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Abstract
In recent years, artificial intelligence techniques have proved to be very successful when
applied to problems in physical sciences. Here we apply an unsupervised machine learning
(ML) algorithm called principal component analysis (PCA) as a tool to analyse the data from
muon spectroscopy experiments. Specifically, we apply the ML technique to detect phase
transitions in various materials. The measured quantity in muon spectroscopy is an asymmetry
function, which may hold information about the distribution of the intrinsic magnetic field in
combination with the dynamics of the sample. Sharp changes of shape of asymmetry
functions—measured at different temperatures—might indicate a phase transition. Existing
methods of processing the muon spectroscopy data are based on regression analysis, but
choosing the right fitting function requires knowledge about the underlying physics of the
probed material. Conversely, PCA focuses on small differences in the asymmetry curves and
works without any prior assumptions about the studied samples. We discovered that the PCA
method works well in detecting phase transitions in muon spectroscopy experiments and can
serve as an alternative to current analysis, especially if the physics of the studied material are
not entirely known. Additionally, we found out that our ML technique seems to work best with
large numbers of measurements, regardless of whether the algorithm takes data only for a
single material or whether the analysis is performed simultaneously for many materials with
different physical properties.

Keywords: machine learning, muon spectroscopy, muon spin relaxation experiment, principal
component analysis, identifying phase transitions, time-reversal symmetry breaking
superconductors

(Some figures may appear in colour only in the online journal)

1. Introduction

Machine learning (ML) methods are now widely used in many
areas of physics, usually as a tool to analyse large amounts of
data [1–3]. These techniques are particularly useful in regres-
sion, classification and dimensionality reduction tasks which
are often required in processing scientific data. Specifically in

∗ Author to whom any correspondence should be addressed.

condensed matter physics, ML is well suited for many tasks
ranging from predicting materials properties based on exist-
ing databases and pattern recognition in specific experimen-
tal data to analysing theoretical models of quantum materials.
Prominent examples include the prediction of novel materials
[4–6], identification of phase transitions in models of magnetic
materials starting from Ising models [7–12], reaching com-
plex spin liquids in Heisenberg systems [13] and the detection
of entanglement transitions from simulated neutron scattering
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data [14]. ML algorithms were also proven to be state of the
art techniques in simulations of wave functions [15] or den-
sity matrices [16–19] for many-body quantum systems and
the tomographic reconstruction of many-body wave functions
from experimental data [20].

Much of the research in this area so far is concerned with
simulation or analysing simulated data, however it has also
been shown that such techniques can detect phase transitions
from piezoelectric relaxation measurements [21] or discover-
ing existence of translational symmetry-breaking states from
real, electronic quantum matter images [22]. Here we want to
apply a simple dimensionality reduction algorithm to real data
from muon spin rotation (μSR) experiments [23] to see if we
can detect phase transitions for a range of different materials.
We decided to use the data from this type of experiment since
models used in μSR data analysis require previous understand-
ing of the local environment of muons inside probed sample,
which is not always easily available. Therefore, as an alterna-
tive, we propose the use of linear principal component analysis
(PCA), a simple unsupervised ML technique which does not
make any prior assumption, yet is known to reveal correlations
within the data. By demonstrating that this approach works, we
propose that it may serve as a more unbiased way of detecting
phase transitions observed in μSR experiments. In this paper
we apply PCA to μSR data from a small number of supercon-
ducting and magnetic materials whose physics are known to
differ widely from each other. In particular we explore the tech-
nique for data from time reversal symmetry breaking (TRSB)
superconductors, which are among the most difficult to anal-
yse, since changes in experimental data are very subtle. Other
materials that we have tested are a symmetry breaking antifer-
romagnet (BaFe2Se2O) and a spin liquid (LuCuGaO4). We find
some evidence that PCA can detect important features such as
phase transitions. We also find that when the system is trained
on all the materials, taken together, the results improve—even
though the materials chosen have different underlying physics.

The paper is organised as follows. In section 2, we briefly
present the set up of the muon spectroscopy experiment and
the current method of analysing the data from it. In section 3,
we present the principal component (PC) analysis in general
and how we used it in practice. Then, in section 4, we move
on to results of applying PCA to data from different materials
and discuss in detail how the method performs. We summarise
the results in section 5.

2. Muon spectroscopy experiment

The general setup of a μSR experiment design to measure the
local magnetic environment consists of spin-polarised muons
being implanted into a sample, which is surrounded by multi-
ple positron detectors. Once they enter the sample, muons will
interact with the atoms causing them (muons) to thermalise
and eventually implant themselves at some sites of the system.
The spin of the muons will start to precess due to the local mag-
netic field and the muons will eventually decay into positrons
and neutrinos with a mean life time of 2.2 μs. The positron
velocity direction is directly connected to the muon spin ori-
entation at the time of decay [24–27] and therefore the intrinsic

magnetic field of the sample will affect the final distribution of
positron detection events.

A commonly used setup is to have symmetrical detectors
in front of (F) and behind (B) the sample (with respect to the
muon beam). The quantity that we are interested in is the differ-
ence in number of counting events between the two detectors
as a function of time Ni(t), i ∈ {F, B}, called the asymmetry
function

A(t) =
NB(t) − NF(t)
NB(t) + NF(t)

. (1)

The analysis of the data involves fitting specific asymme-
try curves to the experimentally-obtained curve. Given some
knowledge of the underlying physics for a particular material
and/or some justified assumptions, a model can be formulated,
and the asymmetry curve can be derived from it. In some sim-
ple cases appropriate closed-form expressions can be derived
[28, 29], though more generally ad hoc calculations are nec-
essary [30]. For some systems, our understanding is still not
sufficiently developed for such predictions—for instance, the
theory of zero-field muon spin relaxation (ZF-μSR) in super-
conductors with broken time-reversal symmetry (TRS) is still
in its infancy [31].

In practice, for complex systems it is customary to
use a phenomenological expression featuring several
adjustable parameters. Electronic order can then manifest as a
temperature-dependence of those parameters. For instance, in
ZF-μSR investigations of superconductors [32] one often fits:

Aphen.(t) = A0GKT(σ, t) exp(−λt) + Abckg, (2)

where GKT(σ, t) is the Kubo–Toyabe function describing cou-
pling to static, randomly-oriented magnetic moments [28, 29,
33, 34] with relaxation rate λ and Gaussian magnetic field
strength distribution with standard deviation σ. The param-
eters σ,λ, A0, Abckg are then interpreted to describe distinct
relaxation mechanisms. In conventional superconductors these
parameters tend to evolve smoothly through the superconduct-
ing critical temperature, Tc. In other systems, marked changes
in some of these parameters occur at Tc [35]. These are often
interpreted as evidence of broken TRS and in some systems
this has been confirmed by Kerr effect or SQUID magnetom-
etry. Quite frequently, it is found that only one of the fitting
parameters in equation (2) depends on temperature. This is
usually either σ or λ, which naturally leads to a classification
of TRS-breaking superconductors. We note, however, that the
relaxation rates involved are very small, meaning that only a
small portion of the curve described by equation (2) is repre-
sented in the experimental data sets (due to the finite lifetime
of the muon). As a result, this classification may not always
be as robust as would be desirable. For instance, some super-
conductors that are expected to have very similar underlying
physics can fall in different classes. Such is the case of the
proposed nonunitary triplet superconductors LaNiC2 [36] and
LaNiGa2 [37], whose asymmetry functions are best described
by a temperature-dependent σ and λ, respectively, in spite of
experimental [38, 39] and theoretical [32] evidence of very
similar underlying physical mechanisms. Likewise, the muon
spin relaxation rate in spin glasses can often be described by
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Figure 1. Representation of the PC analysis in high-dimensional data space. The asymmetry functions A j(t) consist of N real values
representing time windows ti, i = 1, 2, . . . , N. Each of ti can be thought of as independent dimension (a). In this framework, we can
represent each individual asymmetry function Aj as a point in N-dimensional space (b)5. We expect correlations between different
asymmetry functions, which means that the data can be projected into a smaller subspace of initial N-dimensional space, without loss of
information. The actual PC analysis (c) can be represented as a rotation of initial coordinate space (π1, π2) into a new (π′

1, π′
2) so that most

of the covariance is captured by the π′
1 dimension. The vectors in new basis (π′

1, π′
2) are called PCs and are usually numbered according to

the amount of covariance they hold. Note: the projection onto π1 × π2 plane is not a part of PC analysis. The PCA rotates whole data space
(after removing the average so that the cluster of data is centred at the beginning of coordinates) and then one can choose how many PCs
(dimensions) must be used to represent the data well, based on the total covariance they hold.

a stretched exponential function (with temperature-dependent
exponent), reflecting the variation in local spin fluctuation
rates as well as non-exponential decay at muon sites [40–42].
However, fitting experimental data can give parameter values
that are not expected from standard models/numerical analysis
[43]. In conclusion, it would be highly desirable to have a way
of analysing the temperature-dependence of μSR spectra that
can detect electronic ordering transitions without the need to
assume any a priori fitting functions.

3. PC analysis

To analyse the data from a muon spectroscopy experiment
without making assumptions about the physical nature of the
materials, we decided to use an unsupervised ML technique
called PCA [7, 44, 45]. The concept behind it—in the con-
text of muon spectroscopy experiment and asymmetry func-
tions—is presented in figure 1. We can think about differ-
ent experimental measurements as points in some data space
with N dimensions. In the case of muon spectroscopy, each
dimension i = 1, 2, . . . , N represents a time window ti, within
which the positron detections are measured. If the measure-
ments are not random but correspond, for example, to the same

material at different temperatures, we expect correlations
between those points. PCA can detect these correlations by
first removing the average of all experimental curves, then
measuring the covariance for each dimension and linearly
transforming the coordinates so that the new basis of the data
space consists of only few directions that capture most of the
covariance. The vectors of this new basis are called PCs and
can be thought of as the most common deviations from the
average curve. We can reconstruct all of the measurements
used in the analysis by adding to the average a linear combina-
tion of PCs. We can also represent each curve by specifying its
projections onto the PCs, which are often called PC ‘scores’.
Thus, PCA provides us with a more compact description of the
experimental data and additionally we can recover information
about linear correlations from their magnitudes (or PC scores)
and shapes (the PCs, or PC vectors).

In the example shown in figure 1(c), most of the data lies
in two-dimensional space π1 × π2. PCA finds new orthogo-
nal directions (π′

1, π′
2), because there exist linear correlation

5 In panel (b), each of the directions t1, t2, . . . , tN should be understood as being
orthogonal to any other, thus spanning an N-dimensional target space repre-
senting a full dataset from an individual measured asymmetry function as a
function of time.
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between the π1 and π2 coordinates of data points. We can
now specify each asymmetry curve by its projection onto π′

1,
whereas before we would have to state both π1 and π2 coor-
dinates. We do lose some information about the individual
data points in this way, but we gain in the more compact
representation of asymmetry curves. Usually, more than one
PC is needed to represent the data well. The number of impor-
tant PCs varies with different data sets and can be decided by
looking at how much covariance each PC holds.

We now present a more specific description of the PCA
method. Each measurement can be represented as a vector
a j =

(
A j(t1), A j(t2), . . . , A j(tN)

)T
,6 with its values equal to the

values of asymmetry function at specific times and the index
j = 1, 2, . . . , M taken to label the distinct measured asymme-
try curves that we want to analyse by the algorithm. We fur-
ther assume that all measurements were recorded for the same
set of N measurement times ti, taken relative to the time for
implanting the muon into the material. We combine the vectors
a j in column form to construct a matrix A

A =

⎡
⎢⎢⎢⎣

A1(t1) A2(t1) . . . AM(t1)
A1(t2) A2(t2) . . . AM(t2)

...
...

. . .
...

A1(tN) A2(tN) . . . AM(tN).

⎤
⎥⎥⎥⎦ (3)

In the next step we remove the mean of each vector dimension
(i.e., averaging over the column index) so that the whole data
is centred around the coordinate origin, as shown in figure 1.
We end up with a matrix X with elements given by

[X]i j = A j(ti) −
1
M

M∑
k=1

Ak(ti). (4)

The most common way for obtaining PCs is to perform a sin-
gular value decomposition of X. To this end, we evaluate the
covariance matrix

S =
1

M − 1
XXT, (5)

such that the eigenvectors of S are the PCs and the correspond-
ing eigenvalues indicate the amount of covariance captured by
the given PC. If we write the eigenvectors into a matrix U, then
a table of scores C for each measurement can be obtained by
the matrix product

C = UTX, (6)

and the full reconstruction of the initial experimental data is
expressed as

R = UCT. (7)

The previously discussed usefulness of the method derives
from the fact that we can choose only the few PCs that capture
most of the covariance in order to accurately reconstruct the
initial data. Naturally, a large reduction in the number of rel-
evant PCs does not have to arise for all possible data sets, as
singular value decomposition only performs a linear transfor-
mation—in particular, if the data has non-linear correlations

6 Here A(t) stands for the measured quantity as defined in equation (1).

the method will not perform well. Fortunately, looking at the
eigenvalues of S, one can decide if the linear PCA is sufficient,
based on the decrease of PC scores which is often illustrated
in a so-called scree plot of the PC scores against their index.

In order to account for the experimental noise in the data,
we have re-binned raw data into new time windows according
to the measurement error. Since the error increases with time,
wider time windows are required at larger times to get com-
parable errors. Hence, available measurement points are more
widely spaced at later times, as can be seen in figures 2(a)–(c).
It is important to re-bin all of the measurements simultane-
ously because all time-windows t1, t2, . . . , tN in our matrix A
have to be the same for all columns for the PCA to be well
defined. Note that this specification mirrors the treatment in
regression methods, where less weight is attributed to data at
long times to account for the larger measurement errors. Our
binning procedure is discussed in detail in appendix A.

3.1. Philosophy of our PCA approach

It is worth noting that in the PCA method presented above
we do not have to make any assumptions about the shapes of
asymmetry curves. There are no hyperparameters to vary, and
SVD gives a unique representation of the sought asymmetry
functions (up to a simultaneous change of sign of the PCs and
the associated scores). Therefore we think that it provides an
interesting alternative to fitting methods, where some initial
knowledge of the probed material is needed. We would like to
emphasize that it does not necessarily yield better results, but
it can be applied to any type of input data reflecting all possible
shapes of asymmetry functions. Furthermore, by examining
scree plots of the PC scores, we are always able to judge how
well the method performs in compressing the relevant data.

In figure 2, we show an example that illustrates how the
method detects changes in the shape of a set of experimentally
measured asymmetry functions, obtained for a single material
at different temperatures. The way in which those functions
differ from each other is reflected in their respective scores
for the 1st and 2nd PCs. Both high temperature (a) and low
temperature (c) measurements have almost linear shape and
they only differ in the values for the first PC score. Looking
at the 1st PC shape (panel (e), blue curve), we can see that it
is also almost linear and when multiplied by a large negative
value—as it is for high temperature asymmetry function—and
then added to the average (d), it increases the overall slope.
For the low temperature curve, it is added with positive sign,
which means that it will instead decrease the slope. We can
see that it is exactly the difference between two asymmetry
functions (a) and (c). On the other hand the middle curve (b)
differs mostly in second PC scores from the other two. When
the second PC vector ((e), orange curve) is multiplied by a pos-
itive value and added to the average, it creates a more convex
curve, which is reflected by the shape of the corresponding
asymmetry function (b).

As a final remark on applying PCA to muon spec-
troscopy data, we state that the method presented here cannot
distinguish between sources of differences between asymme-
try functions. This means that it might be affected by physical

4
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Figure 2. An illustration of how PC analysis can be used to reduce the dimensionality of a muon data set. The set consists of a sizeable
number of experimentally-obtained muon asymmetry functions A(t). The black curves in panels (a)–(c) present three particular examples.
Each curve has 110 time stamps and therefore constitutes a point in a 110-dimensional space. PCA yields a small number of PCs which,
through linear combination, can accurately describe any curve in the data set. In our case, we find the two PCs shown in panel (e). The
reconstruction of the original data using the PCs and the average (d) (see equation (4)) can be obtained by the formula
reconstruction = average + 1st PC score × 1st PC + 2nd PC score × 2nd PC. From that we can interpret the PCs as the most common
deviations from the average curve. The reconstructions are shown, for our three examples, by the red curves in panels (a)–(c). This gives an
accurate reconstruction and therefore enables us to represent each curve by a single point on a two-dimensional plane (f). For this example
we used 25 A(t) curves for the material BaFe2Se2O obtained at 25 different temperatures.

phenomena which are intrinsic to muons and not the probed
material, such as thermal or quantum hopping of the muons.
These effects have been studied in copper [46–48] and bat-
tery materials [49–52], and mostly affect the tail of asym-
metry curves. More investigation is required to see if PCA is
able to filter out those effects by capturing them in a single
PC.

4. Results and discussion

4.1. PCA for simulated data

To illustrate characteristic results of performing PCA on
asymmetry functions, we first consider an example applica-
tion to synthetic data generated from model Kubo–Toyabe
functions GKT(σ, t) with added error E(t). Each such simu-
lated asymmetry function was taken from the general form
given by

Asim(t; T) = A0GKT(σ(T), t) exp(−Λt) + Abckg + E(t), (8)

where we have further encoded a dependency of σ(T ) associ-
ated with a symmetry-breaking phase transition in many super-
conductors with TRSB, such that σ(T ) ∼ constant for T > Tc,
while varying linearly below Tc. The error values were gener-
ated from a Gaussian distribution N(μ = 0,Σsim) centred on

zero and with a standard deviation7 Σsim(t) depending on time
after muon implantation as:

Σsim(t) = R(at + b). (9)

Errors observed in real measurements increase with time t
due to the overall smaller number of events detected at later
times. The parameters A0, σ(T ), Λ, Abckg, R, b, and a were
chosen to match experimental data of one of the TRSB super-
conductors we studied (LaNiGa2). In addition to the parame-
ters reflecting experimental conditions, we studied the effect
of different error amplitudes R (which in experiments would
correspond to experiments undertaken with different amounts
of time allocated for integrating the signal) in order to verify
robustness of the PCA approach. Our results from the appli-
cation of PCA to these simulated data is displayed in figure 3.
We have included four possible cases of ‘noise’ amplitudes
ranging between no error and twice the error we expect from
our measurements. The PCA on clean data clearly captures the
transition temperature Tc assumed in the simulated data, which
separates regions of temperature with or without variation of
the PC scores with T . The first principal score dependency
is found to be very robust to added noise, even for the cases
where the error is much larger than expected experimentally.

7 We use the symbol Σ for the standard deviation of simulated errors, to
distinguish it from the parameter σ of the Kubo–Toyabe form.
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Figure 3. Results of PCA performed on Kubo–Toyabe functions for a range of different simulated error. The third column (R = 0.0025)
corresponds to error similar to our experimental measurements. On top row are the values of 1st vs 2nd PC scores and the change with
temperature, 2nd and 3rd row are showing how PC scores change with temperature (the vertical red line corresponds to expected phase
transition) and on bottom row the shapes of two most important PC are shown. The scaled curve of first PC without error was presented on
the background of cases with noise.

By contrast, the second PC does not seem to hold any useful
information for realistic noise level. Note also the small overall
scale of the second PC score. Nevertheless, the phase transi-
tion is always clearly visible in the 1st PC, which motivates
using PCA for experimental data.

4.2. PCA for experimental data

We applied PC analysis to data from zero-field μSR exper-
iments for a range of different materials. Among them
are TRS breaking superconductors8 (LaNiGa2, LaNiC2,
LaNi1−xCuxC2), spin liquid (LuCuGaO4) and an antiferro-
magnet (iron oxyselenide BaFe2Se2O). We first performed
the analysis for each material separately. The shape of the
two most important PCs and the dependence of the scores on
temperature are presented on figure 4.

Our technique worked best for the antiferromagnetic mate-
rial (first column on figure 4), for which both expected
phase transitions are clearly visible. Although the magnetic
behaviour of the antiferromagnet BaFe2Se2O is relatively sim-
ple [54], this understanding has been challenging to arrive at:
(a) TN ∼ 240 K is clear from neutron powder diffraction exper-
iments but is more subtle in magnetic susceptibility measure-
ments [54–56] due to the layered nature of the material; (b)

8 TRSB in LaNiGa2 and LaNiC2 is well established [32]. To our knowledge,
evidence for TRSB in the closely-related case of LaNi1−xCuxC2 is presented
here for the first time.

magnetic susceptibility data collected on several samples sug-
gest a magnetic phase transition at ∼115 K [54, 55] which
is now thought to be due to Fe3O4-related impurities and is
not intrinsic to the main phase [54]; (c) there’s no evidence
for the low-temperature ∼40 K phase transition from neutron
powder diffraction [54] or heat capacity data [56] and this
phase transition is thought to involve freezing of spin fluctua-
tions. It is striking that this unsupervised ML analysis correctly
identified the two phase transitions intrinsic to BaFe2Se2O
without the need for complementary data. We think that this
reflects the strength of both the PCA analysis and the μSR
technique.

The changes in the asymmetry function are more subtle
for the superconducting materials (second-fifth column on
figure 4), but the behaviours of PC scores still change at the
critical points. We stress that in conventional superconductors
we would not expect any change of zero-field muon-spin relax-
ation at the superconducting transition temperature Tc. By con-
trast, LaNiC2 and LaNiGa2 are known to exhibit such changes,
and this is believed to be a manifestation of their internally-
antisymmetric, non-unitary triplet (INT) pairing states with
TRSB [32]. In the case of LaNiC2 (third column), we only
have one point above the phase transition and therefore we do
not expect visible change. That is confirmed in PC score plots.
Worth mentioning is also the LaNi0.9Cu0.1C2 case, in which
there seem to be more than one critical point, at least in the
behaviour of the 1st PC score. That might be caused by some

6
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Figure 4. Results of PC analysis performed independently for each material. The top row presents the shapes of the 1st and 2nd PCs. For
almost all the cases second principal does not look as smooth as the 1st PC. The second and third row display the dependence of PC scores
on temperature for the 1st and 2nd PCs, respectively. The red vertical lines indicate approximately where we expect phase transitions to
occur [53, 54]. The last row presents a scree plot for the amount of covariance that each PCs captures. Here, blue lines indicate how many
PCs are needed to capture 80% of the total covariance.

Figure 5. Results of PC analysis performed simultaneously on experimental data from all materials. The first and second row display the
dependence of PC scores on temperature for the 1st and 2nd PCs, respectively. The red vertical line indicate approximately where we expect
phase transitions to occur [53, 54].

other phase transition but more probably it is caused by limita-
tions of the method. One solution to that problem would be to
look also at the 2nd PC score, where only one transition point
is prominent. Overall, linear PCA seems to be performing bet-
ter for the spin liquid and antiferromagnetic materials than for
the TRS breaking superconductors analysed in this paper, as is
evidenced in our scree plots (the last row on figure 4). For the
first four materials, even the last few PCs hold a significant
amount of covariance9. That may imply that the data has non-
linear correlations or that we did not have not enough data

9 The singular value decomposition yields min(N, M) singular values, so for
the case of N > M the covariance captured by the last PC will formally vanish,
by definition.

available for these types of materials, since most ML algo-
rithms perform better the more data is provided. It is important
to note that we can still resolve the changes in the scores of 1st
and 2nd PCs, at least for LaNiGa2 and LaNi0.9Cu0.1C2.

The last studied material is a proposed spin liq-
uid—LuCuGaO4. Muons have been used as a proof of a
spin liquid state, as it can be argued that the resultant dynam-
ics could show a plateau in the relaxation rate with reducing
temperature where no long range order is detected [57]. In
our case the PCA shows no evidence for a phase transition,
even though a plateau is observed, likely indicating there is
no phase transition as the proposed liquid state is entered.

Because the most significant PCs for the TRS breaking
superconductors look similar for all the cases studied, in hope

7
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Figure 6. Comparison of PCA method, when performed on different amounts of data. The rows correspond to results of PCA when applied
to data from single material (first row), from two materials (second row), from three materials (third row), from four materials (fourth row)
and all materials (fifth row). The materials used are named to the left of the plots. The first four columns present the shapes of PCs and the
last column shows scree plots, with blue vertical lines indicating number of PCs that are needed to capture 80% of covariance. The
improvement of the method can be seen in PC curves, which gradually become smoother functions.

of improving results for TRSB systems, we proceed to apply
PCA to all of the experimental data simultaneously. The results
for PC scores are presented on figure 5 and the improvement
of PCs are shown on figure 6. The PCs are now much smoother
functions and additionally, only three PCs are sufficient to cap-
ture 80% of the observed covariance. The scores of the first
PC did not change much for all materials, despite their differ-
ent physical properties. This is probably connected to the fact
that all data come from the same type of experiment and all
asymmetry functions are similar in general.

We note that the data for both LaNi1−xCuxC2 materials
was previously unpublished. Using PCA, we were able to
see signs of the superconducting phase transition in zero-
field muSR experiments, which is the first evidence that the
TRSB of LaNiC22 also exists in these Cu-doped materials.
The increased onset temperature is consistent with the known
enhancement of Tc with Cu doping [53].

5. Conclusions

We have proposed the use of PC analysis to process muon spin
spectroscopy data, and in particular to aid with the identifi-
cation of features relating to phase transitions in the probed
materials. Our results demonstrate that the representation of
the observed asymmetry functions in the space of PC vectors
is sensitive to changes in the physics of the observed system.

In particular, the evolution of PC scores as a function of tun-
ing parameters provides insights into the location of possible
phase transitions. Comparing this analysis to a more conven-
tional approach, based on regression analysis using standard
fitting functions, we find that PCA is typically at least as sen-
sitive, if not more. More importantly, the PCA approach is
free from any underlying assumptions about the physics of the
observed material: rather than assuming a specific form of a
fitting function (e.g. Kubo–Toyabe or stretched exponential),
PCA discovers the PCs that describe a given system, without
human intervention. This is the salient feature of the method
we put forward and it means that the same, universal analysis
can be applied to any material.

In addition to the universality of our method, we have found
that the quality of the results is enhanced when data for mul-
tiple materials are analysed as a joint dataset, even when the
underlying physics of each system being considered are quite
different. The ability to thus enhance understanding gained
from a new experiment based on existing data goes beyond
the possibilities of preexisting approaches, where data for each
material is necessarily analysed and fitted in isolation, and
overarching commonalities are anticipated in advance by the
formulation of a suitable fitting function. We anticipate this
could offer great advantage when deployed in large-throughput
user facilities. In particular, given the advantages gained from
combining multiple data sets, our results suggest a new way

8
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to leverage recently-developed open-data tools and policies
[58, 59].

We hope that our unsupervised ML approach to muon spec-
troscopy data analysis could become one of the standard tools
used in that field. In addition to its virtue, noted above, of pro-
viding a unified way of treating all muons data, we believe
our approach can also accelerate future experiments, as the
treatment within this framework will require less data to be col-
lected before signatures of the physics can emerge—especially
if data from previous experiments is used to enhance the
analysis of new materials as outlined above. In addition, the
simplicity of the analysis means that it could easily be per-
formed immediately while experimental measurements are
being taken, thus opening the possibility to inform the conduct
of the experiment in real time. At the other end of the spectrum,
it is also possible to conduct experiments where much larger
data sets are gathered [60]. Our simulations suggest that our
method applied to such data might yield valuable new insights
into phase transitions. They also would be ideal additions to
such past-experiment data bank. Given the advantages gained
from combining multiple data sets, our results should encour-
age the community to gather historic and future measurements
in a common database in order to harvest the benefits of this
approach.

A possible future extension of our work would be to deploy
an additional unsupervised ML technique to analyse the output
of our analyses as presented here. The principal score depen-
dencies (as shown in figure 5) in the method presented here still
need to be processed by human eye to establish phase transi-
tion temperatures. There exist ML tools that could categorise
different phases from the PC scores, that have been shown to
work well with model data [61]. It would be interesting to
apply them to our problem.
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Appendix A. Re-binning of data

The error in muon spectroscopy measurements increases at
later times due to the smaller number of overall positron detec-
tion events. Since PCA treats each dimension (time window)
equally, one needs to pre-process the raw data by re-binning
the time windows. While this differes from the exact way
in which errors are treated in a standard fitting procedure,
where a weight function is applied to give less weight to data
with larger errors, our approach is broadly equivalent in that
it makes sure that the standard errors of the rebinned time
points are roughly the same for every measurement. Specif-
ically, we have set up an algorithm for re-binning the data,
such that each new time bin holds the same magnitude of
error averaged over all measurements. To illustrate how the
algorithm proceeds, let us consider the matrix E, holding
the raw values of standard deviations at each time point and
for each asymmetry curve (similarly to the matrix A from
equation (3)):

E =

⎡
⎢⎢⎢⎣

E1(traw
1 ) E2(traw

1 ) . . . EM(traw
1 )

E1(traw
2 ) E2(traw

2 ) . . . EM(traw
2 )

...
...

. . .
...

E1(traw
N ) E2(traw

N ) . . . EM(traw
N )

⎤
⎥⎥⎥⎦ , (A.1)

where M is the number of asymmetry functions that we con-
sider in the analysis and N corresponds to the number of time
windows in raw data. We set the first time window t1 to be
equal to traw

1 , which holds the average error of

Ēt1 =
1
M

M∑
i=1

Ei(traw
1 ). (A.2)

Then we iterate over traw
j to create new bins in the following

way: suppose we created a new bin tk−1 by including raw data
up to the original bin at time traw

j−1. We then evaluate

Ēt1

Ētraw
j

, (A.3)

with Ētraw
j

= 1
M

∑M
i=1 Ei(traw

j ). We know that (A.3) is smaller
than 1, since the standard deviation is increasing with time due
to decreasing muon counts. If (A.3) is close to one, then the
amount of averaged error is similar to the first bin and we can
leave the time window tk = traw

j . However, if it reaches certain
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threshold, we add another time window traw
j+1 and evaluate:

Ēt1√
(Ētraw

j
)2 + (Ētraw

j+1
)2
. (A.4)

We repeat this procedure until

Ēt1√
Lk−1∑
l=0

(Ētraw
j+l

)2

≈ 1, (A.5)

and we set a new time bin tk = 1
Lk

∑Lk−1
l=0 traw

j+l.
When the different asymmetry functions come from the

same material, we expect our method of re-binning to work
well. One might expect that problems could arise if we con-
sider sets of measurements for different materials of strongly
different amount of statistics. However, one can prove that as
long as the time dependency of the error follows the same func-
tional behaviour for those sets (i.e., the errors differ just in a
scale factor), the re-binning will not be affected. Generically,
we expect that the overall envelope of the number of counts is
set by the exponential decay of muons, which is set by the uni-
versal muon lifetime, and material-specific details will provide
sub-dominant changes to this overarching behaviour.

Appendix B. Software

We wrote implementation of PCA for data from experiment as
a package for python. Current version of the code, finished at
the time of publishing this article, can be found in [62].
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