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Abstract

Spreading processes on graphs are a natural model for a wide variety of real-world phenomena,
including information spread over social networks and biological diseases spreading over contact
networks. Often, the networks over which these processes spread are dynamic in nature, and can be
modeled with temporal graphs. Here, we study the problem of deleting edges from a given temporal
graph in order to reduce the number of vertices (temporally) reachable from a given starting point.
This could be used to control the spread of a disease, rumour, etc. in a temporal graph. In particular,
our aim is to find a temporal subgraph in which a process starting at any single vertex can be
transferred to only a limited number of other vertices using a temporally-feasible path. We introduce
a natural edge-deletion problem for temporal graphs and provide positive and negative results on its
computational complexity and approximability.

1 Introduction and motivation

A temporal graph is, loosely speaking, a graph that changes with time. A great variety of modern and
traditional networks can be modeled as temporal graphs; social networks, wired or wireless networks
which may change dynamically, transportation networks, and several physical systems are only a few
examples of networks that change over time [35, 43]. Due to its vast applicability in many areas, this
notion of temporal graphs has been studied from different perspectives under various names such as
time-varying [1, 27,50], evolving [11,17,25], dynamic [14,30], and graphs over time [37]; for an attempt
to integrate existing models, concepts, and results from the distributed computing perspective see the
survey papers [12–14] and the references therein. Mainly motivated by the fact that, due to causality,
entities and information in temporal graphs can “flow” only along sequences of edges whose time-labels
are increasing, most temporal graph parameters and optimisation problems that have been studied so far
are based on the notion of temporal paths (see Definition 1 below) and other path-related notions, such
as temporal analogues of distance, diameter, reachability, exploration, and centrality [2–4,23,24,39,42].
Recently, non-path temporal graph problems have also been addressed theoretically, including for example
temporal variations of vertex cover [5], vertex coloring [41], matching [40], and maximal cliques [34,55,56].

We adopt a simple model for such time-varying networks, in which the vertex set remains unchanged
while each edge is equipped with a set of time-labels. This formalism originates in the foundational work
of Kempe et al. [36].

Definition (temporal graph). A temporal graph is a pair (G,λ), where G = (V,E) is an underlying
(static) graph and λ : E → 2N is a time-labeling function which assigns to every edge of G a set of
discrete-time labels.
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Throughout this paper we restrict our attention to graphs in which every edge is active at exactly one
time, so that λ(e) is a singleton set for every e ∈ E(G); abusing notation slightly, we will write λ(e) = t
to indicate that the edge e is (only) present at time t.

Spreading processes on networks or graphs are a topic of significant research across network science [7],
and a variety of application areas [31, 32], as well as inspiring more theoretical algorithmic work [26].
Part of the motivation for this interest is the usefulness of spreading processes for modelling a variety
of natural phenomena, including biological diseases spreading over contact networks, rumours or news
(both fake and real) spreading over information-passing networks, memes and behaviours, etc. The rise of
quantitative approaches in modelling these phenomena is supported by the increasing number and size of
network datasets that can be used as denominator graphs on which processes can spread (e.g. human
mobility and contact networks [48], agricultural trade networks [44], and social networks [38]). Typically,
a vertex in one of these networks represents some entity that has a state in the process (for example,
being infected with a disease, or holding a belief), and edges represent contacts over which the state can
spread to other vertices.

Our work is partly motivated by the need to control contagion (be it biological or informational)
that may spread over contact networks. Data specifying timed contacts that could spread an infectious
disease are recorded in a variety of settings, including movements of humans via commuter patterns and
airline flights [18], and fine-grained recording of livestock movements between farms in most European
nations [45]. There is very strong evidence that these networks play a critical role in large and damaging
epidemics, including the 2009 H1N1 influenza pandemic [10] and the 2001 British foot-and-mouth disease
epidemic [31]. Because of the key importance of timing in these networks to their capacity to spread
disease, methods to assess the susceptibility of temporal graphs and networks to disease incursion have
recently become an active area of work within network epidemiology in general, and within livestock
network epidemiology in particular [9, 47,53,54].

Here, similarly to [21], we focus our attention on deleting edges from (G,λ) in order to limit the
temporal connectivity of the remaining temporal subgraph. To this end, the following temporal extension
of the notion of a path in a static graph is fundamental [36,39].

Definition (Temporal path). A temporal path from u to v in a temporal graph (G,λ) is a path from u
to v in G, composed of edges e0, e1, . . . , ek such that each edge ei is assigned a time t(ei) ∈ λ(ei), where
t(ei) < t(ei+1) for 0 ≤ i < k.

Our contribution. We consider a natural deletion problem for temporal graphs, namely Temporal
Reachability Edge Deletion (for short, TR Edge Deletion), as well as its optimisation version,
and study its computational complexity, both in the traditional and the parameterised sense, subject to
natural parameters. Given a temporal graph (G,λ) and two natural numbers k, h, the goal is to delete at
most k edges from (G,λ) such that, for every vertex v of G, there exists a temporal path to at most h− 1
other vertices.

In Section 3, we show that TR Edge Deletion is NP-complete, even on a very restricted class of
graphs. We give two different reductions. The first shows that, assuming the Exponential Time Hypothesis,
we cannot improve significantly on a brute-force approach when considering how the running-time depends
on the input size and the number of permitted deletions. The second demonstrates that TR Edge
Deletion is para-NP-hard (i.e. NP-hard even for constant-valued parameters) with respect to each one
of the parameters h, maximum degree ∆G, or lifetime of (G,λ) (i.e. the maximum label assigned by λ to
any edge of G).

In Section 4, we turn our attention to approximation algorithms for the optimisation version of
the problem, Min TR Edge Deletion, in which the goal is to find a minimum-size set of edges
to delete. We begin by describing a polynomial-time algorithm to compute a h-approximation to
Min TR Edge Deletion on arbitrary graphs, then show how similar techniques can be applied to
compute a c-approximation on input graphs of cutwidth at most c. We conclude our consideration of
approximation algorithms by showing that there is unlikely to be a polynomial-time algorithm to compute
any constant-factor approximation in general, even on temporal graphs of lifetime two.

In Section 5, we consider exact fixed-parameter tractable (FPT) algorithms. Our hardness results
show that the problem remains intractable when parameterised by h or ∆G alone; here we obtain an
FPT algorithm by parameterising simultaneously by h, ∆G and the treewidth tw(G) of the underlying
(static) graph G. In doing so, we demonstrate a general framework in which a celebrated result by
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Courcelle, concerning relational structures with bounded treewidth (see Theorem 5.2) can be applied to
solve problems in temporal graphs.

Finally, in Section 6 we consider a natural generalization of TR Edge Deletion by restricting the
notion of a temporal path, as follows. Given two numbers α, β ∈ N, where α ≤ β, we require that the
time between arriving at and leaving any vertex on a temporal path is between α and β; we refer to
such a path as an (α, β)-temporal path. The resulting problem, incorporating this restricted version of a
temporal path, is called (α, β)-TR Edge Deletion. This (α, β)-extension of the deletion problem is
well motivated when considering the spread of disease: an upper bound β on the permitted time between
entering and leaving a vertex might represent the time within which an infection would be detected and
eliminated (thus ensuring no further transmission), while a lower bound α might in different contexts
represent either the time between an individual being infected and becoming infectious, or the minimum
time individuals must spend together (i.e. in the same vertex) for there to be a non-trivial probability of
disease transmission. We show that all of our results can be generalised in a natural way to this “clocked”
setting.

2 Preliminaries

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges, respectively. An
edge between two vertices u and v of G is denoted by uv, and in this case u and v are said to be adjacent in
G. For a subset S ⊆ V (G) we denoted by G[S] the subgraph of G induced by S. Given a temporal graph
(G,λ), where G = (V,E), the maximum label assigned by λ to an edge of G, called the lifetime of (G,λ),
is denoted by T (G,λ), or simply by T when no confusion arises. That is, T (G,λ) = max{λ(e) : e ∈ E}.
Throughout the paper we consider temporal graphs with finite lifetime T . Furthermore, we assume that
the given labeling λ is arbitrary, i.e. (G,λ) is given with an explicit label for every edge. We say that
an edge e ∈ E appears at time t if λ(e) = t, and in this case we call the pair (e, t) a time-edge in (G,λ).
Given a subset E′ ⊆ E, we denote by (G,λ) \E′ the temporal graph (G′, λ′), where G′ = (V,E \E′) and
λ′ is the restriction of λ to E \ E′.

We say that a vertex v is temporally reachable from u in (G,λ) if there exists a temporal path
from u to v. Furthermore we adopt the convention that every vertex v is temporally reachable from
itself. The temporal reachability set of a vertex u, denoted by reachG,λ(u), is the set of vertices which
are temporally reachable from vertex u. The temporal reachability of u is the number of vertices in
reachG,λ(u). Furthermore, the maximum temporal reachability of a temporal graph is the maximum of
the temporal reachabilities of its vertices.

In this paper we mainly consider the following problem.

Temporal Reachability Edge Deletion (TR Edge Deletion)

Input: A temporal graph (G,λ), and k, h ∈ N.
Output: Is there a set E′ ⊆ E(G), with |E′| ≤ k, such that the maximum temporal reachability of
(G,λ) \ E′ is at most h?

Note that the problem clearly belongs to NP as a set of edges acts as a certificate (the reachability
set of any vertex in a given temporal graph can be computed in polynomial time [2, 36,39]). It is worth
noting here that the (similarly-flavored) deletion problem for finding small separators in temporal graphs
was studied recently; namely the problem of removing a small number of vertices from a given temporal
graph such that two fixed vertices become temporally disconnected [29,57].

3 Computational hardness

The main results of this section demonstrate that TR Edge Deletion is NP-complete even under very
strong restrictions on the input. Our first result shows that the trivial brute-force algorithm, running in
time nO(k), in which we consider all possible sets of k edges to delete, cannot be significantly improved in
general.

Theorem 3.1. TR Edge Deletion is W[1]-hard when parameterised by the maximum number k of
edges that can be removed, even when the input temporal graph has the lifetime 2. Moreover, assuming
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the Exponential Time Hypothesis (ETH), there is no f(k)τo(k) time algorithm for TR Edge Deletion,
where τ is the size of the input temporal graph.

Proof. We provide a standard parameterised m-reduction from the following W[1]-complete problem.

Clique

Input: A graph G = (V,E).
Parameter: r ∈ N.
Question: Does G contain a clique on at least r vertices?

First note that, without loss of generality, we may assume that r ≥ 3, as otherwise the problem is
trivial. Let (G = (VG, EG), r) be the input to an instance of Clique; we denote n = |VG| and m = |EG|.
We will construct an instance ((H,λ), k, h) of TR Edge Deletion, which is a yes-instance if and only if
(G, r) is a yes-instance for Clique. Note that, without loss of generality we may assume that m > r+

(
r
2

)
;

otherwise there cannot be more than r + 3 vertices of degree at least r − 1 in G, and thus we can check
all possible sets of r vertices with degree at least r − 1 in time O(r3).

We begin by defining H = (VH , EH). The vertex set of H is VH = {s} ∪ VG ∪ EG. The edge set is

EH = {sv : v ∈ VG} ∪ {ve : e ∈ EG, v ∈ e}.

We complete the construction of the temporal graph (H,λ) by setting

λ(e) =

{
1 if e incident to s,

2 otherwise.

Finally, we set k = r and h = 1 + (n− r) + (m−
(
r
2

)
).

a

b c

x y

s

a b c x y

ab bc ac bx cy

Figure 1: Graph G (left) and the corresponding temporal graph (H,λ) (right). The thin edges of (H,λ) appear
in time step 1, and the thick edges appear in time step 2.

We begin by observing that s is the only vertex in (H,λ) whose temporal reachability is more than h.
Note that | reachH,λ(e)| = 3 for all e ∈ EG, and | reachH,λ(v)| ≤ n+ 1 for all v ∈ VG. Thus, as

h = 1 + n− r +m−
(
r

2

)
> 1 + n− r + r +

(
r

2

)
−
(
r

2

)
= n+ 1,

the temporal reachability of any vertex other than s is less than h. Hence, we see that for any E′ ⊆ EH
the maximum temporal reachability of (H,λ) \ E′ is at most h if and only if the temporal reachability of
s in the modified graph is at most h.

Now suppose that G contains a set U ⊆ VG of r vertices that induce a clique. Let E′ = {sv : v ∈ U}
and (H ′, λ′) = (H,λ) \E′. Consider a vertex v ∈ VG: it is clear that v can only belong to reachH′,λ′(s)
if sv ∈ EH \ E′, so no element of U belongs to reachH′,λ′(s). Moreover, for any e ∈ EG, any temporal
path from s to e in (H,λ) must contain precisely two edges, and so must include an endpoint of e; thus,
for any edge e with both endpoints in U , we have e /∈ reachH′,λ′(s). Since U induces a clique, there are
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precisely
(
r
2

)
such edges. It follows that

| reachH′,λ′(s)| ≤ 1 + n+m− |U | − |{uv ∈ EG : u, v ∈ U}|

= 1 + n+m− r −
(
r

2

)
= h,

as required.
Conversely, suppose that we have a set E′ ⊆ EH , with |E′| ≤ k = r, such that | reachH′,λ′(s)| ≤ h,

where (H ′, λ′) = (H,λ) \ E′.
We begin by arguing that we may assume, without loss of generality, that every element of E′ is

incident to s. Let W ⊂ VG be the set of vertices in VG which are incident to some element of E′; we
claim that deleting the set of edges E′′ = {sw : w ∈W} instead of E′ would also reduce the maximum
temporal reachability of (H,λ) to at most h. To see this, consider a vertex x /∈ reachH′,λ′(s). If x ∈ VG,
then we must have sx ∈ E′, and so sx ∈ E′′ implying that there is no temporal path from s to x when
E′′ is deleted. If, on the other hand, x = u1u2 ∈ EG, then E′ must contain at least one edge from each of
the two temporal paths from s to x in (H,λ), namely su1x and su2x. Hence E′ contains at least one
edge incident to each of u1 and u2, so su1, su2 ∈ E′′ and deleting all edges in E′′ destroys all temporal
paths from s to x.

Thus we may assume that E′ ⊆ {sv : v ∈ VG}. We define U ⊆ VG to be the set of vertices in VG
incident to some element of E′, and claim that U induces a clique of cardinality r in G. First note that
|U | ≤ r. Now observe that the only vertices in VG that are not temporally reachable from s in (H ′, λ′)
are the elements of U , and the only elements of EG that are not temporally reachable from s are those
corresponding to edges with both endpoints in U . Thus, if m′ denotes the number of edges in G[U ], we
have

| reachH′,λ′(s)| ≥ 1 + n+m− |U | −m′.
By our assumption that this quantity is at most h, we see that

1 + n+m− r −
(
r

2

)
≥ 1 + n+m− |U | −m′

⇔ |U |+m′ ≥ r +

(
r

2

)
.

Since |U | ≤ r, we have that m′ ≤
(
r
2

)
, with equality if and only if G[U ] is a clique of size r. Thus, in order

to satisfy the inequality above, we must have that |U | = r and that U induces a clique in G, as required.
To prove the lower complexity bound, assume there exists a f(k)τo(k) time algorithm for TR Edge

Deletion. Then using the above reduction and the fact that the size of the temporal graph (H,λ) is at
most 2n2 we conclude that Clique can be solved in f(r)no(r) time which is not possible unless ETH
fails [16].

The W[1]-hardness reduction of Theorem 3.1 also implies that the problem TR Edge Deletion is
NP-complete, even on temporal graphs with lifetime at most two. We note that, for temporal graphs of
lifetime one, the problem is solvable in polynomial time: in this setting, the reachability set of each vertex
is precisely its closed neighbourhood, so the problem reduces to that of deleting a set of at most k edges
so that every vertex has degree at most h− 1 which is solvable in polynomial time [49, Theorem 33.4].

We now demonstrate that TR Edge Deletion remains NP-complete on temporal graphs of lifetime
two even if the underlying graph has bounded degree and the maximum permitted size of a temporal
reachability set is bounded by a constant.

Theorem 3.2. TR Edge Deletion is NP-complete, even when the maximum temporal reachability h
is at most 6 and the input temporal graph (G,λ) has:

1. maximum degree ∆G of the underlying graph G at most 5, and

2. lifetime at most 2.

Therefore TR Edge Deletion is para-NP-hard with respect to the combination of parameters h, ∆G,
and lifetime T (G,λ).
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Proof. As we mentioned in Section 2, the problem trivially belongs to NP. Now we give a reduction from
the following well-known NP-complete problem [52].

3,4-SAT

Input: A CNF formula Φ with exactly 3 variables per clause, such that each variable appears in at
most 4 clauses.
Output: Does there exists a truth assignment satisfying Φ?

Let Φ be an instance of 3, 4-SAT with variables x1, . . . , xn, and clauses C1, . . . , Cm. We may assume
without loss of generality that every variable xi appears at least once negated and at least once unnegated
in Φ. Indeed, if a variable xi appears only negated (resp. unnegated) in Φ, then we can trivially set
xi = 0 (resp. xi = 1) and then remove from Φ all clauses where xi appears; this process would provide an
equivalent instance of 3,4-SAT of smaller size. Now we construct an instance ((G,λ), k, h) of TR Edge
Deletion which is a yes-instance if and only if Φ is satisfiable.

vxi

xixi

2

1111

2

Figure 2: The gadget corresponding to variable xi. The number beside an edge is the time step at which that
edge appears. The bold edges are the ones we refer to as literal edges.

We construct (G,λ) as follows. For each variable xi we introduce in G a copy of the subgraph shown
in Figure 2, which we call an xi-gadget. There are three special vertices in an xi-gadget: xi and xi, which
we call literal vertices, and vxi

which we call the head vertex of xi-gadget. All the edges incident to vxi

appear in time step 1, the other two edges of xi-gadget, which we call literal edges, appear in time step
2. Additionally, for every clause Cs we introduce in G a clause vertex Cs that is adjacent to the three
literal vertices corresponding to the literals of Cs. All the edges incident to Cs appear in time step 1. See
Figure 3 for illustration. Finally, we set k = n and h = 6.

First recall that, in Φ, every variable xi appears at least once negated and at least once unnegated.
Therefore, since every variable xi appears in at most four clauses in Φ, it follows that each of the two
vertices corresponding to the literals xi, xi is connected with at most three clause vertices. Therefore the
degree of each vertex corresponding to a literal in the constructed temporal graph (G,λ) (see Figure 3) is
at most five. Moreover, it can be easily checked that the same also holds for every other vertex of (G,λ),
and thus ∆G ≤ 5.

We continue by observing temporal reachabilities of the vertices of (G,λ). A literal vertex can only
temporally reach its neighbours and so, by the argument above, has temporal reachability at most 6
(including the vertex itself). The head vertex of a gadget temporally reaches only the vertices of the
gadget, hence the temporal reachability of any head vertex in (G,λ) is 7. Any other vertex belonging
to a gadget can temporally reach only its unique neighbour in G. Every clause vertex can reach only
the corresponding literal vertices and their neighbours incident to the literal edges. Hence the temporal
reachability of every clause vertex in (G,λ) is 7. Therefore in our instance of TR Edge Deletion we
only need to care about temporal reachabilities of the clause and head vertices.

Now we show that, if there is a set E of n edges such that the maximum temporal reachability of
the modified graph (G,λ) \ E is at most 6, then Φ is satisfiable. First, notice that since the temporal
reachability of every head vertex is decreased in the modified graph and the number of gadgets is n,
the set E contains exactly one edge from every gadget. Hence, as the temporal reachability of every
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clause vertex Cs is also decreased, set E must contain at least one literal edge that is incident to a literal
neighbour of Cs. We now construct a truth assignment as follows: for every literal edge in E we set
the corresponding literal to TRUE. If there are unassigned variables left we set them arbitrarily, say, to
TRUE.

Since E has one edge in every gadget, every variable was assigned exactly once. Moreover, by the
above discussion, every clause has a literal that is set to TRUE by the assignment. Hence the assignment
is well-defined and satisfies Φ.

To show the converse, given a truth assignment (α1, . . . , αn) satisfying Φ we construct a set E of
n edges such that the maximum temporal reachability of (G,λ) \ E is at most 6. For every i ∈ [n] we
add to E the literal edge incident to xi if αi = 1, and the literal edge incident to xi otherwise. By the
construction, E has exactly one edge from every gadget. Moreover, since the assignment satisfies Φ,
for every clause Cs set E contains at least one literal edge corresponding to one of the literals of Cs.
Hence, by removing E from (G,λ), we strictly decrease temporal reachability of every head and clause
vertex.

vxi

xixi

2

1111

2

vxj

xjxj

2

1111

2

vxk

xkxk

2

1111

2

Cs

111

Figure 3: A subgraph of a temporal graph corresponding to an instance of 3,4-SAT.

4 Approximability

Given the strength of the hardness results proved in Section 3, it is natural to ask whether the problem
admits efficient approximation algorithms for the following optimisation problem.

Minimum Temporal Reachability Edge Deletion (Min TR Edge Deletion)

Input: A temporal graph (G,λ) and h ∈ N.
Output: A set X of edges of minimum size such that the maximum temporal reachability of
(G,λ) \X is at most h.

We begin with some more notation. If (G,λ) is a temporal graph and v ∈ V (G), we say that T is a
reachable subtree for v if T is a subtree of G, v ∈ V (T ) and, for all u ∈ V (T ) \ {v}, there is a temporal
path from v to u in (T, λ′), where λ′ is the restriction of λ to the edges of T . We first observe that, if
a temporal graph has maximum reachability more than h, we can efficiently find a minimal reachable
subtree witnessing this fact.

Lemma 4.1. Let (G,λ) be a temporal graph, and h a positive integer. There is an algorithm running in
polynomial time which, on input ((G,λ), h),

1. if the maximum temporal reachability of (G,λ) is at most h, outputs “YES”;

2. if the maximum temporal reachability of (G,λ) is greater than h, outputs a vertex v ∈ V (G) and a
reachable subtree T for v where T has exactly h+ 1 vertices.
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Proof. For any vertex v ∈ V (G), carrying out a version of Dijkstra’s algorithm adapted to include
temporal information starting from v for up to h steps will either identify a reachable subtree for v on
h+ 1 vertices or determine that no such subtree exists. Thus, by repeating this process for each vertex
v ∈ V (G) we can either find some pair (v, T ) such that T has h+ 1 vertices and is a reachable subtree for
v, or determine that no vertex has a reachable subtree with h+ 1 vertices. In the latter case, it is clear
that no vertex has a temporal reachability set of size more than h, so we can safely output “YES”.

Let h be a positive integer and (G = (V,E), λ) be a temporal graph. We say that an edge set
E′ ⊆ E is a valid deletion in (G = (V,E), λ) with respect to h if the maximum temporal reachability of
(G = (V,E), λ)\E′ is at most h. Where h is clear from the context, we may not refer to it explicitly. We
now make a simple observation about valid deletions.

Lemma 4.2. Let (G,λ) be a temporal graph and h a positive integer. Suppose that T is a reachable
subtree for some v ∈ V (G) and that T has more than h vertices. If E′ ⊆ E(G) is a valid deletion in
(G = (V,E), λ) with respect to h, then |E′ ∩ E(T )| ≥ 1.

Proof. Suppose, for a contradiction, that E′ does not contain any edge of T . Then T is a subgraph of
G′[V (T )] so, for every vertex u ∈ V (T ) \ {v}, G′[V (T )] and hence G′ contains a temporal path from v to
u. It follows that V (T ) ⊆ reach(G′,λ′)(v) and hence | reach(G′,λ′)(v)| > h, contradicting the assumption
that E′ is a valid deletion.

Using these two observations, we now describe our first approximation algorithm.

Theorem 4.3. There exists a polynomial-time algorithm to compute an h-approximation to Min TR
Edge Deletion, where h denotes the maximum permitted reachability.

Proof. Let ((G,λ), h) be an input instance of Min TR Edge Deletion, and let Eopt ⊆ E be a minimum-
cardinality edge set such that (G,λ) \Eopt has temporal reachability at most h. It suffices to demonstrate
that we can find in polynomial time a set E′ ⊆ E such that (G,λ) \E′ has temporal reachability at most
h, and |E′| ≤ h|Eopt|. We claim that the following algorithm achieves this.

1. Initialise E′ := ∅.

2. While (G,λ) has reachability greater than h:

(a) Find a pair (v, T ) such that v ∈ V (G), T is a reachable subtree for v and |T | = h+ 1.

(b) Add E(T ) to E′, and update (G,λ)← (G,λ) \ E′.

3. Return E′.

We begin by considering the running time of this algorithm. By Lemma 4.1 we can determine whether
to execute the while loop and, if we do enter the loop, execute Step 2(a), all in polynomial time. Steps
1 and 2(b) can clearly both be carried out in linear time. Moreover, the total number of iterations of
the while loop is bounded by the number of edges in G, so we see that the algorithm will terminate in
polynomial time.

At every iteration, the algorithm removes exactly h edges, while the optimum deletion set Eopt must
remove at least one of these h edges. Therefore, in total, we remove at most h|Eopt| edges. To complete
the proof, we observe that, by construction, the identified set E′ is a valid deletion set.

We now demonstrate that we can improve on this general approximation algorithm when the underlying
graph has certain useful properties, in particular when the cutwidth is bounded.

The cutwidth of a graph G = (V,E) is the minimum integer c such that the vertices of G can be
arranged in a linear order v1, . . . , vn, called a layout, such that for every i, 1 ≤ i < n the number of edges
with one endpoint in v1, ..., vi and one in vi+1, ..., vn is at most c. Given a layout v1, v2, . . . , vn, we say
that edges with one endpoint in v1, ..., vi and one in vi+1, ..., vn span vi, vi+1, and say that the maximum
number of edges spanning a pair of consecutive vertices is the cutwidth of the layout. For any constant c,
Thilikos et al. [51] give a linear-time algorithm to generate a layout of cutwidth at most c if one exists.

We can use a similar argument to that in Theorem 4.3 to give a polynomial-time algorithm to compute
a c-approximation to Min TR Edge Deletion, where c is the cutwidth of the underlying graph of the
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input temporal graph. In addition to Lemma 4.2, we will also make use of the following definition and
observation:

Let G = (V,E) be a graph. A cut (A,B) of G is a partition of V into two subsets A and B. The
cut-set of cut (A,B) is the set {ab ∈ E | a ∈ A, b ∈ B} of edges that have one endpoint in A and the
other endpoint in B.

Lemma 4.4. Let h be a positive integer, (G = (V,E), λ) be a temporal graph, (A,B) be a cut of G, and
E′ be the cut-set of (A,B). If E′A and E′B are valid deletion sets for (G[A], λ|E(G[A])), (G[B], λ|E(G[B])),
respectively, then E′A ∪ E′B ∪ E′ is a valid deletion set for (G = (V,E), λ).

We now describe a cutwidth approximation algorithm:

Theorem 4.5. There exists a polynomial-time algorithm to compute a c-approximation to Min TR
Edge Deletion provided that a layout of cutwidth c is given.

Proof. Let ((G = (V,E), λ), h) be the input to Min TR Edge Deletion, and suppose that the layout
v1, . . . , vn of V , with cutwidth c, is given. Consider the algorithm:

1. Initialise E′ := ∅.

2. Initialise i := 1.

3. While (G,λ) has reachability greater than h:

(a) Find the maximum j ∈ {i, . . . , n} such that the maximum reachability in the subgraph
(G[{vi, . . . , vj}], λ|E(G[{vi,...,vj}])) is at most h.

(b) Add all edges that span vj , vj+1 to E′, and update (G,λ)← (G,λ) \ E′.
(c) Update i← j + 1

4. Return E′.

First we consider the running time of this algorithm: within the loop, both 3(a) and 3(b) can be executed
in polynomial time. The loop itself will execute at most |V | times, and the logical condition can be
evaluated in polynomial time. Thus the overall running time is polynomial.

At every iteration the algorithm detects a part G[vi, ..., vj+1] of the graph, from which the optimum
solution must delete at least one edge (by Lemma 4.2). In this case the algorithm deletes at most c edges,
while guaranteeing that no further edge from within G[vi, ..., vj+1] needs to be deleted in subsequent steps
(by Lemma 4.4, and because the set deleted is the cut-set of cut ({vi, . . . , vj}, {vi, . . . , vn} \ {vi, . . . , vj})
in G[vi, ..., vn]. Thus the algorithm provides a c-approximation of the optimum solution.

Then, for any fixed cutwidth c, using the layout generation algorithm given by Thilikos et al. [51] and
the algorithm described above, we can give a cutwidth-approximation to Min TR Edge Deletion for
graphs with cutwidth c.

Corollary 4.6. There exists a polynomial-time algorithm to compute a c-approximation to Min TR
Edge Deletion whenever the cutwidth of the input graph is at most c.

Note that as paths have cutwidth one, Corollary 4.6 gives us an exact polynomial-time algorithm for
Min TR Edge Deletion on paths.

We conclude this section by demonstrating that there is unlikely to be a polynomial-time algorithm to
compute any constant factor approximation to Min TR Edge Deletion in general, even for temporal
graphs of lifetime two.

Theorem 4.7. Unless P = NP , there exists a natural number c such that for every δ ∈
(

0, 1
c+2

)
, Min

TR Edge Deletion cannot be approximated in polynomial time to within a factor of δ lnn, where n is
the number of vertices in the input temporal graph, even if the input temporal graph has lifetime two.
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Proof. To prove the theorem we provide a reduction from the Set Cover problem, which given a family
S of subsets of a ground set U asks for a minimum size subfamily S ′ ⊆ S that covers U , i.e. the union of
the sets in S ′ equals the ground set. The result will be derived from the reduction and the fact that,
unless P = NP , for every ε ∈ (0, 1), Set Cover cannot be approximated to within factor of (1− ε) lnN
on instances with at most N c sets, where N is the size of the ground set and c is some natural constant1.

Let (U,S) be an instance of Set Cover, where U = {1, 2, . . . , N}, S = {S1, S2, . . . , SM}, and
M ≤ N c. Let fi denote the frequency of element i ∈ U , i.e. fi = |{S : S ∈ S and i ∈ S}| and let
` = max{fi : i ∈ U}. We define the Min TR Edge Deletion instance ((G,λ), h) as follows. The
vertex set V (G) of the underlying graph G is

U ∪ S ∪ {S′1, S′2, . . . , S′M} ∪ {dij : i ∈ U, j ∈ {1, . . . , 2(`− fi) +N}}.

Thus, since M ≤ N c, the number n of vertices in the constructed graph G is

n ≤ N + 2M +N(2(M − 1) +N) ≤ N c(3N + 2)

The edge set of G is such that

1. SiS
′
i ∈ E(G) for every i ∈ [M ];

2. qdqj ∈ E(G) for every q ∈ [N ] and j ∈ [2(`− fq) +N ]; and

3. G[U ∪ S] is the bipartite element-set incidence graph of S, i.e. the bipartite graph with parts U
and S in which i ∈ U is adjacent to S ∈ S if and only if i ∈ S.

Figure 4 illustrates the structure of (G,λ). The edges in {SiS′i | i ∈ [M ]} appear only in time step 2 and
all the other edges appear only in time step 1. Finally, we set h = 2`+N .

1 2 3 N· · · · · ·

d11 d12 · · ·
d21 d22 · · ·

d31 d32 · · ·
dN1 dN2 · · ·

S1 S2 S3 SM· · · · · ·
S′
1 S′

2 S′
3 S′

M· · · · · ·
Figure 4: The temporal graph (G,λ) corresponding to an instance (U,S) of Set Cover.

We claim that the size of a minimum subfamily of S that covers U is equal to the size of a minimum
set X of edges such that the maximum temporal reachability of (G,λ) \X is at most h.

We start by observing that the temporal reachability of every vertex i ∈ U is 2(`− fi) +N + 2fi + 1 =
2`+N +1, the temporal reachability of Sj ∈ S is 2+ |Sj | ≤ 2+N ≤ 2`+N , and the temporal reachability
of any other vertex is 2. Therefore, in order to limit the temporal reachabilities of the vertices of (G,λ) to
h = 2`+N , it is necessary and sufficient to reduce the temporal reachability of every vertex in U by one.

Next, we show that, if X is a feasible solution of Min TR Edge Deletion on ((G,λ), h), then there
exists a feasible solution X ′ such that |X ′| ≤ |X| and X ′ ⊆ {SiS′i | i ∈ [M ]}. For this we notice that
none of the edges incident with i ∈ U affects the temporal reachability of j ∈ U for any j ∈ [N ] \ {i}.
Therefore, if X contains an edge incident with i, excluding from X all such edges and adding to X an
edge SpS

′
p with i ∈ Sp (if there is no such edge in X yet), preserves the feasibility of X. By repeating

this procedure successively for every vertex in U , we obtain a set X ′ with the desired properties. Note
that X ′ can be constructed from X in time linear in |X|.

1This fact follows from the reduction given by Moshkovitz [46] (see Definition 3 in [46]), which proves the (1− ε) lnN-
approximation hardness of Set Cover assuming the projection games conjecture. This result was subsequently strengthened
by Dinur and Steurer [20] by proving the same hardness result for Set Cover under the assumption that P6=NP.
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To complete the proof of the claim, it remains to show that a set

X = {St1S′t1 , St2S′t2 , . . . , StkS′tk}

is a feasible solution of Min TR Edge Deletion on ((G,λ), h) if and only if {St1 , St2 , . . . , Stk} is a set
cover of U , which immediately follows from the observation that the temporal reachability of i ∈ U in
(G,λ)\X is strictly smaller than that of i in (G,λ) if and only if i is contained in Stj for some StjS

′
tj ∈ X.

Now, suppose there exists a polynomial-time algorithm A that for some δ ∈
(

0, 1
c+2

)
approximates

Min TR Edge Deletion to within a factor of δ lnn, where n is the number of vertices in the input
temporal graph. We will show that using A the Set Cover problem on instances with at most N c sets
can be efficiently approximated to within a factor of (1− ε) lnN for some ε ∈ (0, 1), which is not possible
unless P = NP [20]. Let (U,S) be an arbitrary N -element Set Cover instance with N ≥ 4. First, we
construct in polynomial time, as in the reduction, the corresponding Min TR Edge Deletion instance
((G,λ), h). Then, using A we find a δ lnn-approximate solution X for ((G,λ), h). By the above discussion,
in linear time we can construct from X a δ lnn-approximate set cover S ′ of U . Since, by construction,
the number n of vertices in G is at most N c(3N + 2), and δ lnn ≤ δ(c + 2) lnN for every N ≥ 4, we
conclude that S ′ is a (1− ε) lnN -approximate solution for (U,S), where ε = 1− δ(c+ 2) ∈ (0, 1).

5 An exact FPT algorithm

Our results in the previous sections (see e.g. Theorem 3.2) imply that TR Edge Deletion is para-
NP-hard, when simultaneously parameterised by h and ∆G. In the current section we complement
these results by showing that TR Edge Deletion admits an FPT algorithm, when simultaneously
parameterised by h, ∆G, and tw(G), where tw(G) is the treewidth of G.

Our results (see Theorem 5.4) illustrate how a celebrated theorem by Courcelle (see Theorem 5.2) can
be applied to solve temporal graph problems, following a general framework that could potentially be
applied to many other temporal problems as well: (i) we define a suitable family τ of relations (i.e. a
suitable relational vocabulary) and a Monadic Second Order (MSO) formula φ (of length `) that expresses
our temporal graph problem at hand; (ii) we represent an arbitrary input temporal graph (G,λ) with
an equivalent relational structure A (of treewidth at most t); (iii) we apply Courcelle’s general theorem
which solves our problem at hand in time linear to the size of the relational structure A, whenever both `
and t are bounded; that is, in time f(t, `) · ||A||.

Here, we apply this general framework to the particular problem TR Edge Deletion (by appropriately
defining τ , φ, and A) such that ` only depends on our parameter h, while t only depends on ∆G and
tw(G); this yields our FPT algorithm. Here, as it turns out, the size of A is quadratic on the size of the
input temporal graph (G,λ). Before we present the main result of this section (see Section 5.2), we first
present in Section 5.1 some necessary background on logic and on tree decompositions of graphs and
relational structures. For any undefined notion in Section 5.1, we refer the reader to [28].

5.1 Preliminaries for the algorithm

Treewidth of graphs

Given any tree T , we will assume that it contains some distinguished vertex r(T ), which we will call
the root of T . For any vertex v ∈ V (T ) \ {r(T )}, the parent of v is the neighbour of v on the unique
path from v to r(T ); the set of children of v is the set of all vertices u ∈ V (T ) such that v is the parent
of u. The leaves of T are the vertices of T whose set of children is empty. We say that a vertex u is a
descendant of the vertex v if v lies somewhere on the unique path from u to r(T ). In particular, a vertex
is a descendant of itself, and every vertex is a descendant of the root. Additionally, for any vertex v, we
will denote by Tv the subtree induced by the descendants of v.

We say that (T,B) is a tree decomposition of G if T is a tree and B = {Bs : s ∈ V (T )} is a collection
of non-empty subsets of V (G) (or bags), indexed by the nodes of T , satisfying:

(1) for all v ∈ V (G), the set {s ∈ T : v ∈ Bs} is nonempty and induces a connected subgraph in T ,

(2) for every e = uv ∈ E(G), there exists s ∈ V (T ) such that u, v ∈ Bs.
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The width of the tree decomposition (T,B) is defined to be max{|Bs| : s ∈ V (T )} − 1, and the treewidth
of G is the minimum width over all tree decompositions of G.

Although it is NP-hard to determine the treewidth of an arbitrary graph [6], the problem of determining
whether a graph has treewidth at most w (and constructing such a tree decomposition if it exists) can be
solved in linear time for any constant w [8]; note that this running time depends exponentially on w.

Theorem 5.1 (Bodlaender [8]). For each w ∈ N, there exists a linear-time algorithm, that tests whether
a given graph G = (V,E) has treewidth at most w, and if so, outputs a tree decomposition of G with
treewidth at most w.

Relational structures and monadic second order logic

A relational vocabulary τ is a set of relation symbols. Each relation symbol R has an arity, denoted
arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure, consists of a set A, called the universe, and
an interpretation RA ⊆ Aarity(R) of each relation symbol R ∈ τ . We write a ∈ RA or RA(a) to denote
that the tuple a ∈ Aarity(R) belongs to the relation RA.

We briefly recall the syntax and semantics of first-order logic. We fix a countably infinite set of
(individual) variables, for which we use small letters. Atomic formulas of vocabulary τ are of the form:

1. x = y or

2. R(x1 . . . xr),

where R ∈ τ is r-ary and x1, . . . , xr, x, y are variables. First-order formulas of vocabulary τ are built
from the atomic formulas using the Boolean connectives ¬,∧,∨ and existential and universal quantifiers
∃,∀.

The difference between first-order and second-order logic is that the latter allows quantification
not only over elements of the universe of a structure, but also over subsets of the universe, and even
over relations on the universe. In addition to the individual variables of first-order logic, formulas of
second-order logic may also contain relation variables, each of which has a prescribed arity. Unary
relation variables are also called set variables. We use capital letters to denote relation variables. To
obtain second-order logic, the syntax of first-order logic is enhanced by new atomic formulas of the
form X(x1 . . . xk), where X is k-ary relation variable. Quantification is allowed over both individual
and relation variables. A second-order formula is monadic if it only contains unary relation variables.
Monadic second-order logic is the restriction of second-order logic to monadic formulas. The class of all
monadic second-order formulas is denoted by MSO.

A free variable of a formula φ is a variable x with an occurrence in φ that is not in the scope of a
quantifier binding x. A sentence is a formula without free variables. Informally, we say that a structure
A satisfies a formula φ if there exists an assignment of the free variables under which φ becomes a true
statement about A. In this case we will write A |= φ.

Treewidth of relational structures

The definition of tree decompositions and treewidth generalizes from graphs to arbitrary relational
structures in a straightforward way. A tree decomposition of a τ -structure A is a pair (T,B), where T is a
tree and B a family of subsets of the universe A of A such that:

(1) for all a ∈ A, the set {s ∈ V (T ) : a ∈ Bs} is nonempty and induces a connected subgraph
(i.e. subtree) in T ,

(2) for every relation symbol R ∈ τ and every tuple (a1, . . . , ar) ∈ RA, where r := arity(R), there is a
s ∈ V (T ) such that a1, . . . , ar ∈ Bs.

The width of the tree decomposition (T,B) is the number max{|Bs| : s ∈ V (T )} − 1. The treewidth
tw(A) of A is the minimum width over all tree decompositions of A.

We will make use of the version of Courcelle’s celebrated theorem for relational structures of bounded
treewidth, which, informally, says that the optimisation problem definable by an MSO formula can be
solved in FPT time with respect to the treewidth of a relational structure. The formal statement is an
analogue of a similar theorem for the model-checking problem.
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Theorem 5.2 (analogue of Theorem 9.21 in [19]). Let φ be an MSO formula with a free set variable
E, and let A be a relational structure on universe A, where tw(A) ≤ t. Then, given a width-t tree
decomposition of A, a minimum-cardinality set E ⊆ A such that A satisfies φ(E) can be computed in time

f(t, `) · ||A||,
where f is a computable function, ` is the length of φ, and ||A|| is the size of A.

5.2 The FPT algorithm

In this section we present an FPT algorithm for TR Edge Deletion when parameterised simultaneously
by three parameters: h, ∆G, and tw(G). Our strategy is first, given an input temporal graph (G,λ), to
construct a relational structure AG,λ whose treewidth is bounded in terms of ∆G and tw(G). Then we
construct an MSO formula φh with a unique free set variable E, such that AG,λ satisfies φh(E) for some
E ⊆ E(G) if and only if the maximum reachability of (G,λ) \E is at most h. Finally, we apply Theorem
5.2 to find the minimum cardinality of such a set E ⊆ E(G). If the minimum cardinality is at most k,
then ((G,λ), k, h) is a yes-instance of the problem, otherwise it is a no-instance.

We note that in the setting we consider in this paper, that is temporal graphs in which each edge
is active at a single timestep, the construction below might be simplified slightly; however, in order to
demonstrate the flexibility of this general framework, we choose to define a relational structure which
would allow us to represent temporal graphs in which edges may be active at more than one timestep.
Observe that Theorem 5.4 can immediately be adapted to this more general context if we replace ∆G by
the maximum temporal total degree of the input temporal graph (i.e. the maximum number of time-edges
incident with any vertex).

Given a temporal graph (G,λ), we define a relational structure AG,λ as follows. The ground set AG,λ
consists of

• the set V (G) of vertices in G,

• the set E(G) of edges in G, and

• the set of all time-edges of (G,λ), i.e. the set Λ(G,λ) = {(e, t) | e ∈ E(G), t ∈ λ(e)}.
On this ground set AG,λ, we define three binary relations I, R, and L as follows:

1. (v, e) ∈ I if and only if v ∈ V (G), e ∈ E(G), and v is incident to e.

2. ((e1, t1), (e2, t2)) ∈ R if and only if the following conditions hold:

(a) (e1, t1), (e2, t2) ∈ Λ(G,λ);

(b) e1, e2 share a vertex in G;

(c) t1 < t2.

3. (f, (e, t)) ∈ L if and only if f ∈ E(G), (e, t) ∈ Λ(G,λ), and f = e.

First we show that the treewidth of AG,λ is bounded by a function of ∆G and tw(G).

Lemma 5.3. The treewidth of AG,λ is at most (2∆G + 1)(tw(G) + 1)− 1.

Proof. To prove the lemma we show how to modify an optimal tree decomposition of G into a desired tree
decomposition of AG,λ. Suppose that (T,B) is a tree decomposition of G of width tw(G). The relational
structure AG,λ then has a tree decomposition (T,B′), where, for every s ∈ V (T ),

B′s = Bs∪
⋃
v∈Bs

{e : e ∈ E(G), e is incident to v}∪
⋃
v∈Bs

{(e, t) : (e, t) ∈ Λ(G,λ), e is incident to v}.

It is clear that
|B′s| ≤ |Bs|+ 2∆G|Bs| ≤ (2∆G + 1)(tw(G) + 1)

for all s ∈ V (T ), and it is easy to verify that (T,B′) is indeed a tree decomposition for AG,λ.
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Using this, we now provide the main result of this section.

Theorem 5.4. TR Edge Deletion admits an FPT algorithm with respect to the combined parameter
of h, ∆G, and tw(G).

Proof. Note that the input to TR Edge Deletion is a temporal graph (G,λ). Note also that, by
Theorem 5.1, we can compute a minimum tree decomposition of any (static) graph G by an FPT algorithm,
parameterised by treewidth. Furthermore, it follows from the proof of Lemma 5.3, a tree decomposition
of the underlying (static) graph G can be transformed in linear time (in the size of the temporal graph
(G,λ)) into the tree decomposition of AG,λ. Therefore, since such a tree decomposition of AG,λ can be
computed in linear time overall, we assume here that such a decomposition is already computed.

By Lemma 4.1, if the temporal reachability of a vertex u is greater than h, then (G,λ) contains a
reachable subtree for u with h+ 1 vertices. To express this property in first-order logic, we first introduce
some auxiliary notation. Let Sh be a fixed set of rooted trees with vertex set [h+ 1] such that Sh contains
exactly one element from every isomorphism class of rooted trees on h+ 1 vertices. We assume that the
edges of every tree S ∈ Sh are labelled by distinct numbers from [h], and we denote the label of an edge
e ∈ E(S) by σ(e). We denote by ai, bi ∈ [h+ 1] the smallest and the largest endpoint of the edge σ−1(i),
respectively. Given a rooted tree S ∈ Sh, we define ρ(S) to be the following set of pairs of edge labels

{(
σ(e1), σ(e2)

)
: e1, e2 ∈ E(S),∃v ∈ V (S)

such that e1 lies on the path from v to the root of S, and v is incident to e1, e2

}
.

We now define a first-order formula expressing the property that there is some copy of S in G such that
all vertices in this copy are temporally reachable in (G,λ) from the root via edges in S.

θ(S) =
(
∃ distinct v1, v2, . . . , vh+1 ∈ V (G)

)(
∃(e1, t1), . . . , (eh, th) ∈ Λ(G,λ)

)(
∃e′1, . . . , e′h ∈ E(G)

)
h∧
i=1

L(e′i, (ei, ti)) ∧
h∧
i=1

(
I(vai , e

′
i) ∧ I(vbi , e

′
i)
)
∧

∧
(i,j)∈ρ(S)

R((ei, ti), (ej , tj)).

In our modified temporal graph (that is, the graph obtained by deleting edges), the maximum temporal
reachability is at most h if and only if there is no copy S of a rooted tree on h+ 1 vertices in G such
that all vertices of S are temporally reachable in (G,λ) from the root via edges in S. We therefore define
another formula, which captures the property that in any copy of such a tree, at least one edge must
belong to the set E of removed edges:

θ′(S,E) =
(
∀ distinct v1, v2, . . . , vh+1 ∈ V (G)

)(
∀(e1, t1), . . . , (eh, th) ∈ Λ(G,λ)

)(
∀e′1, . . . , e′h ∈ E(G)

)
[( h∧

i=1

L(e′i, (ei, ti)) ∧
h∧
i=1

(
I(vai , e

′
i) ∧ I(vbi , e

′
i)
)
∧

∧
(i,j)∈ρ(S)

R((ei, ti), (ej , tj))

)

=⇒ ∃e ∈ E
( ∨
i∈[h]

L(e, (ei, ti))

)]
.

We can now define an MSO formula which is true if and only if the deletion of a given set E of edges
ensures that there is no “bad” subtree.

φh(E) =
∧
S∈Sh

θ′(S,E).

Optimising to find the smallest possible set E satisfying φh(E) is then equivalent to solving TR Edge
Deletion. Note that the length of the formula depends only on h. The result then follows from the
application of Theorem 5.2 to the MSO formula φh.
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6 A “clocked” generalization of temporal reachability

In many applications, we might want to generalise our notion of temporal reachability: we might require
that the time between arriving at and leaving any vertex on a temporal path falls within some fixed range.
For example, in the context of disease transmission, an upper bound on the permitted time between
entering and leaving a vertex might represent the time within which an infection would be detected and
eliminated (thus ensuring no further transmission). On the other hand, a lower bound might represent
the time before an individual becomes infectious or, in the case of vertices corresponding to multiple
individuals in the same location (e.g. animals on a farm or humans in the same household) the minimum
time individuals must spend together for there to be a non-trivial probability of disease transmission (so
that one individual brings the infection to the location, but another transmits it onwards). Motivated
by this, we now define a generalized notion of temporal reachability which allows for such “clocked”
restrictions. For the rest of the section we fix two natural numbers α and β such that α ≤ β.

Definition. Let (G,λ) be a temporal graph. An (α, β)-temporal walk from u to v in (G,λ) is a walk
u = v0 . . . v` = v in G such that, for each 1 ≤ i ≤ `−1, α ≤ λ(vivi+1)−λ(vi−1vi) ≤ β. An (α, β)-temporal
path from u to v in (G,λ) is an (α, β)-temporal walk along which all vertices are distinct.

Notice that, in this setting, the notion of reachability differs depending on whether we allow u to
reach v via an (α, β)-temporal walk or only via an (α, β)-temporal path, since it is possible for there to
exist an (α, β)-temporal walk from u to v but no (α, β)-temporal path; for an example, see Figure 5. The
most appropriate choice of definition will depend upon the specific context. When considering the spread
of a disease, if each vertex corresponds to an individual and an individual becomes immune to the disease
upon recovery, then we should consider reachability via temporal paths only. On the other hand, if an
individual can be infected with the same disease on multiple occasions, or if vertices in fact represent a
group of individuals (e.g. the animals on a particular farm, or humans in the same household), then the
notion of (α, β)-temporal walks provides a more realistic model.

a b

d c

e1

24

3

5

Figure 5: There exists a (1,1)-temporal walk from a to e, but there is no (1,1)-temporal path between the vertices.
The (1,1)-reachability set of a contains all the vertices of the graph, and no edge can be removed without reducing
the reachability set.

Here, we focus on the latter setting, for two reasons. Firstly, from an application perspective, we
are particularly interested in the setting of livestock trade networks, in which it is to be expected that
a single vertex (corresponding to a farm or similar) could be infected repeatedly as they restock with
fresh animals. Secondly, even the problem of deciding the existence or otherwise of an (α, β)-temporal
path between two vertices is known to be NP-complete [15], whereas (α, β)-temporal walks can be found
efficiently [33]; therefore, there is much more hope of obtaining positive algorithmic results in the latter
setting.

We therefore say that v is (α, β)-temporally reachable from u starting at time t0 if there exists an
(α, β)-temporal walk from u to v whose first edge e satisfies t0 + α ≤ λ(e) ≤ t0 + β. The (α, β)-temporal
reachability set of u starting at time t0 is defined in the obvious way, similarly to the classical temporal
reachability (as defined in Section 2). The maximum (α, β)-temporal reachability of a temporal graph
(G,λ) is the maximum cardinality of the (α, β)-temporal reachability set of v0 starting at time t0, taken
over all pairs (v0, t0) with v0 ∈ V (G) and t0 ∈ N where t0 is at most the lifetime of the graph.
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We now define the (α, β)-extension of TR Edge Deletion; note that this problem clearly belongs
to NP since we can verify (α, β)-temporal reachability between each pair of vertices (starting at any given
time t0) in polynomial time [33].

(α, β)-Temporal Reachability Edge Deletion ((α, β)-TR Edge Deletion)

Input: A temporal graph (G,λ), and k, h ∈ N.
Question: Is there a set E′ ⊆ E(G), with |E′| ≤ k, such that the maximum (α, β)-temporal
reachability of (G,λ) \ E′ is at most h?

All of our results – both algorithms and intractability results – can be generalised in a natural way to
the more general setting of (α, β)-TR Edge Deletion, at the cost of a slightly worse approximation
factor in some cases.

Theorem 6.1. For any fixed 1 ≤ α < β, (α, β)-TR Edge Deletion is W[1]-hard when parameterised
by the maximum number k of edges that can be removed, even when the input temporal graph has
lifetime 2α+ 1.

Proof. With a slight modification, the reduction of Theorem 3.1 works also for (α, β)-TR Edge Deletion.
Indeed, given an instance of (α, β)-TR Edge Deletion, the reduced graph (G,λ) is constructed exactly
as one in the proof of Theorem 3.1, with the only difference that every time label “1” is replaced
by α + 1 and every time label “2” is replaced by “2α + 1”. The proof then works verbatim for the
generalized problem (α, β)-TR Edge Deletion (note that the maximum (α, β)-temporal reachability
of the resulting graph will be the cardinality of the (α, β)-temporal reachability set of s starting at time
1).

Exactly the same arguments as in the proof of Theorem 6.1 show that the following analogue of
Theorem 3.2 holds.

Theorem 6.2. (α, β)-TR Edge Deletion is NP-complete, even if the maximum temporal reachability
h is at most 6, and the input temporal graph (G,λ) has:

1. maximum degree ∆G at most 5, and

2. lifetime at most 2α+ 1.

To adapt Theorem 4.3 to the generalized setting, we need an (α, β)-analogue of Lemma 4.1; however,
the minimal set of edges needed for a single vertex to reach h others may no longer form a tree (see
Figure 5 for an example). Such an analogue is obtained as an easy adaptation of [33, Theorem 1].

Lemma 6.3 (Follows from [33]). Let (G,λ) be a temporal graph, and h a positive integer. There is an
algorithm running in polynomial time which, on input ((G,λ), h),

1. if the maximum (α, β)-temporal reachability of (G,λ) is at most h, outputs “YES”;

2. if the maximum (α, β)-temporal reachability of (G,λ) is greater than h, outputs a vertex v0 ∈ V (G),
a time t0, and a subgraph H of G on exactly h+ 1 vertices such that every vertex in H is (α, β)-
temporally reachable in H from v0 starting at time t0.

Since the subgraph H we find in the case of a no-instance is not necessarily a tree, when imitating
the proof of Theorem 4.3 we might have to delete up to

(
h+1
2

)
edges in this setting, resulting in a worse

approximation factor.

Theorem 6.4. There exists a polynomial-time algorithm to compute an
(
h(h+1)

2

)
-approximation to Min

(α, β)-TR Edge Deletion, where h denotes the maximum permitted reachability.

Theorem 6.5. There exists a polynomial-time algorithm to compute a c-approximation to Min (α, β)-TR
Edge Deletion, provided that a layout of cutwidth c is given.

Proof. The proof of Theorem 4.5 applies here; it suffices to notice that we can determine the maximum
(α, β)-reachability of any subgraph efficiently.
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Theorem 6.6. Unless P = NP , there exists a natural number c such that for every δ ∈
(

0, 1
c+2

)
, Min

(α, β)-TR Edge Deletion cannot be approximated in polynomial time to within a factor of δ lnn, where
n is the number of vertices in the input temporal graph, even if the input temporal graph has lifetime
2α+ 1.

Proof. We adapt the proof of Theorem 4.7 by replacing every time label “1” with time label α+ 1 and
every label “2” with “2α+ 1”; the result follows immediately.

Theorem 6.7. (α, β)-TR Edge Deletion admits an FPT algorithm with respect to the combined
parameter of h, ∆G, and tw(G).

Proof. The proof follows the logic of the proof of Theorem 5.4, but requires changes to reflect the “clocked”
restrictions and the fact that a minimum (α, β)-reachability subgraph is not necessarily a tree.

First, we replace the relation R by the relation R′, where ((e1, t1), (e2, t2)) ∈ R′ if and only
if ((e1, t1), (e2, t2)) ∈ R and α ≤ t2 − t1 ≤ β; and introduce one more binary relation P, where
((e1, t1), (e2, t2)) ∈ P if and only if e1, e2 share a vertex in G, and there exists a natural number t0 such
that t0 + α ≤ t1 ≤ t0 + β and t0 + α ≤ t2 ≤ t0 + β.

Next, it follows by definition that a vertex u has a (α, β)-temporal reachability set of size at least
h+ 1 if and only if there exist a subgraph H of G on h+ 1 vertices and a natural number t0 such that
u ∈ V (H) and every vertex v ∈ V (H) \ {u} is (α, β)-temporally reachable from u starting at time t0
and using only edges of H. The latter means that for every vertex v ∈ V (H) \ {u}, there exists a walk
Wv = (xv0x

v
1 . . . x

v
`v

) in H from u to v (with xv0 = u and xv`v = v) such that

(1) t0 + α ≤ λ(xv0x
v
1) ≤ t0 + β, and

(2) α ≤ λ(xvi x
v
i+1)− λ(xvi−1x

v
i ) ≤ β, for each 1 ≤ i ≤ `v − 1.

To express these conditions in first-order logic, we first introduce some auxiliary notation. Let H be a
connected graph with vertex set [h+ 1] and m edges that are labeled by distinct numbers from [m]. We
denote the label of an edge e ∈ E(H) by σ(e). Furthermore, we denote by ai, bi ∈ [h+ 1] the smallest and
the largest endpoint of the edge σ−1(i), respectively. We assume that for every vertex v ∈ V (H)\{u}, the
graph H contains a walk Wv = (xv0x

v
1 . . . x

v
`v

) from u to v (with xv0 = u and xv`v = v) such that the labels

of the edges of the walk increase along the walk. We will call the triple
(
H,u, {Wv|v ∈ V (H) \ {u}}

)
an

(α, β)-reachability template, and denote by Dh,m the set of all such templates over graphs H with h+ 1
vertices and m edges.

We now define the first-order formula expressing the property that there is some copy of H in G such
that all vertices in this copy are (α, β)-temporally reachable in (G,λ) according to an (α, β)-reachability
template D =

(
H,u, {Wv|v ∈ V (H) \ {u}}

)
∈ Dh,m.

ν(D) =
(
∃ distinct v1, v2, . . . , vh+1 ∈ V (G)

)(
∃(e1, t1), . . . , (em, tm) ∈ Λ(G,λ)

)(
∃e′1, . . . , e′m ∈ E(G)

)
m∧
i=1

L(e′i, (ei, ti)) ∧
m∧
i=1

(
I(vai , e

′
i) ∧ I(vbi , e

′
i)
)
∧∧

v,w∈V (H)\{u}

P
(
(eσ(xv

0x
v
1)
, tσ(xv

0x
v
1)

), (eσ(xw
0 x

w
1 ), tσ(xw

0 x
w
1 ))
)
∧

∧
v∈V (H)\{u}

`v−1∧
i=1

R′
(

(eσ(xv
i−1x

v
i )
, tσ(xv

i−1x
v
i )

), (eσ(xv
i x

v
i+1)

, tσ(xv
i x

v
i+1)

)
)
.

As in the case of TR Edge Deletion the first part of the above formula,

m∧
i=1

L(e′i, (ei, ti)),

is included for technical reasons, so that we have access to edge variables corresponding to the associated
time-edge pairs in the second part of the formula,

m∧
i=1

(
I(vai , e

′
i) ∧ I(vbi , e

′
i)
)
,
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which expresses the property that H is a subgraph of G. The third part of the formula∧
v,w∈V (H)\{u}

P
(
(eσ(xv

0x
v
1)
, tσ(xv

0x
v
1)

), (eσ(xw
0 x

w
1 ), tσ(xw

0 x
w
1 ))
)

expresses the property that there exists a natural number t0 such that for all first edges of the walks
Wv, v ∈ V (H) \ {u} their time labels belong to the interval [t0 + α, t0 + β]. To see that this is indeed
equivalent to the requirement, expressed by this part of the formula, that for every pair of vertices
v, w ∈ V (H) \ {u} there exists a natural number t0 such that the time labels of the first edges of Wv and
Ww are in the interval [t0 + α, t0 + β], consider the smallest and largest time label assigned to any first
edge on a walk: if there exists t0 such that both these labels belong to the interval [t0 + α, t0 + β] then
the labels of all other first edges must also belong to this interval, as required. Finally, the fourth part of
the formula ∧

v∈V (H)\{u}

`v−1∧
i=1

R′
(

(eσ(xv
i−1x

v
i )
, tσ(xv

i−1x
v
i )

), (eσ(xv
i x

v
i+1)

, tσ(xv
i x

v
i+1)

)
)

expresses the property that all walks from u to v ∈ V (H) \ {u} are (α, β)-temporal walks.
Now, similarly to the formula for TR Edge Deletion in Section 5.2, we define a formula, which

captures the property that in any such copy of H at least one edge must belong to the set E of removed
edges

ν′(D,E) =
(
∀ distinct v1, v2, . . . , vh+1 ∈ V (G)

)(
∀(e1, t1), . . . , (em, tm) ∈ Λ(G,λ)

)(
∀e′1, . . . , e′m ∈ E(G)

)
[(

m∧
i=1

L(e′i, (ei, ti)) ∧
m∧
i=1

(
I(vai , e

′
i) ∧ I(vbi , e

′
i)
)
∧∧

v,w∈V (H)\{u}

P
(
(eσ(xv

0x
v
1)
, tσ(xv

0x
v
1)

), (eσ(xw
0 x

w
1 ), tσ(xw

0 x
w
1 ))
)
∧

∧
v∈V (H)\{u}

`v−1∧
i=1

R′
(

(eσ(xv
i−1x

v
i )
, tσ(xv

i−1x
v
i )

), (eσ(xv
i x

v
i+1)

, tσ(xv
i x

v
i+1)

)
))

=⇒ ∃e ∈ E

 ∨
i∈[m]

L(e, (ei, ti))

].
Finally, we define an MSO formula which is true if and only if the deletion of a given set E of edges

ensures that there is no “bad” subgraph.

φh(E) =

(h+1
2 )∧

m=h

∧
D∈Dh,m

ν′(D,E).

Similarly to the proof of Theorem 5.4, optimising to find the smallest possible set E satisfying φh(E) is
then equivalent to solving (α, β)-TR Edge Deletion. Note that the length of the formula depends only
on h. The result then follows from the application of Theorem 5.2 to the MSO formula φh.

7 Conclusions and open problems

In this paper we studied the problem TR Edge Deletion of removing a small number of edges from a
given temporal graph (i.e. a graph that changes over time) to ensure that every vertex has a temporal path
to fewer than h other vertices. The main motivation for this problem comes from the need to limit the
spread of disease over a network, for example in a livestock trade network in which farms are represented
by vertices and the edges encode trades of animals between farms [21, 45]. Further motivation for the
problem of removing edges to limit the temporal connectivity of a temporal graph comes from scenarios
of sensitive information propagation through rumor-spreading. In practical applications, removing an
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edge would correspond to completely prohibiting any contact between two entities, while removing an
edge availability at time t would correspond to just temporally restricting their contact at that time
point. Motivated by these applications, we also considered a “clocked” generalisation of the problem in
which transmission of disease (or information) to a vertex’s neighbours can only occur in some specified
time-window after the vertex is itself infected.

We showed that both problems remain NP-complete even when strong restrictions are placed on
the input. More specifically, the problems are para-NP-hard with respect to the combination of the
three parameters h (the maximum permitted reachability), the maximum degree ∆G of G, and lifetime
of (G,λ); they are also W[1]-hard parameterised by the number k of permitted deletions. Moreover,
with respect to this last parameterisation, we cannot improve significantly on a brute force approach
unless the Exponential Time Hypothesis fails. On the positive side, we proved that these problems
admit fixed-parameter tractable algorithms with respect to the combination of three parameters: the
treewidth tw(G) of the underlying graph G, the maximum allowed temporal reachability h, and the
maximum degree ∆G of (G,λ). It remains open whether TR Edge Deletion is in FPT parameterised
simultaneously by the treewidth and either one of ∆G and h.

We also considered approximation algorithms for the optimisation version of TR Edge Deletion in
which the goal is to find a minimum-size set of edges to delete. We demonstrated that an h-approximation
can be found in polynomial time on arbitrary graphs, and a constant factor polynomial approximation
is possible on graphs of bounded cutwidth. However, we also showed that there is unlikely to be a
polynomial-time algorithm to compute any constant-factor approximation in general, even on temporal
graphs of lifetime two. Nevertheless, a natural open question is whether we can improve the approximation
ratio for general graphs.
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