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Abstract: This paper presents a joint production, pricing and inventory control problem that can help 

manufacturers manage revenue in an omnichannel environment. The paper puts forward a multi-period 

Stackelberg game between a manufacturer and a retailer, assuming the former to be the leader. The leader–

follower game is formulated as a mixed-integer non-linear bilevel optimization problem wherein both 

players seek to maximize their respective profits. The manuscript envisions an omnichannel retailing 

environment where online, offline, direct and drop-shipping channels coexist. It then investigates how 

enabling showrooming and webrooming on the drop-shipping channel account can affect supply chain 

profitabilities. Analyses suggest that when customers are aided with showrooming and webrooming 

services and are allowed to place drop-shipping orders from retailers’ stores, additional profit can be 

generated in the supply chain. To solve the proposed bilevel optimization problem, we investigated a) 

single-level reduction using Karush–Kuhn–Tucker (KKT) conditions and b) hierarchical optimization 

technique based on Simulated Annealing and Randomized Decomposition Solver. To assess the efficacy of 

the solution techniques, a comparative analysis was carried out. Thereafter, with the aid of numerical 

experiments and sensitivity analyses, the paper draws key managerial insights for manufacturers. 
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Managerial Relevance Statement: The manuscript is relevant to the manufacturers who operate direct 

channels in omnichannel settings. The paper highlights that manufacturers often lack pricing and revenue 

management solutions in their operations; such solutions would prove beneficial in mitigating the impact of 

demand and production mismatch. Therefore, the paper proposed joint production, pricing and inventory 

control solution for the manufacturers of seasonal products. 

The paper asserts drop-shipping service as a means of cooperation between manufacturers and retailers who 

otherwise are non-cooperative decision-makers in decentralized supply chains. It numerically demonstrates 

that drop-shipping can not only serve as an omnichannel service but can also increase supply chain’s 

profitabilities. However, a drop-shipping channel can also cannibalize the direct channel. 

Numerical experiments suggest that having a drop-shipping channel can bring positive changes to supply 

chain profitabilities in the case when production capacity is not sufficient. Whereas, in the case when 

production capacity is more, drop-shipping channel may not bring any significant change in the supply 
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chain profitabilities. Finally, the results suggest that an increase in popularity of a drop-shipping channel 

can benefit the retailer more than the manufacturer. 

I. INTRODUCTION 

It is now common for retailers (particularly in fashion apparel and consumer electronics) to use 

pricing and revenue management. Revenue management helps influence demand and mitigate the effect of 

limited supply, limited inventory and/or finite selling seasons [1]. To do so, the point-of-sales data is 

intelligently processed to understand consumers’ price sensitivity, preferences, and market trends. These 

insights are then used to actively influence consumer purchase decisions by changing the posted price of the 

product. Such active demand management (in contrast to passive management of inventory) reduces 

demand and supply mismatch, thereby yielding a better return on investment [2].  

In 2020, when the entire world was dealing with the Covid-19 pandemic, Target Corporation (an 

American retailer) was able to grow its sales by 145% thanks to its newly adopted omnichannel fulfillment 

strategy [3]. In India, brands like Pepperfry, Zivame, Van Heusen, and Adidas have already introduced their 

omnichannel strategies. For example, Adidas’ endless aisle and virtual footwear wall allow customers to 

search and order items that are not in stock at the physical stores [4]. A 2020 report by McKinsey states that 

companies that can provide omnichannel personalization can achieve 5–15 % revenue growth [5]. The 

report also suggests that because more than 80% of total sales occur at physical locations, providing better 

offline personalization is therefore vital for growth. In the following paragraphs, we discuss how 

omnichannel retailing became so ubiquitous.  

Thanks to the internet, information technology, and competitive third-party logistics services, in 

2012 online retailing became the fastest-growing retail sector in the United States [6]. Facing competition 

from e-commerce giants like Amazon, traditional retailers like Walmart, Costco Wholesale, Tesco and 

Metro added online channels to their channel mix. Likewise, e-retailers like Fab.com, Gilt.com and JD.com 

also transformed themselves into multi-channel retailers by incorporating brick-and-mortar stores [7]. At 

the same time, manufacturers like Dell, Nike and Apple started operating their own direct online channels. 

Although direct channels were initially for informational and sales support purposes only [8], they have 
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become a means to balance the increasing power of multi-channel retailers and to improve supply chain 

performance [7]. 

Multi-channel retailing emerged as channels were progressively added to retailing portfolios. 

However, the abundance of retail channels and the omnipresence of the internet via smartphone also 

allowed consumers to search multiple channels concurrently. As per a report by McKinsey, in 2012 alone, 

about 20% of customers used mobile phones for product research—of whom about 40% did so while they 

were in the store [8]. Customers intentionally moved from one channel to the other to maximize their 

overall utility [9]. Specifically, when a customer moves from a physical store to an e-commerce website, 

that behavior is known as “showrooming” [6]; in contrast, when a customer moves from an online channel 

to a physical store, it is known as “webrooming” [7]. These customer activities collapsed the boundaries 

between multiple retail channels. A price change in one of the retail channels now affects the demand 

generated at all other consumer touchpoints, a phenomenon commonly known as “cross-channel demand 

substitution” [10]. Moreover, realizing the importance of providing a superior customer experience, many 

multi-channel retailers started deliberately integrating their retail channels—what we know as 

“omnichannel retailing.” Although different firms can have different omnichannel strategies, the underlying 

premise of omnichannel retailing remains the same, which is to integrate multiple available channels and 

thereby provide a superior customer experience. 

A. Motivation 

Observing the need for revenue management in omnichannel retailing, researchers recommended 

that retailers upgrade their pricing solutions to incorporate multi-channel interdependencies and cross-

channel demand substitution [11], [12]. The need for price optimization and revenue management arises 

whenever a fixed and perishable set of resources are sold to a population that is sensitive to prices, and 

since outlets of both retailer and manufacturer face this problem, they are both free to incorporate pricing 

and revenue management solutions into their businesses.  

Manufacturers who are actively adopting direct channels lack pricing and revenue management 

solutions in their operations; such solutions would prove beneficial in mitigating the impact of demand and 

production mismatch. It is not uncommon for a product to have short selling seasons [13] in which 
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manufacturers are constrained by their limited production capacities [14]. Such industries include clothing, 

pharmaceuticals, toys, gifts, and firecrackers. During a selling season, there is a certain starting inventory as 

well as a limited production capacity, as production cannot be easily ramped up or down. This challenge 

calls for active demand management by these manufacturers to achieve a better return on investment. 

Furthermore, a revenue management solution must consider cross-channel demand substitution if the 

manufacturer is operating in an omnichannel retailing environment. The objective of this paper is to 

develop a joint production planning, pricing and inventory control solution for a manufacturer operating a 

direct channel in such an environment. Furthermore, the paper draws researchers’ attention toward a 

relatively unexplored area where pricing and revenue management solution must be developed for 

manufacturers considering demand substitution and pricing competition from retailers’ online/offline 

channels. 

B. Stackelberg Game 

While developing a pricing and revenue management solution for manufacturers, we must assume 

that the retailer will also be using price optimization to maximize their profit. During a selling season, a 

retailer seeks to maximize its profit by effectively pricing the product while considering the demand, 

wholesale price and fulfillment costs. Essentially, manufacturers must also price the product depending on 

anticipated demand, available inventory and limited production capacities [15]. Due to cross-channel 

demand substitution, a price change by the retailer can also affect the demand in the manufacturer’s 

channels, and vice-versa [10]. Usually, revenue management models ignore channel substitution and 

assume that price affects demand only in their respective channels. However, cross-channel demand 

substitution cannot be ignored in omnichannel retailing. Since customers can easily evaluate prices and 

availability of the product in multiple available channels, neither retailer not manufacturer can set their price 

independently. This leads to a multi-period leader–follower Stackelberg game between manufacturer and 

retailer, wherein the manufacturer is traditionally seen as a leader. 

Here, we present some of the research where similar scenarios are documented. In [14], the authors 

presented a bilevel problem where the retailer determines selling prices and advertising expenditures while 

the manufacturer optimizes wholesale price and cycle time for the products. Since the demand was non-
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linearly influenced by pricing and advertising expenditures, the formulated problem was solved meta-

heuristically using the imperialist competitive algorithm. The authors proposed a modified assimilation 

strategy along with a diversification approach to improve the performance of the given algorithm. The focus 

of the paper was on the methodology rather than on managerial insights. Authors in [16] investigated a 

decentralized production–distribution supply chain problem and presented a nonlinear bi-level 

programming problem that reflected Stackelberg games between manufacturers and distributors. In that 

paper, the authors used a hierarchical solution algorithm that combined genetic algorithm and particle 

swarm optimization to solve the formulation. The authors concluded that a leader always earns more than 

the follower and highlighted the finding that cooperation between the players can increase the supply chain 

profit. However, the paper did not explain how cooperation can be formulated and solved. In [17], the 

authors presented a competitive supply-chain network design problem. Authors assumed that rivals enter a 

new market and design their network to establish distribution centers. Both players sought to maximize 

their market share and minimize their costs using bilevel programming. The formulated problem was a 

nonconvex mixed-integer nonlinear problem that was convexified and solved using a two-step heuristic to 

attain global optimal. Authors found that when a rival “supply chain” is expected to enter a new market, the 

existing “supply chain” can structure itself non-cooperatively based on plant locations. The paper did not 

advise complete cooperation in the supply chain to generate better returns. Authors in [18] formulated and 

solved a problem of joint production planning, retailer selection and pricing for a manufacturer constrained 

by emissions’ regulatory limits. Authors developed a mixed nonlinear bilevel programming problem where 

retailers’ and manufacturer’s profits were maximized. They solved the problem using a nested genetic 

algorithm, assuming the manufacturer as leader and retailers as followers in the multi-period Stackelberg 

game. They found that due to carbon emission regulations, a manufacturer will be obligated to select fewer 

(but the most profitable) retailers. Retailers, on the other hand, would increase the advertising expenditure 

and reduce their retail price if they want to be selected in the manufacturers’ supply chain. 

Many of these papers dealt with price competition between manufacturers and retailers when both 

players seek to maximize their respective profits. However, these papers were not tuned to deal with 

omnichannel retailing or situations in which multiple retail outlets are owned by both players. Our review 

suggests that there is a need to investigate aspects of price competition between manufacturer and retailer 
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when the former operates a direct channel. Nevertheless, other aspects of the supply chain, such as 

production planning and inventory management, do exist as discussed in the previous paragraph.   

Next, we discuss bilevel programming, a common theme that appeared in all these papers. 

C. Bilevel Programming 

Bilevel programming problems can be realized in several real-life scenarios, including supply chain 

coordination [14], toll optimization [19], the defense sector [20], production planning [21], facility location 

optimization [22], dynamic facility layout problems [23], road network design problems [24], bus rapid 

transit system design [25], and real-time pricing for smart grids [26].  

 Bilevel programming is employed to model decentralized management problem where two non-

cooperative decision-makers are in a hierarchical structure [16]. Bilevel optimization problems are 

essentially a special case of multilevel optimization and are very closely related to Stackelberg’s leader–

follower games [27]. The optimization involves solving two problems simultaneously, where one of the 

problems acts as a constraint to the other [28]. It contains two types of decision variables: a) upper-level 

(leader’s) decision variables 𝑥 where 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 and b) lower-level (follower’s) decision variables  𝑦 

where 𝑦 ∈ 𝑌 ⊆ 𝑅𝑚. In general, such problems are formulated as follows: 
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𝐹(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are the leader’s and the follower’s objective functions, respectively. 𝐺𝑖(𝑥, 𝑦) ≥

0 for 𝑖 = 1, . . , 𝐼 and 𝑔𝑗(𝑥, 𝑦) ≥ 0 for 𝑗 = 1, . . , 𝐽 are the constraints for the upper-level and the lower-level 

optimization problems, respectively. The literature suggests that these problems are mostly solved using one 

of two approaches: a) single-level reduction technique and b) hierarchical optimization technique. For a 

detailed review of the solution techniques, readers are requested to refer to [29].  

D. Contributions 

The paper makes the following contributions to the literature. First, it presents a joint production 

planning, pricing and inventory control problem for manufacturers operating in an omnichannel retailing 
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environment. Second, this paper formulates a bilevel price optimization problem where a make-to-stock 

manufacturer operates a direct online channel and competes with retailer’s online and offline channels. Both 

the manufacturer and the retailer seek to maximize their respective profits before the season/inventory ends 

(assuming price and lead time-sensitive demand, cross-channel demand substitution and limited production 

capacity). Third, our model investigates the possibility of collaboration between the manufacturer and the 

retailer through a drop-shipping channel. Drop-shipping is considered as an omnichannel retailing service 

[30] where the retailer and the manufacturer share the profit earned through drop-shipping fulfillments. To 

solve the proposed problem, this paper evaluates several solution techniques including exact and heuristic 

approaches. Finally, based on the results obtained through numerical experiments, we generated some 

managerial insights for the manufacturer, specifically vis-à-vis drop-shipping channel.  

The rest of the paper is structured as follows. In Section II, the problem scenario is described in 

greater detail; Section III presents the notations and formulations for the bilevel optimization problem. 

Section IV discusses and evaluates various solution techniques. Section V reports the numerical 

experiments and presents the results obtained using sensitivity analyses. Section VI discusses some of the 

managerial insights and outlines the scope for future research. Finally, Section VII concludes this paper. 

II. PROBLEM DESCRIPTION 

For this research, we consider that there is a make-to-stock manufacturer that is interested in 

maximizing the profit from the sale of its product. The manufacturer produces seasonal goods well in 

advance and sells them during the appropriate season. It can carry out production during the selling season, 

but production capacity during the selling season is constrained [15]. The manufacturer sells the products 

via a traditional retailer, i.e., a multi-location online-offline retailer like Walmart. Additionally, it also owns 

an online direct channel. In collaboration with the retailer, there is a provision to incorporate omnichannel 

retailing by providing the customers with additional drop-shipping alternative [30]. A customer can place an 

order directly to the manufacturer through any of the retailer-owned stores (online or offline). The 

manufacturer fulfills both direct-channel and drop-shipping orders with the help of a third-party logistics 

(3PL) provider. A vendor-managed inventory (VMI) model has been adopted as it enables the manufacturer 

to achieve better production planning by retrieving the downstream market information. VMI also helps 
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retailers improve their fill rate and decrease inventory stock-outs. Therefore, it is assumed that inventories 

at the retailer-owned stores are managed by the manufacturer. 

This problem is further elaborated with the help of Fig. 1. In this figure, it is shown that the market 

contains two zones (although there can be any number of zones). A customer can place an order through 

any of the four available channels present in a zone. They can buy the product directly from the store, place 

an online order through the retailer’s e-commerce website, or place a drop-shipping order to the 

manufacturer through either of the retailer’s store or online channels. When an order is routed through 

either of the retailer’s channels, the retailer receives a share of the profit made by the manufacturer. A 

customer can also order the product through the manufacturer’s direct channel, thus bypassing the retailer 

altogether. If the retailer receives an online order from a customer located in zone 𝑧, the product is delivered 

within a day using inventory available in the store located in zone 𝑧. However, if an order is placed to the 

manufacturer through either drop-shipping or direct channel, it is assumed that the product will be delivered 

after a certain delivery lead time. “Delivery lead time” is the time gap between the placement of an online 

order and the actual delivery of the product. In both drop-shipping and direct channel, delivery lead time 

can influence overall demand; therefore, demand is considered to be price- and time-sensitive. Nevertheless, 

it is assumed that the manufacturer can expedite the deliveries; however, expediting a delivery increases the 

transportation cost and decreases the profit margin for the manufacturer. 

In summary, the problem considers that the manufacturer controls the wholesale price, the direct-

channel and the drop-shipping prices, the production quantity, inventory at the retailer’s stores across all the 

zones, and fulfillments through direct and drop-shipping channels. Additionally, the manufacturer can 

decide when to expedite the fulfillments of direct and drop-shipping orders. However, in order to improve 

the delivery lead times, the manufacturer must pay a relatively higher price to the 3PL partner.  
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Fig. 1: Flow of information and the product in omnichannel retailing considered in this paper. 

The retailer determines the online and offline prices, as well as the fulfillments through respective 

channels. As a business rule, at a given point in time, the retailer’s online channel should offer a uniform 

price irrespective of the zone. But there can be a price difference between individual stores and online 

channel. Similarly, the manufacturer follows price-matching in the direct and drop-shipping channels at a 

given point in time. The wholesale price and retailer’s share in the profit generated from the drop-shipping 

channel is fixed at the start of the selling season and remains so over the entire season.  

III. MODEL FORMULATION 

A. Notations  

Sets: 

𝑍: all market zones 

𝑇: all selling periods  

𝛺: the set of all prices 

Indices: 
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𝑧: index for a market zone, 𝑧 ∈ 𝑍 

𝑡: index for periods, 𝑡 ∈ 𝑇 

Input Parameters: 

𝑐𝑚: per-unit manufacturing cost of the product 

𝑀𝑧
𝑡: size of the market in market zone 𝑧 and time 𝑡 

𝑐𝑧: transportation cost for a unit of product from manufacturer to retailer’s store in market zone 𝑧 

𝑐𝑧
𝑓
: fixed cost of replenishments of the retailer’s store in market zone z, borne by the manufacturer 

ℎ𝑧: holding cost per unit time per unit product in the store located in market zone 𝑧  

ℎ𝑚: holding cost per unit time per unit product in the manufacturer’s warehouse 

𝑐𝑙𝑧: price charged by the 3PL partner for delivery to a customer in zone 𝑧 

𝑐𝑜𝑧: least incurred fulfillment costs when the delivery lead time is very long for zone 𝑧  

𝛾𝑧: constant representing the increase in cost for expediting delivery of an order 

𝑐𝑒𝑟𝑧: cost of online demand fulfillment from the store to a customer in market zone 𝑧 

𝛼𝑏𝑧: intrinsic attraction towards the product in retailer’s store channel in zone 𝑧 

𝛽𝑏𝑧
𝑝

: price sensitivity towards the product in retailer’s store channel in zone 𝑧 

𝛼𝑒𝑟𝑧: intrinsic attraction towards the product in retailer’s online channel in zone 𝑧 

𝛽𝑒𝑟𝑧
𝑝

: price sensitivity towards the product in retailer’s online channel in zone 𝑧  

𝛼𝑒𝑚𝑧: intrinsic attraction towards the product in manufacturer’s direct channel in zone 𝑧  

𝛽𝑒𝑚𝑧
𝑝

: price sensitivity towards the product in manufacturer’s direct channel in zone 𝑧 

𝛽𝑒𝑚𝑧
𝑙 : delivery lead-time sensitivity towards the product in manufacturer’s direct channel in zone 𝑧  

𝛼𝑏𝑚𝑧: intrinsic attraction towards the product in the drop-shipping channel in zone 𝑧  

𝛽𝑏𝑚𝑧
𝑝

: price sensitivity towards the product in the drop-shipping channel in zone 𝑧 

𝛽𝑏𝑚𝑧
𝑙 : delivery lead-time sensitivity towards the product in the drop-shipping channel in zone 𝑧 

Discretionary decision variables: 

𝑞𝑚: represents allocated production capacity per unit time 𝑡 

𝑊: wholesale price set by the manufacturer at the start of the selling season 

𝜃:  retailer’s share in the profit earned through the drop-shipping demand fulfillments 
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Upper-level decision variables: 

𝑞𝑚
𝑡 : production during the period 𝑡 where 𝑞𝑚

𝑡 ≤ 𝑞𝑚 

𝐵𝑧
𝑡: binary decision variable for the replenishment of the retailer’s store in zone 𝑧 at time 𝑡  

𝑙𝑧
𝑡 : delivery lead time for demand fulfillments in market zone 𝑧 and time 𝑡  

𝑆𝑒𝑚𝑧
𝑡 : total direct channel demand fulfillments by the manufacturer in zone 𝑧 and time 𝑡  

𝑆𝑏𝑚𝑧
𝑡 : total drop-shipping demand fulfillments by the manufacturer in zone 𝑧 and time 𝑡 

𝑄𝑧
𝑡: replenishment quantities to the retailer’s store in zone 𝑧 and time 𝑡 

𝐼𝑧
𝑡: level of inventory in the retailer’s store in zone 𝑧 and at the end of time 𝑡 

𝐼𝑚
𝑡 : level of inventory in the manufacturer’s warehouse at the end of time 𝑡 

𝐼𝑧
𝑜: initial inventory made available in the retailer’s store in zone 𝑧 before sales start 

𝐼𝑚
𝑜 : initial inventory available in the manufacturer’s warehouse at the start of the season 

𝑃𝑒𝑚
𝑡 : the price of the product in direct and drop-shipping channels at time 𝑡 

Lower-level decision variables: 

𝑃𝑏𝑧
𝑡 : price listed by the retailer in its store located in market zone 𝑧 at time 𝑡  

𝑃𝑒𝑟
𝑡 : price listed by the retailer on its online channel at time 𝑡  

𝑆𝑏𝑧
𝑡 : total store channel demand fulfilled by the retailer, in zone 𝑧 and time 𝑡  

𝑆𝑒𝑟𝑧
𝑡 : total online channel demand fulfilled by the retailer, in zone 𝑧 and time 𝑡  

B. Demand Estimation 

In the presence of multiple channels and an almost negligible hassle of alternating between 

available channels, an increase in the price in one of the channels can decrease its share from the total sales. 

This decrease in sales often gets distributed among other channels; this phenomenon is known as “cross-

channel demand substitution” [12]. In the past, researchers have adopted a variety of mathematical models 

to understand demand substitution; for a comprehensive review, please refer to [31]. We note that discrete 

choice models are some of the commonly used demand-modeling techniques [32]. Although cross-channel 

demand substitution can also be modeled using linear demand functions, using discrete choice models over 

the former yields the benefit of parsimony of the number of coefficients that must be estimated [33]. 
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Whereas discrete choice models need O(|M|) coefficients, linear demand functions may require O(|M|2) 

coefficients [12]. 

Discrete choice models like multinomial logit (MNL) and multiplicative competitive interaction 

(MCI) are extensively used in fields like transportation planning [34], assortment optimization [35], and 

marketing research [36]. They help model customer behavior where many substitutable alternatives are 

available. These models are based on the assumption that customers associate a utility with each available 

alternative, including a zero utility for not choosing any alternative [37]. Using a discrete choice model, 

demand in channel 𝑛, 𝑛 ∈ 𝑁 and at location 𝑧, 𝑧 ∈ 𝑍 can be estimated using the following equation: 
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where 𝑀𝑧 represents the size of the market; 𝐴𝑛𝑧  (also known as an attraction function) is a function of 

explanatory variables such as price, lead time and/or advertisement, and helps determine demand generated 

in channel 𝑛 at location 𝑧. In this paper, we have employed an MNL discrete choice model to estimate the 
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represents total number of explanatory variables such as price, delivery lead time and quality; 𝛼𝑛𝑧  

represents the intrinsic attraction constant of the product in channel 𝑛; 𝛽𝑛𝑧
𝑘  represents the sensitivity of the 

customers toward the explanatory variable 𝑘. For a detailed discussion on techniques used to estimate these 

demand parameters, please refer to [32], [38].  

C. Assumptions 

Assumption 1: Both the manufacturer and the retailer are interested in profit maximization. 

Assumption 2: The manufacturer is responsible for managing the retailer’s inventory under the VMI 

strategy. This enables the manufacturer to have downstream market information. 

Assumption 3: Demand is price- and lead-time-sensitive [39], and depending on the degree of product 

differentiation [7], attraction towards retailer’s offline, retailer’s online, manufacturer’s direct and drop-

shipping channels can be modeled as follows: 
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( )expt p t

bz bz bz bzA P = − , where 𝐴𝑏𝑧
𝑡 represents the attraction towards the product available in 

retailer’s physical store present in zone 𝑧 and time 𝑡; ( )expt p t

erz erz erz erA P = − , where 𝐴𝑒𝑟𝑧
𝑡  represents the 

attraction towards the product in retailer’s online channel in zone 𝑧 and time 𝑡;

( )expt p t l t

emz emz emz em emz emzA P l  = − − , where 𝐴𝑒𝑚𝑧
𝑡  represents the attraction towards the product in 

manufacturer’s direct channel in zone 𝑧 and time 𝑡; and, finally, ( )expt p t l t

bmz bmz bmz em bmz bmzA P l  = − − , where 

𝐴𝑏𝑚𝑧
𝑡  signifies the attraction towards the product available via the drop-shipping channel in zone 𝑧 and time 

𝑡. 

Assumption 4: The manufacturer can expedite direct and drop-shipping deliveries with the help of a 3PL 

partner. Cost of expediting deliveries can be calculated using 𝑐𝑙𝑧 = 𝑐𝑜𝑧 + 𝛾
𝑧

𝑙𝑧⁄  [39], where 𝑐𝑙𝑧 represents 

the delivery cost, 𝑙𝑧 denotes the delivery lead time, 𝛾
𝑧
 signifies the marginal increase in the cost for 

expediting the deliveries, and 𝑐𝑜𝑧 represents the bare minimum fulfillment cost for zone 𝑧.  

Assumption 5: Retailer’s online orders are fulfilled from the nearest physical store, and because all the 

deliveries are local, a fixed cost is incurred for every such delivery. 

Assumption 6: Retailer’s online channel offers uniform price irrespective of the customer’s location. 

Similarly, manufacturer’s direct channel and drop-shipping channel offers uniform price irrespective of the 

customer’s location. 

D. Objective Functions and Constraints 

Manufacturer’s Profit Function (Upper-Level Problem): 
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z
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t
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Retailer’s Profit Function (Lower-Level Problem): 
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, 0t t
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,t t

er bzp p       ,z Z t T        (14) 

 

Equation (2) represents the manufacturer’s profit in the proposed bilevel omnichannel price 

optimization problem. The first term in the manufacturer’s objective function is the profit earned by the 

manufacturer by supplying the product to the retailer at a wholesale price 𝑊. The second term is the profit 

earned by the manufacturer through direct-channel demand fulfillments. The third term is the 

manufacturer’s share in the profit earned through drop-shipping demand fulfillments. It has been assumed 

that 𝑊 and 𝜃 are determined by the manufacturer at the start of the selling season and remain constant for 
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the entire season. The fourth term represents the total replenishment costs incurred by the manufacturer to 

replenish the retailer-owned stores. Inventory holding costs at the manufacturer’s warehouse are represented 

by the next two terms in the objective function. The seventh term is the manufacturing cost incurred to the 

manufacturer. Since the manufacturing cost is already removed from the drop-shipping profits (see the third 

term), 𝑆𝑏𝑚𝑧
𝑡  for all 𝑡, 𝑡 ∈ 𝑇 and all 𝑧, 𝑧 ∈ 𝑍 is reduced from the total quantity produced over the time 𝑡, 𝑡 ∈

𝑇. Finally, the last term in the manufacturer’s objective function represents recoveries of unsold items from 

the retailer’s stores at the end of the selling period 𝑡, where 𝑡 = 𝑇.  

Equations (3) and (4) are the constraints so that the fulfillments cannot be more than the direct and 

the drop-shipping demands, respectively. Constraints in (5) are non-negativity constraints and represent that 

production or fulfillments during an interval cannot be less than zero. Constraints in (6) signify non-

negativity of the manufacturer and the retailer’s inventories, where 𝐼𝑚
𝑡  and 𝐼𝑧

𝑡 are calculated using (15) and 

(16), respectively.  

( )
1 1 1

t t Z
t o n n n n n

m m m z z emz bmz

n n z

I I q B Q S S
= = =

= + − + +   ,z Z t T        (15) 

( )
1

t
t o n n n n

z z z z bz erz

n

I I B Q S S
=

= + − −
    ,z Z t T        (16) 

Constraint (7) imposes a limit on variation in the units produced per unit time considering allocated 

production capacity. We know that once the resources are assigned to a certain task, it is difficult to 

reallocate them to some other activities. Companies often use overtime when actual demand is high, but 

there is a limit to which the productivity of the resources can be extended. Reducing the volume of 

production is relatively easy, but that means keeping the resources under-utilized. In a way, 𝑞𝑚
𝑡  is a variable 

that is difficult to adjust once the resources are allocated for 𝑞𝑚 units. Constraint (8) represents the binary 

decision variable 𝐵𝑧
𝑡; if 𝐵𝑧

𝑡 = 1, the manufacturer replenishes the retailer’s store present in zone 𝑧 at time 𝑡 

with a quantity 𝑄𝑧
𝑡 where 𝑄𝑧

𝑡 ≥ 0. Constraint (9) ensures that direct and drop-shipping prices belong to a set 

of predefined prices 𝛺. 

Equation (10) defines the retailer’s profit; the first two terms in the formulation represent the profit 

from the stores and the online channel, respectively. The third term represents the retailer’s share in the 

profit from the drop-shipping fulfillments. One can see that the profit earned by the retailer through the 
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drop-shipping channel depends on the manufacturer’s decision variable 𝜃. The fourth term is the total cost 

incurred by the retailer to fulfill the online orders. Finally, there is an inventory holding cost involved. 

Constraints (11) and (12) ensure that the fulfillments are not more than the demand in the store or the online 

channel, respectively. Equation (13) represents the non-negativity of fulfillments. Constraint in (14) ensures 

that the store and the online prices belong to a set of predefined prices 𝛺. 

IV. SOLUTION APPROACH 

Bilevel programming problems contain hierarchical optimization structures and are challenging to 

solve. Even if the objective functions of both players are linear, the overall problem remains NP-Hard [40]. 

Often, bilevel programming problems are solved using a single-level reduction technique, which uses the 

classical KKT approach while assuming the smoothness, linearity, or convexity of the objective functions. 

But the real-world bilevel optimization problem can contain non-differentiability and non-convexity [41]. 

This reduces our ability to convert the bilevel programming problems to a classic single-level optimization 

problem. These non-linearities force researchers to opt for heuristic and evolutionary approaches to solve 

the problem; for example, see [14], [16]–[18], [23].  

It is known that MNL profit functions are not convex [42]. Therefore, employing KKT conditions 

directly on the retailer’s problem for single-level reduction will not guarantee an optimal solution. 

Nonetheless, we can use single-level reduction using KKT conditions if we can convexify the retailer’s 

problem. 

Proposition 1: In the single-location multi-period bilevel price optimization problem, the retailer’s objective 

function when reformulated to purchase probability space (𝜆𝑒𝑟, 𝜆𝑏) instead of price (𝑃𝑒𝑟, 𝑃𝑏) is a concave 

function, given that all the demand generated at the retailer’s stores is fulfilled.
 
 

Proof: See Appendix 

This proposition states that if we consider a retailer that operates only one physical store and 

ensures that all the demand that gets generated is fulfilled, then the retailer’s problem can be convexified. 

Convexification allows us to use the single-level reduction technique and thereby solve single-location 

bilevel optimization problems.  
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As a result, the problem is now divided into two cases: Case 1, the single-location, multi-period 

bilevel omnichannel price optimization problem, and Case 2, the multi-location, multi-period bilevel 

omnichannel price optimization problem. 

Case 1: Single-Location, Multi-Period Bilevel Omnichannel Price Optimization Problem 

Based on Proposition 1, the retailer’s single location problem (Eqs. 10–14) can be replaced by the 

objective function show in (17), with no constraints to satisfy and assuming holding costs are negligible (for 

proof see (A.6) in the Appendix).  

Maximize:

1 1
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1 1

1
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+ − − − −     − − − −   

er erc M−

 

             (17) 

Furthermore, since (17) is concave in purchase probability space 𝜆er and 𝜆b, it can be replaced by its 

KKT conditions (18) and (19), where 𝜆er and 𝜆b are retailer’s alternate decision variables. 

𝜕Π𝑟

𝜕𝜆er
=

𝜃𝑀𝜆bm

𝛽bm(−1+𝜆bm+𝜆b+𝜆em+𝜆er)
+

𝑀𝜆b

𝛽bz(−1+𝜆bm+𝜆b+𝜆em+𝜆er)
−

𝑀(−1+𝜆bm+𝜆b+𝜆em)

𝛽er(−1+𝜆bm+𝜆b+𝜆em+𝜆er)
−

𝑀

𝛽er
(Log [−

𝜆er

−1+𝜆bm+𝜆b+𝜆em+𝜆er
] − 𝛼er + 𝑊𝛽er) = 0      (18) 

𝜕Π𝑟

𝜕𝜆b
=

𝜃𝑀𝜆bm

𝛽bm(−1+𝜆bm+𝜆b+𝜆em+𝜆er)
+

𝑀𝜆er

𝛽er(−1+𝜆bm+𝜆b+𝜆em+𝜆er)
−

𝑀(−1+𝜆bm+𝜆em+𝜆er)

𝛽b(−1+𝜆bm+𝜆b+𝜆em+𝜆er)
−

𝑀

𝛽bz
(Log [−

𝜆b

−1+𝜆bm+𝜆b+𝜆em+𝜆er
] − 𝛼b + 𝑊𝛽b) = 0      (19) 

It must be noted that, although we were able to simplify the bilevel problem to a single-level 

problem, the manufacturer’s objective function remains a non-convex NP-Hard problem. Therefore, the 

manufacturer’s problem, along with the newly added constraints from the retailer’s problem (Eqs. 18–19) 

must be solved using stochastic search algorithms. We opt for Simulated Annealing (SA) [43] and 

Randomized Decomposition Solver (RDSolver)[44] because of the discrete nature of the decision variables 

we are dealing with.  
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Case 2: Multi-Location, Multi-Period Bilevel Omnichannel Price Optimization Problem 

Since the retailer’s online price across multiple locations is supposed to be equal, the retailer’s 

problem cannot be convexified for the multi-location problem (refer to Proposition 2 in [12]). Therefore, in 

this case, the upper- and lower-level problems must be solved iteratively and cannot be simplified using the 

single-level reduction technique as in Case 1. This makes it computationally more challenging as compared 

to solving a single-level NP-Hard problem. Subsequently, to solve the proposed multi-location, multi-period 

bilevel price optimization problem, we employed a frequently used technique known as hierarchical bilevel 

optimization [16], [45].  

A. Hierarchical bilevel optimization 

 

Fig. 2: The flowchart of hierarchical bilevel optimization. 

Fig. 2 presents the flowchart of hierarchical bilevel optimization. In step 1, a random solution for 

each player is generated. Let 𝑥 represent a random solution for the manufacturer and 𝑦 represent a random 
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solution for the retailer. In step 2, keeping the manufacturer’s decision variables 𝑥 as constants, the 

retailer’s problem is solved completely. The optimal response 𝑦∗ obtained for the retailer in step 2, along 

with the previously found solution 𝑥, is then forwarded to step 3. In step 3, the manufacturer’s problem is 

solved completely, keeping the retailer’s decision variables 𝑦∗ as constants. The obtained solutions (𝑥∗, 𝑦∗) 

are then sent to step 4. In step 4, if any of the players’ objective function improves because of (𝑥∗, 𝑦∗), we 

accept the solution and assign 𝑥 = 𝑥∗ and 𝑦 = 𝑦∗. Finally, in step 5 we check whether the algorithm has 

converged. It is presumed that the algorithm has converged if there is no change in either 𝑥 or 𝑦 for consecutive 

𝑛 number of iterations of steps 2 to 4. If the termination criterion is not satisfied, the flow returns to step 2 

where the process starts with the updated values of 𝑥 and 𝑦. To carry out optimization in steps 2 and 3, we 

once again used Simulated Annealing (SA) [43] and Randomized Decomposition Solver (RDSolver) [44] 

because of their ability to handle discrete decision variables. For more details on these optimization 

techniques, please see the next section.  

B. SA and RDSolver 

SA is a well-known algorithm originally proposed by [43]. It was inspired by the process of 

annealing in metals, in which a metal is heated to a temperature high enough for its molecular structure to 

break down. Subsequently, the metal is slowly cooled to obtain a desired molecular structure. SA is often 

considered to be a discrete optimization algorithm and therefore fits well into the requirements of our 

problem. Moreover, SA has been used by many researchers in the past to solve bilevel optimization 

problems; for an example, see [46].  

RDSolver is a solution framework recently proposed by [44]. It was developed to solve nonlinear, 

nonconvex discrete optimization problems by combining two algorithms, namely Randomized 

Decomposition (RD) and RDPerturb. RD is a local search approach that starts from a feasible solution and 

is based on splitting the decision variables into random subsets. To escape local optima, RDPerturb is used 

along with RD. In the original paper, RDSolver was tested on 400 problem instances and the results were 

found to be comparable with that of the state-of-the-art solution techniques. As RDSolver needs no prior 

knowledge of the structure of the problem and can solve discrete optimization problems, the algorithm fits 
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well with our requirements. For pseudo-codes for RDSolver, RD and RDPerturb, readers are invited to refer 

to algorithms 1, 2, and 3 in [44]. 

C. Comparative Analysis  

Since the algorithms under consideration are known to provide near-optimal results, we must assess 

the quality of the solutions obtained. In Case 1, we discussed how to convert our single-zone bilevel 

problem into a single-level problem where only one objective function must be optimized. Because of its 

straightforward application, solutions obtained after single-level reduction (as in Case 1) can also serve as a 

benchmark for hierarchical bilevel optimization techniques (intended for multi-location problems). Hence, 

we carried out a comparative analysis to see how the objective functions converged, and the best/worst 

solutions obtained.  

For benchmarking and comparative analysis, a problem instance consisting of one zone and three 

period was created. Parameter tuning was carried out for all the given algorithms. The problem instance was 

then solved multiple times using each of the algorithms. The results were recorded for statistical analysis. 

Figs. 3a and 3b present how the results converged when we used SA, and the problem was reduced to single-

level versus when the problem was solved hierarchically for upper and lower levels separately. Figs. 3c and 

3d present the convergence when RDSolver was used, and the problem was reduced to single-level versus 

when the problem was solved hierarchically for upper and lower levels separately. The convergence signifies 

that neither the manufacturer nor the retailer wants to deviate from the near-equilibrium attained, also known 

as “Stackelberg equilibrium.”  

In the one-zone three-period problem scenario, these algorithms took approximately five to ten 

minutes to converge. Since the algorithms are based on stochastic search techniques, the time taken by them 

to converge may vary. The speed of convergence also depends on how the algorithmic parameters are tuned. 

However, we observe that, on an average, when the problem was reduced to single level, the time to 

convergence was less than when the problem was solved using the hierarchical bilevel optimization route. 

This is because it is always straightforward and simple to solve a traditional single-level optimization problem 

than to solve a bilevel problem. 
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Table 1 shows the compiled results of mean, standard deviation, best, and worst values obtained using 

all the mentioned solution techniques. On average, the retailer’s profit converged at approximately 200, 

whereas the manufacturer’s profit converged at approximately 2000. Based on these results, it can be said 

that the single-level reduction technique provided marginally inferior optimal values as compared to the 

hierarchical optimization technique. The reason may be that for single-level reduction, we have simplified 

the original problem by relaxing the constraints (see Appendix).  

Since the results obtained using all four solution techniques are almost identical, we can safely 

proceed to solve multi-location problems using the hierarchical bilevel optimization technique as shown in 

Fig. 2. Furthermore, as shown in Table 1, since hierarchical-RDSolver gave relatively better results, it may 

be preferred over hierarchical-SA.  
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Fig. 3a: Convergence of manufacturer's and 

retailer's profit when the problem was reduced to 

single-level and solved using SA. 

 

Fig. 3b: Convergence of manufacturer's and 

retailer's profit when the problem was solved using 

hierarchical bilevel optimization using SA. 

 

Fig. 3c: Convergence of manufacturer's and 

retailer's profit when the problem was reduced to 

single-level and solved using RDSolver. 

 

Fig. 3d: Convergence of manufacturer's and 

retailer's profit when the problem was solved using 

hierarchical bilevel optimization using RDSolver. 
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Table 1: Mean, standard deviation, best and worst values obtained using various solution techniques.  

 SA on Single-Level 

Reduced Problem 

SA for Bilevel 

Optimization  

RDSolver on Single-

Level Problem 

RDSolver for Bilevel 

Optimization  

Player Mfr. Ret. Mfr. Ret. Mfr. Ret. Mfr. Ret. 

Mean 1989.14 131.56 2022.56 169.64 1932.83 207.84 2242.12 201.68 

Std. Dev. 124.98 48.52 136.79 41.06 65.72 51.95 61.67 48.65 

Best  2120 182 2281.4 237.6 2011 213 2323 268 

Worst 1796.3 118.2 1877.4 142.6 1817 287 2155 168 

In the following section, we have compared hierarchical-SA and hierarchical-RDSolver based on the 

time they take to converge while solving different problem instances. Fig. 4a presents the number of decision 

variables for respective problem instances. Fig. 4b presents box plots for the time taken by these algorithms 

to converge. We want to highlight that all the experiments were done on an Intel i5-6500 with a 3.20 GHz 

processor and 8 GB RAM. 

 

Fig. 4a: Problem instances vs the number of 

decision variables. 

 

Fig. 4b: Time complexity of hierarchical bilevel 

optimization. 

The results presented in Fig. 4b indicates an exponential growth in computational time as problem 

size increases. Hierarchical bilevel optimization based on RDSolver took relatively longer to converge (often 

more than 10 hours). Our analysis suggests that the reason for the slow convergence of larger problem 

instances relates to the nature of the problem itself. As we are solving a game-theory problem, for every value-

combination of the manufacturer’s decision-variables, the retailer has a corresponding optimal response. 
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Because both the players’ objective functions are non-convex and non-differentiable, finding the retailer’s 

optimal response that corresponds to that of the manufacturer’s existing solution is itself computationally 

challenging. The algorithm will converge only when neither of the players has a better solution to counter the 

existing solution of the other player. Furthermore, every time either of the player’s decision variables changes, 

the other player’s solution must also be optimized to counter the change. In bilevel optimization, search space 

increases exponentially for every new decision variable added to either of the players’ objective function [29]. 

This is because the algorithm is not optimizing both the functions concurrently (rather, it optimizes 

sequentially). That is the why we sought to reduce this bilevel problem to a single-level problem. However, 

we found that multi-location problems are difficult to simplify.  

V. NUMERICAL EXPERIMENTS  

This section reports the results obtained using the numerical experiments. Data and model 

parameters were adopted from the literature. Various scenarios concerning market variables, such as 

intrinsic utilities, price sensitivities and delivery lead-time sensitivity, were investigated. It is assumed that 

there are three zones (𝑧 ∈ [1,3]) and that the selling season is divided into five periods (𝑡 ∈ [1,5]). The 

approximate market size (𝑀𝑧
𝑡) is assumed to be known and is presented in Fig. 5. 

 

Fig. 5: Market size for the product for various zones and times. 

The cost of manufacturing a unit of product was fixed and is assumed to be 110, i.e., 𝑐𝑚=110. To replenish 

the retailer’s store located in zone 𝑧 ∈ [1,3], 𝑐𝑧
𝑓
 was assumed to be 70, 120 and 150, respectively. An 

additional cost per unit transported from the manufacturer’s warehouse to the retailer’s store (𝑐𝑧) was 

assumed to be 1. Holding costs per period (ℎ𝑧) for 𝑧 ∈ [1,3] were assumed to be 3, 2.5 and 2, respectively. 
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Holding cost at the manufacturer’s facility (ℎ𝑚) was assumed to be 1 per unit time. For direct and drop-

shipping fulfillments, extra cost for expediting deliveries was calculated using 𝛾𝑧 𝑙𝑧⁄ . Here 𝛾𝑧 for 𝑧 ∈ [1,3] 

were assumed to be 2, 4 and 6, respectively. The minimum amounts charged by 3PL for a delivery to a 

customer located in zone 𝑧 ∈ [1,3], i.e., 𝑐𝑜𝑧 were assumed to be 1, 2 and 3 per unit. An online demand 

fulfillment cost for the retailer (𝑐𝑒𝑟𝑧) was assumed to be 1 per unit. It was assumed to be minimal because 

the deliveries are performed locally from the store located in that zone.  

Next, it was assumed that 𝛼𝑏𝑧=124, 𝛼𝑒𝑟𝑧=126, 𝛼𝑏𝑚𝑧=126 and 𝛼𝑒𝑚𝑧=124 were the intrinsic utilities 

for retailer’s stores and online channel, drop-shipping channel, and manufacturer’s direct channel, 

respectively. Furthermore, 𝛽𝑏𝑧
𝑝

=0.88, 𝛽𝑒𝑟𝑧
𝑝

=0.9, 𝛽𝑒𝑚𝑧
𝑝

=0.9 and 𝛽𝑏𝑚𝑧
𝑝

=0.9 were the assumed price sensitivities 

in the retailer’s stores and online channel, drop-shipping channel, and manufacturer’s direct channel, 

respectively. Finally, delivery lead-time sensitivities 𝛽𝑒𝑚𝑧
𝑙  and 𝛽𝑏𝑚𝑧

𝑙  were assumed to be 0.25, whereas 

delivery lead times 𝑙𝑒𝑚𝑧
𝑡  and 𝑙𝑏𝑚𝑧

𝑡  varied from 1 to 5 days. Later we increased these sensitivities towards 

0.50 and 0.75 to evaluate their effect on profitabilities.  

 In the manufacturer’s search space, there are discretionary variables and operational variables. 

Variables those are classified as discretionary (or strategic level) are 𝑊, 𝜃, and 𝑞𝑚. These variables have a 

significant impact on other decision variables and ultimately on the convergence of the algorithms. Every 

time any of these three variables were modified, the prior solution (near-equilibrium) obtained became 

obsolete, and the algorithm took longer to converge. Therefore, we decomposed the problem by eliminating 

𝑊 and 𝜃 from the search space, although allowed 𝑞𝑚 to be optimized by the algorithm. However, doing so 

we had to optimize for various values of 𝑊 and 𝜃 to find a combination that suits the manufacturer. Initial 

inventory (𝐼𝑚
𝑜 ) depends on the number of periods the production of 𝑞𝑚 units start in advance. It was 

assumed that the manufacturer begins the production five interval before the start of the selling season such 

that 𝐼𝑚
𝑜 = 5𝑞𝑚. Keeping the problem simple we also assumed 𝑞𝑚

𝑡 = 𝑞𝑚. 

A. Finding Optimal Combination of 𝑾 and 𝜽  

First, we solved the given problem by removing drop-shipping as a viable retail alternative and 𝜃 =

0. Fig. 6a presents the profit earned by the players and total supply chain profit as 𝑊, which varied from 

131 to 139. We can see that the retailer’s profit decreases almost linearly as 𝑊 increases. At the same time, 
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the manufacturer’s profit increased to 𝑊 = 135 and then started decreasing. At 𝑊 = 135, the profit earned 

by the manufacturer is approximately 7450, while the retailer’s profit is approximately 1350. The total 

supply chain profit stands at ≈ 8800. These values are treated as benchmarks to evaluate the performance of 

the supply chain when drop-shipping is incorporated.  

Now considering that the players are willing to collaborate over drop-shipping channel, we varied 𝜃 

from 10% to 50%. In Fig. 6b we present how the manufacturer’s profit decreased as 𝜃 increased. Similarly, 

in Fig. 6c we present how the retailer’s profit increased as 𝜃 increased. And finally, in Fig. 6d the change in 

total supply chain profit is shown.  

 

Fig. 6a: Change in supply-chain profit with respect 

to 𝑊 without drop-shipping. 

 

Fig. 6b: Change in manufacturer’s profit with 

respect to 𝜃 for given 𝑊. 

 

Fig. 6c: Change in retailer’s profit with respect to 

𝜃 for given 𝑊. 

 

Fig. 6d: Change in supply-chain profit with respect 

to 𝜃 for given 𝑊. 

In these figures (Figs. 6b–6d), we can that see when 𝜃 < 15%, the retailer’s profit falls below the 

benchmark profit of 1350; therefore, in such a case, the retailer will not collaborate with the manufacturer. 

The two players will then operate in a competitive mode, and the supply-chain profit will drop to 8800. 
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When 𝜃 < 20%, the retailer reduces online and offline prices to compete with the now relatively less 

profitable drop-shipping channel. Although increasing 𝜃 from 20% to 30% seems to be counterproductive 

for the manufacturer, the change helps in terms of maximizing the overall profit. Total supply-chain profit 

increases to 𝜃 = 30% but then decreases gradually. When 𝜃 ≥ 40%, we see a lesser number of drop-

shipping fulfillments. The retailer’s profit does not increase significantly after 𝜃 =  40%. We also observed 

a slight increase in the direct and drop-shipping prices. This is because having a drop-shipping channel 

becomes less profitable for the manufacturer when a large portion of the channel’s profit goes to the retailer. 

When 𝜃 is more than 45%, the manufacturer’s profit falls below the benchmark profit of 7450, rendering 

drop-shipping a non-viable solution once again. 

For the manufacturer, it is optimal to select 𝜃 ≈ 20% where the retailer also has some incentive to 

collaborate. At this point, the overall fulfillment through drop-shipping was recorded to be the highest. 

However, the total supply-chain profit was maximized at 𝜃 = 30%. Our analysis suggests that: a) there is a 

scope for coordination between the two players when it comes to determining the value for 𝜃, and b) the 

inclusion of drop-shipping channel in the channel mix can not only serve as an omnichannel feature but can 

also assist in generating higher returns, given the value of 𝜃 is selected judiciously. 

B. Constrained Production Capacity 

In the previous section, it was assumed that the manufacturer first determines the values of 𝑊 and 

𝜃, and accordingly allocates the resources for production. It was found that for 𝑊 = 135 and 𝜃 = 20%,  

𝑞𝑚 = 50 represents optimal production quantity per unit time. This value of 𝑞𝑚 corresponds to 

approximately 82% of the market potential being satisfied. But what if the manufacturer is dealing with 

underproduction and overproduction because of its inability to allocate and reallocate resources for the 

same? In consideration of this question, to simulate over-production we assumed 𝑞𝑚 = 55, and to simulate 

under-production we assumed 𝑞𝑚 = 40 and solved for 𝑊 and 𝜃. 

Case A: Under-production 

When 𝑞𝑚 was fixed at 40 units, optimal values of 𝑊 and 𝜃 changed to 137 and 10%, respectively. 

For 𝑞𝑚 = 40, it became difficult for the manufacturer to meet the retailer’s demand while keeping the 
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wholesale price at 𝑊 = 135. 𝑊 < 135 became infeasible because in VMI settings the supplier can be 

penalized for not fulfilling the retailer’s demand [47].  

Fig. 7a presents how drop-shipping affects the profitabilities in the supply chain in the case of 

under-production. At 𝜃 = 10%, drop-shipping helped increase the manufacturer’s profit by up to 14% and 

that of the retailer by 4%. While at 𝜃 = 20%, the manufacturer’s profit was 12% higher, the retailer’s profit 

was 27% higher, and the total supply-chain profit was maximized.   

 

Fig. 7a: Percentage change in profits with respect 

of 𝜃 for given 𝑊 in the case of under-production. 

 

Fig. 7b: Percentage change in profits with respect 

of 𝜃 for given 𝑊 in the case of over-production. 

 

Case B: Over-production 

When 𝑞𝑚 was fixed at 55 units, the optimal value for 𝑊 changed to 133. In this case, since the 

manufacturer is under pressure to dump a larger volume of the product at lower 𝑊, it is interesting to see 

how the retailer perceived the drop-shipping channel.  

Fig. 7b presents how drop-shipping affects the profitabilities in the supply chain in the case of over-

production. At 𝜃 = 10%, the retailer’s profit increased by only 1%. At 𝜃 = 20%, where the retailer’s profit 

is relatively high (increased 7%), the increase in the manufacturer’s profit plummets back to just 1%. Since 

supporting a drop-shipping channel does not substantially increase the retailer’s profit, the retailer may not 

find drop-shipping a game-changing proposition in the case of overproduction. 

From the above analysis, we can infer that in the case that production capacity is not sufficient, a 

manufacturer can obtain better returns with the help of a drop-shipping channel. Our analysis suggests that 

by increasing 𝑊, the manufacturer induces the retailer to promote webrooming and showrooming. 
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However, a drop-shipping channel may not be so useful in the case of surplus production. In that case, 

because of relatively low 𝑊, the retailer already has an advantage and may not benefit significantly from 

the collaboration.  

C. Sensitivity Analysis on Demand Parameters 

Assuming the values of 𝑊 and 𝜃 were fixed before the season starts, we carried out several 

analyses. Market variables like market size, attraction towards a channel, price sensitivities, and lead time 

sensitivities are susceptible to change. The purpose of this section is to reflect upon the inherent 

uncertainties in such market variables. Keeping 𝑊 and 𝜃 constant at 135 and 20% respectively, we present 

the findings from the analyses in the following section.  

Effect of increased intrinsic attractions: 

Fig. 8 presents the effect of an increase in the values of intrinsic attractions 𝛼𝑏𝑚𝑧 , 𝛼𝑒𝑚𝑧, 𝛼𝑒𝑟𝑧, and 

𝛼𝑏𝑧 on manufacturer’s profit, retailer’s profit, production, and delivery lead times.  

 

Fig. 8: Effect of increase in intrinsic attractions on profitabilities, production and lead time. 

When the drop-shipping channel became more attractive, i.e., when 𝛼𝑏𝑚𝑧 was increased by two 

points, the manufacturer’s profit increased marginally while the retailer’s profit increased by 8%. There is 

no change in production per unit time, but delivery lead time increased on average. It is counter-intuitive to 

see the manufacturer’s profit increase only marginally. Also, this is the only scenario where delivery lead 

time increased as though the manufacturer were trying to make this channel less attractive.  

When 𝛼𝑒𝑚𝑧 was increased by two points, i.e., if the manufacturer’s direct channel becomes slightly 

more attractive, the retailer’s profit decreased by 7%, production per unit time decreased by 2%, and 
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manufacturer’s profit increased by approximately 2%. This is the only scenario where production quantity 

per unit time decreased marginally. This suggests that the manufacturer can extract more profit from fewer 

sales when the direct channel is more attractive.  

When either 𝛼𝑒𝑟𝑧 or 𝛼𝑏𝑧  were increased by two points, i.e., when retailer’s channels became 

relatively more attractive, the retailer’s profit increased by 14% and 20%, respectively; production per unit 

time increased by 6% and 4%, respectively; manufacturer’s profit increased marginally by 4% and 2%, 

respectively. In both scenarios, delivery lead time decreased on average. This suggests that when a retailer’s 

outlets become more attractive, the manufacturer may try to improve its service in terms of how fast it can 

deliver the product to the customer.  

From Fig. 8, it can be inferred that a) the retailer’s profit decreases when the direct channel becomes 

more attractive, and the manufacturer’s dependence on the retailer decreases and it can generate more profit 

for itself; and b) if there is an increase in attraction towards drop-shipping channel, the retailer benefits 

more than the manufacturer; the manufacturer can make this channel less attractive by increasing delivery 

lead time. 

Effect of decrease in price sensitivities: 

Fig. 9 presents the effect of the decrease in price sensitivities 𝛽𝑏𝑚𝑧
𝑝

 , 𝛽𝑒𝑚𝑧
𝑝

, 𝛽𝑒𝑟𝑧
𝑝

, and 𝛽𝑏𝑧
𝑝

 on 

manufacturer’s profit, retailer’s profit, production, and delivery lead times. 

 

Fig. 9: Effect of decrease in price sensitivities on profitabilities, production and lead time. 

 When customers are assumed to be less sensitive to the drop-shipping channel prices, i.e., when 

𝛽𝑏𝑚𝑧
𝑝

was reduced by 4%, the manufacturer’s profit increased by 10% and the retailer’s profit increased by 
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about 50%. The delivery lead time increased on average. The results are identical to the case when there 

was an increase in intrinsic attraction towards the drop-shipping channel. 

When customers are less sensitive to the direct channel prices, i.e., when 𝛽𝑒𝑚𝑧
𝑝

 was reduced by 4%, 

the manufacturer’s profit increased by 20% and the retailer’s profit decreased by 45%. However, this case is 

slightly different from the case in which the intrinsic attraction was increased for this channel. Here, 

production per unit time and delivery lead time has increased on an average. We can concur that a 

manufacturer can relax delivery times on account of decreased price sensitivities. Nevertheless, decreased 

price sensitivities lead to higher demand. 

When either 𝛽𝑒𝑟𝑧
𝑝

 or 𝛽𝑏𝑧
𝑝

 are decreased by 4%, we see a sharp jump in the retailer’s profits. 

However, the manufacturer’s profit decreases marginally in both cases. There is no significant change in 

delivery lead times, and there is only a marginal increase in production per unit time. This result is slightly 

different from what we observed when intrinsic attraction towards the retailer’s channels was increased. 

The retailer’s profit has increased, but there is no significant change in production. Also, the manufacturer’s 

profit decreases instead of increasing. We can say that when 𝛽𝑒𝑟𝑧
𝑝

 or 𝛽𝑏𝑧
𝑝

 increases, a retailer has an 

advantage, as it can generate more profit for itself without increasing the sales volume.  

From Fig. 9, it can be inferred that a) when attraction towards retailer’s channels increases, the 

manufacturer’s profit increases (see Fig. 8), whereas when price sensitivity towards retailer’s channels 

decreases, the manufacturer’s profit decreases; b) decreased price sensitivity towards drop-shipping channel 

benefits the retailer more than the manufacturer; and c) on account of decreased price sensitivities, higher 

overall demand can be expected. 

Effect of increase in lead time sensitivities: 

In Fig. 10, we present how the manufacturer’s profit, retailer’s profit, production, and delivery lead 

times changed when delivery lead-time sensitivities were increased. The results are obvious as when the 

sensitivities increased, the delivery lead time decreased significantly. Profitabilities in the supply chain 

decreased due to lesser demand and so did production. When lead-time sensitivity towards drop-shipping 

was relatively greater (i.e., 𝛽𝑏𝑚𝑧
𝑙 =0.75 and 𝛽𝑒𝑚𝑧

𝑙 =0.5), the retailer’s profit decreased by approximately 5%. 

Otherwise, the retailer’s profit did not decrease significantly when the sensitivities were increased.  
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Fig. 10: Effect of increase in lead-time sensitivities on profitabilities, production and lead time. 

VI. DISCUSSION 

It is important to underline that many of the results obtained in the numerical experiments section 

are controlled by demand parameters that we chose at the start of the analysis. Interdependencies between 

profitabilities, production quantity, intrinsic attractions, price sensitivities and lead-time sensitivities can be 

too complex to unequivocally declare the existence of any specific pattern. That said, our analysis in 

Section A of the numerical experiments strongly suggests that the inclusion of a drop-shipping channel in 

the channel mix can assist in generating higher returns apart from serving as an omnichannel service. 

Additionally, there is a scope for coordination between the two players with respect to determining the 

value for 𝜃, assuming the players are interested in maximizing the total supply-chain profit. 

From the analysis in Section B of the numerical experiments, we can infer that adding a drop-

shipping channel may become an appealing option in cases when production capacity is not sufficient—that 

is, in the case of under-production, the manufacturer can obtain better returns using a drop-shipping 

channel. However, a drop-shipping channel may not be so useful in the case of surplus production. Because 

of over-production, the manufacturer is forced to keep 𝑊 relatively low. The retailer already has an 

advantage and may not benefit significantly from the collaboration. 

In the analyses we carried out in Section C, we consistently found that the increased popularity of 

the drop-shipping channel benefits the retailer more than the manufacturer. The results also indicate that the 

drop-shipping channel cannibalizes the direct channel because of the non-differentiability of prices in both 
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these channels. We recommend that a manufacturer operating a direct channel consider these results before 

opting for full-scale integration of a drop-shipping channel. 

Although an array of sensitivity analyses could be carried out, we rest our case highlighting that our 

primary aim was to draw researchers’ attention towards revenue management for manufacturers operating 

in omnichannel retailing environments. We explored how Stackelberg equilibria can be obtained when 

objective functions are non-convex. The likeness of the insights generated in this paper with the recent 

publication [48], in which a manufacturer–retailer problem was solved using a traditional approach, 

strengthens the utility of the proposed bilevel programming for revenue management problems.  

 

Limitations and Future Scope:  

In the section on comparative analysis, Figs. 4a–4b shows the time complexity of the hierarchical 

bilevel optimization technique. As the number of variables increased, the algorithms took exponentially 

longer to converge. Therefore, for larger problem instances, hierarchical optimization techniques are not 

suitable. In the past, researchers have also used population-based solution techniques such as the genetic 

algorithm (GA), particle swarm intelligence (PSO), and several co-evolutionary approaches. We anticipate 

that those algorithms may take less time. Another approach to reducing the time complexity of multi-location 

larger problem instances is to convexify or linearize the retailer’s objective function. This paper presented 

how a single-location problem can be simplified and solved using a single-level reduction technique. In the 

future, researchers may seek to do the same for multi-zonal problems.  

 Drop-shipping is a sustainable alternative when time sensitivities are not very high. We can see that 

when time sensitivities are high, the manufacturer seeks to expedite the deliveries, thereby leading to higher 

delivery costs. It is understood that when time sensitivities are too high, buying online and picking from 

store (BOPS) [4] and shipping from store (SFS) [49] are suitable alternatives. Extending the research 

further, it would be interesting to investigate how the players would collaborate when the manufacturer is 

ready to fulfill direct channel orders via BOPS and SFS routes, and how these facilities would affect 

profitabilities in the supply chain. Another avenue of research may examine how a retailer would price the 
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product, given that a consumer would visit the store to collect the package, or whether the manufacturer 

should match the price posted by the retailer. 

In this paper, we assumed that the demand is deterministic and that its parameters do not change 

over time. This assumption is restrictive as it can be difficult to have accurate information on actual demand 

well before the selling season starts. This calls for dynamic bilevel optimization that proactively optimizes 

production, prices and fulfillments based on recent demand and market trends. To cater to uncertainties, the 

same problem can also be reformulated using stochastic programming instead of assuming demand to be 

deterministic. Finally, we assumed the manufacturer to be the leader; however, the scenario where a retailer 

is the leader has not been considered. The paper focused on profit maximization for both retailer and 

manufacturer; however, there are scenarios where retailers follow “everyday low pricing” with little regard 

for profit maximization in the short term.  

VII. CONCLUSION  

This paper proposed a joint production, pricing and inventory control problem for manufacturers 

operating in a competitive omnichannel environment; the premise is revenue management for 

manufacturers. An increasing number of manufacturers are operating direct channels to have immediate 

access to the market and to reduce their dependency on retailers. Direct channels play a crucial role in 

generating profits in the supply chain. However, while formulating a revenue management problem for a 

manufacturer, the direct channel must not be seen to be independent of the retailer’s online and offline 

channels. A mere suggestion for revenue management for the manufacturers leads to bilevel optimization 

that essentially relates to Stackelberg leader–follower games. Keeping in view that drop-shipping may 

become a necessary omnichannel service, the paper simultaneously investigated the possibility of 

collaboration between the two players via a drop-shipping channel.  

To solve the formulated problem, the paper first examined the single-level reduction technique 

commonly used in bilevel optimization literature. For single-level reduction, it was necessary to convexify 

the lower-level problem so that the necessary KKT conditions could be applied. In this paper, the lower-

level problem was convexified assuming the retailer operated only one physical store. Even after reducing 

the bilevel problem to a single-level problem, the overall problem remained non-linear and non-convex. As 
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shown in the paper, the resulting problems can be solved directly using stochastic search algorithms. 

Nevertheless, research is required to convexify the lower-level problem if the retailer operates from 

multiple locations. For now, the paper proposed a hierarchical optimization technique coupled with 

stochastic search algorithms to solve such problems.  

The paper carried out numerical experiments to generate some insights as presented in the 

Discussion section. Our results suggest that in the absence of a drop-shipping channel, the players would 

operate in an entirely competitive mode, leading to suboptimal supply-chain profit. Therefore, the inclusion 

of a drop-shipping channel in the channel mix not only serves as an omnichannel feature but can also assist 

in generating a higher profit. The paper shows how, in the presence of drop-shipping services, retailers’ 

existing online and offline channels can effortlessly become webrooms and showrooms, respectively. The 

paper further suggested that adding a drop-shipping channel can a particularly appealing option in cases 

when the production capacity is not sufficient. However, the results also suggest that the introduction of a 

drop-shipping channel benefits the retailer more than the manufacturer.  

APPENDIX 

Proof for Proposition 1: 

In the single-zone case (𝑍 = 1), it is assumed that the retailer has an offline store and an online channel (that 

caters to the demand generated locally). Let 
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where 𝜆𝑏

𝑡 , 𝜆𝑒𝑟
𝑡  and 𝜆𝑏𝑚

𝑡  represent purchase probabilities at time t in the store, 

retailer’s online channels and drop-shipping channels, respectively. For simplicity of expression, let us 

assume that holding costs are negligible and 𝑇 = 1 such that the retailer’s objective function and constraints 

(Eqs. 10–14) appear as follows: 

Maximize:  (𝑃𝑏 − 𝑊)𝑆𝑏 + (𝑃𝑒𝑟 − 𝑊)𝑆𝑒𝑟 + (𝑃𝑒𝑚 − 𝑐𝑚 − 𝑐𝑙)𝜃𝑆𝑏𝑚 − 𝑐𝑒𝑟𝑆𝑒𝑟  (A.1) 

Subject to:  𝑆𝑏 ≤ 𝑀𝜆𝑏         (A.2) 

𝑆𝑒𝑟 ≤ 𝑀𝜆𝑒𝑟         (A.3) 
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 𝑆𝑏 , 𝑆𝑒𝑟 ≥ 0         (A.4) 

𝑃𝑒𝑟, 𝑃𝑏 ∈ 𝛺         (A.5) 

Next, we employ reformulation and constraint relaxation. It can be proved that 𝑃𝑒𝑚 = 
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. Furthermore, assuming that all the demand generated at the retailer’s 

end is satisfied, constraints (A.2) and (A.3) can be eliminated such that  𝑆𝑏 = 𝑀𝜆𝑏 and 𝑆𝑒𝑟 = 𝑀𝜆𝑒𝑟 . By doing 

so, constraint (A.4) is also eliminated because of the non-negativity of 𝜆𝑏and 𝜆𝑒𝑟. Finally, non-

differentiability due to the discrete nature of the decision variables (such as price) is also neglected. Thus, the 

retailer’s objective function, i.e., (A.1), becomes (A.6), with no constraints to satisfy. 
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Eigenvalues for first, second and third terms can be calculated as {0, −
𝑀(𝜆𝑏
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}, 

{0, −
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𝑝

(−1+𝜆𝑏+𝜆𝑒𝑚+𝜆bm+𝜆𝑒𝑟)2
, 0}, which are all negative semidefinite. This 

means that first, second and third terms are concave in purchase probability space (𝜆𝑒𝑟, 𝜆𝑏). The fourth term 

is linear. Since a non-negative weighted sum of concave functions is itself concave, the retailer’s objective 

function, when the retailer is operating in just one market zone, is proved to be concave. 
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