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Abstract
Sample selection arises when the outcome of interest is partially observed in a study.
A common challenge is the requirement for exclusion restrictions. That is, some of
the covariates affecting missingness mechanism do not affect the outcome. The drive
to establish this requirement often leads to the inclusion of irrelevant variables in the
model. A suboptimal solution is the use of classical variable selection criteria such
as AIC and BIC, and traditional variable selection procedures such as stepwise selec-
tion. These methods are unstable when there is limited expert knowledge about the
variables to include in the model. To address this, we propose the use of adaptive
Lasso for variable selection and parameter estimation in both the selection and out-
come submodels simultaneously in the absence of exclusion restrictions. By using the
maximum likelihood estimator of the sample selection model, we constructed a loss
function similar to the least squares regression problem up to a constant, and mini-
mized its penalized version using an efficient algorithm. We show that the estimator,
with proper choice of regularization parameter, is consistent and possesses the oracle
properties. The method is compared to Lasso and adaptively weighted L1 penalized
Two-stepmethod.We applied themethods to thewell-knownAmbulatory Expenditure
Data.

Keywords Coordinate descent · Non-random selection · Penalized regression ·
Variable selection · Missing data

1 Introduction

Sample selection arises when the outcome of interest is non-randomly missing for a
subset of the sample, resulting in a sample that is not representative of the popula-
tion under study. This problem is ubiquitous in empirical economics, social sciences
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and medical research. Consider, as an example, the ambulatory expenditures data (
Cameron and Trivedi (2010)), where the amount of money spent on the medical ser-
vices is expected to be linked with the decision to spend. The analysis of the data could
proceed in two ways: analysis of only the positive expenditures without taking into
account the zero expenditures or analysis of both the positive and zero expenditures.
These methods will lead to biased estimates and efficiency loss. An optimal solution
based on the use of sample selection model incorporates the decision to spend in order
to model the amount of expenditures.

Heckman (1976) introduced a model for sample selection and several extensions
in the parametric framework have been proposed ( Marchenko and Genton (2012),
Ogundimu and Hutton (2016), Lee (1983)). The estimation method is often based on
the full information maximum likelihood (FIML) due to the maximization of the joint
likelihood function of both the outcome and selection submodels simultaneously. An
alternative specification of the model is the two-step procedure, where the problem
is treated as a model misspecification problem due to omitted covariates ( Heckman
(1979). A key drawback in the use of the Two-step estimator (and to a lesser extent
FIML estimator) is its susceptibility to collinearity in the absence of an exclusion
restriction ( Leung and Yu (2000)). An exclusion restriction implies that there are
variables in the selection submodel that are absent in the outcome equation. This is
to avoid multicollinearity as a consequence of the linearity of the inverse Mills ratio
over a wide range of its support. In the absence of an exclusion restriction, model
identifiability relies on the non-linearity of the inverse Mills ratio. In general, both
estimators have the same set of assumptions, and two-step estimator is indeed less
sensitive to the assumptions in a very specific case ofmeasurement error (see Stapleton
and Young (1984) and Leung and Yu (2000)).

Sartori (2003) noted that when theory points to identical covariates in both com-
ponents of the model, a common practice by applied researchers is a “mad" search
for an exclusion restriction. This practice is dangerous because including extraneous
variables may lead to specification error. Further, the impact of extraneous variables
as exclusion restrictions was demonstrated in Ogundimu and Collins (2019). It was
shown that the use of these variables in the selection submodel can constitute a nuisance
in the model estimation instead of alleviating the problem of collinearity. In particular,
if the extraneous variable(s) for exclusion restriction does not affect selection in the
population but it is correlated with a true covariate and with selection in the sample,
including it in the equation can bias the estimates of the effect of the covariates. Also,
the use of an exclusion restriction that is not based on clear theoretical knowledge has
been shown to produce results that vary both in effect size and precision ( Genbäck
et al. (2015)).

Genbäck et al. (2015) used set identification to compute bounds on regression
parameters in sample selection model. Although the method does not impose any
exclusion restriction and distributional assumption, correct coverage of the bounds
relies on specifying an interval for the correlation parameter that contains the true
value. We took a different approach fromGenbäck et al. (2015) by keeping parametric
assumption and develop penalized regression that can shrink variables that are not
true exclusion restriction to zero while simultaneously selecting variables that are
associated with the outcome and selection submodels.
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Penalized regression with convex and non-convex penalties such as least absolute
shrinkage and selection operator (Lasso - Tibshirani (1996)), elastic net ( Zou and
Hastie (2005)), adaptive Lasso ( Zou (2006)), smoothly clipped absolute deviation
(SCAD - Fan and Li (2001)) andminimax concave penalty (MCP - Zhang (2010)) have
been widely applied for variable selection in generalized linear models and survival
models. To the best of our knowledge, limitedwork has been done in penalized variable
selection in sample selection settings. An example that is so close and yet so far to
what we pursue here is, perhaps, the paper of Caner and Fan (2010), where adaptive
Lasso was used in two-stage least squares regression for removing weak instrumental
variables. Another important contribution is the use of the so-called outcome-adaptive
Lasso for selecting covariates for inclusion in propensity score models to account for
confounding bias ( Shortreed and Ertefaie (2017)). While the propensity score models
and the sample selection models are correction methods for selection bias, it has been
opined that the latter should be preferred when the error terms in the substantive
outcome submodel and the selection process are correlated ( Antonakis et al. (2010)).
This is the motivation for the new approach that we propose in the present article.
Theoretically, the direct application of the penalty terms to the likelihood function of
sample selection model is possible but it is computationally challenging due to the two
components of the model and the possibility of different covariates in the components.

To circumvent this, we propose adaptiveLasso (ALasso) penalized sample selection
model for the selection of variables and efficient estimation of parameters for both
the outcome and selection submodels of the sample selection model. The proposed
method is based on the use of second-order Taylor series expansion to approximate
the likelihood function with respect to the maximum likelihood estimator (MLE). The
resulting least squares approximation is then solved subject to adaptively weighted L1
penalty using the coordinate descent algorithm. The ultimate goal, from application
perspective, is to identify and consistently estimate parameters in the components.
We also extend the method to Lasso and adaptively weighted L1 penalized Two-
step method. These methods are compared with the standard significance testing at
α = 0.05 (P-value). That is, variables with a P-value higher than 5% is deemed
non-significant and removed from the model.

The rest of the paper is organized as follows. Section 2 introduces the Heckman
selection model and potential specification issues that are germane to the proposed
approach. A penalized version of the model is presented in Sect. 3, while the compu-
tational routine and asymptotic properties of the estimator are evaluated in Sect. 4. In
Sect. 5, the finite sample properties of the proposed model are studied and applied to
the Ambulatory Expenditure data set. A discussion is provided in Sect. 6. Technical
details are given in the “Appendix”.

2 Sample selectionmodel

The model consists of two equations: an outcome equation and a selection equation

Y �
i = βT xi + σε1i , i = 1, . . . , n. (1)
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S�
i = γ Twi + ε2i , i = 1, . . . , n, (2)

respectively, where β = (β0, β1, . . . , βp) and γ = (γ0, γ1, . . . , γq) are unknown
parameters with corresponding covariates xi = (1, xi1, . . . , xip) and wi =
(1, wi1, . . . , wiq), σ is the variance, and (ε1i , ε2i ) are random errors with means zero
and correlation ρ. It is possible for xi and wi to overlap. We observe the indicator
Si = I (S�

i > 0) such that the outcome Yi = Y �
i Si is the observed part of the selected

sample. Notice that the variance of S�
i is set to 1 because we only observed its sign

and it is not identifiable in (2). The conditional density of the observed data,

f (y|x,w, S� > 0) = f (y, S� > 0|x,w)

P(S� > 0|w)
= f (y|x)P(S� > 0|y,w)

P(S� > 0|w)
, (3)

is the basis of the unification of sample selection problems as skew distributions given
by Arellano-Valle et al. (2006).

Under the additional assumption of bivariate normal errors,

(
ε1i
ε2i

)
∼ N2

{(
0
0

)
,

(
1 ρ

ρ 1

)}
,

it is straightforward to show that the PDF in (3) is

f (y|x,w, S = 1; θ) = 1

σ
φ
( y − βT x

σ

)
Φ

(
γ Tw + ρ

( y−βT x
σ

)
√
1 − ρ2

)/
Φ(γ Tw), (4)

where θ = (β, γ , σ, ρ). The parameter ρ ∈ (-1,1) determines the correlation between
Y �
i and S�

i , and hence the nature and severity of the selection process. The complete
density of the sample selection model has a continuous component, with conditional
density given by (4), and a discrete component. The discrete component is often
modeled with probit regression as P(S = 1|w) = {Φ(γ Tw)}s{1−Φ(γ Tw)}1−s . The
log-likelihood function for n observations is therefore

l(θ) =
n∑

i=1

Si
(
ln f (yi |xi ,wi , Si = 1; θ)

)
+

n∑
i=1

Si (lnΦ(γ Twi ))

+
n∑

i=1

(1 − Si ) lnΦ(−γ Twi ). (5)

If the assumed model is correct and the Gaussian assumption holds, then the MLE
based on equation (5) is

√
n−consistent for θ and asymptotically normal under general

conditions ( Nicoletti and Peracchi (2001)). These properties are essential for the
validity of the proposed method in Sect. 3.
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The Two-step estimator is derived from the conditional expectation of the observed
data and is given by

E(Y �|x,w, S� > 0) =
∫ ∞

−∞
y f (y|x,w, S = 1; θ) dy = βT x + σρΛ(γ Tw), (6)

where Λ(·) = φ(·)/Φ(·) is the inverse Mills ratio, φ(·) and Φ(·) are standard normal
density and cumulative distribution function respectively. To obtain the estimates of
ρ and σ from (6), the average of the conditional variance,

Var(Y �|x,w, S� > 0) = σ 2[1 − ρ2Λ(γ Tw){γ Tw + Λ(γ Tw)}], (7)

is equated to the observed residual variance in the second-stage least square regression.
The penalized regression in Sect. 3 also depends on the correct specification of the

model in (5). A possible indication of model misspecification is the non-convergence
of the model as a result of the violation of the requirements that |ρσ | ≤ σ and
σ ≥ 0 ( Copas and Li (1997)). That is, the estimates of ρ is close to ±1. Even if
reparametrization of ρ allows for model convergence, equation (5) is not, in general,
globally concave and the model can converge to a local maximum. Further, when the
non-intercept variables in w have coefficients equal to zero, Λ(γ Tw) is a constant
resulting in the failure of the regression model.

3 Penalized sample selectionmodel

The general form of a penalized estimator for sample selection model is given by

min
θ

{
−l(θ) +

p∑
j=1

pλ1(|β j |) +
q∑

k=1

pλ2(|γk |)
}
, (8)

where pλ1(·) and pλ2(·) are penalty functions with tuning parameters λ1 and λ2. In
this case, the regression coefficients for the two equations have different penalties and
pλ1(β0) = pλ2(γ0) = 0 to ensure the intercepts of the equations are unpenalized. This
article considers the case where pλ1(·) = pλ2(·) = pλ(·). We can re-write (8) as

min
θ

{
−l(θ) +

s∑
d=1

pλ(|θd |)
}
,

where (p+q) = s is the combined dimension ofβ and γ , and σ and ρ are unpenalized.
The Lasso penalized regression proposed by Tibshirani (1996) is based on

pλ(|θd |) = λ|θd |, d = 1, . . . , s. (9)

The R.H.S. of (9) is the L1-penalty, which shrinks small coefficients to zero to obtain
sparse representation of the solution. Here, λ ≥ 0 is a tuning parameter controlling the
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amount of shrinkage. Since the Lasso penalizes all the regression coefficients equally,
it over-penalizes the important variables thereby resulting in biased estimators. The
lack of the oracle property ( Fan and Li (2001)) of Lasso prompted the development
of the adaptive Lasso ( Zou (2006)) with this property. The oracle property implies
the method is consistent in variable selection, unbiased and asymptotically normal.

The adaptive Lasso estimator is a generalization of the Lasso penalty. Unlike Lasso,
the adaptive Lasso penalty function penalizes the coefficients of different covariates
at a different rate by using adaptive weights. This is accomplished by the introduction
of individual weights, τd in the penalty as

pλ(|θd |) = λτd |θd |, d = 1, . . . , s,

where τ = (τ1, τ2, . . . , τs) are chosen in a data dependent way. The adaptive Lasso
estimator for the sample selection model is the solution of

min
θ

{
−l(θ) + λ

s∑
d=1

τd(|θd |)
}
. (10)

Often, the weights, τd , is set to 1/|θ̃d |δ for some appropriately chosen δ > 0. For
simplicity we set δ = 1 and θ̃ as the MLE.

In addition to the proposed method, we adapted the adaptive Lasso approach to the
Two-step estimator in (6). For this, a standard probit model is penalized as

min
γ

{
−

n∑
i=1

Si (lnΦ(γ Twi )) −
n∑

i=1

(1 − Si ) lnΦ(−γ Twi ) +
q∑

k=1

pλ2(|γk |)
}
.

Let γ̂ = (γ̂ 1, γ̂ 2), where γ̂ 1 corresponds to the h nonzero components (h ≤ q) of γ̂

and γ̂ 2 are its zero elements. Next, the quantity, Λ(γ̂
T
1 w

h) is formed and taken as an
additional covariate in the second stage least squares regression with adaptive Lasso
penalty. The coefficients ofΛ(γ̂

T
1 w

h) is left unpenalized in the second stage regression.
The covariancematrix generated in the second stage regression is inconsistent, but will
not be addressed in this paper.

An interesting question is whether the model in equation (10) (or its approximation
that we proposed next) is without loss of generality. We justified the adequacy of
the model by analysing directly equation (8) using a smooth approximation to the

L1-norm. Specifically, we used limε→0

√
θTd θ + ε = ||θd ||1, where the LHS of the

equation is the required approximation. We choose ε = 10−6. This allows for the
derivation of the analytical score and Hessian. The optimization routine is based on
the Newton-Raphson method with the tuning parameter selected using BIC . The
minimum λ is taken over two-dimensional grid search. Initial empirical evaluation of
the performance of this method with our proposal shows that the former does not offer
significant improvement over the latter. In particular, the computational time grows as
the number of variables increases. Consequently, we did not investigate this approach
any further.
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4 Computational algorithm and asymptotic results

4.1 The optimization routine

We approximate the penalized function in (10) by a second-order Taylor expansion
with respect to θ̃ , the unpenalized MLE in (5). Thus, −l(θ) can be approximated by
the quadratic form 2−1(Y − θ ′X)T (Y − θ ′X), where Y = (XT )−1{∇2l(θ)θ −∇l(θ)}
is the pseudo response vector, ∇2l(θ) = XT X such that X is derived as the Cholesky
decomposition of ∇2l(θ). The notations ∇l(θ) = −∂l(θ)/∂θ is the gradient vector
and∇2l(θ) = −∂2l(θ)/∂θ∂θT is the Hessianmatrix. Thus, theminimization problem
in (10) becomes

min
θ

{
1

2

(
Y − θ ′X

)T (
Y − θ ′X

)
+ λ

s∑
d=1

τd(

∣∣∣θd
∣∣∣)

}
,

which is in the form of least squares problem subject to adaptive Lasso penalization.
This can be solved using efficient minimization algorithms such as least angle regres-
sion (lars - Efron et al. (2004)) and the coordinate descent algorithm ( Friedman et al.
(2010)). We adopt the latter, and update the parameters in the model as

θ̂d =
S

{∑s
i=1 xid

[
yi − ∑s

l �=d θ̂Tl xil
]
, λτd

}
∑s

i=1 x
2
id

, d = 1, . . . , s,

where S(z, δ) is the soft threshold operator with

S(z, δ) =

⎧⎪⎨
⎪⎩
z − δ if z > 0 & δ < |z|
z + δ if z < 0 & δ < |z|
0 if δ ≥ |z|

.

Recall that four parameters in θ (σ, ρ and the intercepts of outcome and selection
models) are unpenalized. Althoughwe estimated all the parameters in themodel, these
four parameters are not set to zero in S(z, δ). The optimal tuning parameter, λ can
be estimated by using AIC, BIC and GCV (generalized cross-validation) criteria. The
BIC criterion is known to identify the true model with probability tending to one. We
therefore use BIC to select optimal λ:

BIC(λ) = −2l(θ̂) + d fλ log(n),

where 0 ≤ d fλ ≤ s is the degree of freedom corresponding to the number of nonzero
coefficients of θ̂ . The optimal value of λ is computed over a grid of candidate values of
λ between λ = 0 and λ = λmax, with step size of 0.1, where λmax is the value of λ for
which the entire vector of θ̂ is zero. We allowed optimal λ = 0 for the unregularized
solution since degenerate cases are uncommon in FIML estimator.
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4.2 Variance estimation

In low dimensional setting such as the case here, it is possible to first select covariates
by using Lasso and adaptive Lasso, and thereafter obtain parameter estimates and their
standard errors with maximum likelihood method. The disadvantage of this is the loss
of the benefit of the estimation of parameters and selection of variables simultaneously,
which is inherent in estimators with oracle properties.

Following from Fan and Li (2002) and Zhang and Lu (2007), let θ̂1 (with r
elements, r ≤ s) be non-vanishing component of θ̂ base on the optimal tuning
parameter λ1. Define A(θ̂) = diag{1/θ̂11, . . . , 1/θ̂1s} and B(θ) = diag{I (θ̂11 �=
0)/θ̂

2
11, . . . , I (θ̂1s �= 0)/θ̂

2
1s}. The estimator of the covariance matrix of the adaptive

Lasso is given by the sandwich formula

ĉov(θ̂1) =
{
∇2l(θ̂1) + λ1A(θ̂1)

}−1
Σλ1(θ̂1)

{
∇2l(θ̂1) + λ1A(θ̂1)

}−1
, (11)

where Σλ1(θ̂1) = {∇2l(θ̂1) + λ1B(θ̂1)}{∇2l(θ̂1)}{∇2l(θ̂1) + λ1B(θ̂1)}. The subma-
trix, ĉov(θ̂1), corresponding θ̂1 can then be obtained. An alternative formula based on
the decomposition of the Hessian matrix, ∇2l(θ̂) can also be used. Let θ̂ = (θ̂1, θ̂2),
where θ̂1 is as defined previously, and θ̂2 are the zero elements of θ̂ . Then,

M = ∇2l(θ̂) =
(
M11 M12
M21 M22

)
,

where M11 corresponds to the first r × r submatrix of M . Further, let A11 be the first
r × r submatrix of A(θ̂). Define E = M22 − M21M

−1
11 M12 and M̃11 = M11 + λ1A11.

Then,

ĉov(θ̂1) = M−1
11 +

(
M−1

11 − M̃−1
11

)
M12E

−1M21

(
M−1

11 − M̃−1
11

)
.

We estimated the variance for the penalized model using (11) and compared its per-
formance with the sample standard deviation in the simulation study.

4.3 Asymptotic properties

We study the asymptotic properties of the adaptive Lasso estimator θ̂ obtained by
maximizing the penalized likelihood function based on n samples:

Qn(θ) = l(θ) − nλn

s∑
d=1

τd(|θd |), (12)

with respect to θ . Denote the true value of θ by θ0 = (θT10, θ
T
20)

T , where θ10 =
((βT

10, γ
T
10)

T ) is an r × 1 vector whose components are nonzero and θ20 is the (s − r)

remaining zero components. The maximizer of equation (12) can be written as θ̂ =
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(θ̂
T
1 , θ̂

T
2 )T . Also, let I (θ0) be the information matrix based on the likelihood function

in equation (5) and let I1(θ10) = I11(θ10, 0), where I11(θ10, 0) is the leading r × r
submatrix of I1(θ0) with θ20 = 0.

The following regularity conditions are necessary to establish the asymptotic prop-
erties of the adaptive Lasso estimator for the model.

C1. Identifiability: Suppose that yi , i = 1, . . . , n are i.i.d with a mixed probability
mass and density function f (yi ; θ0). The parameters in the model are identifiable
if θ �= θ0 implies f (yi ; θ) �= f (yi ; θ0) with probability 1

C2. The parameter space Θ is compact and θ0 ∈ Θ

C3. E[supθ∈Θ | ln f (yi ; θ)|] < ∞
C4. E[∇l(θ0)] = 0 and E[∇2l(θ0)] is finite and positive definite.

Since the information matrix is nonsingular at the true parameter vector, the local
identifiability of the model parameters can be inferred (see Appendix A.1 in the sup-
plementary material for the derivation of the expected information matrix). Inherent in
the identification condition is the assumption that there is no multicollinearity among
the variables in xi and wi and that there is no perfect correlation between xi and Λ,
the inverse Mills ratio. In particular, conditions 1 - 3 ensure that θ̃ is consistent while
conditions 1 - 4 is required for its asymptotic normality.

The main asymptotic results are obtained in a similar version to Fan and Li (2001)
by using the regularity conditions:

Theorem 1 (Consistency of θ̂). If
√
nλn = Op(1), then there exists a local maximizer

θ̂ of Qn(θ) in equation (12) such that
∥∥∥θ̂ − θ0

∥∥∥ = Op(n−1/2), where ‖·‖ denotes the

Euclidean norm.

Theorem 2 (Oracle properties). If
√
nλn → 0 and nλn → ∞, as n → ∞ then θ̂ has

the following properties:

(i) Sparsity: θ̂2 = 0;

(ii) Asymptotic normality:
√
n(θ̂1 − θ10)

d−→ N (0, I−1
1 (θ10)).

Note that the consistency and sparsity of θ̂ in Theorems 1 and 2(i) imply that the
adaptive lasso estimator is consistent in variable selection. Theorem 2(ii), on the other
hand, implies that the adaptive lasso estimator for the nonzero coefficients is efficient
as if the irrelevant covariates are known. The proof of both theorems are given in
Appendix A.2.

5 Numerical studies

In this section we use simulation and a real data to compare the finite sample perfor-
mance of the adaptive Lasso, Lasso and the Two-step estimators for sample selection
models.

5.1 Simulation study

The data is generated under two scenarios - strong and weak signals.
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Scenario 1: Large effect
The data for the outcome submodel was generated from Y �

i = βT xi + σε1i ,
where βT = (0.5, 1, 1, 1.5, 0, 0, 0, 0), β0 = 0.5. For the setting with exclusion
restriction, we generated data for the selection process as S�

i = γ Twi + ε2i , where
γ T = (1.5, 1, 1, 1, 0, 0, 0, 0, 1), γ0 = 1.5. We exclude the last element of γ for
the case with no exclusion restriction (that is, x = w). The covariates xi and wi are
independent of the error terms εTi = (ε1i , ε2i ). The error terms are generated from a

bivariate normal distribution with Σ =

(
σ 2 ρσ

ρσ 1

)
, where σ = 1 and the correlation

ρ = {0, 0.3, 0.5, 0.7}. The covariates x1, . . . , x8 are generated such that their distribu-
tion are marginally standard normal with pairwise correlations corr(x j , xk) = �| j−k|.
We take � = 0.5 to allow for moderate correlation between the covariates. We only
observe the values of Y �

i when S�
i > 0. This leads to approximately 30% unobserved

cases in the realized sample. Two sample sizes, n = 500 and 1000 are evaluated using
1000 replications. We also evaluated the impact of error distribution misspecifica-
tion, where the error terms are generated from a bivariate Student’s t distribution with
degree of freedom ν = 5. For this, we consider the setting under the absence of the
exclusion restriction variable and sample size of 1000.

Scenario 2: Small effect
For this scenario, we consider only the case with the absence of exclusion restric-

tion and sample size of 1000. We generated the true parameters as follows: βT =
(0.5, 0.2, 0.2, 0.2, 0, 0, 0, 0), β0 = 0.5 and γ T = (0.58, 0.2, 0.2, 0.2, 0, 0, 0, 0),
γ0 = 0.58. This ensures roughly 30% of the data is missing. The remaining parameters
are simulated as in scenario 1.

Scenario 3: Shrinkage of false exclusion restriction variable
We investigate the performance of adaptive lasso in detecting non valid exclusion

restriction. The data was generated as in scenario 1 with a true exclusion restriction.
We consider the case where two variables (X9, X10) are used as exclusion restriction
whereas these variables are not associated with the outcome model and not predictive
ofmissingness (no_cor_outcome). The second data is generated such that the two vari-
ables are associatedwith the outcome but not predictive ofmissingness (cor_outcome).

The accuracy of the estimators are evaluated using mean squared errors, (θ̂d −
θd)

T V (θ̂d − θd), where V is the population covariance matrix and the summary of
the median over 1000 replications is obtained. We also assess the performance of
the methods using sensitivity (mean of proportion of nonzero coefficients that were
correctly identified) and specificity (mean of proportion of zero coefficients that were
correctly identified) as well as the comparison of the model based and the empirical
standard errors.

For computational convenience, all the model parameters are estimated with the
support (−∞,∞). We used estimation metric atanhρ = ln{(1 + ρ)/(1 − ρ)}/2 for
ρ, where atanhρ is the inverse hyperbolic tangent of ρ, and logarithm of σ . P-value
is based on significance testing at 5% level of significance. The “oracle" estimate is
based on the model fitted using the variables that have non-zero coefficients.

Tables 1 and 2 summarize the sensitivity, specificity and the mean square error
(MSE) for the models with sample sizes of 500 and 1000 in the presence of the
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exclusion restriction variable. The three estimators correctly identified all the nonzero
coefficients (sensitivity = 1) in both submodels. The advantage of ALasso and Two-
step methods are more pronounced for specificity, in which case at least 95% of zero
coefficients in both submodels are correctly identified (specificity ranges between 95%
and 98%). The larger the sample size, the better the performance of the methods in the
consistencyof variable selection across the two submodels. Lassohas higher specificity
under the selection submodel than the outcome submodel, and its performance is
generally better with larger sample size. There is no clear distinction in the effect of
correlation (ρ) on sensitivity and specificity. Overall, ALasso and Two-step estimators
perform better than the Lasso in terms of MSE. The impact of ρ slightly manifested
here: the accuracy of the estimated nonzero coefficients increases as ρ increases for
both Lasso and ALasso. In particular, MSE improves as sample size increases. The
results also show that ALasso is consistently superior to significance testing at α = 5%
level (P-value).

Tables 3 and 4 summarize the simulation results for the models with sample sizes
of 500 and 1000 in the absence of the exclusion restriction variable. The patterns are
similar to the corresponding results in Tables 1 and 2. Interestingly, the performance
of the measures without the exclusion restriction variable is consistently better than
the corresponding results under the exclusion restriction. This result has practical
implications - if the model relies on identification through the inverse Mills ratio, then
ALasso and Two-step estimators would identify the true variables in themodel without
exclusion restrictions with probability tending to 1.

The results of fitting the models to a data generated from a Student’s t error distri-
bution in the absence of exclusion restrictions can be found in Appendix A.3 of the
supplementary material. The MSE of the parameter estimates in the selection sub-
model are lower than the corresponding results under the data generated from the
normal error model (Table 4). This, however, does not affect the specificity of the
estimators. In particular, the specificity of the ALasso and the Two-step methods are
higher than the corresponding results in Table 4. Further, the specificity under the
outcome model for ALasso is slightly lower than the corresponding results in Table
4. Overall, ALasso is more robust to misspecification of the error distribution than the
Two-step estimator.

The impact of covariates with weak effect on the proposed methods can be found in
Appendix A.3. As expected, Lasso performs better than the other methods in terms of
sensitivity in both the selection and outcome equations. This result is not surprising as
Lasso is generally known to include true covariates, but also some irrelevant covariates
( Meinshausen and Bühlmann (2006)). A striking result is the poor performance of
the two-step estimator in terms of sensitivity but superior performance with regards
to specificity in the outcome equation. A possible reason for this is the collinearity
between the inverse Mills ratio and covariates with weak effects in the second stage
regression as these covariates can be easily pushed to zero.

Table 5 shows the results of the number of times the variables that are used for
exclusion restrictions are selected. The performance of ALasso estimator is better
when the false exclusion restriction variables (X9, X10) are not associated with the
outcome than when the variables are associated with it. Overall, the true exclusion
restriction variable (X8) is not shrunk to zero.
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Table 5 Simulation results for
the number of times the true and
false exclusion restriction
variables are selected using
adaptive lasso (out of 1000)

Correlation type X8 X9 X10

cor_outcome 1000 26 25

no_cor_outcome 1000 15 15

5.2 Ambulatory expenditure data

The data on ambulatory expenditure contains 3,328 observations ofwhich 526 (15.8%)
of the outcome of interest (expenditure) is missing. Apart from expenditure, which
is highly skewed, other explanatory variables such as age, gender, education status
(educ), ethnicity (blhisp), number of chronic conditions (totchr), insurance status (ins)
and income are available in the data.We use log expenditure (lambexp) as the outcome
variable due to skewness in line with previous applications of the data (Marchenko
and Genton 2012; Ogundimu and Collins 2019). Since the decision to spend is likely
to be related to the spending amount, the statistical analysis method that was used by
previous authors is sample selection model. The outcome equation, which is often the
model of interest, contains x = (1, age, f emale, educ, blhisp, totchr , ins) while
the selection equation,w = (x, income). Income is included for the exclusion restric-
tion criteria although its use for this purpose is debatable (see Cameron and Trivedi
2010; Marchenko and Genton 2012).

Table 6 shows the results of the application of the proposed methods to the data.
We obtain the same results for the selection normal model and the Lasso estimator.
This is in consonance with the simulation result where Lasso tends to retain more
irrelevant variables in the model than adaptive Lasso. Both adaptive Lasso and Two-
step estimators set two variables from the outcome model (education and insurance
status) to zero. The two variables are also reported as non-significant at 5% significance
level under the classical selection normal model. As noted earlier, the regularization
methods eliminate the need to retain or remove covariates basedon arbitrary thresholds.

An important hypothesis of no sample selection is H0 : ρ = 0 (equivalently
H0 : atanhρ = 0 and σρ for the adaptive Lasso and Two-step methods respectively).
The reported Wald test for the hypothesis under the classical selection model gave a
P-value of 0.380. This hypothesis will not be rejected at 5% significance level. The
implication of this is that the amount of money spent is unrelated with the decision
to spend, and the outcome can be analyzed separately. As noted by Marchenko and
Genton (2012), and previous authors who analyzed the data, this conclusion is not
plausible.

The inference for sample selection bias under adaptive Lasso suggests the existence
of selection bias at 5% significance level (p = 0.039). Although the proposed adaptive
Lasso estimator was developed under the selection normal model, the result is in
agreement with the analysis of the same data by using the selection-t model proposed
in Marchenko and Genton (2012). In particular, the coefficient estimate of atanhρ
under the selection normal model is -0.131 whereas adaptive Lasso estimate is -0.323.
This estimate is close to the estimate of atanhρ (atanhρ = −0.322) that was reported
in Marchenko and Genton (2012). Similarly, the corresponding parameter estimate
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Table 6 Penalized likelihood for Ambulatory Expenditure Data

Selection Normal Lasso Adaptive Lasso Two-step

Estimate S.E. Estimate S.E Estimate S.E Estimate S.E

Selection Equation

(Intercept) −0.671 0.194 −0.671 0.194 −0.564 0.191 −0.669 0.194

age 0.088 0.027 0.088 0.027 0.077 0.027 0.087 0.028

female 0.663 0.061 0.663 0.061 0.630 0.060 0.664 0.061

educ 0.062 0.012 0.062 0.012 0.062 0.012 0.062 0.012

blhisp −0.364 0.062 −0.364 0.062 −0.350 0.061 −0.366 0.062

totchr 0.797 0.071 0.797 0.071 0.776 0.071 0.796 0.071

ins 0.170 0.063 0.170 0.063 0.114 0.062 0.169 0.063

income 0.003 0.001 0.003 0.001 0.001 0.001 0.003 0.001

Outcome Equation

(Intercept) 5.044 0.228 5.044 0.228 5.438 0.135 5.561 0.121

age 0.212 0.023 0.212 0.023 0.199 0.023 0.192 0.019

female 0.348 0.060 0.348 0.060 0.284 0.060 0.248 0.051

educ 0.019 0.011 0.019 0.011 0 – 0 –

blhisp −0.219 0.060 −0.219 0.060 −0.165 0.061 −0.148 0.050

totchr 0.540 0.039 0.540 0.039 0.507 0.039 0.475 0.033

ins −0.030 0.051 −0.030 0.051 0 – 0 –

ln sigma 0.240 0.015 0.240 0.015 0.247 0.019

atanhρ −0.131 0.150 −0.131 0.150 −0.323* 0.156

IMR −0.665** 0.181

IMR - σρ parameter for inverse Mills ratio.
*P-value = 0.039; **P-value = 0.000

for the inverse Mills ratio (σρ) under the Two-step method resulted in p = 0.000. In
addition, a naive analysis based on missing not at random (MAR) assumption (ρ = 0)
for non-penalized and penalized models did not remove any variable in the outcome
equation.

6 Concluding remarks

This paper proposed amethod for variable selection and estimation of covariate effects
in sample selection models. Data sets that provide information about sample selection
are becoming increasingly common in many fields. If these data sets are analyzed
and variable selection is carried out using conventional methods, then the conclusions
can be misleading. Although many statistical procedures have been developed in the
literature for the analysis of selected samples, there is no existing research on regular-
ized variable selection methods for this model. This is, perhaps, due to the association
between covariates and the outcome submodel as well as the association between
covariates and the selection submodel.
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Based on the results of our simulation and data analysis, we recommend the use of
the ALasso estimator especially in the presence of weak covariate effects. Application
of the ALasso estimator to the Ambulatory expenditure data further corroborate the
usefulness of the method. A key advantage of the proposed estimator is that there is no
need to specify arbitrary thresholds in order to determine the importance of covariates
in the model, which is not the case with the use of P-value.

The applicability of our method depends on correct specification of the sample
selection model. If the profile likelihood of ρ is very flat, then there is limited infor-
mation about selectivity in the data. It is possible to extend our proposal to high
dimensional data settings by avoiding the non-differentiability of Lasso and ALasso
penalty functions using approximation of different norms. Also, it is possible to
accomplish model and variable selection simultaneously by using various parametric
extensions of sample selection models such as the selection-t model (Marchenko and
Genton 2012) and the selection skew-normal model (Ogundimu and Hutton 2016),
robust extensions (Zhelonkin et al. 2016) or by using alternative estimation techniques
such as the EM-algorithm (Zhao et al. 2020). In particular, the oracle property of the
penalized estimators is a pointwise asymptotic feature and does not necessarily hold
for all the points in the parameter space ( Leeb and Pötscher (2005)). Consequently,
the problem of post selection inference for non-random sample deserves further inves-
tigation.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-021-01246-z.
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