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Abstract. We propose a coupled model to simulate shallow water waves induced by
elastic deformations in the bed topography. The governing equations consist of the
depth-averaged shallow water equations including friction terms for the water free-
surface and the well-known second-order elastostatics formulation for the bed defor-
mation. The perturbation on the free-surface is assumed to be caused by a sudden
change in the bottom beds. At the interface between the water flow and the bed to-
pography, transfer conditions are implemented. Here, the hydrostatic pressure and
friction forces are considered for the elastostatic equations whereas bathymetric forces
are accounted for in the shallow water equations. The focus in the present study is on
the development of a simple and accurate representation of the interaction between
water waves and bed deformations in order to simulate practical shallow water flows
without relying on complex partial differential equations with free boundary condi-
tions. The effects of location and magnitude of the deformation on the flow fields and
free-surface waves are investigated in details. Numerical simulations are carried out
for several test examples on shallow water waves induced by sudden changes in the
bed. The proposed computational model has been found to be feasible and satisfactory.

AMS subject classifications: (or PACs) To be provided by authors
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1 Introduction

In this study the problem of shallow water flows under conditions of abrupt changes to
the bathymetry is considered. The idea is to develop an accurate and efficient compu-
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tational approach to simulate such flows which pose a great challenge due to the differ-
ences in temporal and spatial scales. The free-surface flow which is commonly modeled
by the shallow water equations coupled with the sudden changes of bathymetry is inves-
tigated numerically. It has been observed in nature that free-surface flows can sometimes
be triggered by an abrupt or a sudden change in the bathymetry [1]. A clear example is
the tsunamis or landslides that pour into a water body in oceans or lakes. The common
practice in modeling such free-surface flows is to assume that the displacement of the
free-surface is the same as the displacement of the bed, and it happens concurrently due
to incompressibility of the water. Thus, as an initial condition one applies a static source
together with a translation of the seabed deformation onto the free-surface flow. Such an
approach was first presented for the field of modeling tsunamis in [6] and referred to as
the passive approach in [8]. The validity of such an approach was reported in [9] among
others. The passive approach neglects the so-called rupture velocity and the rise time of
the fault/bathymetry change dynamics. Investigations have been undertaken to under-
stand the rupture velocity and rise time in many engineering applications. For example,
the study in [24] took into account the rise time, and the rupture velocity has also been
accounted for in [12]. In [21], work has been undertaken in which a numerical integra-
tion of the time-dependent elasticity equations as well as time-dependent fluid equations
was considered. Over the past years, the development of efficient and increasingly ac-
curate numerical models of nonlinear shallow water equations over variable beds has
been a continuous challenge in coastal engineering communities see [7, 20, 30] among
others. Since these models are considered to be theoretically challenging and practically
important, researchers are currently working on developing efficient and accurate com-
putational tools to model shallow water waves by elastic deformations in the topography.
This represents a great challenge due to the time and space scales for which the abrupt
changes took places versus the evolution of the water free-surface.

The commonly used finite difference schemes in the numerical solution of the non-
linear shallow water equations are non-conservative leading to volume loss and energy
dissipation as the wave steepness increases and the flow approaches discontinuities [31].
Recent advances in seismic inverse algorithms enable accurate descriptions of the rise
time and rupture propagation over the source area. Furthermore, this model provides a
time series of the vertical displacement and velocity that constitute the bottom bound-
ary condition of a non-hydrostatic model for transfer of kinetic and potential energies
to the water. One limitation of this method is the appearance of oscillations in the com-
putational results when applied to more complex geometries [27]. The depth-integrated
method was reformulated, and hence a non-hydrostatic model was derived in the spher-
ical coordinate system for basin-wide waves propagation [32]. However, this method
suffers from a drawback in that it cannot guarantee the conservation of momentum in
the numerical scheme. Each of the aforementioned numerical modeling techniques has
its own features and drawbacks when it is applied to the shallow water system. The
finite difference scheme is considered to be easy to implement. However, the scheme
is not accurate when dealing with complex geometries such as the characterization of
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the coastlines during the simulation [18]. To deal with these limitations, refined mesh
approaches are applied to increase the resolution of certain areas of interest [34]. Never-
theless, there are still some problems facing this approach when the waves are reflected
from the coastline outside the finer mesh as such waves are not well resolved.

Finite element methods are more flexible in modeling shallow water flows in a com-
plex geometry as they can be formulated for a wide range of mesh topologies [29,33,35].
A limitation of the finite element method lies when the solution exhibits large gradi-
ents [5]. In addition, the finite element method also suffers from its inability to conserve
mass and momentum during the simulations. The finite volume techniques are widely
known by researchers for dealing with mobile beds, even though such techniques are
also well suited for solving the partial differential equations that are included in shal-
low water flows. These methods have become standard in solving the free-surface flows
and shock waves problems as they guarantee the conservation property during the sim-
ulation. The most significant problem facing the finite volume techniques when dealing
with a mobile bed is the treatment of the geometric source terms, where the challenge is
in the balancing between gradient and source terms when time variations are small. This
problem is numerically non-trivial, and methods that are not well balanced would gener-
ate spurious oscillations in their results [26]. The transient generation of waves due to the
coupling between the free-surface and sea floor has been considered by few authors only.
Generally, there are some specific cases where the bottom deformation becomes a very
important factor. Other studies relied on experimental techniques by lowering or raising
a box at one end of the channel [17]. The purpose of this study is to develop a novel
model for numerical simulation of shallow water waves by elastic deformations in the
topography. Accounting for elastic deformations in the shallow water flows is new and a
coupled set of partial differential equations is proposed in this work for their modeling.

In the current study, a coupled finite element/finite volume method for solving free-
surface flow problems over deformable beds is proposed. The governing equations con-
sist of the one-dimensional nonlinear shallow water equations for the water flow and a
two-dimensional linear elasticity model for the bed deformation. Deformations in the to-
pography can be caused by a localized force which causes propagations of water waves
with different amplitudes and frequencies. Coupling conditions at the interface are also
investigated in this study and a well-balanced finite volume method using non-uniform
grids is implemented to avoid interpolation procedures at the interface between the finite
element nodes and the finite volume cells. Frictional forces along with hydrodynami-
cal forces are also accounted for in the water flow model. On the other hand a force is
sampled from the hydrostatic pressure and applied on the bed surface during the time
process. To the best of our knowledge, developing a coupled finite element/finite vol-
ume method for solving free-surface flow problems over deformable beds is presented
for the first time. The paper is organized as follows. Description of the coupled model for
shallow water waves induced by elastic deformations is presented in Section 2. Section 3
is devoted to the formulation of the numerical methods used for the solution procedure.
We consider a two-dimensional finite element method for the bed deformations whereas
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a well-balanced finite volume method is implemented for the free-surface waves. In Sec-
tion 4, we present numerical results and examples for shallow water flows over elastic
beds. Our new approach is shown to enjoy the expected accuracy as well as the efficiency.
Concluding remarks are given in Section 5.

2 Shallow water waves by elastic deformation in beds

The physical model used in the present study consists of the well-known shallow water
equations coupled with additional equations to describe the elastic deformation in the
bed. The shallow water system has been widely used to model water flows under the in-
fluence of gravity and it uses the assumption that the vertical scale is much smaller than
any typical horizontal scale. This class of equations can be derived by depth-averaging
the incompressible Navier-Stokes equations subject to a hydrostatic pressure, see for ex-
ample [11]. For one-dimensional problems, the equations read

∂h

∂t
+

∂(hv)

∂x
=0, (2.1a)

∂(hv)

∂t
+

∂

∂x

(
hv2+

1

2
gh2

)
=−gh

∂B

∂x
+τf , (2.1b)

where t is the time variable, x the space coordinate, h(x,t) the water depth, v(x,t) the
water velocity, g the gravitational constant and B the bed topography. In (2.1), τf is the
friction slope term which models the bottom friction effects using the Manning empirical
form,with Mb being the Manning roughness coefficient at the bed, τf is defined by

τf =−gM2
bh

v|v|
h4/3

. (2.2)

It is well known that the system (2.1) is strictly hyperbolic with real and distinct eigen-
values given as

λ1=v−
√

gh, λ2=v+
√

gh. (2.3)

Notice that Eps. (2.1) have to be solved in a time interval and spatial domain equipped
with given boundary and initial conditions. In practice, these conditions are problem
dependent and their discussion is postponed for Section 4 where numerical examples
are discussed. In the shallow water equations (2.1), the function B corresponds to the
topography layer characterizing the bed level. For fixed bottom topography, i.e. B =
B(x), Eps. (2.1) reduce to the standard shallow water equations. In the current work,
we assume that a deformation takes place such that the bed level depends on the time
variable as well. This requires an additional equation for its evolution and deformation.
To motivate the discussion, we consider a simple example of bed deformation as depicted
in Fig. 1. Similar techniques have been used to model elastic models of the earthquake
cycle for a long strike-slip fault, see for instance [13, 19].
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Figure 1: Coupled system before bed deformation (left plot) and after bed deformation (right plot).

In solid mechanics, the two-dimensional constitutive relations of an isotropic elastic
bed in presence of body forces can be reformulated as [23]

∂σx

∂x
+

∂τxz

∂z
= fx, (2.4a)

∂σz

∂z
+

∂τxz

∂x
= fz, (2.4b)

where σx and σz are the normal stress components in the x- and z-direction, respectively.
Here, τxz is the shear stress, fx and fz are the external forces in the x- and z-direction,
respectively. The displacement vector is denoted by u= (ux,uz)⊤ and the infinitesimal
strain tensor is defined by

ǫ=
1

2

(
∇u+(∇u)⊤

)
. (2.5)

In the current study, we consider the constitutive relation

σ=D ǫ, (2.6)

where the stress vector σ and the constitutive matrix D are defined by

σ=




σx

σz

τxz


, D=

E

(1+ν)(1−2ν)




1−ν ν 0

ν 1−ν 0

0 0
1−2ν

2


,

with ν is the Poisson ratio and E is the Young modulus characterizing the bed material.
Note that we solve the system (2.4), subject to the following boundary conditions.

σ=σc, on Γi,

u=0, on Γ, (2.7a)

where Γ is the fixed boundary as shown in Fig. 1. Note that the interface Γi between the
water and bed depends on time and it is defined as

Γi(t)=
{
(x,z)∈Ω : z=B(x,t)

}
.
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The coupled system is numerically solved using a splitting operator where the bed defor-
mation and the water free-surface are computed separately, using the two-dimensional
elastostatic equations and the one-dimensional shallow water equation, respectively. The
coupling is achieved through the interface Γi by updating the bed topography B(x,t) at
each deformation step and applying frictional forces fx and fz generated from the water
flow on Γi. Initially, the coupled system is at equilibrium rest and a sudden force is ap-
plied on the bed topography to generate a deformation and consequently perturbations
are expected to appear on the water free-surface. During the time process, interchange
conditions are transferred from the bed topography to the water flow and vice versa. It
should also be stressed that in the present study, we assume that bed deformations occur
suddenly which lead to a fast characteristic time-scale associated with the propagation
of acoustic waves and therefore there is no need to consider the elastodynamics form
Eps. (2.4).

3 Coupled finite element/finite volume method

For the numerical solution of the coupled system we consider a finite element method
for the two-dimensional elasticity equations (2.4) and a finite volume method for the
one-dimensional shallow water equations (2.1). The starting point for the finite element
method is the variational formulation of the strain energy in the domain Ω. Thus, multi-
plying the strong form of x-direction equation in (2.4) by an arbitrary weight function φx

and integrate over the domain yields

∫

Ω

∂σx

∂x
φx dx+

∫

Ω

∂τxz

∂z
φx dx−

∫

Ω
fxφx dx=0.

Using the Green-Gauss theorem, the above equation becomes

∮

∂Ω
σxnxφx dx−

∫

Ω

∂φx

∂x
σx dx+

∮

∂Ω
τxznzφx dx−

∫

Ω

∂φx

∂z
τxz dx−

∫

Ω
fxφx dx=0,

where x = (x,z)⊤ and n= (nx,nz)⊤ is the outward unit normal on ∂Ω with ∂Ω=Γ∪Γi.
Using the x-component of the traction Tx=σxnx+τxznz, the above equation can be written
as ∮

∂Ω
Txφx dx−

∫

Ω

(
∂φx

∂x
σx+

∂φx

∂z
τxz

)
dx−

∫

Ω
fxφx dx=0. (3.1)

Similar steps applied to the z-direction equation in (2.4) give

∮

∂Ω
Tzφz dx−

∫

Ω

(
∂φz

∂x
τxz+

∂φz

∂z
σz

)
dx−

∫

Ω
fzφz dx=0, (3.2)

where Tz=σznz+τxznx. Adding the two equations (3.1) and (3.2) yields

∮

∂Ω
(Txφx+Tzφz) dx−

∫

Ω
( fxφx+ fzφz) dx−

∫

Ω

(
∂φx

∂x
σx+

∂φx

∂z
τxz+

∂φz

∂z
σz+

∂φz

∂x
τxz

)
dx=0,
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which can be reformulated in a vector form as
∫

Ω
φ̂ ·σ dx=

∮

∂Ω
φ⊤ ·T dx+

∫

Ω
φ⊤ ·f dx, (3.3)

where φ=(φx,φz)
⊤, T =(Tx,Tz)

⊤ and φ̂=
( ∂φx

∂x ,
∂φz

∂z ,
∂φx

∂z + ∂φz

∂x

)⊤
. To solve the weak form

(3.3) with the finite element method, the domain Ω is discretized into a set of elements
where the solution is approximated in terms of the nodal values Uj and the polynomial
basis functions Nj(x,z) as

u(x,z)=
Nd

∑
j=1

UjNj(x,z), (3.4)

where Nd is the number of mesh nodes. In the present work, we consider quadratic
triangular elements with six nodes for which the element displacement ue=(ue

x,ue
z)
⊤ can

be obtained by

u
e =

(
Ne

1 0 Ne
2 0 ... 0

0 Ne
1 0 Ne

2 . . . Ne
6

)




ux1

uz1

ux2

uz2

...

ux6

uz6




,

where Ne
j are the shape functions written in local coordinates (ξ1,ξ2)⊤ as

Ne
1(ξ1,ξ2)= ξ2(2ξ2−1), Ne

2(ξ1,ξ2)= ξ1(2ξ1−1),

Ne
3(ξ1,ξ2)=(1−ξ1−ξ2)(1−2ξ1−2ξ2), Ne

4(ξ1,ξ2)=4ξ2ξ1,

Ne
5(ξ1,ξ2)=4ξ1 (1−ξ2−ξ1), Ne

6(ξ1,ξ2)=4(1−ξ2−ξ1)ξ2.

To solve the fully discretized problem, the elementary matrices are assembled into a
global system of equations

Ku=b, (3.5)

where K is the global stiffness matrix, u is the nodal displacement vector and b is the force
vector. In our simulations, the matrix K is decomposed into an LUL⊤ factorization, then
the solution is reduced to backward/forward substitutions after updating the right-hand
side vector b at every time step.

The second step in the considered coupling system is to solve for water perturbations
based on the sudden changes on the bed and update the water height and velocity at
each time step. For this purpose, we use a finite volume method of Roe type over non-
uniform grids to avoid interpolation procedures at the interface Γi. A similar method
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has been investigated for shallow water equations in [3]. Hence, to formulate the finite
volume method we rewrite Eps. (2.1) in conservative form as

∂W

∂t
+

∂F(W)

∂x
=Q(W)+S(W), (3.6)

where

W=




h

hv


, F(W)=




hv

hv2+ 1
2 gh2


,

Q(W)=




0

−gh
∂B

∂x


, S(W)=




0

−gM2
bh

v|v|
h

4
3


.

For the time integration of the system (3.6) we divide the time interval into subintervals
[tn,tn+1] with variable size ∆tn such that tn = tn−1+∆tn, n = 1,2,··· and t0 = 0. We use
the notation Wn(x) to denote the discrete solution W(tn,x). In the current work, we use
the splitting operator introduced in [28] to deal with the differential source terms Q(W)
and the non-differential source term S(W) in (3.6). The splitting procedure consists of
the following two steps:

Step 1: Solve for W̃

W̃−Wn

∆tn
+

∂F(Wn)

∂x
=Q(Wn). (3.7)

Step 2: Solve for Wn+1

Wn+1−W̃

∆tn
=S

(
W̃
)

. (3.8)

For the space discretization we discretize the one-dimensional space domain in non-
uniform control volumes

[
xi− 1

2
,xi+ 1

2

]
with length ∆xi and we use the notation Wn

i to

denote the space-averaged of W=W(t,x) in the cell
[
xi− 1

2
,xi+ 1

2

]
at time tn, and Wn

i+ 1
2

are

the intermediate solutions at xi+ 1
2

at time tn,

Wn
i =

1

∆xi

∫ x
i+ 1

2

x
i− 1

2

W(tn,x)dx, Wn
i+ 1

2
=W

(
tn,xi+ 1

2

)
.

Integrating the system (3.7) over the space-time control domain
[
xi− 1

2
,xi+ 1

2

]
×[tn,tn+1],

one obtains the following fully discrete system

Wn+1
i =Wi−

∆tn

∆xi

(
Fn

i+ 1
2
−Fn

i− 1
2

)
+∆tnQn

i , (3.9)



A. Al-Ghosoun, A. Osman and M. Seaid / Commun. Comput. Phys., x (20xx), pp. 1-30 9

where Fn
i± 1

2

=F
(
Wn

i± 1
2

)
are the numerical fluxes at x= xi± 1

2
and time t= tn, and Qn

i is the

space-averaged of the source term Q defined as

Qn
i =

1

∆xi

∫ xi+
1
2

xi− 1
2

Q(W)dx. (3.10)

The spatial discretization (3.9) is complete when the numerical fluxes Fn
i±1/2 and the

source term Qn
i are reconstructed. Generally, this step can be carried out using any finite

volume method developed in the literature for solving hyperbolic systems of conserva-
tion laws, see for example [8,9]. In the present study, we consider the Roe reconstruction
defined as [25]

Fn
i+ 1

2
=

1

2

(
F(Ŵn

i+1)+F(Ŵn
i )
)
+

1

2
A
(

Ŵn
i+ 1

2

)(
Ŵn

i −Ŵn
i+1

)
, (3.11)

where the averaged state Ŵ
n
i+ 1

2
is calculated as

Ŵ
n
i+ 1

2
=




hn
i +hn

i+1

2

√
hn

i vn
i +
√

hn
i+1vn

i+1√
hn

i +hn
i+1




, (3.12)

and the Roe matrix in (3.11) is defined as A=RΛR−1 with

R=




1 1

λ̂1 λ̂2


, Λ=




λ̂1 0

0 λ̂2


, (3.13)

with λ̂1 = v̂−
√

gĥ and λ̂2 = v̂+
√

gĥ are the two eigenvalues associated with the system
evaluated at the averaged state (3.12).

For the discretization of the source term Qn
i we implement a well-balanced recon-

struction investigated in [3]. Thus, the well-balanced discretization of Qn
i is achieved

by in splitting the integral in (3.10) over the two sub-cells
[
xi− 1

2
,xi

]
and

[
xi,xi+ 1

2

]
of the

control volume
[
xi− 1

2
,xi+ 1

2

]
as

Qn
i =

1

∆xi

(
(xi−xi−1)

2
QL

i− 1
2
+
(xi+1−xi)

2
QR

i+ 1
2

)
, (3.14)
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where QL
i− 1

2
and QR

i+ 1
2

are the space-averaged of the source term Q in the sub-cells
[
xi− 1

2
,xi

]

and
[
xi,xi+ 1

2

]
defined as

QL
i− 1

2
=




0

−g
hi+hi−1

2
(Bi−Bi−1)


, QR

i− 1
2
=




0

−g
hi+1+hi

2
(Bi+1−Bi)


.

It is evident that for small water depths, the bed friction term dominates the other terms

in the momentum equation. This is mainly due to the presence of the term h
4
3 in the dom-

inator of τf in (2.2). To overcome this drawback we use a semi-implicit time integration
of the source term S in (3.8) as

hn+1− h̃

∆t n
=0, (3.15a)

(hv)n+1−
(

h̃ṽ
)

∆t n
=−gM2

b

(hv)n+1 |ṽ|
(

h̃
) 4

3

, (3.15b)

where h̃ and ṽ are the water height and velocity obtained from the first step (3.7) of the
splitting procedure. Solving the second equation in (3.15) for (hv)n+1 yields

(hv)n+1=

(
h̃ṽ
)

1+∆tngM2
b |ṽ|/

(
h̃
) 4

3

. (3.16)

As in most explicit time integration schemes, the time step in our finite volume method
is selected using a Courant-Friedrichs-Lewy (CFL) condition. In our simulations, the
Courant number Cr is fixed and ∆tn is chosen at each time step according to the following
CFL condition

∆tn =Cr
min(∆xi)

max
(∣∣∣λ̂+

1

∣∣∣,
∣∣∣λ̂−1

∣∣∣,
∣∣∣λ̂+

2

∣∣∣,
∣∣∣λ̂−2

∣∣∣
) , (3.17)

where λ̂±1 = v̂±1 −
√

gĥ±1 and λ̂±2 = v̂±2 +
√

gĥ±2 with ĥ±1,2 and v̂±1,2 are computed using the

space-averaged solutions in the control volume
[
xi− 1

2
,xi+ 1

2

]
and its two neighbouring

cells as

ĥ+1 =
hi+1+hi

2
, ĥ−1 =

hi+hi−1

2
, v̂+1 =

√
hi+1vi+1+

√
hivi√

hi+1+
√

hi

, v̂+2 =

√
hivi+

√
hi−1vi−1√

hi+
√

hi−1

.

Note that the above finite volume method is only first-order accurate. In the present
study, we use flux limiters to reconstruct a second-order accurate finite volume method
for solving (3.6). The implementation of this method for solving the shallow water equa-
tions (2.1) is similar to the one presented in [4] and it is omitted here.
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3.1 Implementation of coupling conditions at the interface

One of the advantages in using non-uniform grids in the finite volume solution is to avoid
interpolations at the interface for interchange coupling conditions. Here, the selected
control volumes in the finite volume methods coincide with the finite element nodes on
the interface as shown in Fig. 2. At each time step coupling conditions are transferred
on the interface for both models to update the solutions for the displacement u, water
height h and water velocity v. In the present work, the deformed finite element nodes
on the interface are used to reconstruct the bed B(x,t) for the shallow water equations
(2.1). Here, a triangular finite element with three nodes on the interface yields two non-
uniform control volumes the edges of which are the three nodes and their centers are
obtained by averaging the coordinates of these nodes, compare Fig. 2. We also assume
that once the deformation occurs, the time variation in these coordinates is negligible and
therefore no need for interpolation procedures to reconstruct the bed topography in the
finite volume method. This bed profile is used in the finite volume solution of the flow
system to obtain the water height hn+1 and the water velocity vn+1 at the next time level
tn+1.

For coupling conditions from the water flow to the bed on the interface, the forces
fx and fz in the elasticity equations (2.4) are reconstructed at each time step. Here, the
horizontal force fx in the x-direction is updated using the friction term as

fx =−gM2
bhn+1 vn+1

∣∣vn+1
∣∣

(hn+1)
4
3

. (3.18)

The vertical force fz in the z-direction is reconstructed at each time step using the change
in the hydrostatic pressure as

pn+1=−ρg
hn+1−hn

∆t n
,

Figure 2: A schematic illustration of finite element and finite volume nodes at the interface.
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Algorithm 1 Coupled finite element/finite volume method used in the present study.

Require: T the final simulation time.
1: Assemble the stiffness matrix K for elastostatic system using the finite element

method (3.1)-(3.5).
2: while tn 6T do

3: Assemble the force vector b for elastostatic system using the finite element
method (3.1)-(3.5).

4: Solve the linear system (3.5) for the displacement in the computational mesh.
5: Update the displacement of the finite element nodes on the interface.
6: Reconstruct the bed B on the control volumes formed by the finite element nodes

on the interface.
7: Update the time step ∆tn according to the CFL condition (3.17).
8: Solve the shallow water equations using:

9: for each control volume
[

xi,xi+ 1
2

]
do

10: Compute the numerical fluxes Fn
i+ 1

2

using the Roe scheme (3.11).

11: Discrete the source term Qi using the well-balanced discretization (3.14).
12: Compute the solution in the first stage of the splitting Wn+1

i using (3.9).
13: Update the solution in the second stage of the splitting (3.8) using (3.15)-(3.16).
14: end for

15: Compute the horizontal force fx using the bed friction according to (3.18).
16: Compute the vertical force fz using the hydrostatic pressure according to (3.19).
17: Overwrite tn←− tn+∆tn and go to step 2.
18: end while

and at each node of the three finite element nodes located on the interface, the force fz is
distributed using the integral form as

f
(1)
z =

∫ 1

−1
−1

2
ξ(1−ξ) pn+1 h̄

2
dξ =

1

6
pn+1h̄, (3.19a)

f
(2)
z =

∫ 1

−1

(
1−ξ2

)
pn+1 h̄

2
dξ =

2

3
pn+1h̄, (3.19b)

f
(3)
z =

∫ 1

−1

1

2
ξ(1+ξ) pn+1 h̄

2
dξ =

1

6
pn+1h̄, (3.19c)

where h̄ is the edge length of the considered element on the interface. It is easy to verify

that f
(1)
z + f

(2)
z + f

(3)
z = pn+1h̄. The total force fz in the z-direction is obtained by accumu-

lating the elemental forces on the overlapping nodes, see Fig. 2 for an illustration. In
summary, the coupled finite element/finite volume method proposed in this study to
solve shallow water waves by elastic deformations in the topography is carried out in
the steps described in Algorithm 1.
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4 Numerical results and examples

In this section we examine the performance of the proposed computational model intro-
duced in the above sections using several examples of shallow water waves by elastic
deformations in the topography. For the first test example, we verify the accuracy of the
techniques described in this study for two well-established test examples of shallow wa-
ter flows and elastostatic deformations. In all the computations reported in this section
unless stated otherwise, the Youngs modulus E=10000 Mpa, the Poison ratio ν=0.3, the
gravitational acceleration g= 9.81 m/s2 and the Manning coefficient Mb = 0.025 s/m1/3.
Here, the Courant number is fixed to Cr = 0.85 and the time stepsize ∆tn is adjusted at
each time step according to the stability condition (3.17). All the computations were per-
formed on an Intel R© Core(TM) i7-7500U @ 2.70GHz with 16 GB of RAM.

4.1 Accuracy test examples

We examine the accuracy of both the finite element and finite volume methods for two
well-established test examples. First we consider a dam-break problem with known an-
alytical solution. Here, we solve the shallow water equations (2.1) over a frictionless flat
bottom in the domain [0,1] with initial conditions defined as

h(x,0)=

{
1.0, if x≤0.5,

0.5, elsewhere,
v(x,0)=0.

At t = 0, the dam collapses and the flow problem consists of a shock wave traveling
downstream and a rarefaction wave traveling upstream. The analytical solution of this
problem is given by [2]

h(x,t)=





1, if x<
1

2
−t
√

g,

1

9g

(
2
√

g− 2x−1

2t

)2

, if
1

2
−t
√

g≤ x≤ (u2−c2)t+
1

2
,

1

4

√
1+

16C2
s

g
−1), if (u2−c2)t+

1

2
< x≤Cst+

1

2
,

1

2
, if Cst+

1

2
< x,

where

u2=Cs−
g

8Cs

(
1+

√
1+

16C2
s

g

)
, c2=

√√√√ g

4

(√
1+

16C2
s

g
−1

)
, Cs=2.957918120187525.

In Fig. 3 we compare numerical results obtained for the water height at time t=0.1 using
the proposed finite volume method on uniform and non-uniform meshes with 50 and
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Figure 3: Results obtained using the finite volume method on uniform and non-uniform meshes using 50 control
volumes (left) and 100 control volumes (right).

100 control volumes. Notice that for the uniform meshes, the spatial step ∆x= 0.02 and
∆x = 0.01 for the meshes with 50 and 100 control volumes, respectively. In the non-
uniform meshes, the spatial step ∆xi is selected as

∆xi =

{
0.016, if 0.3≤ xi≤0.7,

0.03, elsewhere,
and ∆xi =

{
0.008, if 0.3≤ xi≤0.7,

0.015, elsewhere.

It is clear from the results in Fig. 3 that refining the mesh improves the accuracy of the nu-
merical results on both uniform and non-uniform meshes. Compared to the analytical so-
lution, results obtained using non-uniform meshes are slightly more accurate than those
obtained on the uniform mesh. For instance, the numerical diffusion is more pronounced
at the shock and rarefaction areas in the uniform results than in their non-uniform coun-
terparts. These features are important when the shallow water equations are solved on
the non-uniform meshes reconstructed directly from the finite element nodes located on
the interface in the coupled model. This would avoid interpolation procedures for match-
ing finite element and finite volume nodes on the interface which may introduce numer-
ical diffusion in the results obtained for the free-surface solutions.

Next we verify the finite element method for solving two-dimensional elasticity prob-
lems. We consider the well-known example proposed in [22] and for which the exact
solution is provided therein. Here, we solve the elasticity equations (2.4) in a homoge-
neous and isotropic rectangular domain with 100m for the length and 10m for the width.
A nodal displacement of 3 m is applied upwards in the center point of the domain and
results obtained for the horizontal and vertical displacements are compared to the exact
solutions. The computational domain is discretized using quadratic finite elements in
an unstructured mesh with 772 elements and 1649 nodes. Fig. 4 illustrates the obtained
results for the horizontal and vertical displacements compared to the exact solutions.
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Figure 4: Horizontal displacement (left) and vertical displacement (right) obtained for the accuracy test example
using the finite element method.

There is a good agreement between the results obtained using the finite element method
and the analytical solutions for both horizontal and vertical displacements. The finite
element method performs well for this test example and produces highly accurate and
stable numerical results using reasonably coarse meshes.

4.2 Shallow water waves generated by tension in the topography

In this example we consider shallow water waves generated by tension in the topogra-
phy of a rectangular domain 100m long and 10m high subject to a localized tension force
of F=2000N acting on the surface area between x=47m and x=53m. Initially, the system
is at rest with a water height set to h= 10 m and velocity v= 0 m/s. Both open flow and
reflective boundary conditions are imposed at both ends of the domain to model open
and close flow domains, respectively. At time t = 0.1 s, the considered force is applied
generating a sudden deformation in the bed topography. The finite element nodes lo-
cated on the interface are used for the control volumes in the finite volume solution of
the shallow water equations. First we examine the grid convergence in the proposed cou-
pled finite element/finite volume method for this example. To this end, we consider five
unstructured meshes with different node and element densities as depicted Fig. 5. Their
corresponding statistics are listed in Table 1 along with the CPU times obtained using
Mesh A, Mesh B, Mesh C, Mesh D and Mesh E. Note that, to avoid refining the mesh
everywhere in the elastic domain, only the area subject to the deformation is refined in
our computational mesh. This would require less computational cost than considering
a uniformly fine mesh in the simulations. A very fine reference mesh with 39591 ele-
ments and 80036 nodes is also used in our simulations to quantify errors in the obtained
solutions obtained at time t= 3 s. Note that the reference mesh is not included in Fig. 5
because of its density which results in a heavily black plot. As can be seen for the last two
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Figure 5: Meshes used in the simulations for shallow water waves generated by tension in the topography.

Table 1: Mesh statistics, relative errors and computational times for shallow water waves generated by tension
in the topography at time t=3s. The CPU times are given in seconds.

# elements # nodes # control volumes Error in σx Error in η CPU time

Mesh A 312 709 78 1.473E-02 3.205E-01 6.5

Mesh B 620 1349 96 4.289E-03 1.741E-01 9.2

Mesh C 1236 2639 197 1.157E-03 9.329E-02 21.7

Mesh D 2471 5160 232 2.994E-04 3.788E-02 63.4

Mesh E 4940 10213 312 7.433E-05 1.339E-02 131.5

mesh levels Mesh D and Mesh E, the differences in errors obtained for the stresses σx and
free-surface η in Table 1 are very small. To further qualify the results for these meshes we
plot in Fig. 6 the bed profiles obtained using the considered meshes. It is easy to see that
solutions obtained using the Mesh A are far from those obtained by the other meshes.
Increasing the density of elements, the results for the Mesh D and Mesh E are roughly
similar. Results obtained for the stresses σx and σz and not reported here for brevity,
show the same trends. This ensures grid convergence of the numerical results. Hence,
the Mesh D is used in all our next computations. The reasons for choosing this mesh
structure lie essentially on the computational cost required for each mesh configuration
and also on the numerical resolution obtained.
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Figure 6: Comparison of bed profiles using different meshes for shallow water waves generated by tension in the
topography at time t=3s.

The unstructured finite element with 2471 elements and 5160 nodes is used in the
simulations and the results are monitored for different instants. The associated number
of control volumes for this finite element mesh is 195 non-uniform cells. In Fig. 7 we
display the obtained results for the water height and bed deformation at six different
times namely, t = 0 s, 0.1 s, 1 s, 2 s, 3 s and 10 s using open flow boundary conditions at
both upstream and downstream. These plots give a clear view of the overall wave pat-
terns and the effect of the bed deformation on the structure of the propagating waves
in the upstream and downstream of the domain. In addition to the primary wave, a
pair of waves with the same amplitude develops in both side of the hump. As expected,
the sudden deformation in the bed generates a wave propagating across the computa-
tional domain. The wave splits into two waves and in later times the waves leave the
domain and the water free-surface becomes flat at the initial height. This confirms the
well-balanced property of the proposed finite volume method on non-uniform meshes.
It is also important to mention two points concerning the non-uniform control volumes
used in the flow simulations. First, there is no need for interpolation procedures to pass
the information from one mesh to another in our coupled finite element/finite volume
method second, there is no need to refine the mesh in the finite volume method to resolve
the wave fronts as the finite element mesh would generate these refined meshes. This is
a remarkable feature of the proposed coupled finite element/finite volume method to
satisfactorily handle procedures using adaptive local grid refinement methods to resolve
free-surface wave problems.

Fig. 8 illustrates the distribution of the stresses σx and σz at time t= 3 s. Obviously,
high stresses appear at the hump where the bed deformation is taken place. The perfect



18 A. Al-Ghosoun, A. Osman and M. Seaid / Commun. Comput. Phys., x (20xx), pp. 1-30

Figure 7: Results for the water height and bed deformation obtained for shallow water waves generated by
tension in the topography at six different times.

symmetry in these results with respect to the vertical centerline should be noted. Our
finite element method preserves the symmetry in the stresses and resolves the correct
solution well for this test example. For this example, we also consider the close domain
with reflective boundary conditions at both upstream and downstream. In this case we
compute the total water head for as

H=B+h+
v2

2g
. (4.1)

In Fig. 9 we present the time evolution of the total water head at three surface gauges
G1, G2 and G3 situated at x = 20 m, x = 50 m and x = 80 m, respectively. The total water
head obtained at these locations fluctuates with different amplitudes and frequencies but
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Figure 8: Distribution of the stresses σx (left) and σz (right) obtained for shallow water waves generated by
tension in the topography at t=3s.

Figure 9: Time evolution of the total water head at the three gauges G1, G2 and G3 obtained for shallow water
waves generated by tension in the topography.

at later time it stabilizes at the same initial value for the three considered gauges. The
highest amplitudes in the total water head are observed at the gauge G2 which is located
at the center where the deformation occurs. Because of the symmetry in the location of
gauges G1 and G3, the total water head at these locations exhibits similar features in terms
of amplitudes and frequencies. In all selected gauges, the coupled finite element/finite
volume method maintains correctly the wave structures without any kind of spurious
oscillations over the hump.

We also examine the effects of the applied force on the generated waves for this test
example. Hence, in Fig. 10 we show the bed deformations at time t= 0.1 s and the time
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Figure 10: Bed deformation (top) time evolution of the free-surface at the gauge G2 (bottom) obtained for
shallow water waves generated by tension in the topography using different values of the tension force.

evolution of the water free-surface at the gauge G2 obtained using different values of the
tension force namely, F=500 N, 1000 N, 1500 N, 2000 N and 2500 N. To further quantify
the results for this case we summarize in Table 2 the maximum values of the stress σz,
the stress σx, the bed B, the free-surface η, and the hydrostatic pressure p. It is clear high
responses in both bed and free-surface are obtained for high values of the tension force.
It should be pointed out that the performance of the proposed method is very attractive
since the obtained numerical solutions remain stable and conservative even when coarse
meshes are used in the simulations without requiring nonlinear solvers or complicated
techniques to reconstruct the numerical fluxes in the shallow water equations.

4.3 Shallow water waves generated by tension-compression in the
topography

This example considers the same configuration as in the previous problem but using both
tension and compression forces on the bed topography. Thus, a force of 2000N is applied
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Table 2: Computational results for shallow water waves generated by tension in the topography using different
values of the tension force.

Force (N) maxσz (KPa) maxσx (KPa) maxB (m) maxη (m) max p (KN/m2)

500 1.965 1.23 11.0335 21.1815 97.2559

1000 3.931 2.4599 12.0670 23.4026 106.5393

1500 5.8951 3.6899 13.1005 25.6435 115.9026

2000 7.8602 4.9198 14.1099 27.8662 125.1387

2500 9.8252 6.1498 15.3791 30.0551 134.1614

as a tension in the surface area between x= 28 m and x= 32 m, and as a compression in
the surface area between x=78m and x=82m in the computational domain. Initially, the
system is assumed at the equilibrium with the water height set to h=11m and the velocity
v=0m/s. For the boundary conditions, open flow and reflective conditions are imposed
at both ends of the domain. The solid domain is discretized using an unstructured mesh
with local refinements in the areas where tension and compression forces are applied.
The total numbers of elements and nodes in this mesh are 3417 and 7086, respectively.
This results in 193 non-uniform control volumes to be used in the finite volume method.
Note that, to break in the symmetry in this problem, the forces are applied in areas with
different distances to the centerline x=50m.

The considered tension and compression forces are applied at time t=0.1s and a sud-
den deformation occurs in the bed topography. After each deformation step, the finite
volume solution of the shallow water equations uses the non-uniform control volumes
obtained from the finite element nodes located on the interface. Fig. 11 presents the ob-
tained results for the bed deformation and water height at six different times namely,
t=0 s, 0.1 s, 1 s, 4 s, 5 s and 17 s using open flow boundary conditions at both ends of the
channel. As can be seen, the tension and compression forces generate two water waves
with different crests and troughs propagating along the computational domain. The in-
teraction between these waves generates reflecting waves with different amplitudes in
the water free-surface. At later time, the waves are settled out and the system returns
to its initial equilibrium state. Again, the proposed coupled finite element/finite volume
method performs well for this test problem as the deformed bed topography is accurately
resolved using the finite element method and the wave features are well captured using
the finite volume method on non-uniform meshes.

In Fig. 12 we show distributions of the computed stresses σx and σz at time t = 5 s.
It is clear that high stresses are localized at the hump generated from the tension force
whereas, low stresses appear at the scour resulting from the compression force. The
results also show different aspects in the stresses generated by tension force and those
obtained using the compression force. The finite element method performs well for this
deformation test example and it reproduces stable solutions without nonphysical oscilla-
tions at the bed topography and at stress distributions. The total water head H defined
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Figure 11: Results for the water height and bed deformation obtained for shallow water waves generated by
tension-compression in the topography at six different times.

in (4.1) is also considered for this test example using reflective boundary conditions at
both ends of the domain. Fig. 13 shows the time evolution of the total water head at three
selected gauges G1, G2 and G3 at x=30 m, x=50 m and x=80 m, respectively. Unlike the
previous example, the time series in the present case exhibit periodic behavior with low
amplitudes and frequencies. In addition, compared to the previous case, the propagating
waves generated by both tension and compression in the topography persist longer on
the free-surface than in those originated by tension only. It is clear that the total water
head experiences high values at the gauge G1 located at the downstream of the domain.
The coupled finite element/finite volume method captures well the periodic features in
the water waves at all selected gauges for this example.

This test example is also used to assess effects of the Poisson ratio ν on the bed defor-
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Figure 12: Distribution for the stresses σx (left) and σz (right) obtained for shallow water waves generated by
tension-compression in the topography at t=5s.

Figure 13: Time evolution of the total water head at the three gauges G1, G2 and G3 obtained for shallow
water waves generated by tension-compression in the topography.

mation and the generated free-surface waves. To this end, we run the simulations for the
bed formed by different homogeneous and isotropic materials with ν= 0.1, 0.2, 0.3 and
0.4. In Fig. 14 we display the bed deformations at time t=0.1 s and the time evolution of
the water free-surface at the gauge G1 obtained using the considered values of the Pois-
son ratio. The maximum values of the stress σz, the stress σx, the bed B, the free-surface
η and the hydrostatic pressure p are summarized in Table 3. As can be seen from these
results, slightly high responses in both bed topography and free-surface are obtained for
low values of the Poisson ratio, compare the results for maxB in Table 3.
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Figure 14: Bed deformation (top) time evolution of the free-surface at the gauge G1 (bottom) obtained for
shallow water waves generated by tension-compression in the topography using different values of the Poisson
ratio.

Table 3: Computational results for shallow water waves generated by tension-compression in the topography
using different values of the Poisson ratio.

ν maxσz (KPa) maxσx (KPa) maxB (m) maxη (m) maxp (KN/m2)

0.1 7.265 5.6249 13.6954 27.3934 134.0797

0.2 7.3601 5.4965 13.5848 27.1569 132.7335

0.3 7.5260 5.2995 13.3993 26.5743 129.3346

0.4 7.8963 5.0911 13.1385 26.1080 126.7165

4.4 Shallow water waves generated by pipe failure in the topography

Pipe failures are among common examples in nature for which several studies have taken
place in civil engineering and geotechnics, see for example [10, 16, 36]. For these applica-
tions, the source of deformation may be caused by a fatigue in the pipe or simply by a
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Figure 15: Results for the water height and bed deformation obtained for shallow water waves generated by
pipe failure in the topography at six different times.

load applied below the seabed. In this example, we consider shallow water waves gener-
ated by pipe failure in the bed topography. Hence, we solve the coupled equations (2.1)
and (2.4) in a rectangular domain 50 m long and 10 m high including a circular pipe with
radius R= 3 m and the initial water height is 5 m above the bed. A compressive force of
200 N is applied only at the upper half boundary of the pipe. Initially, the system is at
rest and at time t = 0.1 s the constant force is applied on the upper surface of the pipe.
Consequently a deformation is expected on the pipe and therefore on the shallow wa-
ter bed which generate water waves on the free-surface. An unstructured finite element
mesh with 3196 elements and 6822 nodes is used in our simulations and numerical re-
sults are presented for different instants. To avoid refining the mesh everywhere in the
computational domain, only the area around the pipe is refined in our simulations. This
local refinement is needed to accurately resolve the deformed topography with less com-
putational cost than using a global refinement for the entire domain. The finite volume
method employs 182 non-uniform control volumes reconstructed from the finite element
nodes located on the interface.

In Fig. 15 we display the responses of the water free-surface at six different instants
namely, t=0s, t=0.1s, t=1s, t=2s, t=3s, t=10s using open flow boundary conditions
at both downstream and upstream. As can be seen from these results, the system starts
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Figure 16: Distribution for the stresses σx (left) and σz (right) obtained for shallow water waves generated by
pipe failure in the topography at t=3s.

Figure 17: Time evolution of the total water head at the three gauges G1, G2 and G3 obtained for shallow
water waves generated by pipe failure in the topography.

from the rest and once the deformation on the pipe occurs, a water wave is generated
on the free-surface and it flows over the deformed bed. For longer times, the system is
stabilized to a steady-state configuration with no disturbances on the water free-surface.
For the considered force on the pipe, the bed topography experiences a maximum ver-
tical displacement of 3.25 m downwards. It is clear that the considered coupled finite
element/finite volume method performs well for this free-surface flow problem over a
deformable bed as both the bed topography and the water free-surface are accurately
captured without non-physical oscillations or excessive numerical diffusion appearing
in the numerical solutions.

Fig. 16 depicts distributions of the computed stresses σx and σz at time t=3 s. Again,
high stresses appear at the upper part of the pipe where the bed deformation is taken
place. The results also illustrate localized stresses σx on the bed topography for this ex-
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Figure 18: Bed deformation (top) time evolution of the free-surface at the gauge G2 (bottom) obtained for
shallow water waves generated by pipe failure in the topography using different values of the pipe radius.

ample. The perfect symmetry in the distribution of both stresses σx and σz should also
be noted in Fig. 16. Next we consider reflective boundary conditions and in Fig. 17 we
display the total water head at three gauges G1, G2 and G3 selected at x=22 m, x=25 m,
x=28m, respectively. It can be clearly shown from this figure that the waves at three con-
sidered gauges exhibit similar amplitudes and frequencies. On the other hand, because
of the symmetry in the location, the wave features at the gauges G1 and G3 are almost the
same.

Our next concern with this test example is to examine the impact of pipe size on the
bed deformation and the free-surface waves. Here, we run the simulations using three
pipes with radius R=1m, 2m and 3m keeping all the other parameters fixed as in the pre-
vious run. Fig. 18 shows the bed deformation and the time evolution of the free-surface at
the gauge G2 obtained for the considered values of the pipe radius. Table 4 summarizes
the maximum values of the stress σz, the stress σx, the bed B, the free-surface η and the
hydrostatic pressure p obtained for this run. It is evident that larger deformations in the
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Table 4: Computational results for shallow water waves generated by pipe failure in the topography using
different values of the pipe radius.

Radius (m) maxσz (KPa) maxσx (KPa) maxB (m) maxη (m) maxp (KN/m2)

1 8.973 16.65 0.7178 16.7295 65.9574

2 3.3655 10.816 1.8370 17.8588 76.9677

3 2.2391 11.633 3.2926 19.2992 91.0519

bed topography are obtained for pipes with larger radius and consequently waves with
higher amplitudes on the free-surface, compare the values of maxB and maxη in Table
4. The presented results demonstrate that the proposed computational model is suited
for the prediction of shallow water waves by elastic deformations in the topography. It
should be stressed that results from the proposed model should be compared to exper-
imental measurements. However, there is no data available until now to carry out this
work. Thus, at the moment we can only perform simulations and verify that results are
plausible and consistent.

5 Conclusions

A simple and accurate computational model is proposed to simulate shallow water waves
induced by elastic deformations in the bed topography. The mathematical model con-
sists on coupling the nonlinear one-dimensional shallow water equations to the linear
two-dimensional equations for elasticity. The coupling conditions between the two sets
of equations are achieved through the interface between the water flow and the bed to-
pography. The hydrostatic pressure and friction forces calculated from the water flow are
applied as external forces on the interface for the elasticity model whereas, bathymetric
forces are accounted for in the shallow water equations. As numerical solvers we consid-
ered a well-balanced finite volume method for the free-surface flow using non-uniform
meshes and a robust finite element method for the bed deformation using unstructured
meshes. The approach combines the attractive attributes of the finite volume discretiza-
tion and the finite element method to yield a procedure for either flat or non-flat topog-
raphy. Numerical results are presented for several test examples on shallow water waves
induced by sudden changes in the bed topography. The results make it promising to be
applicable also to real situations where, beyond the many sources of complexity, there is
a more severe demand for accuracy in predicting free-surface waves induced by sudden
bed deformations, which must be performed for long time. Finally, the models presented
in this study do not account for the dispersion of surface waves during their long-time
propagation. However, using ideas developed in [14, 15], it is possible to extend the
proposed model to take into account these dispersion features in shallow water waves
induced by elastic deformations in the bed topography.
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