraph.
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2 Raw and aggregated data models

2.1 Poisson models

The most basic count data model is the Poisson model, postulating

yi j ∼ Pois(𝜇i), (2.1)

that is f (yi j|xi) = e−𝜇i𝜇
yi j

i ∕yi j!, where
𝜇i = g−1 (x′i𝜷

)
, (2.2)

with 𝜇i > 0, for some link function g. That is, observations corresponding to a particular slide share the same
predictors, and hence the same 𝜇i. In some applications, the possible values of xi (here, the design doses)
may coincide with the grouping, or even define the grouping as such. Here, this is not the case, as we have
multiple slides for a given dose. In either case, under this framework, the predictor xi will never depend on j.

Assuming the data yij to be conditionally independent given xi, the model likelihood can be written as

L =
∏

i, j
f (yi j|xi) =

∏
i, j

e−𝜇i
𝜇

yi j

i
yi j!

∝
∏

i
e−ni𝜇i𝜇

∑
jyi j

i .

That is, for inferential purposes concerning the model parameters, the required information for the likelihood
is fully provided by the sums si =

∑
j yij, or equivalently by the means (yields) yi = si∕ni. This property, known

as ‘sufficiency’, implies that the aggregated data (of which we speak, from now on, when referring either to
yi or si) contain sufficient information for inference on 𝜇i, and, hence, 𝛽. Notably, this does not only hold
for the parameter estimates but also their standard errors; in other words, given the aggregated data, no
improvement in either accuracy or precision is possible by considering the raw data.

Another important characteristic of the Poisson model is that of equidispersion, that is, for all i and j,

Var(yi j|xi)
E(yi j|xi)

= 1, (2.3)

from which it is easy to see that also
Var(si|xi)
E(si|xi)

= 1. (2.4)

That is, the equidispersion carries over from the raw to the aggregated data model,

E(si|xi) = ni g−1(x′i𝜷). (2.5)

This property, along with the sufficiency property, makes a compelling case for the use of the aggregated data
in Poisson models: they contain all required information but require less storage space, less computational
time to fit the models, and allow for simplified data display.

2.2 Overdispersed Poisson models

In practical data applications, the equidispersion property is frequently violated. In the most simple case,
this violation can be described as generalization of (2.3),

Var(yi j|xi)
E(yi j|xi)

= 𝜙 (2.6)

for some constant dispersion, 𝜙 > 0. If 𝜙 > 1 one speaks of overdispersion, while for 𝜙 < 1 (which is less
frequently encountered) one has underdispersion.

Poisson regression models can be easily adapted to allow for situation (2.6), since the dispersion cancels
out from the score equations and so the estimates of regression parameters are unaffected. One speaks then of
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quasi-Poisson regression models [19], which have gained interest specifically in the field of biodosimetry [12].
Under such a framework, standard errors can be conveniently computed in a post-hoc manner by multiplying
the standard errors from the Poisson model with the square root of the (estimated) dispersion parameter [20].

While (2.6) is a considerable generalization of the ‘plain’ Poisson model, in practice the dispersion may
depend on covariates xi, that is 𝜙 = 𝜙(xi). Covariate-dependent dispersion cannot be expressed by quasi-
Poisson regression and requires more sophisticated models, such as the negative binomial [21, 22]. Such
models are outside the scope of this paper. The relative advantages and disadvantages of quasi-Poisson and
negative binomial models have been discussed in [23]. Further models for overdispersed data include the
generalised Poisson [24], mixed Poisson [25], Hermite [26], and zero-inflated [27] models, the relationships
among some of which are discussed in [28, 29].

A key question is how does dispersion behave under aggregation? For the aggregated counts, one has

Var(si|xi) = Var

( ni∑
j=1

yi j|xi

)
∗
=

ni∑
j=1

Var(yi j|xi)

=
ni∑
j=1

𝜙E(yi j|xi) = 𝜙

ni∑
j=1

E(yi j|xi) = 𝜙E(si|xi), (2.7)

where the step (∗) is a consequence of conditional independence assumption; so once again
Var(si|xi)∕E(si|xi) = 𝜙 so that the dispersion is, theoretically, invariant to aggregation.

2.3 Estimating dispersion

Typically when we speak of dispersion, we are referring to the variance divided by the mean. More precisely,
following the notation in (2.6) and ignoring (for a moment) the presence of covariates, then dispersion is
defined by

𝜙 =
Var(yi j)
E(yi j)

(2.8)

which can be estimated through the dispersion index

�̂�ind =
1
ȳ

∑k
i=1

∑ni
j=1 (yi j − ȳ)2

N − 1
,

where N =
∑k

i=1 ni is the total number of observed counts, and ȳ = N−1 ∑k
i=1

∑ni
j=1 yi j is their overall mean.

Applying this on the full foci data set introduced in the Introduction provides us with a dispersion index of
�̂�ind = 1.494.

Under the presence of covariates, which are related to the mean function 𝜇i via (2.2), the dispersion
parameter 𝜙 can be estimated from the raw data model [20, 30] by

�̂�raw =
1

N − p

k∑
i=1

ni∑
j=1

(yi j − �̂�i)2

�̂�i
(2.9)

where p is the number of model parameters and �̂�i = g−1(x′i �̂�). McCullagh and Nelder [31] discuss the advantage
of basing the estimation of the dispersion parameter on (2.9) as opposed to using the residual deviance.

For aggregated data si =
∑ni

j=1 yi j, i = 1,… , k (equivalently expressed through the yields yi = si∕ni), with
aggregated data model E(si|xi) = nig−1(x′i𝛽), the value of the dispersion can be estimated by

�̂�agg =
1

k − p

k∑
i=1

(si − ni�̂�i)2

ni�̂�i
= 1

k − p

k∑
i=1

ni
(yi − �̂�i)2

�̂�i
, (2.10)

where �̂�i is as above.
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The standard errors associated with the estimated coefficients, �̂�, will be the same as for the non-dispersed
Poisson model inflated by the factor �̂�1∕2.

2.4 Variance of dispersion

A possible source of increased dispersion for the aggregated data model as compared to the raw data model
could be an increased variance of the estimates under the former. In this subsection, we therefore study
the effect of data aggregation on that variance. For this purpose, let us assume that the true dispersion, 𝜙,
is indeed the same for the raw and aggregated data. We then note that the formulations presented in (2.9)
and (2.10) are the respective Pearson X2 goodness-of-fit statistics divided by the residual degrees of freedom,
which we denote as 𝜈, such that �̂�

𝜈
= X2∕𝜈. Specifically, we have 𝜈 = N − p for the raw data and 𝜈 = k − p for

the aggregated data, so �̂�raw = �̂�N−p and �̂�agg = �̂�k−p.
If indeed our fitted model is correct then we would expect X2∕𝜙 to have a 𝜒

2
𝜈

distribution [20], implying
that E(X2) = 𝜙𝜈 and Var(X2) = 2𝜙2

𝜈. It then follows that

E(�̂�
𝜈
) = 1

𝜈
E(X2) = 𝜙, (2.11)

so both the raw and aggregated dispersion estimate are unbiased, and the variance of �̂� is given by

Var
(
�̂�
𝜈

)
= 1

𝜈2 Var
(

X2) = 2𝜙2

𝜈
. (2.12)

It is then clear that for the aggregated model, where 𝜈 is much smaller, Var(�̂�) is larger.

3 Application to H2AX foci data

We now apply the methodology outlined in the previous section to the 𝛾-H2AX foci dataset presented in the
Introduction.

3.1 Fitting raw and aggregated data models

In the context of 𝛾-H2AX foci analysis, it is common to consider a linear model for foci counts with identity
link g(𝜇) = 𝜇 [12], such that the raw data model becomes

𝜇i = E(yi j|xi) = 𝛼 + 𝛽xi, (3.1)

with corresponding aggregated data model

E(si|xi) = 𝛼 × ni + 𝛽 × (nixi), (3.2)

where xi now denotes dose. This choice is motivated by physical considerations and the shape of the dose-
response curve, despite the fact that the log-link is, from a statistical viewpoint, a natural choice for count
data.

We now fit raw and aggregated data models (3.1) and (3.2) to the previously introduced H2AX foci
data. Dispersions are estimated via (2.9) and (2.10). The results from both model fits are presented in
Table 1. We note that the coefficients of the quasi-Poisson models do not change between the two data
types. Hence, the calibration curves of expected foci yield given dose, as displayed in Figure 3, will remain
exactly the same if estimated through raw or aggregated data models. However, a significant difference is
observed in their dispersions, where for our data we obtain estimates of �̂�raw = 1.223 and �̂�agg = 147.99. It is
noted that both of these would lead to a rejection of the Poisson hypothesis with a 𝜒

2 goodness of-fit-test
(see Table 1).
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Table 1: Parameter estimates along with their associated standard
errors and dispersion estimates obtained from each model.

Raw Aggregated

(�̂�, 𝛽) (2.011, 5.746) (2.011, 5.746)
(SE(�̂�),SE(𝛽)) (0.009, 0.023) (0.102, 0.248)
�̂� 1.223 147.99
SE[�̂�] 0.004 0.16
𝜈 233218 114
𝜒

2
𝜈,0.95∕𝜈 1.005 1.227

Results shown in italics stem directly from the fitted models; the
standard errors of �̂� and the values of 𝜈 follow the rationale set out
in Section 3.1. The last row gives the critical value that �̂� would be
compared with in a Poisson goodness-of-fit test at the 5% level of
significance.

l
ll
l

l

l

l

l

l

l

l
l

l

ll

l

l
l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll
l

l

l

ll

lll

ll
l

l

l

l

ll

l

l

l

l

ll

l
l
l

lll

l

ll l
l

l

l

l

l

ll
l

lll

l
l
l

l
ll

l
l

l

l

l

ll

l
ll

l

llll

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

0.0 0.2 0.4 0.6 0.8 1.0

2
3

4
5

6
7

Dose

Fo
ci

/C
el

l

Figure 3: Quasi-Poisson model estimates of the linear
calibration curve: E(yi) = 2.011 + 5.746xi.

We proceed with investigating whether an increased variance of dispersion, as discussed in Section 2.4,
could be responsible for this effect. Specifically, we formulate this question as follows: assuming that the value
�̂�raw = 1.223 represents the true dispersion of the models, then is it possible to obtain aggregated dispersion
estimates of the magnitude of 150 purely due to increased variance? Substituting �̂�raw = 1.223 in the right hand
side of (2.12), with degrees of freedom adjusted according to Table 1, leads to SE(�̂�raw) ≈ 0.004 for the raw
models and SE(�̂�agg) ≈ 0.16 for the aggregated models. However, this effect – to which we refer as variance
effect henceforth – is certainly not sufficient to explain a value of, say, �̂�agg = 147.99, for the dispersion of the
linear fit to the aggregated data.

3.2 Random effect models

Since the data yij do possess a two-level structure, with the slides i corresponding to the upper level, and the
foci frequencies within slides corresponding to the lower level, it appears adequate to contrast the previous
results with an alternative modelling strategy where within-slide correlation is explicitly accounted for by
an additive random effect, also called random intercept, operating on the upper level. Hence, we consider a
mean function of type �̃�i = 𝜇i + ui, where 𝜇i is as in (3.1), and ui ∼ N(0, 𝜎2

r ) is a Gaussian random effect. For
the response distribution, we consider two scenarios, namely a Poisson mixed model yi j ∼ Pois(�̃�i), and an
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Table 2: Parameter estimates of the fitted random effect models.

Mixed Poisson Mixed NB1

(�̂�, 𝛽) (2.331, 4.974) (2.327, 4.983)
(SE(�̂�),SE(𝛽)) (0.114, 0.242) (0.114, 0.243)
�̂� = 1 + â 1.141
�̂�

2
r 0.334 0.337

�̂�
2
𝜖

4.998 4.998
ICC 0.063 0.063

Results shown in italics are extracted directly from the output of function
glmmTMB. The values below the dashed line give the estimated residual
variance, �̂�2

𝜖
, and the resulting ICC values.

NB (Type 1) regression model, yi j ∼ NB(�̃�i, a) where 𝜙 = 1 + a. That is, the NB1 model allows the parameter 𝜙
to capture any dispersion not accounted for by the slide-wise random effect.

The models are fitted with R function glmmTMB [32], and results are provided in Table 2. We firstly observe
that both models behave similarly, and that their standard errors lend, interestingly, support to the aggregated
data model. This can be interpreted as that the dispersion estimate of the aggregated model has successfully
captured the between-slide heterogeneity described by the random effect model. Informally, the presence
of this heterogeneity is visible from the small but non-zero intra-class correlations (ICC) in Table 2. More
formally, one can carry out statistical tests for the significance of the random effect term, with H0: 𝜎2

r = 0.
For the Poisson model, the likelihood ratio statistic of models with and without the random effect term is
2(513, 385.3–505, 138.5) = 16, 493.6, clearly indicating rejection of H0 when contrasting with a 0.5(𝜒2

0 + 𝜒
2
1 ) dis-

tribution. For the NB1 model, the conclusion is identical with LR = 2(511119.5–503979.3) = 14280.4. One can
test for the significance of overdispersion (H0:𝜙 = 1) by comparing �̂� = 1.141 with 𝜒

2
0.95,233,217∕233, 217 = 1.005,

also yielding significance. So, albeit just above 1, the value of 1.141 represents genuine overdispersion
(over and above the one explained by the random effect model). In summary, this provides evidence of hetero-
geneities existing both between and within slides. It is furthermore noted that the coefficient estimates of �̂� and
𝛽 for the random effect model differ by about three standard errors from the raw and aggregated data models.

3.3 Bootstrap simulation

Having seen the evidence for heterogeneities in the data, the models fitted in Section 3.1 can be considered
misspecified. In order to understand better the impact of this misspecification on the fitted raw and aggregated
data models, we carry out a bootstrap simulation, with the mixed NB1 model fitted in Section 3.2 as base
model, and examine the dispersion estimates, and resulting standard errors, of all models.

The sampling process of this bootstrap is built in two stages (with all estimates taken from Table 2):
1. Generate slide-wise random errors u∗i by sampling from N(0, �̂�2

r );
2. Simulate bootstrap data y∗i j ∼ NB1(�̂� + 𝛽xi + u∗i , â).

Repeat 1. and 2. B times to obtain B bootstrap samples. Then, for each of the B iterations, we fit three models:
(i) A quasi-Poisson regression model with identity link, applied on the bootstrapped raw data y∗i j, i.e.

model (3.1).
(ii) A quasi-Poisson regression model with identity link, applied on the bootstrapped aggregated data

s∗i =
∑

j y∗i j i.e. model (3.2).
(iii) A NB1 regression model with identity link, applied on the bootstrapped raw data y∗i j; with an additive

random effect representing slides.

For each fitted model and bootstrap iteration, dispersion estimates for models (i) and (ii) are computed
according to (2.9) and (2.10), respectively, with standard errors arising as explained at the end of Section 2.3.



A. Errington et al.: The effect of data aggregation on dispersion estimates | 9

For model (iii), this dispersion estimate is obtained by adding 1 to the ‘overdispersion’ parameter, â,
reported in the summary output of R function glmmTMB [32]. Standard errors are extracted directly from this
output.

Boxplots of the dispersion estimates for the bootstrap simulation are displayed in Figure 4. The left hand
panel in this figure gives a comparison of the dispersion estimates for the raw, random, and aggregated
models, whereas the right panel gives a zoomed comparison of the raw and random effect models. We see
from this that the dispersion estimates for the raw data model are positioned close to the correct mean value
at 1.223. However, the boxplot for the dispersion estimates from the aggregated model now sits at about 160,
which is of similar magnitude as in our initial analysis displayed in Table 1. While the variability of these
estimates is also larger than for the raw data model, it is clear that something much more drastic (than just
inflation of variance) has occurred here, shifting the bulk of the dispersion estimates from the magnitude
1–2 to much larger values. The dispersion estimates from the random effect model are slightly smaller than
for the raw data model, centering correctly at the value 1.141 from which the data were generated, as visible
from the right panel. The slight difference between these two models is plausible, as some of the original
overdispersion has been captured by the random effect.

We investigate now the consequences of this inflated dispersion. Therefore, let us firstly consider the
boxplots in Figure 5. It is clear from this that, for the raw data model, the reported standard errors of �̂� and 𝛽

are very small. However, either of aggregation, or the use of a random effect, transports the standard errors to
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Figure 4: Dispersion estimates based on the bootstrap simulation. The solid red line represents the random-effect model
dispersion �̂� = 1.141 and the dashed line indicates the quasi-Poisson dispersion �̂� = 1.223 for the original data as reported in
Tables 1 and 2.
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Figure 5: Parameter standard errors for the bootstrap simulation (left: intercept; right: slope).
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Table 3: Parameter standard deviations based on 100
simulation runs.

Raw Random Aggregated

SD(�̂�) 0.109 0.103 0.109
SD(𝛽) 0.226 0.211 0.226

a much higher level, as also displayed in Table 1. The values reported in Table 3 reveal that, over all estimation
methods, the actual standard deviation of the bootstrapped estimates of regression coefficients is very similar,
and is for all three models, including the raw data model, of the (high) magnitude reported by the aggregated
and random effect models. This, in turn, implies that the standard errors of regression parameters for the raw
data model, as reported in Table 1 and Figure 5, are wrong. We arrive, hence, at the intriguing conclusion
that the large dispersion produced by the aggregated data model serves eventually a good purpose — namely
to adjust the standard errors of the parameter estimates so that these match the magnitude of those from
the random effect model. For later reference, we will refer to this effect, i.e. the tendency of aggregated data
models to inflate dispersion estimates in order to account for violations of the independence assumption in
the raw data, as a dependency effect.

4 Special case: mixture-induced heterogeneity

In this section we will make the ‘dependency effect’ more explicit by mathematically deriving the inflation
factors for an important special case: the case of a mixture model without covariates.

4.1 A two-component model inducing heterogeneity

Consider a scenario in which we generate k rows (slides), each consisting of ni ≡ n Poisson foci counts (cells),
but for fixed covariate dose (in other words, in the absence of covariates). However, we assume that there
exists heterogeneity, that is some counts are from a Pois(𝜆1) distribution with probability q (the Bernoulli
parameter which selects the Poisson mean) and others from a Pois(𝜆2) with probability 1 − q. In general terms,
the Poisson means come from a two-point mixture; i.e. each raw count yij is generated as

yi j ∼ Zi jPois(𝜆1) + (1 − Zi j)Pois(𝜆2) (4.1)

where Zij ∼ B(1, q). The resulting heterogeneity creates overdispersion which, under model (4.1), can be exactly
quantified as

𝜙 =
Var(yi j)
E(yi j)

= 1 + q(1 − q)(𝜆1 − 𝜆2)2

q𝜆1 + (1 − q)𝜆2
. (4.2)

See Appendix B.2 for proof of this statement and Figure 6 (top) for a visual representation of 𝜙 as a function of
q; note also that the dependence on xi as in (2.6) is now suppressed as there are no covariates. Expression (4.2)
holds true even if there are correlation structures within the Zij. However, we will see that, for the dispersion
of the aggregated data, it makes a crucial difference whether the heterogeneity is entirely random (i.e. the
indicators Zij are independently generated for all i and j), or whether there is some correlation structure.

Consider, for instance, a scenario in which

Zi j ≡ Zi for all j = 1,… , n, (4.3)

that is all counts within each slide are generated from a Poisson distribution with the same mean, but there
is 2-component heterogeneity between slides. Then, one finds for j ≠ l by the law of total covariance,
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Figure 6: For fixed 𝜆1 = 1, 𝜆2 = 2, we plot the non-linear functions (4.2) and (4.9), using a string size of 𝜏 = 100. Note the
substantially different scales in the vertical axes of the two plots.

Cov(yi j, yil) = E(Cov(yi j, yil)|Zi) + Cov(E(yi j|Zi),E(yil|Zi))

= 𝜆
2
1 Var(Zi) + 𝜆

2
2 Var(1 − Zi) + 2𝜆1𝜆2Cov(Zi, 1 − Zi)

= q(1 − q)(𝜆1 − 𝜆2)2 (4.4)

so for𝜆1 ≠ 𝜆2 the independence assumption in (∗) in Section 2 is clearly violated. Depending on the mechanism
generating the Zij, this expression will look different, but the point is that any dependency structures within
the Zij will render these covariances non-zero.

4.2 Theoretical dispersion of aggregated data

Aggregated data are obtained as before as si =
∑n

j=1 yi j. The object of interest in this subsection is 𝜙agg =
Var(si)∕E(si), where we have now made notationally explicit that it may be different from 𝜙. Through the law
of total expectation and variance one can show that (see Appendix B.2), under model (4.1)

E(si) = n(q𝜆1 + (1 − q)𝜆2); (4.5)

Var(si) = n(q𝜆1 + (1 − q)𝜆2) + nq(1 − q)(𝜆1 − 𝜆2)2 +
n∑

j≠l
Cov(yi j, yil). (4.6)

This gives a general expression for the aggregated dispersion,

𝜙agg ≡
Var(si)
E(si)

= 1 + q(1 − q)(𝜆1 − 𝜆2)2

q𝜆1 + (1 − q)𝜆2
+

∑n
j≠l Cov(yi j, yil)

n(q𝜆1 + (1 − q)𝜆2)
. (4.7)
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In the simplest case that all covariances are identical to 0, the third term disappears and one sees immediately
that 𝜙agg corresponds to the expression for 𝜙 given in (4.2). In the previously discussed case of slide-wise
dependencies (4.3), one finds by using expression (4.4) and then referring to (4.2) that

𝜙agg = 1 + nq(1 − q)(𝜆1 − 𝜆2)2

q𝜆1 + (1 − q)𝜆2
= 1 + n (𝜙 − 1) . (4.8)

We discuss a third scenario which we consider of practical relevance. Assume there are correlated strings of
length 𝜏 < n, each sharing the same Poisson mean. One can consider this as a special case of model (4.1)
where the indicators Zij share the same value for blocks of length 𝜏 < n, in terms of the index j. Then one can
show (Appendix B.2) that

𝜙agg = 1 + 𝜏 (𝜙 − 1) , (4.9)

neatly extending (4.8). Note that both 𝜙 and 𝜙agg can be considered as functions of the mixing proportion, q.
This is visualised in Figure 6 (bottom). We take note of the non-symmetry in terms of the mixing parameter,
with a maximum at q = 2 −

√
2. Furthermore, we observe that for q = 0 or q = 1 there is no overdispersion

since there is no heterogeneity.
Equations (4.8) and (4.9) provide some insight into how the presence of different types of heterogeneity,

for example through correlation within rows or strings within rows, affect the dispersion of the aggregated
data. From direct inspection of both (4.8) and (4.9), we deduce that if one increases either the row length or
the string size then the dispersion of the aggregated data continues to grow larger. We also notice that if there
is no overdispersion of the raw counts, i.e. 𝜙 = 1, then we have equidispersion for the aggregated data as
expected. If one has only clusters of size 1 (𝜏 = 1 or n = 1; that is, the heterogeneity is entirely random) then
𝜙agg = 𝜙, so in this case the aggregated data dispersion does not inflate.

4.3 Experiment

We carry out a simulation experiment as described in Section 4.1 using 𝜆1 = 1, 𝜆2 = 2 and q = 0.5. The
mechanisms presented in Section 4.1 and the theoretical derivations in Section 4.2 mean that the heterogeneity
resulting from the mixture will trigger overdispersion, but that the overdispersion for the aggregated data will
depend on the correlation structure of the heterogeneity-inducing mechanism. This leads us to distinguish
the following three cases:
(A) Random heterogeneity: for each slide and cell, the Zij in (4.1) are generated independently;
(B) Slide-wise heterogeneity: the Zij are generated once for each slide and kept constant for all cells in that

slide, i.e. Zij = Zi as in (4.3);
(C) String-wise heterogeneity: the Zij share the same value for blocks of size 𝜏 = 100 within each slide, but

different blocks are generated independently.

For each of (A), (B) and (C), k = 1000 slides of length n = 1000 are generated. Since no covariates are involved in
this study, we do not need to fit any models to estimate dispersion. For the raw data, the dispersion is estimated
by the overall dispersion index (2.8). For the aggregated data, this would be replaced by

∑k
i=1(si − s̄)2∕[(k − 1)s̄].

The resulting dispersion values are reported in Table 4, with corresponding R code detailed in Appendix B.1.

Table 4: Dispersion indexes from simulated data under
scenarios (A), (B) and (C).

(A) (B) (C)

Raw data 1.167 1.168 1.166
Aggregated data 1.070 168.97 16.85
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We can see that for case (A) the dispersion of the aggregated data does not increase at all, while in (B) we
observe the strongest inflation. To reiterate, ‘aggregated data’ signifies here row-wise (slide-wise) sums. Our
𝛾-H2AX data best corresponds to (C) rather than (B), although the basis of the effect is the same.

Verifying these results through our theoretical derivations from Section 4.2, one obtains for case (B) via
(4.8) that

𝜙agg = 1 + 1000 (1.168 − 1) = 169,

which agrees closely with the simulated value of 168.97. Under scenario (C), where slides are split into 10
clusters each containing 100 cells (𝜏 = 100), one gets from (4.9)

𝜙agg = 1 + 100 (1.166 − 1) = 16.66,

again in good agreement with our simulation result of 16.85.

4.4 Generalization of the model

We have provided this analysis for a 2-component mixture. Even if this constitutes a gross simplification of
reality, we believe that this scenario represents the character of the phenomenon accurately. To underline
this point, we have added a corresponding analysis for a 3-component mixture in Appendix B.3. In practice,
and especially for our data, counts are likely to originate from more than two or three Poissons, however we
do not expect the results to change in substance under a mixture of M ≥ 3 Poisson random variables.

As the Multinomial model is often not suitable when there is observed over-dispersion, the Dirichlet
multinomial distribution model can be used as an alternative [33]. For further consideration, one may consider
a model of type yij =

∑
m ZijmPois(𝜆m) where variations among the component probabilities qm = P(Zijm = 1)

follow a Dirichlet distribution, i.e. qm ∼ Dir(𝛼), m = 1,… ,M, indicating that yij belongs to component m with
probability qm.

5 Discussion

In many applied sciences, the use of aggregated count data is common, since they contain all relevant
information to estimate Poisson models. Aggregated data are also usually less expensive to store and analyse
than individual data. For instance, in biodosimetry, aggregated data are popularly used for many biomarkers
including the dicentric chromosome assay [34, 35]. Another reason for the use of aggregated data is just
convenience: while for biomarkers based on chromosomal aberrations, such as the dicentric assay, where
counts larger than 7 or 8 are rarely observed, the full count distributions can still be conveniently displayed
[36], this is not necessarily the case for H2AX foci data where this count may be much higher. The data analyst
may never get to see the raw data, and then has to work with the aggregated data simply as this is all that is
available to them [12].

The early literature on the 𝛾-H2AX assay reported that the Poisson assumption is well fulfilled for manually
scored H2AX foci data, and also provided a biological argument relating to the random induction of double-
strand breaks which underlines this point [8, 18]. However, even under manual scoring, deviations from this
property can pervade through multiple sources of heterogeneity, leading to overdispersion [12]. For automatic
foci counting [37], this is exacerbated as it introduces additional variability and technical artefacts [18].

Under the presence of overdispersion, a conditional independence assumption of the responses given
covariates guarantees, in theory, equality of the raw and aggregated data dispersion. However, we have seen
that dispersion estimates for raw and aggregated data can differ dramatically for practical data sets. We
distinguished that there are two effects which jointly result in an increased dispersion for the aggregated
data model; a (relatively minor, but still significant) variance effect and a (potentially huge) dependency
effect. We have demonstrated the latter phenomenon via example, simulation, and theory, uncovering in this
process that the causes for the dependency effect reside in correlations between or within the slides being
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aggregated over. Another way of putting these findings is: the presence of unobserved heterogeneity will
cause overdispersion in the raw data. If this heterogeneity follows dependency patterns (within or between
slides), then this will lead to inflated overdispersion for the aggregated data.

Several experimental factors may contribute to overdispersion in the raw data. A certain role is played
by technical variations, such as in the intensity filter used for the foci scoring. Specifically, for low foci rates
the semi-automated imaging software which aids the foci scoring tends to produce spurious foci by over-
enhancing background signals. Other sources of overdispersion may relate to physical issues with the slides,
issues with the radiation source itself or the placement of the samples, issues relating to the antibodies used
to produce foci, the microscope, and the scorer. Any of these issues may also incur dependencies, for instance
it is likely to assume a ‘learning effect’ for the scorer who may be tempted to discard samples which do not fit
the previously observed pattern. While the theoretical derivations, in Section 4, only cover the covariate-free
case, they still give useful insights into the relationship of raw and aggregated data dispersion; specifically
the aggregated dispersion increases linearly with the length of correlated strings within the data set, attaining
a maximum if the string size corresponds to the full slides.

The relevant question is then whether the raw data should have been used if they were available, and
if so, using which model. Under the presence of, say, slide-wise correlations in the raw data, the statistically
sound model would be the use of a mixed model for the raw data which features a random intercept for each
slide. It appears that such a model produces roughly similar parameter standard errors than the aggregated
data model, whereas the raw data model produces much smaller standard errors. This appears to indicate
that the high dispersion produced by the aggregated model is an attempt by the model to solve a problem
which resides somewhere else (namely in the between-slide-correlations), which the raw data model is not
able to address (without the inclusion of random effects). Putting it into other words, the aggregated model
finds a way to produce roughly correct uncertainty quantification by using incorrect dispersion estimates.

Random effects, however, have some practical limitations. For H2AX data, the main drawback of utilising
a model with slide-specific random effect is that this random effect would be unknown for a newly exposed
individual, which constitutes a major limitation as far as dosimetry is concerned. Furthermore, they can only
account for between-slide correlations, but not within-slide correlations.

A practical advice to laboratories is to reduce heterogeneities to an absolute minimum, as they inflate
dispersions and standard errors, and may also shift the actual calibration curve parameters. We do advise
against using raw data models without adjustment by a random effect, but we do not advise against using the
aggregated data models. Aggregation on the slide level does account for the correlations just as the random
effect model would do, albeit using a much simpler model. However the data analyst should be aware that
the resulting dispersion estimates may be far from the underlying true dispersion of the raw data. This is of
particular importance with view to the detection of partial body exposures through dispersion estimates, as
is a common approach for dicentric chromosomes [35]. Inflated dispersions of the magnitude as observed in
this paper would certainly render any attempt at identifying partial body exposure ineffective, unless one
finds a way of working backwards to recover the raw data dispersion, for instance using equations such as
derived in Section 4.2. This question is left for future investigation.
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Appendix
A Data generation and cleaning

Blood was collected from healthy donors via an 18- or 20-gauge indwelling cannula (Vasofix Safety IV; B.
Braun Melsungen AG, Melsungen, Germany) into 7.5 ml lithium heparin monovettes (S-Monovette; Sarstedt
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AG & Co, Nümbrecht, Germany), mixed and portioned into 15 ml centrifuge tubes (Falcon; Fisher Scientific
GmbH) prior to irradiation on an X-ray high-protection device RS225 (195 kV, 10 mA, 0.5 mm Cu filter, sample
distance from X-ray tube 500 FSD, dose rate of 0.59 Gy per minute, room temperature). All tubes were
placed in the middle of the center in a horizontal position (X-Strahl Limited, UK). After irradiation, samples
were incubated at 37 ◦C for 60 min, kept at 5 ◦C until isolation of peripheral blood leucocytes by density
gradient centrifugation (10 min, 1000 g, 5 ◦C) using 12 ml separation tubes (Leucosep Tube; Greiner Bio-One
GmbH, Frickenhausen, Germany) and separation medium (Histopaque-1077; Sigma Aldrich Chemie GmbH,
Taufkirchen, Germany). After centrifugation, leucocytes were transferred into 5 ml cell culture medium (RPMI
1640; Pan-Biotech GmbH, Aidenbach, Germany). Cell suspension was centrifuged again (10 min, 250 g, 5
◦C), and cells pellet was fixed in 2% paraformaldehyde (PFA; Sigma Aldrich)/phosphate buffered saline
(Dulbecco’s PBS; Biochrom GmbH, Berlin, Germany) solution for 15 min at 5 ◦C before centrifugation (10 min,
250 g, 5 ◦C).

Lymphocytes were concentrated to one million cells per ml in PBS and stored at 5 ◦C. 100 μl of cell
suspension was spotted onto glass slides by cytospin centrifugation for 5 min at 54 g. Slides were washed
three times in fresh PBS containing 0.15% TritonX-100 (Sigma Aldrich) each time for 5 min, followed by
three washing steps in blocking solution (1 g bovine serum albumin (BSA; Sigma Aldrich) mixed with 0.15
g glycine (Sigma Aldrich) in 100 ml PBS each for 10 min. 75 μl blocking solution with anti-phosphohistone
H2A.X (Ser139) rabbit mAb (Cell Signaling Technology Europe B.V., Frankfurt a.M. Germany) in the dilution
1:200 was transferred on each slide and incubated at 4 ◦C for at least 16 h. Slides were washed (5 min
in PBS, for 10 min in PBS/Triton and for 5 min in PBS). Before incubating with the secondary antibody,
an anti-rabbit IgG (H + L), F(ab’)2 fragment conjugated to Alexa Fluor 555 fluorescent dye (Cell Signaling
Technology Europe), in the dilution 1:1000 in blocking solution in a humid chamber for 45 min at room
temperature slides were treated with blocking solution (7 min). After antibody binding, slides were washed
twice in PBS/Triton (5 min each), PBS (10 and 7 min). Cell nuclei were counterstained with Hoechst 33342
(Bisbenzimide H 33342 trihydrochloride; Sigma Aldrich) for 2 min and slides were washed twice in PBS (2
min). Finally, slides were covered by 16 μl antifade mounting medium (Vectashield; Vector Laboratories Inc.,
Burlingame, USA).

Search and image acquisition of cell nuclei on the slides was performed by automatic fluorescence
microscopy using a scanning and imaging platform (Metafer 4, version V3.13.1; Meta-Systems Hard & Soft-
ware GmbH, Altlussheim, Germany) equipped with an objective (ZeissPlan-Neofluar 40× 0.75; Carl Zeiss
Microscopy GmbH, Jena, Germany) yielding a 400-fold magnification. For foci analysis a Spectrum Orange
bandpass filter (excitation: center wavelength/bandwidth= 546/10 nm, emission: 580/30 nm; Chroma 31003;
Chroma Technology, Olching, Germany) and for counterstaining a DAPI bandpass filter (excitation: 350/50
nm, emission: 460/50 nm; Chroma 31000; Chroma Technology) was used. A foci specific Classifier 2.0.1 was
created and used in all experiments.

The data set discussed in this paper is part of an even larger data set, consisting originally of 672 slides
with a total of 1251882 foci counts, collected at the BfS in the six month period from July 2018 to January
2019. To arrive at the data presented here, all slides corresponding to any level of dose less than 0.1 Gy were
removed. In addition, the following cleaning steps had been carried out (post-scoring): (i) removed all slides
with less than 800 foci counts, as a lower count indicates problems with the processing of the slide; (ii)
removed slides which contained obvious data entry or measurement errors which could not be corrected; (iii)
removed slides which were based on samples from a different experimental setup.

B Violation of quasi-Poisson independence

B.1 Simulation

In Section 4, we verified through simulation the dependency effect (for a fixed covariate value dose) through
three different heterogeneity cases. The R code to reproduce the results in Table 4 is presented below.
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intercepts <- c(1,2) # these are the two possible Poisson means
# lambda_1 and lambda_2
q <- c(0.5, 0.5) # probability q = 0.5
jmax = 1000
j<-1
yM <- matrix(0, 1000, jmax)
while (j <=jmax){
# Run one of the following three commands:
# (A) all Poisson means are independently chosen
# r.intercepts <- sample(intercepts, 1000, replace=TRUE, prob=q)
# (B) all Poisson means are the same for a fixed row
# r.intercepts <- sample(intercepts, 1, replace=TRUE, prob=q)
# (C) within each row, strings of size 10 share the same
# mean
# r.intercepts <- rep(sample(intercepts, 10, replace=TRUE, prob=q),
# each=100)
xM <-rep(0,1000) # dose = 0
yM[,j]<- rpois(1000, r.intercepts) # generates Poisson counts
j<-j+1
if ((j %%10) ==0){print(j)}

}
# (A)
var(as.vector(yM))/mean(as.vector(yM)) # raw dispersion
# [1] 1.16772
var(colSums(yM))/mean(colSums(yM)) # aggregated dispersion
# [1] 1.070203

# (B)
var(as.vector(yM))/mean(as.vector(yM))
# [1] 1.168
var(colSums(yM))/mean(colSums(yM))
# [1] 168.9676

# (C)
var(as.vector(yM))/mean(as.vector(yM))
# [1] 1.166621
var(colSums(yM))/mean(colSums(yM))
# [1] 16.85397

B.2 Theoretical derivation

We now present the theory behind the dispersion estimates for the two-component mixture model (4.1). We
begin with deriving (4.5) and (4.6). Recall that yij denotes the jth count (cell) for slide i with j = 1,… , n, and
that Zij ∼ B(1, q), where yet no assumptions on the dependency structure of the Zij are being made. Then,

E(yi j) = E(E(yi j|Zi j))

= E(Zi j𝜆1 + (1 − Zi j)𝜆2)

= q𝜆1 + (1 − q)𝜆2
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and
Var(yi j) = E(Var(yi j|Zi j)) + Var(E(yi j|Zi j))

= E(Zi j
2
𝜆1 + (1 − Zi j)2

𝜆2) + Var(Zi j𝜆1 + (1 − Zi j)𝜆2)

= q𝜆1 + (1 − q)𝜆2 + q(1 − q)(𝜆1 − 𝜆2)2
.

By dividing these two expressions, the dispersion index for the individual counts becomes (4.2). Now consider
aggregated counts si =

∑n
j=1yi j. Then

E(si) =
n∑

i=1
E(yi j) = n(q𝜆1 + (1 − q)𝜆2)

and

Var (si) = Var

( n∑
i=1

yi j

)

=
n∑

i=1
Var

(
yi j
)
+

n∑
j≠l=1

Cov
(

yi j, yil
)

= n
(

q𝜆1 + (1 − q) 𝜆2 + q (1 − q) (𝜆1 − 𝜆2)2
)
+

n∑
j≠l=1

Cov
(

yi j, yil
)

which after division gives (4.7).
Consider now the special case Zij ≡ Zi (4.3). Then from (4.7) and (4.4),

𝜙agg = 1 + q (1 − q) (𝜆1 − 𝜆2)2

q𝜆1 + (1 − q) 𝜆2
+
∑n

j≠lq (1 − q) (𝜆1 − 𝜆2)2

n (q𝜆1 + (1 − q) 𝜆2)

= 1 + q (1 − q) (𝜆1 − 𝜆2)2

q𝜆1 + (1 − q) 𝜆2
+ n (n − 1) q (1 − q) (𝜆1 − 𝜆2)2

n (q𝜆1 + (1 − q) 𝜆2)

= 1 + nq (1 − q) (𝜆1 − 𝜆2)2

q𝜆1 + (1 − q) 𝜆2

which proves (4.8).
Now assume the slide with n cells consists of b = n

𝜏
sub-groups (or strings) of size 𝜏, where all yij in each

batch are generated from the same distribution (either Pois(𝜆1) with probability q or Pois(𝜆2) with probability
1 − q). (In terms of the experiment in Section 4.3, this setup corresponds to scenario (C) but covers scenario
(B) in the case 𝜏 = n, and scenario (A) in the case 𝜏 = 1). This general model is hence formulated as

yi j ∼ Zi jPois(𝜆1) + (1 − Zi j)Pois(𝜆2)

= TigPois(𝜆1) + (1 − Tig)Pois(𝜆2)

where j ∈ (𝜏(g − 1) + 1, 𝜏g), Zi,𝜏(g−1)+1 = … = Zi,sg ≡ Ti,g and Tig ∼ B(1, q) with g = 1,… , b independent; i.e., g
is the index of the subgroup.

The only required modification as compared to the previous derivation is to work out the covariances in
the third term of (4.6). Observe here that the result (4.4) remains true but only for the observations within
each string, that is

Cov(yi j, yil) =

{
q(1 − q)(𝜆1 − 𝜆2)2 if j and l from the same string;
0 otherwise.

(B.1)

This implies
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∑
j≠l

Cov(yi j, yil) =
b∑

g=1

n∑

j,l∈(𝜏(g−1)+1,𝜏g)
Cov(yi j, yil)

= b𝜏(𝜏 − 1)q(1 − q)(𝜆1 − 𝜆2)2

= n(𝜏 − 1)q(1 − q)(𝜆1 − 𝜆2)2

so that
Var(si) = n(q𝜆1 + (1 − q)𝜆2) + n𝜏q(1 − q)(𝜆1 − 𝜆2)2

.

Hence,

𝜙agg =
n(q𝜆1 + (1 − q)𝜆2) + n𝜏q(1 − q)(𝜆1 − 𝜆2)2

n(q𝜆1 + (1 − q)𝜆2)

= 1 + 𝜏q(1 − q)(𝜆1 − 𝜆2)2

q𝜆1 + (1 − q)𝜆2

which is just (4.9).

B.3 3-Component Poisson mixture

Assume that some observations are from a Pois(𝜆1) distribution with probability q1, some from a Pois(𝜆2) with
probability q2 while others are from a Pois(𝜆3) with probability q3 = 1 − q1 − q2. Each raw count yij is generated
as

yi j ∼
3∑

m=1
ZijmPois(𝜆m),

where Zijm ∼ B(1, qm). The over-dispersion in this case is given by:

𝜙 =
Var(yi j)
E(yi j)

= 1 +
∑3

m=1 qm(1 − qm)𝜆m − 2q1q2𝜆1𝜆2 − 2q1q3𝜆1𝜆3 − 2q2q3𝜆2𝜆3∑3
m=1 qm𝜆m

.

For the aggregated data, defined before as si =
∑n

j=1yi j, one arrives at the same expressions as in (4.8) and
(4.9). The resulting dispersion values corresponding to the three heterogeneity scenarios with 𝜆1 = 1, 𝜆2 = 2
and 𝜆3 = 3 and equal probabilities i.e. q1 = q2 = q3 = 1∕3 are reported above in Table 5.

For comparison, under case (B) with n = 1000 one obtains from (4.8) that

𝜙agg = 1 + 1000 (1.328 − 1) = 328

and for scenario (C) with 𝜏 = 100 in (4.9)

𝜙agg = 1 + 100 (1.335 − 1) = 34.5

therefore in fairly good agreement.

Table 5: Dispersion indexes from simulated data under
simulation scenarios as outlined in Section 4.3.

(A) (B) (C)

Raw data 1.334 1.328 1.335
Aggregated data 1.326 332.38 33.04
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