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Abstract 15 

The characterisation of fractured reservoirs and fractured 16 

geothermal resources requires a thorough understanding of 17 

the geological processes that are involved during fracturing 18 

and the host rock rheological properties. The presence or 19 

absence of mechanical layering within the rock and the mode 20 

of failure substantially control the organization and scaling of 21 

the fracture system; subsequent chemical alteration and 22 

mineralization can both increase or decrease porosity and 23 

permeability. An integration of this understanding using 24 

information from outcrop analogues, together with static and 25 

dynamic subsurface data,can improve our ability to predict the 26 

behaviour of fractured reservoirs across a range of scales. 27 

 28 

Keywords 29 

Fractured reservoir, geothermal, mechanical stratigraphy, basement, 30 

carbonate 31 

  32 



 33 

The exploration for and production of fractured reservoirs is a complex task that can prove 34 

very demanding for the geoscientist. The data available are derived largely from scattered 35 

wells that provide a far from complete picture of the fracture system that controls flow. A 36 

critical aspect of characterising fractured reservoirs is to understand the geological setting 37 

and evolution of the fracture system and the lithology of the matrix. Matrix lithology 38 

determines both the brittleness of the rocks and their susceptibility to chemical alteration, 39 

while the burial history underpins the diagenesis and pore-fluid history of the reservoir. 40 

Fracture diagenesis may affect the growth and development of fracture systems. The stress 41 

history, including tectonic events, determines the nature and development of the fracture 42 

system, whilst past geological processes during fracture filling (e.g. mineralization, fault rock 43 

development, sediment ingress) and present-day stress can significantly affect fracture 44 

permeability. 45 

The publications in this volume describe how geological understanding is used in the 46 

characterisation of fractured hydrocarbon reservoirs and geothermal resources. 47 

The term fracture is used generically here to mean any planar or curviplanar structural 48 

discontinuity. The term “naturally fractured reservoir” refers to reservoirs that have 49 

permeability and connectivity that is enhanced by the development of open natural 50 

fractures. Reservoirs that contain only tight fractures, such as most porous sandstone 51 

reservoirs, are not termed fractured, even if they are heavily faulted; similarly, reservoirs 52 

that can only be produced following stimulation by hydraulic fracturing are not considered 53 

as “naturally” fractured reservoirs.  54 

 55 

A typical feature of fractured reservoirs is that the permeability calculated from well tests is 56 

significantly higher than the permeability measured from core plugs. This is because the 57 

core plug measurements record the permeability of the matrix, whereas the well tests 58 

measure the effective permeability which is essentially the sum of the matrix and fracture 59 

permeability. Fractures in the porous matrix enable the transfer of fluids from the matrix 60 

blocks into the fracture due to the large contact surface area of the fracture. This process is 61 

particularly effective where there is a large contrast between a relatively low-permeability 62 

matrix and high permeability fracture, such as in many North Sea chalk reservoirs. 63 

Understanding the scale of the dynamic connectivity is key for calibration of fracture 64 

permeability at single well-bore to multi-well and reservoir scale. 65 

 66 

The porosity due to fractures is usually small (usually significantly less than 1% of the rock 67 

volume), but the effect of fractures on permeability can be huge. A 100 m thick porous layer 68 

with 10 mD permeability has the same flow capacity as a 0.2 mm wide open horizontal 69 

fracture in an impermeable layer (calculated from the Poiseuille equation for parallel plates, 70 

van Golf Racht 1982). Many highly impermeable lithologies, such as cemented sandstone or 71 

carbonate mudstone, are brittle and so tend to be strongly fractured. The presence of open 72 

fractures allows fluids to be produced from such otherwise tight reservoirs. The flow 73 

characteristics of reservoir fluids, be it oil, gas or water, can each be affected differently by 74 

the rock properties of the matrix and the fractures, including wettability, relative 75 

permeability and capillary pressure. 76 



 77 

Types of Fractured Reservoirs 78 

 79 

Fractured reservoirs are typically classified according to the relative contribution of 80 

fractures and matrix to the reservoir porosity and permeability, such as the modified version 81 

of Nelson’s (2001) classification below: 82 

Type I: fractures provide the essential reservoir porosity (ø) and permeability (k) 83 

Type II: fractures provide the essential k, matrix provides storage capacity (ø) 84 

Type III: fractures assist k in an already producible reservoir 85 

Type IV: fractures provide no additional ø or k, but create significant reservoir anisotropy 86 

(barriers)  87 

This classification gives a first order indication of the production characteristics of the 88 

reservoir. Type I reservoirs are typically found in basement rocks and tight carbonates. In 89 

Type II reservoirs, hydrocarbons drain from the matrix blocks and into the permeable 90 

fracture system, from where they are produced. Type III reservoirs have adequate matrix 91 

permeability for production of fluids, in addition to permeable fractures. Type IV represents 92 

reservoirs in which the fractures are less permeable than matrix (i.e. they act as baffles or 93 

barriers) and are therefore not strictly fractured reservoirs in the sense used in the 94 

hydrocarbon industry.  95 

 96 

In fractured reservoirs with low matrix porosity and permeability (Type I or II above), the 97 

recovery factor is sensitive to aquifer drive strength and optimization of flow rate: such 98 

reservoirs are easily damaged by excessive production rates. In fractured microporous 99 

reservoirs, such as chalk (Type II above), the recovery is affected by inherent rock and fluid 100 

properties such as matrix permeability, fluid viscosity, wettability and fracture density (Allan 101 

and Sun 2003). 102 

 103 

Fractured hydrocarbon reservoirs can occur in a wide range of rock types, including 104 

carbonates, silicified rocks, tight sandstone (e.g. tight gas sands), volcanic rocks and 105 

crystalline basement (e.g. gneiss, granite). In a global database of 314 fractured oil and gas 106 

reservoirs (C&C Reservoirs, 2020), carbonate reservoirs comprised 72% of the sample, 107 

whereas basement reservoirs represented 8% of fractured reservoirs and volcanic reservoirs 108 

only 2% (Figure 1).  109 

 110 

The tectonic settings that have produced fractured reservoirs are variable, but out of the 111 

same dataset, 50% of fractured reservoirs occur in traps that were developed during 112 

contractional deformation (in the foreland or fold-thrust belt). This is in part due to the large 113 

number of fractured carbonate fields that are located in the Zagros fold belt and the Rocky 114 

Mountains and their forelands. 115 

 116 

Carbonates 117 

 118 



Carbonate reservoirs are highly variable, ranging from reservoirs in which the matrix 119 

provides little contribution to the storage of fluids (Type I) and those with such good matrix 120 

properties that fractures have little impact on overall permeability (Type III). The 121 

development of fractures in carbonates is related to the depositional facies and pore types 122 

that are present, as well as to the tectonic history. Carbonates are highly active chemically, 123 

which means that they are prone to rapid cementation and dissolution.  124 

 125 

Many of the largest and most productive of the world’s hydrocarbon reservoirs are 126 

fractured carbonate reservoirs, including the giant carbonate reservoirs of the Middle East 127 

(Daniel 1954). The more recently discovered Cretaceous lacustrine reservoirs offshore Brazil 128 

(commonly termed “Pre-Salt) are also influenced by fractures (e.g. Salomão et al. 2015) and 129 

have become a focus of exploration and production activity since 2006. 130 

 131 

In this thematic collection of papers, the Shaikan field of Iraq is described, which is a Jurassic 132 

fractured carbonate reservoir (Gilchrist et al. this volume; Price et al. this volume) and the 133 

Halalatang oilfield of the Tarim basin, China which is of Ordovician age (Ukar et al. this 134 

volume). 135 

 136 

Crystalline basement 137 

 138 

Most fractured basement plays are associated with the development of up-faulted buried 139 

hill traps (Biddle & Wielchowsky 1994), usually in extensional tectonic settings: the 140 

reservoirs occur in the footwalls of major normal faults. Fractured granitic basement has 141 

proven to be highly productive in Vietnam (Cuong and Warren 2009, Nguyen et al. 2011) 142 

and in the Gulf of Suez (Salah and Alsharhan 1998, Younes et al. 1998). In both cases the 143 

granitic basement has suffered deep weathering, providing additional solution-enhanced 144 

porosity (P’an 1982). Commercially successful fractured basement fields are typified by long 145 

hydrocarbon columns, which helps to diminish the risk of water breakthrough. They are 146 

usually classified as Type I reservoirs, as the matrix permeability of crystalline basement 147 

rocks is normally very low. 148 

  149 

Recent hydrocarbon discoveries in fractured basement of the UK and the Norwegian 150 

continental shelves have generated new interest in this play type. On the Norwegian 151 

continental shelf, the Rolvsnes horizontal appraisal well on the Utsira High proved oil in 152 

fractured and weathered granitic basement with flow rates of 7000 bopd (Trice et al. 2019). 153 

In the UK, a series of discoveries have been made in the Rona Ridge, West of Shetland, 154 

including the Lancaster field (Trice et al. 2019, Holdsworth et al this volume). The host rock 155 

for the discoveries of the Rona Ridge is a Neoarchaean charnokitic basement, which is cut by 156 

deep fissures extending downwards from a regional unconformity that are filled with fluids, 157 

sediment and minerals (Holdsworth et al this volume). The Lewisian complex in NW 158 

Scotland provides a good onshore analogue for the basement rocks of the Rona Ridge, and 159 

has been used to develop a conceptual understanding of the fracture system and to collect 160 

quantitative fracture data that cannot be acquired from the subsurface (McCaffrey et al. this 161 

volume). 162 

 163 

Volcanics 164 

 165 



Whilst hydrocarbon fields in volcanics are typically relatively small (e.g. Magara 2003), the 166 

discovery of the Qingshen gas field in northeastern China, which has over 100 billion cubic 167 

metres (3.5 trillion cubic feet) of gas reserves (Feng 2008), has shown that they can be large. 168 

This reservoir, hosted in Cretaceous rhyolite and tuff lithologies, developed in a rift setting. 169 

Gas yields are highest on palaeomorphological highs where both fractures and secondary 170 

porosity are well developed, forming buried hill traps. 171 

 172 

Geothermal resources 173 

The production of geothermal energy requires high geothermal gradients and conductive 174 

heat flux. These systems are usually associated with younger volcanics, occurring for 175 

example at plate boundaries, where magma conduits exist, or in zones of high hydrothermal 176 

activity (Barbier 1997) For example, the Southern Negros Geothermal field in west central 177 

Phillipines, (Primaleaon et al. this volume) is associated with the Cuernos de Negros volcanic 178 

complex; similarly, the Taupo Volcanic Zone of New Zealand contains geothermal resources 179 

in volcanic rocks, crystalline plutonic rocks and metamorphosed greywacke (McNamara et 180 

al. 2017). The Geysers geothermal resource in California is hosted in fractured greywacke 181 

that is heated by an underlying felsite intrusion associated with the Pliocene-Holocene Clear 182 

Lake volcanic field (Sammis et al 1992; Darymple et al. 1999). The permeability of many 183 

geothermal systems, especially those in tight formations, depends on fracture permeability 184 

with little contribution from the matrix and as such, they are directly comparable to Type I 185 

fractured reservoirs. The thermal energy that is stored in the rock matrix is extracted by 186 

circulation of water through the fracture system. 187 

Enhanced geothermal systems (EGS or “hot dry rock” geothermal energy) produce energy 188 

from deep crystalline rocks, by actively injecting water into wells to be heated and pumped 189 

back out. The water is injected under high pressure which expands existing rock fractures 190 

and enables the water to freely flow in and out. The lithology of EGS reservoirs is typically 191 

igneous; 80% of EGS reservoirs occur in granitic rocks (data from Lu 2018). The Soultz-sous-192 

Forêts EGS project in France (Vidal and Genter 2018) is hosted in granitic rocks and overlying 193 

Triassic sedimentary rocks. Here it has been found that the natural fracture permeability is 194 

highest in fracture networks formed at the sediment-fracture interfaces, where a high 195 

degree of geothermal alteration has occurred (Schill et al. 2017). The United Downs 196 

Geothermal Power Project currently in development in Cornwall uses two wells drilled into 197 

a fault zone at a depth of 2.3 to 5.2 km in high heat flow early Permian granite (Cotton et al. 198 

2020). In this case, water will be injected into a natural groundwater circulation system 199 

where temperatures are known to exceed 170°C. 200 

Characterisation of fractures 201 

A brief review is given below of the geological factors that control the occurrence and 202 

properties of natural fractures in reservoirs. While it is difficult to make generalisations 203 

without sacrificing accuracy, the aim here is to provide some broadguidance that can be 204 

applied to the exploration, modelling, appraisal and development of fractured reservoirs 205 

and geothermal resources. 206 

Organisation of fracturing 207 



Fractures can be classified kinematically, based on their mode of failure:  208 

• Opening mode fractures (joints) are formed in conditions of tensile effective stress. They 209 

are typically bedding perpendicular, forming during uplift, near surface extension or 210 

folding. Opening mode fractures form perpendicular to the least compressive stress, 3. 211 

In the subsurface, opening mode fractures may be open or may be partially to wholly 212 

mineral- or sediment-filled. 213 

• Shear mode fractures (faults and shear fractures), which offset markers, are formed 214 

under elevated differential stress during tectonic events. Shear-mode fractures form 215 

conjugate arrays that intersect parallel to 2 and have an acute bisector parallel to 1 216 

(Anderson 1905, but see also Healy et al. 2015). Shear mode fractures display very 217 

variable hydraulic properties. 218 

• Closing mode fractures (stylolites and compaction bands) are formed under compressive 219 

effective stress and low differential stress, perpendicular to 1. They are commonly 220 

formed during burial but may also be tectonically driven. Closing mode fractures are 221 

typically tighter than the surrounding matrix. However, if they are mechanically or 222 

chemically reactivated, they can become hydraulically conductive (Graham Wall et al. 223 

2006). Stylolites are typically formed during compaction of carbonates by localised 224 

pressure solution and have a characteristic wavy or saw-tooth appearance. Compaction 225 

bands are rarer and form only in high permeability grainy rocks, typically by a 226 

combination of porosity collapse, cataclasis and pressure solution (Fossen et al. 2011; 227 

Wennberg et al. 2013).  228 

Under certain conditions, hybrid fractures may occur in which more than one mode of 229 

failure is operative. For instance, in near surface conditions normal faults may develop an 230 

opening mode component (Holdsworth et al. this volume). 231 

The fracture classification described above is fundamental, and the different classes of 232 

fractures have differing geometry and scaling properties. However, it is not always 233 

straightforward to distinguish the kinematic origin of fractures from subsurface data, so a 234 

more pragmatic approach may be needed when describing the fractures from wells. In 235 

particular, it is difficult to distinguish between small shear-mode fractures with no clearly 236 

visible displacement and opening mode fractures. In practice, fractures in wells may be 237 

categorised as "faults" which have clear shear offset (or supporting evidence from 238 

biostratigraphy) and "fractures" which have no clear shear offset; the latter category may in 239 

reality include both opening mode and shear mode fractures. In many natural fracture 240 

systems, shear and opening mode fractures are closely interlinked (Kim et al. 2003) and 241 

understanding their kinematic relationship may difficult from subsurface data. Closing mode 242 

fractures such as stylolites can usually be identified from borehole image or core data. Any 243 

fracture classification based on image logs should be calibrated against core data, where 244 

available, in order to determine the fracture kinematics and fill. 245 

 246 

The vertical extent of fractures exerts an important control on vertical effective permeability 247 

and capillary continuity. The vertical propagation of natural fractures is controlled by 248 

mechanical contrasts and by the stress in the mechanical units. Fractures which are 249 

contained within individual mechanical units are termed stratabound, while fractures that 250 

extend through many units are termed non-stratabound (Figures 2 - 4; Odling et al. 1999). 251 



Non-stratabound joints tend to form in clusters (Gillespie et al. 1999; Gillespie et al. 2001) 252 

and clusters of sub-parallel joints are sometimes termed fracture corridors (De Keizer et al. 253 

2007; Questiaux and Couples 2010; Laubach et al. 2018).  254 

 255 

Stratabound joints tend to be regularly spaced and form a continuous organised network. In 256 

modelling, this kind of fracturing is referred to as background fracturing.  Where jointing 257 

units are separated by non-jointing units (Figure 4), the stratabound joints typically have a 258 

spacing that is proportional to the thickness of the jointing unit (Huang and Angelier 1989; 259 

Narr and Suppe 1991; Gross et al. 1995), or alternatively the fractures may develop in a 260 

series of regularly spaced clusters (Gillespie et al. 1999; Philip et al. 2005) However, many 261 

sedimentary fractured reservoirs consist of a stack of jointing units that are not separated 262 

by non-jointing units. In this case the mechanical unit thickness is not well-defined and a 263 

hierarchy of joints may occur at different scales (Strijker et al. 2012; Laubach et al. 2018; 264 

Corradetti et al. 2018; Gutmanis et al. 2018). 265 

 266 

The simple relationship described above, in which the spatial organization of the fractures is 267 

controlled by their vertical extent through the stratigraphy, is not the complete picture, as 268 

the degree of fracture cementation also plays a role. Detailed field and subsurface 269 

observations indicate that fractures that are uncemented tend to be regularly or randomly 270 

spaced, whereas fractures that are partially cemented are more likely to be clustered 271 

(Hooker et al. 2013; Li et al. 2019). 272 

 273 

In order to quantify the fracturing in stratified rocks, the fracture stratigraphy should be 274 

described, i.e. the variation in fracture extent and occurrence within the different units 275 

(Corbett et al. 1987; Bertotti et al. 2007; Laubach et al. 2009; Morris et al. 2009; Zahm and 276 

Hennings 2009). The term fracture stratigraphy is sometimes conflated with mechanical 277 

stratigraphy, which describes the mechanical changes in rocks in relation to the stratigraphy 278 

(Laubach et al. 2009). Understanding the fracture stratigraphy and the mechanical 279 

stratigraphy and how they evolved is important for the correct placement and completion of 280 

wells and helps in the definition of flow units within the reservoir. Ductile layers or weak 281 

interfaces represent mechanical contrasts which tend to impede the vertical propagation of 282 

fractures. This mechanism is important in limiting vertical effective permeability in layered 283 

heterogeneous rocks. In stacked units of similar elastic properties, the principle parameters 284 

controlling vertical joint propagation are the frictional properties of the interface and the 285 

depth at time of deformation and since the friction is greater on deeper interfaces, non-286 

stratabound fractures are more prone to occur at significant depth (Gillespie et al. 2001). 287 

Mechanical contrasts can be seen in igneous intrusions of different types. Felsic igneous 288 

plutons are typically unstratified, and so clustered, or irregular non-stratabound joints 289 

develop (Segall and Pollard 1983; Bertrand et al. 2015). However, in layered igneous 290 

intrusions or in metamorphic rocks, stratification may influence the fracturing (e.g. Foster 291 

and Hudleston 1986). In volcanic sills and lava flows, polygonal jointing may occur due to 292 

stress built up during cooling, providing a very well-connected fracture network (Hetényi et 293 

al. 2012; Gudmundsson & Løtveit 2012; Walker et al. 2013). In the oil-producing sills of the 294 

Nequen Basin, Argentina, the open fractures are thought to be a combination of cooling 295 

joints and tectonically induced fractures (Witte et al. 2012). 296 



Tectonic faults tend to be non-stratabound, unless they reach a ductile layer such as a 297 

mobile shale or an evaporite unit (Ferrill et al. 2014). Tectonic faults are clustered (Gillespie 298 

et al. 1993, Johri et al. 2014), and are often surrounded by diffuse zones of fracturing 299 

termed damage zones (Figure 5; Solum & Huisman 2017; Gutmanis et al. 2018, McCaffrey et 300 

al. this volume Figure 3f). Damage accumulates at asperities along the fault and at branch 301 

lines, relay zones and fault intersections (Rotevatn and Bastesen 2014; Nixon et al. 2019). 302 

Damage zones associated with faults that are large enough to cut through the entire 303 

reservoir can provide high permeability pathways that dominate fluid flow both vertically 304 

and horizontally (Paul et al. 2009). 305 

Conditions of fracture formation 306 

According to the principles of rock mechanics, opening mode and shear fractures develop 307 

under distinct stress conditions. Faults are formed under elevated differential stress, 308 

typically during tectonic events. Joints form under conditions of low differential stress (Price 309 

and Cosgrove 1990) and are therefore less likely to form during tectonic events, in which 310 

differential stress is high. Joint formation requires the effective stress be tensile, which can 311 

happen close to the surface or at elevated pore fluid pressure; joints can form during uplift 312 

as a result of thermal and elastic contraction (Engelder 1993). Care must be taken in using 313 

outcrop analogues of joint systems, as not all of the fracture sets observed at the surface 314 

may be present in the subsurface.  315 

Gravitational collapse of caverns can cause extensive brecciation (Daniels et al. 2020), as can 316 

events of overpressure related to faulting (Sibson 1996) or volcanic processes. In breccias, 317 

the fractures may have components of both opening and shear mode. 318 

In the subsurface it is important to analyse the wider, potentially basin-scale, depositional 319 

and tectonic history in order to reconstruct the framework of faulting and fracturing 320 

styles.Geologically heterogeneous sequences can lead to a large degree of local stress 321 

variation, resulting in many different fault and fracture types and fracture-intersection 322 

relationships, which can often only be deciphered at outcrop.  323 

Joint aperture and fill  324 

 325 

Opening-mode fractures create voids and the size of these voids are altered by chemical 326 

processes, namely precipitation and dissolution (Wennberg et al. 2016; Lima and De Ros 327 

2019). In a chemically inactive system, such as may occur at shallow depths, joints have a 328 

mechanical aperture (opening) that is controlled by mechanical parameters alone. Under 329 

conditions of elevated pore fluid pressure, joints may be fully open, with an aperture 330 

controlled by the effective stress and the rock properties. At lower fluid pressures the walls 331 

of the fracture are partially in contact and the fracture aperture is defined by patches of the 332 

fracture that are not in contact, which reduce in area as the effective compressive stress 333 

increases (Pyrak-Nolte et al. 2000). In more chemically active systems, the aperture of the 334 

joint may become occluded by precipitating minerals (Laubach et al. 2004; Gale et al. 2010; 335 

Wennberg et al. 2016; Laubach et al. 2019), leading to a decrease in reservoir productivity 336 

(Laubach 2003). These are variously referred to as cemented, healed or sealed fractures 337 

(Anders et al. 2014 for review of the terminology). 338 

 339 



Fault properties  340 

 341 

Faults have highly variable lithological and mineralogical content, according to the 342 

mechanical properties of the host rock together with the fluid and stress history (see Bense 343 

et al. 2013 for review). In porous sandstone or grainstone, deformation within the damage 344 

zone is accommodated by compactional shear, leading to the formation of deformation 345 

bands (more precisely, shear bands), that have lower permeability than the host rock 346 

(Micarelli et al. 2006; Wennberg et al. 2013; Kaminskaite et al. 2019). More commonly, in 347 

rocks of low porosity (e.g. carbonate mudstone or crystalline basement), faults are 348 

accommodated by dilational shear, in which open fractures and an open fault breccia is 349 

developed, so that faults become hydraulically conductive (Crawford and Yale 2002). 350 

Experience from fractured reservoirs indicates that faults tend to be highly conductive, but 351 

they can also act as combined barriers and conduits (e.g. Caine et al. 1996; Agosta 2008).  352 

 353 

The porosity in the fault zone may be occluded by precipitation of minerals (Woodcock et al 354 

2007). Fault reactivation tends to cause breakage of mineral fills and re-opening of the fault; 355 

the faults that have most recently been active are those that are most likely to be open. In 356 

cases where open fractures are only partially filled, the fill can act as a natural prop 357 

counteracting the effects of in-situ stress loading and enhancing long-term permeability of a 358 

fractured reservoir (Holdsworth et al. 2019). Where there is shale in the faulted sequence, 359 

the shale may be smeared into the fault zone and form a baffle to fluid flow (Færseth 2006; 360 

Bastesen et al. 2010); fault-gouge and clay smear can significantly diminish the conductive 361 

properties of the fault, both across and along the fault plane. 362 
 363 

Fracture size  364 

The fracture size is defined by its vertical extent (height), lateral extent (length) and 365 

aperture (opening). 366 

The length distribution of fractures is one of the principal controls on the connectivity and 367 

permeability of the fracture system (de Dreuzy et al. 2001; Philip et al. 2005). In the 368 

subsurface, the horizontal extent, or fracture length, cannot be readily measured below 369 

seismic scale, requiring the use of outcrop analogues for their elucidation. Alternatively, the 370 

size distribution of faults imaged using seismic reflection data can be extrapolated 371 

downscale using an assumed size distribution (Yielding 1996). 372 

In the case-of non-stratabound fractures, there is no characteristic length scale that controls 373 

the size of the fractures, so their horizontal extent and maximum displacement tend to 374 

follow a power-law (Pareto) cumulative frequency distribution typical of fractals (Odling et 375 

al. 1999; Gillespie et al. 2001; Bertrand et al. 2015). In stratabound examples, the 376 

mechanical unit thickness typically imparts a characteristic spacing to the fractures (Bai and 377 

Pollard 2000; Schöpfer et al. 2011) and their length is controlled by interaction with other 378 

joints (Gross et al. 1993). This means that stratabound fractures tend not to follow non-379 

power law size distributions and are not fractal (Gillespie et al. 1999). As stratabound 380 

fracture systems tend to divide the rock matrix into a series of blocks of regular size, the 381 

effective permeability of the fractured rock can be assigned a representative elementary 382 



volume (Bear 1972; Odling et al. 1999; Müller et al. 2010). However, in fracture systems that 383 

have power law size distribution and clustered spatial distribution, the definition of 384 

representative elementary volume may not be possible. 385 

 386 

The aperture of subsurface fractures is difficult to estimate directly and surface apertures 387 

may be unrepresentative of subsurface fractures due to thechanging stress conditions 388 

occurring at different depths. However, partially cemented fractures have an aperture at 389 

the surface that is less sensitive to stress and so study of veins and partially cemented 390 

fractures can provide useful information (Laubach et al. 2016; Laubach 2019). In this 391 

context, it is important to distinguish between the distance between the fracture walls, or 392 

kinematic aperture and the true aperture which is the distance across the void within the 393 

fracture. 394 

In a study of veins (fully cemented fractures) from a range of sedimentary rocks, Gillespie et 395 

al. (1999) concluded that veins typically have kinematic apertures that follow power law 396 

cumulative frequency distributions in non stratabound fracture systems, but they are non-397 

power law in stratabound fracture systems. However, Ortega et al. (2006) reported 398 

stratabound fractures veins in carbonate host rocks and found them to have a power law 399 

kinematic aperture distribution. Additionally, Hooker et al. (2013, 2014) have demonstrated 400 

from detailed examination of fractures in sandstone that the process of fracture 401 

cementation can have a fundamental effect on the size distributions of fractures: power-law 402 

kinematic aperture size distributions are favoured in cases where fracture growth is 403 

unevenly distributed amongst variably cemented fractures. 404 

 405 

In Type I fractured reservoirs, the fracture porosity dominates the storage potential of the 406 

reservoir and so accurate determination of the fracture size, including the fracture height, 407 

length and aperture, is critical for commercial development. 408 

Comprehensive analyses of multi-scale size distributions of fractures are given from the 409 

Lewisian Complex by McCaffrey et al. (this volume), and from volcanics by Primaleon et al. 410 

(this volume). In both areas, composite cumulative frequency plots of fracture length show 411 

approximately power law distributions of several orders of magnitude, although in the 412 

poorly exposed volcanics (Primaleon et al. this volume), there is a marked change in 413 

exponent between regional scale datasets from maps and smaller scale data derived from 414 

outcrop and core. In each of these studies, the scaling of the fracture kinematic aperture 415 

(the distance between the fracture walls, regardless of fill) was also analysed. In both 416 

datasets, the kinematic aperture shows a broadly power-law cumulative frequency 417 

distribution, with higher observed frequencies of small aperture fractures in core data than 418 

in outcrop data. In the Lewisian rocks of the Lancaster discovery, subsurface aperture 419 

measurements derived from electrical logs also fall broadly onto a power-law cumulative 420 

frequency distribution when different samples are plotted onto a single graph, although 421 

individual samples do not conform to power-law size distributions. (Holdsworth et al. this 422 

volume). 423 



 424 

Joint density and lithology 425 

 426 

Opening-mode fractures (joints) cannot develop in cohesionless materials, and 427 

consideration of the Griffith/Navier-Coulomb failure criterion shows that rock with low 428 

cohesion, such as poorly cemented sand or porous carbonate grainstone, opening mode 429 

fractures can only develop under conditions of very low differential stress (e.g. Price and 430 

Cosgrove 1990). Hence opening mode fractures are rare or absent in high porosity reservoir 431 

sandstone or limestone unless they have been subjected to elevated pore-pressure. 432 

However, as cementation increases, porosity and pore throat sizes decrease and cohesion 433 

increases, making the rock become more brittle and prone to fracture. Thus, by pure 434 

serendipity, as the matrix loses permeability by cementation, the reservoir is more likely to 435 

have a component of fracture permeability. An example of this effect is seen in the Valhall 436 

chalk field, where fractured hardgrounds provide high permeability zones within the 437 

reservoir (Tjetland et al. 2007).  438 

 439 

Surface and subsurface observations indicate that the density of joints varies strongly 440 

according to the brittleness of the rock at the time of deformation. As a rough guide, the 441 

relative brittleness of different rock types can be expressed as: silica > tight carbonate > 442 

porous carbonate > clay or organic-rich shale. Similarly, quartz-cemented sandstone is more 443 

prone to fracturing than porous sandstone. The presence of clay minerals can weaken the 444 

rock and make it significantly less brittle, so clay-rich carbonates tend to have lower fracture 445 

density than clean carbonates (Laubach et al. 2009).  446 

 447 

Fracture connectivity  448 

The connectivity of the fracture system is one of the most important controls on the 449 

effective permeability of fractured networks and has been investigated using percolation 450 

theory (Long and Witherspoon 1990). At low fracture density, fractures tend to be 451 

disconnected and so have limited contribution to effective permeability (but see also Philip 452 

et al. 2005 and Olson et al. 2009). At high density, the fractures are fully connected leading 453 

to a fracture system that is highly permeable. At intermediate density, fractures start to 454 

become connected and may form a number of isolated connected networks. The point at 455 

which the fracture system becomes connected across the reservoir is called the percolation 456 

threshold and is controlled by the total fracture density, the fracture size, and their 457 

orientation distribution (Hestir and Long 1990).   458 

The number and type of fracture intersections are important factors in which influence 459 

fracture network connectivity. Measurements of fracture topology from core or from 460 

surface data allow rigorous quantification connectivity (Manzocchi 2002; Sanderson and 461 

Nixon 2015; Sanderson and Nixon 2018). Using these techniques, McCaffrey et al. (this 462 

volume) and Holdsworth et al. (this volume) showed high degree of connectivity of 463 

fractures in Lewisian basement at outcrop and at in the basement of the Rona Ridge. In a 464 

multiscale study of the volcanic rocks of the Southern Negros geothermal field, Primaleon et 465 

al. (this volume) found high fracture connectivity and were able to establish that 466 

connectivity is greater close to large faults. Unfortunately, the connectivity of the fracture 467 



system to an individual well cannot be uniquely determined from static subsurface data 468 

alone, as the details of the fracture topology cannot be mapped far from the borehole. 469 

However, we can infer connectivity from pressure data, interference tests and the use of 470 

tracers (see Narr et al. 2006 and Price et al. this volume for examples). 471 

 472 

Factors causing fracture localization 473 

 474 

An important aspect of fractured reservoir characterisation is the understanding of the 475 

factors that cause localization and change in orientation of fractures. Regions that are highly 476 

fractured often represent high-permeability zones, which could act as areas of high well 477 

productivity, or areas of early breakthrough of injected water or gas. In the former case it 478 

pays to target highly fractured regions, whereas in the latter they should be avoided; getting 479 

this right or wrong can determine the commercial success or failure of a field.  480 

 481 

The damage zone model of fault-related fracturing is widely used in reservoir modelling (e.g. 482 

Gauthier et al. 2002) and implies localized high permeability zones of open fractures 483 

associated with faults. However, stratabound joints that form when the faults are active 484 

may be more homogeneously distributed, with their orientation determined by local stress 485 

perturbations around the faults (e.g. Rawnsley et al. 1992; Bourne et al. 2001). 486 

 487 

Clusters of opening mode fractures, or fracture corridors, may be due to local stress 488 

concentrations, such as may occur close to faults. However, in many cases there are no 489 

obvious causes of stress heterogeneity. Olson (2004) has shown using mechanical modelling 490 

that clusters of joints may occur spontaneously in a growing set of fractures due to the 491 

interaction of the stress fields around each fracture. Hence prediction of fracture corridors is 492 

challenging and there is a reliance instead on direct detection using well data or seismic 493 

techiques (Ozkaya 2007; Nosjean et al. 2020). 494 

 495 

Folding can cause localization of fracturing. For example, in the thrust-related folds of the 496 

Canadian foothills, successful gas wells are targeted into the hinges or forelimbs of folds 497 

(Cooper et al. 2004). However, not all the fractures in a fold are related to the folding event; 498 

some may have developed before and others after the event, in which case their fracture 499 

density and orientation may not be related to fold geometry (Ahmadhadi et al. 2008; 500 

Shackleton et al. 2011; Casini et al. 2011; Tavani et al. 2018). 501 

 502 

Various techniques can be used to predict fracture density and orientation. In a simple static 503 

approach, the curvature of horizons may be used to estimate fracture density (Stewart & 504 

Podolski 1998; Bergbauer & Pollard 2003). In faulted areas, the distance from faults may be 505 

used to condition the density of fractures. Otherwise, geomechancial modelling can used to 506 

estimate the stress/strain at the time of deformation, and thereby to estimate fracture 507 

parameters (Bourne et al. 2001; Maerten et al. 2019). Regardless of the technique that is 508 

used, results must be carefully calibrated against seismic and well data and supported by 509 

outcrop analogue data where appropriate. 510 

 511 

In situ stress 512 

 513 



The orientation and magnitudes of in-situ stress can have a significant impact on fracture 514 

aperture, and hence the effective permeability tensor of fractured formations. As the 515 

reservoir fluid pressure is depleted, the effective stress changes and fractures may close, 516 

becoming less permeable: such reservoirs are called “stress-sensitive”. However, rough 517 

walled or partially filled cemented fractures may become locked open, or propped, making 518 

the reservoirs less sensitive to stress (Dyke and Hudson 1992). 519 

 520 

Wellbore temperature monitoring in fractured crystalline basement has shown that the 521 

fractures most likely to be open and permeable are those that are oriented relative to stress 522 

field in such a way that they are on the verge of slipping,  leading to the concept of “critically 523 

stressed” fractures (Barton et al. 1995). Gilchrist et al. (this volume) give evidence that in 524 

the carbonates of the Shaikan field in Kurdistan, the fractures remain critically stressed even 525 

after depletion of the reservoir; they argue that, in such seismically active regions, the 526 

tectonic stress will build up again until the system reaches criticality. The continued 527 

criticality of the fracture system may allow the reservoir to maintain high effective 528 

permeability during depletion, but the critically stressed fractures may also present 529 

problems for wellbore integrity. 530 

 531 

Chemical modification of fractured systems 532 

Carbonate reservoirs often have a complex diagenetic history, with diagenetic processes 533 

frequently controlled or influenced by phases of fracturing (Smith and Davies 2006; Sharp et 534 

al. 2010). When carbonate rocks are exposed in a humid environment, or under certain 535 

conditions in the subsurface, they may undergo dissolution to form karst (Loucks 1999, 536 

White 2016), a phenomenon in which carbonate or evaporite minerals are dissolved to form 537 

macroscopic vugs and caves. Karst dissolution enlarges the aperture of pre-existing fractures 538 

with an increase in porosity and permeability. However, porosity may also become blocked 539 

by sediment or by precipitation of diagenetic minerals. As a result, karst reservoirs are often 540 

complex. They share many of the production characteristics of fractured reservoirs, 541 

although the additional presence of open voids and caverns can lead to extremely 542 

heterogeneous production characteristics and reservoir behaviour. Drill-bit drops and high 543 

instantaneous mud-loss rates are typical experiences in highly karstified reservoirs (Mazullo 544 

and Chilingarian 1996; Loucks 1999). 545 

 546 

Under some conditions, dissolution of carbonates can occur in the deep subsurface 547 

(Mazzulo and Harris 1992), although there is controversy around whether this process can 548 

generate significant porosity (Ehrenberg et al. 2012). Nevertheless, there is evidence that 549 

late-stage dissolution and vug formation can occur at depth in association with fractures. 550 

Ukar et al. (this volume) argue that in the Halahatang oilfield of the Tarim Basin, which is 551 

hosted by Ordovician carbonate rocks, cavernous porosity developed at moderate depths in 552 

a series of dissolution events. 553 

 554 

Caverns developed by karst dissolution of carbonate or evaporite can collapse, causing 555 

intense fracturing and brecciation of the overlying rocks (e.g. Daniels et al. 2020, Ukar et al. 556 

this volume). These zones can be associated with enhanced production rates, as found in 557 

the Ellenburger Group carbonates of Texas (Loucks 1999). 558 

 559 



Early and pervasive cementation of the carbonate platform causes embrittlement, leading 560 

to the development of major syn-depositional fracture systems behind the margin of steep-561 

sided platforms (Hunt et al. 2003, Frost and Kerans 2010, Nolting et al. 2020). This can have 562 

important consequences for production, for example in the Paleozoic super-giant Tengiz 563 

field in Kazakhstan (Narr and Flodin 2012), and the Devonian-aged Kharyaga field in Russia, 564 

(Spina et al. 2015). 565 

 566 

Crystalline basement is, by its nature, rock of very low porosity and permeability, which 567 

depending on mineralogy commonly has low chemical reactivity. Development of fractures 568 

in crystalline basement may not provide sufficient storage for commercial reservoir 569 

potential, as the porosity of unaltered fractures is very low. Some degree of chemical 570 

alteration may therefore be required to generate a hydrocarbon reservoir, and this may be 571 

provided by chemical weathering if the basement is exposed over a very long time. 572 

Therefore, productive basement reservoirs typically underlie major unconformities (P’An 573 

1982; Koning 2003; Holdsworth et al. this volume). Fractures formed close to the 574 

weathering surface may form open fissures that extend down into the underlying basement 575 

and focus descending or ascending fluids, leading to fracture porosity and permeability 576 

enhancement by chemical and mechanical weathering.  577 

Hydrothermal alteration is commonly observed in crystalline basement rocks. In some 578 

geothermal reservoirs, hydrothermal circulation allows the precipitation of geothermal 579 

minerals that can prop open or occlude the fractures. In Soultz-sous-Forêts the wall rocks of 580 

the fractures have been intensely transformed by hydrothermal alteration and the mineral 581 

assemblage must be characterized in order to design the best stimulation (Ledésert et al. 582 

2010). In the Lancaster oil field of the UK’s Rona ridge, a near surface hydrothermal system 583 

was associated with fractures in the basement (Holdsworth et al. this volume). The 584 

hydrothermal minerals that were generated from this system propped open the fissures, 585 

allowing storage of oil. 586 

Data acquisition 587 

The subsurface data available for the characterisation of fracture networks consists of 595 

seismic data and well data. Seismic reflection data are of limited spatial resolution, and as 596 

such can only image large faults. Well data are of much higher resolution, but do not 597 

capture the key characteristics of any of the larger fractures. Between seismic data and well 598 

data exists a range of scales at which fractures cannot be directly sampled. This is known as 599 

the resolution gap, for which outcrop analogues and remote sensing can provide important 600 

proxy data. 601 

 602 

Seismic reflection data are important for mapping the larger structures such as faults, 603 

although the vast majority of fractures will not be directly detectable. Seismic anisotropy 604 

can also be used to infer the presence and orientation of fractures under suitable 605 

conditions. Newly developed methods for extracting faults and fractures from seismic data 606 

are showing promise and can be a useful adjunct to manual interpretation (e.g. Bonter and 607 

Trice 2019; Wu et al. 2019).  608 

 609 



Core provides essential information about the content of fractures and the density and 610 

small-scale connectivity of the fracture network. CT scans of core can yield 3-D volume 611 

renditions of the fractures in the core barrel, before the core is damaged by further handling 612 

(Wennberg et al. 2009). However, the most intensely fractured reservoir intervals typically 613 

result in zones of no recovery or ‘rubble zones’ and so are under-sampled by coring.  614 

 615 

Borehole imagery allows the determination of fracture orientation and properties 616 

(Poppelreiter et al. 2010), and the quality of borehole images is steadily improving. Acoustic 617 

and resistivity-based tools are both valuable and yield complementary results and 618 

integration with core data can provide calibration of the results (Fernández-Ibáñez et al. 619 

2018). Borehole imagery is also used to determine the direction of in situ stress, which can 620 

affect fracture permeability (e.g. Gilchrist et al. this volume). 621 

 622 

In the absence of borehole imagery, conventional wireline logs can provide information 623 

about fracturing. For instance, the caliper, sonic and photoelectric logs are all sensitive to 624 

fracturing and can indicate fractured zones in the well. 625 

 626 

While information about the size and connectivity of fractures is very limited from well data, 627 

outcrops can provide a wealth of data about the extent of fractures, their fills and their 628 

relation to lithology and geological structure. Fieldwork can be supplemented by the use of 629 

remote sensing data, and also increasingly by virtual outcrop models derived from LiDAR or 630 

from drone-based digital photogrammetry (e.g. Pearce et al. 2011; Gillespie et al. 2011; 631 

Vollgger and Cruden 2016; Corradetti et al. 2018). 632 

 633 

Dynamic data such as production tests and interference tests are essential for 634 

determination of the effective permeability. Mud losses and gas kicks can also provide 635 

dynamic information about the fracture system (Alvarez et al. 2015), with use of systems 636 

such as real time mud gas monitoring micro mud-loss meters that are designed to optimize 637 

collection of this information.  638 

In an optimal workflow, the fracture network is represented as a discrete fracture network 639 

(DFN) and the pressure derivative of the well test is matched by adjusting the matrix and 640 

fracture parameters. In this way, the geological and engineering concept of the fractured 641 

reservoir can be fully integrated. A good example of this workflow applied to the fractured 642 

carbonate Shaikan field is given in Price et al. (this volume). DFNs were created for 643 

individual well tests using all of the available geological data and adjusted to match the well 644 

test pressure derivatives. The DFNs were then validated by simulation of transient bottom 645 

hole pressures and pressure interference data. The field scale DFN was then upscaled to a 646 

full-field dynamic simulation model for use in production forecasting. 647 

Conclusions 648 

An understanding of the geological controls on fracture system development and 649 

organisation is fundamental to developing viable concepts of fracturing that can be used in 650 

assessing fractured hydrocarbon and geothermal reservoirs. Host rock lithology and stress 651 

conditions effect the organization and scaling of fracture systems and the development of 652 



stratabound, non-stratabound or hierarchical fracture systems. The degree of chemical 653 

modification depends on the primary composition of the host rock as well as on the 654 

geofluids that were present. When fractures occur at the surface they may be strongly 655 

altered and may be filled with sediment, altering their hydraulic properties. Use of data 656 

from core and outcrop analogues is important for understanding the geological 657 

development of fractures, but the addition of other data sources such as seismic, borehole 658 

image data and dynamic data allows for a more complete definition of the hydraulic effect 659 

of the fracture systems. 660 

The papers in this volume intend to give some good examples of how a proper geological 661 

understanding and quantitative analysis of fracture systems improves our ability to make 662 

useful predictions in the subsurface. 663 
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Figures 1214 

Figure 1. Summary of global frequency of fractured reservoirs according to lithology and 1215 

tectonic setting at the time of trap formation. From C&C Reservoirs (2020). 1216 

 1217 

Figure 2. End member fracture systems showing an organized and well-connected system of 1218 

stratabound joints and non-stratabound fractures that are strongly clustered.  1219 

 1220 

Figure 3. a) Stratabound joints developed limestones within a limestone/marl sequence 1221 

from the Lias (Early Jurassic) at Lavernock Point, Wales. Joints are more narrowly spaced in 1222 

the thinner units than in the lower, composite unit. The fracture aperture has been greatly 1223 

enlarged by recent dissolution to form karst fissures. Ruler extended to 1 m. b) Clustered 1224 

non-stratabound joints developed in Silurian granodiorite from Rolfsnes, western Norway. 1225 

Cliff height ca 4 m. 1226 

 1227 

Figure 4. Example of a conceptual model of fracturing in an extensional setting showing 1228 

faults and joints and their relationship to stratigraphy (after Gross and Eyal 2007). 1229 

 1230 

Figure 5. Normal fault in Cretaceous platform limestone from Maiella, Italy. The fault has a 1231 

displacement of about 50 m. The brecciated fault core occurs within a lozenge and the 1232 

surrounding rock is fractured, forming a damage zone. Alun Williams for scale.  1233 
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