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Abstract

We show that the solution to the Brinkman - Darcy - Kelvin - Voigt

equations backward in time depends Hölder continuously upon the final

data. A logarithmic convexity technique is employed and uniqueness of

the solution is simultaneously achieved.

1 Introduction

The problem of analysing the solution to an improperly posed problem for a sys-
tem of partial differential equations has attracted many writers over the years
and continues to do so recently,, see e.g. Agmon [1966], Agmon and Niren-
berg [1967], Ames and Hughes [2005], Ames and Straughan [1997], Benrabah
et al. [2020], Caflisch et al. [2017], Carasso [2013, 2019, 2020], Chirita [2014],
Chirita and Zampoli [2015], Fury [2020], Fury and Hughes [2012],Hetrick and
Hughes [2009], John [1960], Knops and Payne [1968], Yang and Deng [2017]cw.,
In particular, the pioneering paper of John [1960] showed how one could re-
cover a restricted class of stable solutions by requiring an a priori bound at one
particular place. This work has influenced many of the subsequent articles.

There has been a considerable amount of work dealing with solutions to
the Navier - Stokes equations backward in time with regard to establishing
uniqueness, stability (in a sense like that of John [1960]), and structural stability,
cf. Ames and Payne [1994], Carasso [2020], Crispo et al. [2019], Galdi and
Straughan [1988], Harfash [2013, 2014], Payne [1971, 1992, 1993, 1975], Payne
and Straughan [1989, 1999], Straughan [1983]. Such problems are of practical
value in extrapolating from the past and computational methods may be based
on analytical results, as explained in detail by Carasso [2020].

In addition to the Navier - Stokes equations for flow of a linearly viscous
incompressible fluid, there has been considerable interest in describing fluids
which are viscous but remember some of their past history, so called viscoelastic
fluids, see e.g. Amendola and Fabrizio [2010], Amendola et al. [2009], Fabrizio
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et al. [2015], Franchi et al. [2014, 2015a,b], Gatti et al. [2005]. A special class
of these viscoelastic models is known as Kelvin - Voigt materials, Chirita and
Zampoli [2015], and applied as extensions of the Navier - Stokes theory through
the Navier - Stokes - Voigt equations, see e.g. Berselli and Bisconti [2012],
Di Plinio et al. [2018], Sviridyuk and Sukacheva [1998].

The goal of this work is to establish an appropriate stability estimate for the
solution to the Navier - Stokes - Voigt equations backward in time, which we do
by implementing a suitable logarithmic convexity method. Such techniques are
described in a variety of contexts by e.g. Agmon [1966], Ames and Straughan
[1997], Carasso [1994, 1999, 2013, 2019, 2020], Crispo et al. [2019], Knops and
Payne [1968], Payne [1975].

2 The Navier - Stokes -Voigt equations

Let Ω ⊂ R
3 be a bounded domain with boundary Γ sufficiently smooth to allow

use of the divergence theorem. The inner product and norm on L2(Ω) will be
denoted by (·, ·) and ‖ · ‖, respectively.

If the velocity field is denoted by vi then the Navier - Stokes - Voigt equations
may be written as

vi,t − α∆vi,t + vjvi,j = ∆vi − p,i ,

vi,i = 0,
(1)

where without loss of generality for the analysis herein the viscosity and density
have been taken to have value 1, α > 0 is a constant, p is the pressure field, ∆
is the Laplacian, standard indicial notation is employed in conjunction with the
Einstein summation convention, and ,t denotes ∂/∂t, whereas ,i denotes ∂/∂xi.

In this work we reverse time to analyse a solution to the boundary - initial
value problem backward in time. Di Plinio et al. [2018] allow (1) to also contain a
Rayleigh friction term (linear in vi) and we include this. The relevant equations
backward in time may then be written

vi,t − α∆vi,t = vjvi,j −∆vi + p,i + βvi ,

vi,i = 0,
(2)

where β is a constant. Equations (2) hold on the domain Ω× (0, T ], for T <∞,
and the boundary - initial value problem is completed with boundary conditions

vi(x, t) = hi(x, t), x ∈ Γ, t > 0, (3)

and the initial conditions

vi(x, 0) = gi(x), x ∈ Ω. (4)

The boundary - initial value problem consisting of (2) - (4) is denoted by P .
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3 Stability backward in time

To study stability of a solution to P we let ui, p and vi, q be two solutions for
the same boundary data hi, but for different initial data functions gui and gvi .
Define wi = ui − vi and π = p− q, and then from (2) - (4) one finds wi satisfies
the boundary - initial value problem

wi,t − α∆wi,t = ujwi,j + wjvi,j −∆wi + π,i + βwi ,

wi,i = 0,
(5)

holding on Ω× (0, T ], with boundary conditions

wi(x, t) = 0, x ∈ Γ, t > 0, (6)

and initial conditions

wi(x, 0) = w0
i (x), x ∈ Ω, (7)

where w0
i = gui − gvi .

Let ‖·‖p denote the norm on Lp(Ω). We now introduce the constraint classes
for a function. We say φi ∈ M1 if

sup
Ω×(0,T ]

φiφi ≤ M2
1 , (8)

and ψi ∈ M2 if

sup
Ω×(0,T ]

{

‖(ψi,j − ψj,i)(ψi,j − ψj,i)‖3/2 + ‖ψi,tψi,t‖3/2
}

≤ M2
2 , (9)

for constants M1 and M2.
Theorem 1

Suppose ui, vi satisfy P as outlined above with ui ∈ M1, vi ∈ M2. Let also
M be an a priori bound for wi at time T in the following sense,

‖w(T )‖2 + α‖∇w(T )‖2 ≤ M <∞. (10)

Then the solution to P depends Hölder continuously upon the initial data on
compact subsets of [0, T ).
Proof. Define the function F (t) by

F (t) = ‖w(t)‖2 + α‖∇w(t)‖2 . (11)

By differentiation,

F ′(t) = 2(wi, wi,t) + 2α(wi,j , wi,jt). (12)

Next, integrate by parts the wi,jt term and then employ equations (5), to find
after further integration by parts and use of the boundary conditions

F ′(t) = 2‖∇w‖2 + 2(wi, wjvi,j) + 2β‖w‖2.
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Next differentiate again to obtain after some integration by parts

F ′′(t) =2(wi,t, wjvi,j) + 2(wi, wj,tvi,j) + 2(wi, wjvi,jt)

− 4(wi,t,∆wi) + 4β(wi, wi,t).

One now substitutes for ∆wi from (2)1 and after further integration by parts
and use of the boundary conditions one may arrive at the expression

F ′′(t) =4‖ẇ‖2 + 4α‖∇ẇ‖2 − 4(wi,t, ujwi,j)

− 2(wi,t, wj [vi,j − vj,i])− 2(wi,j , wjvi,t),
(13)

where ẇ ≡ wi,t. Introduce the function χi by

χi = wi,t −
1

2
ujwi,j −

1

4
wj(vi,j − vj,i).

Then F ′′ in (13) may be rewritten in the form

F ′′(t) =4‖χ‖2 + 4α‖∇ẇ‖2 − 2(wj , wi,jvi,t)− ‖u · ∇w‖2

− (ujwi,j , wk[vi,k − vk,i])−
1

4
‖wj(vi,j − vj,i)‖

2,
(14)

where

‖wj(vi,j − vj,i)‖
2 =

∫

Ω

wj(vi,j − vj,i)wk(vi,k − vk,i)dx.

Upon employing the arithmetic - geometric mean and Cauchy - Schwarz in-
equalities on the right of (14) we may arrive at

F ′′(t) ≥4‖χ‖2 + 4α‖∇ẇ‖2 − 2(wj , wi,jvi,t)

− 2‖u · ∇w‖2 −
1

2
‖wj(vi,j − vj,i)‖

2.
(15)

We next estimate the last three terms on the right of (15).
Firstly use the Cauchy - Schwarz and Hölder inequalities to see that

(wj , wi,jvi,t) ≤
ǫ

2

∫

Ω

|w|2 |v̇|2dx+
1

2ǫ
‖∇w‖2

≤
ǫ

2
‖w‖26

(

∫

Ω

|v̇|3dx
)2/3

+
1

2ǫ
‖∇w‖2.

Now use the Sobolev inequality ‖w‖6 ≤ c‖w‖H1 for c constant, and then select
ǫ = 1/M2c where M2 is defined in (9). In this way we derive

2(wj , wi,jvi,t) ≤ 2M2c‖∇w‖2. (16)

Using (8) we deduce
2‖u · ∇w‖2 ≤ 2M2

1‖∇w‖2. (17)
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Finally, using (9) and the Sobolev inequality,

1

2
‖wj(vi,j − vj,i)‖

2 ≤
1

2
‖w‖26

(

∫

Ω

[

(vi,j − vj,i)(vi,j − vj,i)
]3/2

dx
)2/3

≤
1

2
c2M2

2 ‖∇w‖2.

(18)

Employing (16) - (18) we find that the last three terms on the right of (15) may
be bounded below by the term −k1‖∇w‖2 where

k1 = 2M2c+
1

2
c2M2

2 + 2M2
1 .

Thus, from (15) we find

F ′′(t) ≥4‖χ‖2 + 4α‖∇ẇ‖2 − k1‖∇w‖2

≥4‖χ‖2 + 4α‖∇ẇ‖2 − kF,
(19)

where k = k1/α.
We now form the combination FF ′′ − (F ′)2 using (19), (12) and (11), and

note that (χi, wi) = (wi, wi,t). Then from (19) we may establish the inequality

FF ′′ − (F ′)2 ≥ 4S2 − kF 2, (20)

where

S2 =(‖w‖2 + α‖∇w‖2)(‖χ‖2 + α‖∇ẇ‖2)

−
[

(wi, χi) + α((∇w,∇ẇ)
]2
,

which is non-negative by virtue of the Cauchy - Schwarz inequality. Whence
from (20) we obtain

FF ′′ − (F ′)2 ≥ −kF 2. (21)

Upon dividing by F 2 we may see that

d2

dt2

[

log
{

F exp(kt2/2)
}

]

≥ 0. (22)

Using the properties of a convex function one may then show that

F (t) ≤ exp
[kt

2
(T − t)

]

[

F (0)
](T−t)/T [

F (T )
]t/(T−t)

. (23)

The a priori bound of the theorem, (10), is now utilized and we derive from (23)

F (t) ≤ K
[

F (0)
](T−t)/T

, t ∈ [0, T ), (24)

whereK(t) =M t/(T−t) exp
[

kt(T−t)/2
]

. The inequality (24) establishes Hölder
continuity for a solution to P on a compact sub-interval of [0, T ) for a solution
in the measure ‖w‖ or ‖∇w‖ and the theorem is proved.
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Corollary 1

Under the conditions of theorem 1 the solution to P is unique.
Proof. By contradiction. Suppose ui is not identically zero and ui 6= 0 for t > 0
whence F (t) > 0 for t ∈ [ǫ, T ]. In this case we divide (21) by F 2 which leads to
(22) on [ǫ, T ]. Fix t ∈ (ǫ, T ) and from (22) we know by properties of a convex
function,

−∞ < log
[

F (t) exp
(kt2

2

)]

≤
(T − t

T − ǫ

)

log
[

F (ǫ) exp
(kǫ2

2

)]

+
( t− ǫ

T − ǫ

)

log
[

F (T ) exp
(kT 2

2

)]

.

For uniqueness F (0) = 0, so we let ǫ → 0 to obtain a contradiction since t is
fixed, and the proof of the Corollary follows.

4 Conclusions

We have derived a precise estimate for a solution to the Navier - Stokes - Voigt
equations backward in time to depend Hölder continuously on the initial data on
compact subsets of the interval [0, T ). We also allowed for the generalized Navier
- Stokes - Voigt system which includes the Rayleigh friction term suggested in
the work of Di Plinio et al. [2018]. The estimate obtained in (24) could be
combined with the ideas of Carasso [2020] to allow one to compute accurate
solutions to the Navier - Stokes - Voigt equations backward in time.
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