Intensive olive production at Levantine sites. New data from Fadous-Kfarabida and Khirbet-ez Zeraqon.

Journal of Archaeological Science: Reports

Katleen Deckers ${ }^{1}$, Simone Riehl ${ }^{2}$, Valentina Tumolo ${ }^{3}$, Hermann Genz ${ }^{4}$, Dan Lawrence ${ }^{3}$
${ }^{1}$ University of Tübingen, Institute for Archaeological Sciences, Rümelinstraße 23, 72070 Tübingen, Germany.
${ }^{2}$ University of Tübingen, Institute for Archaeological Sciences and Senckenberg Center for Human Evolution and Palaeoenvironment (HEP), Germany
${ }^{3}$ Durham University, Department of Archaeology, Department of Archaeology, Durham, United Kingdom
${ }^{4}$ American University of Beirut, Department of History and Archaeology, Lebanon

Abstract

During the third millennium $B C$, the Levant experienced an increase in social complexity, visible in the emergence of urban forms and centralised institutions. Specialised agricultural production, particularly of olives, has long been considered a key factor in this transformation. This paper uses charcoal and seed analysis of remains from the Early Bronze Age II-III sites of Tell Fadous-Kfarabida in Lebanon and Khirbet-ez Zeraqon in Jordan, alongside a comparative analysis of published data, to investigate this phenomenon. Olive was an important crop at both sites but Khirbet-ez Zeraqon is situated within a more arid inland location, away from the natural distribution of wild olive, whereas Fadous-Kfarabida had a much lusher vegetation, and was within the distribution of wild olive. While important, olive was possibly not the major crop in terms of macro-nutrient supply in Khirbet-ez Zeraqon but it played a more dominant role in Fadous-Kfarabida. The measurements of the olive stones from both sites show a high variance compared to other sites. At Khirbet-ez Zeraqon this may have been due to specialization by using several cultivars and/or applying irrigation and/or fluctuations in rainfall. At Fadous-Kfarabida morphological wild olives were possibly included in the production as well, which may relate to the development of new olive strains and a likely higher engagement in experimentation. Although an overall linear trend of increasing mean olive stone length, occasionally described as "domestication syndrome", can be detected for the southern

Levant between 7 and 2 kyr BP, the Early Bronze Age measurement data from Fadous-Kfarabida and Khirbet-ez Zeraqon are outside the confidence band of the regression line and indicate that higher variability in some sites can blur a straightforward recognition of the "domestication syndrome". There seem to have been varied local practices in cultivation and domestication in the Early Bronze Age Levant.

Keywords

Anthracology - olive - olive stone measurements - olive domestication - Early Bronze Age - Levant

1. Introduction

In the Levant, olive has a long history of exploitation. Already 780000 years ago olive and olive wood were used by hominins in the southern Levant (Goren-Inbar et al. 2000, Melamed et al. 2016). The earliest evidence for olive oil extraction and storage comes from submerged sites at the Carmel coast, dated to the sixth millennium BC (Galili et al. 1997), while about 35 km inland at Ein Zippori olive oil remains were detected by gas chromatography and mass spectrometry of organic residues on pottery vessels dated to the $6^{\text {th }}$ millennium BC (Namdar et al. 2014). Based on the size of the olive stones found at sites from that period, it has been concluded that wild oleaster was used at that time (Kislev 1994).

While pollen from wild and cultivated olive plants - even at very high magnifications- cannot be differentiated microscopically (Lipschitz et al. 1991), new palynological studies in combination with archaeological data suggest a rise in olive cultivation by about 4500 BC in the southern Levant, since there were olive "peaks" in the pollen data that were not accompanied by an increase in other Mediterranean sclerophyllous trees and the archaeological/archaeobotanical data equally supports intensive olive exploitation (Langgut et al. 2019). Additionally, the presence of olive stones and charcoal at Teleilat Ghassul, north of the Dead Sea in Jordan, outside the natural distribution of oleaster, supports olive cultivation (possibly in association with irrigation) there in the $5^{\text {th }}$ millennium BC (Neef 1990, Meadows 2005).

During the third millennium $B C$, the Levant experienced an increase in social complexity, visible in increased site size, monumentality, and the centralised administration of agricultural production (e.g. Archi 1992). The organizational systems of the central and the southern Levant are not fully understood, and their 'truly' urban nature of the main settlements is still the object of debate (Chesson and Philip 2003: 9; Philip 2003: 106-108, 112; Richard 2014, 331-334 with further
references; Chesson 2015: 52, 56). However, there is a wide consensus that the intensification and specialisation of agricultural production - including intensive olive and grape arboriculture - and the consequent need for storage, mobilization and exchange of high-value commodities, was central to the development of complex socio-political entities (Genz 2003; Wilkinson et al. 2014: 87-89). The discovery of composite installations for oil extraction, especially at sites with large palace buildings (e.g. Khirbet Yarmouk/Tel Yarmouth: de Miroschedji 1999, 8-9; Salavert 2008), might substantiate the assumption of large-scale production connected with centralised units.

Although intensively investigated, the olive domestication process is still not thoroughly understood and genetic studies are hampered by difficulties in differentiating between feral (escaped from cultivation) and wild populations (Besnard et al. 2018), while similarly in archaeobotanical studies differentiating between wild and cultivated olive stones and olive wood is not straightforward (Lipschitz et al. 1991). Genetic data on olive indicate a dominant domestication event in the northern Levant (specifically the region of the Syrian/Turkish border) (Besnard et al. 2013), but archaeobotanical research in this area is limited so far.

The "domestication syndrome" in olive according to Fuller (2018) has been caused by selectively propagating more fleshy fruits that are associated with a reduction in genetic diversity and phenotypically manifested in longer and more slender olive stones (Fuller 2018, but also Kislev 1994, Meadows 2005, Dighton 2017). An overview of olive stone measurements summarized by Fuller (2018) shows the gradual increase in size from about 7 to 2 kyr BP, accompanied by a pronounced increase in the length/width ratio. Based on these data, it has been argued that the process of olive domestication was long and attenuated and that reproduction by seed played a role in this extended duration. Routine vegetative propagation of olive is suggested to have taken place only from 2000 BC onwards (Fuller 2018). The latter has also been concluded based on the seed measurement data from Pella (Dighton et al. 2017), where unexpectedly high size variance of olive stones was observed in comparison to some other earlier sites.

High shape and size variation of olive stones from an archaeological site, however, may also be an indication for specialization in olive production by using many cultivar genotypes as a conscious choice to balance risks from threats such as climate induced losses or pests (Bourgeon et al. 2018). Alongside genetic variation, environmental conditions also have an impact on variance in stone size, meaning climate change (Hammam et al. 2011) and water management such as irrigation may be important factors (e.g. Rapoport et al. 2004; Hannachi et al. 2017; Gucci et al. 2009).

In this paper we contribute to the history of olive cultivation by investigating the evidence for olive at two Levantine Early Bronze Age (henceforth EBA, EB) sites: Tell Fadous-Kfarabida in Lebanon and Khirbet-ez Zeraqon in Jordan (Fig. 1). From those sites, we analyzed the fruit and seed, as well as the
charcoal remains. Additionally, measurements of olive stones from those sites and comparisons with published data have been undertaken to gain understanding of the olive domestication and specialisation history, of farming practices and climate.

2. The sites

Khirbet-ez Zeraqon is situated in northern Jordan, about 12 km NE of Irbid within the Transjordan Mediterranean belt and has received on average 159mm rain annually over the last decade. Rainfall has fluctuated in Irbid between a maximum of about 340 mm in 2018 and a minimum of only 80 mm in 2014 over the last 10 years (weatheronline.com, accessed 30.04.2019). According to the TAVO map "A IV 4 Vorderer Orient. Mittlere Jahresniederschläge und Variabilität" long term mean precipitation for this region would have been between 300 and 400 mm annually in the period between 1955 and 1977 (Alex 1986). However, interannual variability of total rainfall is high (Alex 1986) and may cause considerable losses in crop yields.

The vegetation in the surroundings of Khirbet-ez Zeraqon today is heavily modified by humans. The landscape is intensively used for agriculture, amongst others for olive growing. The Irbid region produces 32\% of Jordan's olives (https://data2.unhcr.org/fr/documents/download/62035, link accessed 15.01.2021). Away from the fields, half-steppe batha occurs, which is considered a manmade vegetation type composed of many taxa that are adapted against herbivores (Albert et al. 2004).

The site (8 ha) was intensively occupied during the Early Bronze Age II and the beginning of the Early Bronze Age III, from about 3100 BC to the first half of the $29^{\text {th }}$ century $B C$, when the site was completely abandoned (Tumolo and Höflmayer 2020). It can be considered as having been part of the "pattern of settlement and landscape development of the third millennium $B C$ [...], with the explosive growth and collapse of cities, the settlement of climatically marginal lands, and an apparent increase in connectivity over the entire region" (Wilkinson et al. 2014: 46).

Archaeological investigations conducted at the site in two excavation areas (Genz 2002: 7, Douglas 2007: 3-4) uncovered a northern upper city and a lower city to the south (Fig. 2). The upper city was characterized by public buildings, clustered into two architectural districts: the "temple complex" and the "palace complex". The lower city was excavated to a smaller extent. While Building B1.5 was a multi-purposes structure, most of the other buildings uncovered there have architectural layouts consistent with domestic dwellings or residential units (B1.1-B1.4), containing domestic pottery repertoires and installations for food processing and storage. Archaeobotanical samples have been retrieved from contexts of both the upper and the lower city, belonging to all the three main stages
of occupation of the Early Bronze Age II-III site: the 'early horizon' (ca. 3100-3000 BC), 'middle horizon' (ca. 3100-3000 BC), and 'late horizon' (ca. 2950-2850 BC), respectively dated to the EB II, the EB II-III transition, and the early EB III (Genz 2002: 39-49, 79-88, 121; Tumolo and Höflmayer, 2020). Remains of olive wood and stones were collected from the public structures of the upper and the lower city, and from the domestic buildings of the lower city as well. The most substantial assemblages come from the lower city and mainly belong to the middle and the latest stages of occupation of the site.

Tell Fadous-Kfarabida is a small (1.5 ha) site in the coastal area of Lebanon, close to modern Batroun, with occupation evidence from the 4th to the early 2nd millennium BC (Fig. 3). In this contribution only samples from the Early Bronze Age II-III (3000-2500 BC) occupation will be discussed (Höflmayer et al. 2014; Genz et al. 2016). The region received on average 327 mm of rainfall annually over the last decade. Rainfall has fluctuated in this area with a high in 2009 of 517 mm and a low of 189 mm in 2018 (weatheronline.com, accessed 30-04-2019). According to TAVO, long-term average annual rainfall from 1955 to 1977 was between 600 and 800 mm in this region (Alex 1986). The Pearson variation coefficient of annual precipitation is low (15-25\%), when compared to the variability in the Irbid area (25-50\%) (Alex 1986). This variation coefficient is important especially considering archaeobotanical data that are assumed to be accumulations of multiple years of harvests.

Present-day vegetation in the surroundings of the site consists of a typical macchia. Further inland, at a height of 1200-1400 m a.s.I., which is about 10-20 km from the coast, the Eu-Mediterranean vegetation is replaced by montane vegetation, including diverse coniferous trees, oak species and other trees. Nearest stands of trees occur about 5 km north of Tell Fadous-Kfarabida and consist mainly of pine (Talhouk et al. 2001). Today, cedar in Lebanon grows between 1400 and 1950 m a.s.l. in the mountains of north and central Lebanon, about 20 km east of Tell Fadous-Kfarabida (Browicz 1982), but it has often been assumed that it covered much larger areas in the past.

Archaeobotanical samples have been retrieved from three phases of the settlement at Tell FadousKfarabida. Phase II remains date to the EBII (ca. 3000-2800 BC) and represent the beginning of an urban scale settlement at the site. All botanical samples from this phase derive from domestic contexts within rather small soundings. Phase III layers (ca. 2800-2600 BC), contemporary with the early EBIII, have been uncovered more extensively. The excavations revealed a densely built settlement with multistorey buildings. Some elite residences were investigated and yielded archaeobotanical samples. Additionally, there is also evidence for a public building, from which botanical samples were retrieved (Building 4). During phase IV (ca. 2600-2500 BC), still within the EBIII period, changes took place in the layout of the settlement. A monumental building was constructed (Building 3) from which no archaeobotanical samples have as yet been analyzed.

Samples have been examined from Building 4, the adjacent building on the other side of a narrow street, which continued to be in use from the earlier Phase III. In addition, chemical analysis of a pithos (FAD10.305/295.56) from Room 3 in Building 4 revealed that it most likely contained olive oil (Genz et al. 2011: 162-163). Several finds, such as cylinder seals and a fragment of an Egyptian stone vessel, from Building 3 and 4 indicate a special function, most likely administrative (Genz et al. 2016).

Olive remains were found throughout the settlement, in both domestic and public contexts.

3. Methods and materials

3.1. Analytical methods for fruits, seeds, chaff and charcoal materials

Seed, fruit and charcoal remains have been investigated from the above-mentioned archaeological sites. At Khirbet-ez Zeraqon, 77 seed and fruit samples were investigated from the upper city, and 82 from the lower city. In total 41,370 seed, fruit and chaff remains have been analyzed. Additionally, 3 charcoal samples have been identified from the upper city (45 fragments) and 29 samples from the lower city (1965 fragments). A report on the seed and fruit results was published by Riehl (2004) and a summary of preliminary charcoal results by Engel (1990) was found amongst unpublished site documentation. In that unpublished report, results of 18 samples showed that 17 contained Olea (olive). These data have not been included in this manuscript since they derive from non-floated samples. Also, Neef (1990) published preliminary charcoal results from Khirbet-ez Zeraqon, mentioning the presence of Olea.

From the site of Tell Fadous-Kfarabida so far 3249 seed and chaff remains from 195 botanical samples were identified (Riehl, submitted). Most of the identified samples were from Phase III (representing two thirds of the identified material). All other phases were not sampled to the same degree. Furthermore, the results of 64 charcoal samples are presented here with a total fragment count of 4,391, covering Phase II-IV. Preliminary reports on some of the samples have appeared in Badreshany et al. (2005: 84-88) and Genz et al. (2009: 115-116). Full sample by sample charcoal results will be published in a subsequent article (Deckers, submitted).

The charcoal and seed/fruit identification results are calculated as find and ubiquity percentages. While find percentages refer to the proportional number of charcoal fragments or seed counts of a certain taxon at the site, ubiquity percentages reflect the frequency of occurrence of a taxon in the samples. Olive management such as pruning and clearing of wild olive may be visible in the record as high olive charcoal percentages within the charcoal assemblages.
3.2. Olive stone measurements and details on the statistical analysis

Besides identification of all archaeobotanical remains (including anthracological analysis), length and width measurements have been undertaken for 188 different olive stones from Fadous-Kfarabida and 30 from Khirbet-ez Zeraqon. For this, a manual vernier caliper was used with a precision of 0.02 mm . The values were however rounded to the nearest tenth mm . For some stones only a width or length could be measured because of fragmentation, but only whole lengths or whole widths were measured. At Fadous-Kfarabida, the large majority of olive stones derive from Phase III, although there were also a few from other phases. Only those from phases II-IV were included into the statistical analysis (cf. Appendix A for details on the in the statistics included samples). The majority of the measured olives from Khirbet-ez Zeraqon derive from the "middle horizon" (15), while 6 were from "early" and 7 from "late horizon". Two further samples come from mixed contexts.

Published olive stone measurement data (except for those with fewer than 10 measurements) were gathered from other archaeological sites in the Levant, as well as present-day olives, for comparative analysis (Table I). The chronological assignment of the published olive stone measurements was reevaluated based on current chronological knowledge of the site and the region. Published measurements of present-day Levantine olive stones appeared to be scarce. We used a study on Iranian olive stone measurements from 31 different olive genotypes to gain insight into the variance related with different cultivars (Jalali et al. 2014).

Since a decreased size variance has been mentioned as a possible indicator for domestication in Chalcolithic and EBA olives (Kislev 1994, Meadows 2005 and Dighton 2017), the size variance data (for length and width) was plotted over time and a linear regression analysis was undertaken in combination with a variance analysis test. Moreover, since a previous study (Fuller 2018) has detected a marked size increase from Neolithic to Classical time, the data for length and width were plotted over time and a linear regression analysis was undertaken on the data in combination with a variance analysis test.

Furthermore, Levene tests were undertaken to compare the variance of the length and width between sites. The Levene test checks for equal variances. Since variances between sites were unequal, subsequently a Games Howell-post-hoc-Test was undertaken on all published length and width measurements of the olive stones. The latter test provides confidence intervals for the differences between mean groups (https://statistikguru.de/spss/einfaktorielle-anova/varianzhomogenitaet-ueberpruefen.html, link accessed 15.01.2021). This allows for the analysis of differences amongst olive stones from the different sites. Those sites that are not connected by the same letter are significantly different for their length and width.

Moreover, the distribution of the olive stone measurements was investigated using the JMP software distribution platform. This allows for the detection of trends such as the bimodal distribution that may indicate the presence of two or more varieties of olives.

4. Results

4.1.Seed, fruit, charcoal proportions

Amongst the seed and fruit remains from Khirbet-ez Zeraqon, 95 taxa were identified, consisting of 13 crop plants and 82 wild plants. Emmer and barley were the main cultivated plants and were processed at the site. Lentil (Lens culinaris), olive (Olea europaea), grape (Vitis vinifera) and fig (Ficus carica) were also intensively used (for details see Riehl 2004).

Olive pits are among the most ubiquitous crops at the site, with frequencies of 70% in the upper city and 80% in the lower city (Fig. 4). However, olive stones were mostly not present in large numbers.

The majority of the charcoal samples from Khirbet-ez Zeraqon derive from the occupation of the lower town, being particularly abundant in association with the middle and latest phases of occupation. Olive charcoal dominates the assemblage, with ca. 78\% of the fragments identified (Fig. 5). All other identified taxa were under 4%. Ubiquity percentages show about the same pattern with olive charcoal dominantly present in the samples, with ubiquities of about 88%. The other taxa with fairly high ubiquities were ash (Fraxinus sp.) with about 45\%, as well as oak (Quercus sp.) and pistachio (Pistacia sp.) respectively with 15% and 30%.

Across the different phases of occupation at Fadous-Kfarabida, emmer wheat (Triticum dicoccum) $(47,8 \%)$ and olive $(35,8 \%)$ together represent $60-80 \%$ of the assemblage. Other crops, such as grape, fig and different pulses and barley (Hordeum sativum) occur in small amounts. The seed assemblages of the different phases are similar.

Overall composition and abundance of particular crops at Khirbet-ez Zeraqon and Tell FadousKfarabida are strikingly similar with a clear dominance of olive and emmer wheat.

The charcoal results from Fadous-Kfarabida have been summarized in Fig. 5. Olive is the dominant taxon, representing ca. 62% of the investigated charcoals. This is a smaller proportion of olive charcoal than at Khirbet-ez Zeraqon, and is supplemented by larger proportions of oak, both deciduous and evergreen (ca. 12\% in total), and conifers (ca. 18\% in total), such as cedar (Cedrus sp.; 9.4\%), juniper (Juniperus sp.; 2\%) and pine (Pinus sp.; 4.2\%), alongside pistachio (2.5\%). Overall, the samples from Fadous-Kfarabida contain a greater variety of taxa, of which quite a few occur in very small proportions (all less than 1\%), such as almond (Amygdalus sp.), thorny broom (Calycotome villosa), Chenopodiaceae (goosefoot family), ash (Fraxinus sp.), Leguminosae (legume family),

Rosaceae (rose family), Monocoyledon and Vitis vinifera. About 4.4\% of the charcoals could not be identified. Ubiquity percentages of the charcoals show a similar pattern, with olive dominant in the samples, with ubiquities of about 81%. Oak also has high ubiquities of ca. 73%. Cedar has the third largest ubiquity of about 34%. Pistachio has an ubiquity of about 27%, while juniper about 16%. All other taxa have somewhat smaller ubiquities.

4.2. Results of the olive stone measurements

The results of the olive stone measurements from Fadous-Kfarabida and Khirbet-ez Zeraqon (Appendix A and B) are compared with those available from the wider region and a range of periods (Fig. 6, Table 1). The present-day olive data has purposely been omitted from the graphs since they blur the linear trends visible between 7 kyr and 2 kyr. As Fuller (2018) has indicated, the mean length of olive stones/site shows an increase over time between the period 7 kyr and 2 kyr ago (Fig. 6a). About 51% of the variation is explained by the linear regression model. Fadous-Kfarabida however has an exceptionally small mean for olive length and lies outside the confidence band for the linear trend. Also, the Khirbet-ez Zeraqon olive stones are slightly smaller than the confidence interval of the linear regression (Fig. 6a).

A decreasing length variance over time is visible for the period from 7 kyr to 2 kyr ago. About 63\% of the length variation is explained by the linear regression model. It is notable, however, that FadousKfarabida again is outside of the confidence band for the linear trend, demonstrating an exceptionally high variance (Fig. 6b). Present-day length variances, which were not plotted since they blurred the linear trend for the period between 7 and 2 kyr BP , are exceptionally high, higher than all variances from archaeological olive stones. The Levene test indicated that the variance of olive stones from 31 different present-day cultivars from Iran does not statistically differ from that of Late Neolithic Kfar Samir, Teleilat Ghassul and Pella, Late Chalcolithic Pella and our two investigated sites (Fadous-Kfarabida and Khirbet-ez Zeraqon).

Mean olive stone widths also appear to increase in size over time, but only ca. 30\% of the mean olive stone widths are explained by the linear regression model (Fig. 6c). According to the linear regression width increase appears to be related with size increase of the stones. More precisely, 51% of the width increase can be explained by size increase (Fig. 6d).

The width variance (Fig. 6e), like the length variance, decreases over time between 7 and 2 kyr BP. About 59\% of the variances are predictable. The variance in width of the Early Bronze Age FadousKfarabida and Khirbet-ez Zeraqon olive stones is somewhat smaller than those from the Neolithic and Chalcolithic period and not significantly different from the one from Late Bronze Age Pella. Iron Age variances in width are even smaller. Present-day variances in width are again high. While the
value from present-day Israel is highest and different from all archaeological sites, the variance value from the 31 cultivars from Iran does not statistically differ from those from Late Neolithic sites, like Kfar Samir, Pella and Chalcolithic sites like Teleilat Ghassul and Pella.

Unfortunately, only the stone by stone measurement data from Teleilat Ghassul and modern Iran could be analyzed alongside our own, since no other raw data for single olive stone measurements have been published. Games Howell-tests on the measurements provide insight into the differences between the olive stones from the different sites. The Games Howell-test on the width measurements does not show a significant difference in the means of the different sites (Table 2), with the exception of the mean width from the present-day Iran dataset compared to the Levantine archaeological sites. Additionally, the Games Howell-test showed that the mean length of the Iranian samples is significantly different from those of the Levantine sites. Significant differences between the Neolithic Teleilat Ghassul olive stone length means and those from Early Bronze Age FadousKfarabida have also been demonstrated. All other sites show some overlap. The present-day olive measurements from Iran show a normal distribution (Fig. 7), whereas the data from Khirbet-ez Zeraqon and Late Neolithic/Middle Chalcolithic Teleilat Ghassul can be best described as a mixture of two normal distributions, which may also be the case for Fadous-Kfarabida. For the latter, however, a Johnson SI, SU or shash distribution would provide a better fit than the mixture of two normal distributions. For the Late Chalcolithic stones from Teleilat Ghassul the gamma distribution fits best and second best the normal distribution.

5. Discussion

5.1. Intensity of olive exploitation

At both sites, Tell Fadous-Kfarabida in the coastal zone of Lebanon and Khirbet-ez Zeraqon inland in Jordan, Olea europaea is strongly represented amongst the charcoal. While at Fadous-Kfarabida olive stones and emmer wheat are the most abundant crop categories, both in ubiquity and percentages, at Khirbet-ez Zeraqon olive stone percentages make up only 1% of the crops. Nonetheless, olive was important for the economy of the site, as indicated by ubiquities of stones reaching 100% in most of the settlement phases.

Both sites are located within the present-day olive cultivation belt (e.g. Cordova 2007: Fig. 3.12, for Khirbet-ez Zeraqon see Yazbeck et al. 2018). While olive is native to the Mediterranean region, there is very little evidence for olive use before the $5^{\text {th }}$ millennium BC at inland locations such as Jordan (Neef 1990; Neef 1997; Meadows 2005). An exception is the site of Pella, where the earliest olive remains date to 6200 BC (Early Ceramic Neolithic period) (Dighton et al. 2017). The long-term regional history of olive derived from pollen diagrams fits well with the archaeobotanical data.

During the Neolithic olive percentages are very low, before a marked increase from about 4800 BC/4000 BC at Birket Ram, the Dead Sea and Huleh (Schiebel 2013). Taken together this evidence suggests olive was not prevalent in the natural vegetation of the surroundings of Khirbet-ez Zeraqon, and we would argue that olive was intensively cultivated at the site during the Early Bronze Age. Hence, the high length variance at Khirbet-ez Zeraqon was probably not related to any wild olive presence or intercropping, but rather to other factors.

The history of olive cultivation as seen from the pollen is also supported by the charcoal data in the southern Levant: While olive charcoal was a relatively minor proportion in charcoal assemblages before the Chalcolithic period, from the Chalcolithic to the Iron Age it occurred in higher percentages (Lipschitz 2007). At the Early Bronze Age site of Khirbet Yarmouk/Tel Yarmouth, for example, high Olea charcoal percentages of ca. $77 \%-67 \%$ were found in combination with other indications for olive oil production (Salavert 2008) and an olive crop proportion of 50\%. At Khirbet Iskander near the Dead Sea in Jordan, 99\% of the identified charcoal volume was olive (Neef 1990), while at Shoham it was 78% and at Ashkelon 84% (Lipschitz 2007). Even in very arid regions further south, at sites such as Fenan 9 11\% of the investigated charcoal fragments were olive, while this was about 7% in Fenan 16 (Baierle et al. 1989). Hence there appears to be a high involvement with olive pruning at that time. Pruning is known to be beneficial for various reasons, including creating the framework to support the fruit load, increasing sunlight exposure, reducing pests and rejuvenating old trees. Pruning should be light to moderate, with maximally up to 50% foliage removal to cause no significant loss in fruit production (Rodrigues et al. 2018).

Since people are assumed to have gathered wood, especially firewood, according to the principle of least effort, charcoal proportions are often interpreted to reflect the composition of the vegetation in its original proportions in the vicinity of settlements (e.g. Shackleton and Prins 1992). According to that paradigm, the higher proportions of olive charcoal in Khirbet-ez Zeraqon compared to FadousKfarabida would suggest a higher presence of olive trees there compared to other woody taxa. However, the overall low fragment percentages of Mediterranean woodland taxa, like Quercus and Pistacia, at Khirbet-ez Zeraqon may be an indication of an environment with a lack of other woody resources and may relate to the location in a more arid region. This is also supported by high seed to charcoal proportions in the botanical samples, which may indicate dung as an additional fuel at Khirbet-ez Zeraqon. Sheep/goat pellets found at the site support this idea; they have a ubiquity of ca. 3%. Whilst having somewhat lower relative proportions of olive charcoal at Fadous-Kfarabida compared to Khirbet-ez Zeraqon, olive is still the dominant charcoal taxon at Fadous-Kfarabida and compared to Khirbet-ez Zeraqon there is a much larger proportion of typical Mediterranean vegetation amongst the charcoals, indicating a greater availability of other woody resources, and in
general a higher diversity in species. Hence, both Khirbet-ez Zeraqon as well as Fadous-Kfarabida show a high involvement with olive pruning, but the qualitative data allows no direct comparison.

5.2. "Domestication syndrome" and local practices

Since olive was cultivated for quite some time by the Early Bronze Age, it can be expected to show signatures of selection for cultivation. While a "domestication syndrome" trend (Fuller 2018) is visible within the olive stones over the long-term from 7 kyr to 2 kyr BP, not all sites fit the overall line of development. Over time mean olive stone lengths increase in many cases, as well as mean olive stone widths, but length and width do not show a strong linear correlation.

Chalcolithic Shoham and Iron Age Lachish are outside the confidence band of the regression line that indicates the "domestication syndrome", with smaller and larger mean olive stone size respectively. Apart from Gamla, all those sites actually only have a small number of olive stone measurements (around 20) which may not be representative. Regarding the length variance outside the confidence band of the linear regression, Shoham is again amongst them and may be not representative. As for the high variance value for Kfar Samir, we unfortunately have no detailed stone by stone measurement data. The low variance of the olive stones from Late Chalcolithic Teleilat Ghassul may relate to the location of the site outside the natural distribution of olive and a consequent focus on cultivation of only one variety.

The sites under investigation here are also outside the confidence bands of the linear regression line: The Fadous-Kfarabida olive stones have an exceptionally small mean size and demonstrate a high variance in comparison to those from other sites along the linear regression. The Khirbet-ez Zeraqon mean olive size lies outside the confidence band of the regression line and the variance just on the edge of the confidence band. Notwithstanding the fact that most of the olives from Khirbet-ez Zeraqon are older than those from Fadous-Kfarabida, the site shows a lower length variance.

Both sites tend to show mixtures of two normal distributions for the olives, but it is unlikely that both sites had an inclusion of wild olives, since it is unlikely that wild olives occurred in the Khirbet-ez Zeraqon surroundings, as mentioned above. Fig. 6d shows that olives from Fadous-Kfarabida are on average shorter and more globular than those from Khirbet-ez Zeraqon, indicating that FadousKfarabida likely contains stones that are more similar to the wild/feral populations found today with a size of less than 1 cm and a globular shape (Newton et al. 2014). Fadous-Kfarabida is well within the wild olive distribution and we cannot exclude the possibility of use of wild olives. At Late Bronze Age Ugarit in Syria, Newton et al. (2014) also found wild/feral olive morphotypes, which they detected with detailed shape analysis. They conclude that spontaneously growing olives outside the domesticated groves were possibly used as well (Newton et al. 2014). However, the presence of wild
morphotypes may also reflect the search for new cultivars with valuable properties amongst wild populations. This is still an important issue for olive production. In present-day Tunisia, wild populations have been tested for their properties and may be crossed with domestic plants to increase oil production (Baccouri et al. 2011). Wild olives are also used for grafting domesticated types in modern southern Italy to increase the durability of the crops against pests, such as Xylella fastidiosa (pers. comm. Marco Nicolí).

It should also be noted that not all small olives today are from wild populations, but -although more exceptional- there also exist olive cultivars with short stones (Newton et al. 2014; Terral et al 2004). Hence, the presence of short stones may also relate to a special breed of cultivated olives. Exceptionally small stones may also derive from undersized cultivated fruits (also called shotberries), but only a few stones from the investigated sites have such a small size of ca. 5 mm (cf. Fig. 6) (Costantini and Biasini 2018, 397).

Small olive stones may also indicate water stress. Overall, water deficit causes smaller olive fruit and stones, while higher water availability -such as through irrigation- leads to larger ones (e.g. Rapoport et al. 2004; Hannachi et al. 2017; Gucci et al. 2009). As mentioned above, Khirbet-ez Zeraqon is located in a region with lower and more variable rainfall levels than the coastal area. Whether olive could have grown there without additional watering depends on the climatic conditions that prevailed during that time. At present, despite a decline in rainfall over the last decade, only about 8% of the olive trees in Lebanon and 25% of olive trees in Jordan are being irrigated (http://blog.blominvestbank.com/wp-content/uploads/2015/11/Olive-Oil-The-Bittersweet-Taste-ofLebanon.pdf, link accessed 15.01.2021 and Talozi and Al Waked 2016). Most palaeoclimatic records within the southern Levant indicate on average a slightly moister climate than today for the Early Bronze Age (e.g. Bar-Matthews and Kaufmann 1998; Bar-Matthews and Ayalon 2011). The isotopic results on speleothems from Soreq Cave (Israel), for example, indicate that between 3200 and 2600 $B C$ the climatic conditions fluctuated between moister and more arid compared to today, followed by a moister period than today between 2600 and 2200 BC. After this the climate became more arid with fewer major fluctuations (Bar Matthews and Kaufmann 1998; Bar-Matthews and Ayalon 2011). Additionally, Dead Sea and Lake Tiberias levels were generally high in the third millennium BC, dropping towards the end of that period (see summary in Robinson et al. 2006: fig. 5). The Jeita (Lebanon) stable isotopic record, in contrast, suggests drier conditions between 3800 BC and 900 AD, interrupted by a somewhat moister phase between 2000 and 1000 BC . The contradiction of the results with most other data from the region may have been caused by the rather low time resolution in the Jeita data (Verheyden et al. 2008). The analysis of several marine and terrestrial climate proxies shows that the period between 4600 and 4200 BP (and especially the time slice
between 4400-4300 BP) has a peak in frequency of rainfall minima in the data (Clarke et al. 2016) to which people may have needed to adapt, e.g. by irrigation in the case of olive.

Under natural circumstances, one would expect smaller olives at Khirbet-ez Zeraqon than at FadousKfarabida, but in fact the opposite is true. This may be because of additional irrigation at Khirbet-ez Zeraqon. There is some circumstantial evidence for irrigation at the latter site: stable carbon isotopic measurements on barley from Khirbet-ez Zeraqon indicate a slight water stress in some of the grains during the EBII-III, while at the same time the standard deviations were higher compared to other sites in less arid regions (up to 3.3% at Khirbet-ez Zeraqon compared to less than 2.25% at FadousKfarabida), suggestive of variability in moisture conditions, perhaps caused by some additional artificial water supply for some of the barley fields (Riehl et al. 2008). Related variability in moisture availability may have affected the olives there. Stable carbon isotopic results on 10 barley grains from the Early EB III (Phase III) in Fadous-Kfarabida show no indication for drought stress (Riehl et al. 2014). Compared to Khirbet-ez Zeraqon, the region around Fadous-Kfarabida receives considerably more rain, so irrigation was likely not practiced. It is therefore also striking that the Fadous-Kfarabida olives show a greater variance in stone length.

While a part of the Khirbet-ez Zeraqon olive variance of measurements may be explained by differing water conditions for different olive plants, it may also relate to the presence of several cultivar varieties and hint at specialization and diversification. The stone measurement variance results of the present-day 31 Iranian olive genotypes show a similar high value as the stones from Khirbet-ez Zeraqon and Fadous-Kfarabida (Jalali et al. 2014). The diversification and maintenance of different olive varieties in the ancient world is visible at a $1^{\text {st }}$ to $4^{\text {th }}$ Century AD site in Spain, where detailed olive stone morphometry results (analysis of the shape of the whole olive stone rather than simply the maximal length and width) were compared with present-day morphotypes. This technique showed the presence of an "amazing diversity of olive varieties" (Bourgeon et al. 2018). Domesticated, wild and hybrid wild-domestic types were detected at the site. The most prevalent olive stone morphotype at the site was originally probably imported from the Central or Eastern Mediterranean, while another one that was less prevalent also has an eastern source. While they were probably locally bred at that time in Spain, the olive stone shape varieties testify for intensive contacts with other regions (Bourgeon et al. 2018) and show the conscious choice of grove owners to use a high variety of olives to protect their olive production against climatic risks and pests (Bourgeon et al. 2018). At Late Bronze Age Ugarit, similar detailed shape analysis of olive stones also indicates the use of seven different olive varieties, including also wild or feral (Newton et al. 2014).

6. Conclusion

While there is a growing body of evidence that olive cultivation started in the $5^{\text {th }}$ millennium $B C$, the scale of olive cultivation in the Levant appears to have increased during the Early Bronze Age. This may have been connected to wider transformations related to growing socio-economic complexity in the area over this period. More precisely, specialised production has been linked with economic expansion and specialisation in other areas (such as pottery) (Badreshany et al. 2019).

The occurrence of olive wood and stones at Khirbet-ez Zeraqon - in a region that was not within the wild olive distribution - indicates that domesticated olive trees were the subject of intentional cultivation during the Early Bronze Age II-III, but without using more sophisticated technologies such as grafting of domesticated species with wild plants. Several other factors better explain the high variance of the olive stone lengths there, including specialization by using several cultivars and/or applying irrigation and/or fluctuations in rainfall, as supported by stable carbon isotope data on barley grains from the site. Although olive was likely not the dominant food plant at the site in terms of macro-nutrient supply, its importance is evident from the distribution throughout diverse types of private and public contexts.

While olive was native to the central Levantine zone, the increase in olive charcoal there, as at Fadous-Kfarabida, suggests the practice of pruning of olive trees, implying cultivation as well. The small mean in length of the stones from Fadous-Kfarabida and the high variance of stones may indicate that wild olives were included in the production as well, since water stress was not observed for the cereals so far. Compared to the local conditions at Khirbet-ez Zeraqon, Fadous-Kfarabida is located in an area of long-term olive cultivation with abundant availability of wild olives. We might speculate that these two conditions would result in more experimentation, such as developing different olive strains.

Although an overall linear trend can be detected for olive domestication for the southern Levant, with an increasing mean length for olive stones between 7 and 2 kyr BP, the Early Bronze Age measurement data from Fadous-Kfarabida and Khirbet-ez Zeraqon are outside the confidence band of the linear regression. Hence, the "domestication syndrome" is not always recognizable due to a high variance, possibly related to the high micro-climatic and cultural diversity of the Levantine region. For example, new breeds may have been introduced from wild populations depending on their geographic availability and economic goals. Hence, our results indicate different local practices in cultivation and domestication.

Based on our and other data in the Mediterranean, it is likely that already by the Early Bronze Age different olive varieties were in use. Hence, the variance needs to be treated with caution because lots of other factors may be involved.

7. Future work

Future work will be aimed at, on the one hand, deepening the chronological and contextual resolution of the archaeobotanical evidence of Tell Fadous-Kfarabida and Khirbet-ez Zeraqon and, on the other hand, extending the comparative datasets to other sites in the area. Moreover, the incorporation of further evidence (e.g. stable isotopes analyses, dendrological measurements, pollen data, material culture, settlement pattern, etc.) is planned in order to address the topic by means of a multi-variated approach.

Acknowledgements

This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme, grant agreement No 802424, award holder Dr. Dan Lawrence. Special thanks go to the directors of the Khirbet-ez Zeraqon excavation, Prof. Siegfried Mittmann (Biblisch-Archäologisches Institut of the Eberhard Karls University of Tübingen - Germany) and Prof. Moawiyah Ibrahim (Institute of Archaeology and Anthropology of the Yarmouk University of Irbid - Jordan). The Tell Fadous-Kfarabida charcoal remains were analysed with financial support of the Gerda-Henkel Foundation. Federico Polisca helped measuring olive stones. We would like to thank two anonymous reviewers, and the editor, for comments which helped to improve this paper.

References

Albert, R., Petutschnig, B., Watzka, M., 2004. Zur Vegetation und Flora Jordaniens. Denisia 14, zugleich Kataloge der OÖ. Landesmuseen Neue Serie 2, 133-220.

Alex, M., 1986. Klimadaten ausgewählter Stationen des Vorderen Orients. Tübinger Atlas des Vorderen Orients Bd. 14. Ludwig Reichert, Wiesbaden.

Archi, A., 1992. The early state of Ebla and the organization of the rural territory. Altorientalische Forschungen 19, 24-28.

Baccouri, B., Guerfel, M., Zarrouk, W., Taamalli, W., Daoud, D., Zarrouk, M., 2011. Wild olive (Olea europaea L.) selection for quality oil production. Journal of Food Biochemistry 35, 161-176.

Badreshany, K., Genz, H., Sader, H., with contributions by Breuer, P., Çakırlar, C., Deckers, K., Jungklaus, B., Nader, F., Riehl, S., Rokitta, D., Yanni, S., 2005. An Early Bronze Age site on the Lebanese coast. Tell Fadous-Kfarabida 2004 and 2005: Final Report. Bulletin d’Archéologie et d'Architecture Libanaises 9, 5-115.

Badreshany, K., Philip, G., Kennedy, M., 2019. The development of integrated regional economies in the Early Bronze Age Levant: New evidence from „Combed-Ware" jars. Levant 51, 1-37.

Baierle, H.U., Frey, W., Jagiella, C., Kürschner, H., 1989. Die Brennstoffressourcen im Raum Fenan (Wadi Araba, Jordanien) und die bei der Kupfererzverhüttung verwendeten Brennstoffe. In: Hauptmann, A., Pernicka, E., Wagner, G. A. (Eds.), Archäometallurgie der Alten Welt. Beiträge zum Internationalen Symposium "Old World Archaeometallurgy", Heidelberg 1987. Hauptmann, Bochum, pp. 213-222.

Bar-Matthews, M., Ayalon, A., 2011. Speleothems as palaeoclimate indicators, a study from Soreq Cave located in the Eastern Mediterranean region, Israel. In: Batterbee, R.W., Gasse, F., Stickley, C. (Eds.), Past climate variability through Europe and Africa. Springer, Dordrecht, pp. 363-391.

Bar-Matthews, M., Kaufman, A., 1998. Middle to Late Holocene (6,500 yr. period) paleoclimate in the Eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. In: Issar, A.S., Brown, N., (Eds.), Water, Environment and Society in Times of Climatic Change. Kluwer Academic Publishers, Dordrecht, pp. 203-214.

Besnard, G., Khadari, B., Navascués, M., Fernández-Mazuecos, M., El Bakkali, A., Arrigo, N., BaaliCherif, D., Brunini-Bronzini de Caraffa, V., Santoni, S., Vargas, P., Salvolainen, V., 2013. The complex history of the olive tree: From Late Quaternary diversification of the Mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences 280, 20122833.

Besnard, G., Terral, J.-F., Cornille, A., 2018. On the origin and domestication of the olive: A review and perspectives. Annals of Botany 121.3, 385-403.

Bourgeon, O., Pagnoux, C., Mauné, S., Vargas, E.G., Ivorra, S., Bonhomme, V., Ater, M., Moukhli, A. Terral, J.-F., 2018. Olive tree varieties cultivated for the great Baetican oil trade between the 1 st and the 4 th centuries ad: morphometric analysis of olive stones from Las Delicias (Ecija, Province of Seville, Spain). Vegetation History and Archaeobotany 27, 463-476.

Browicz, K., 1982. Chorology of trees and shrubs in Southwest Asia and Adjacent Regions 1. Polish Academy of Sciences. Institute of Dendrology, Poznan.

Chesson, M.S., 2015. Reconceptualizing the Early Bronze Age Southern Levant without cities: Local histories and walled communities of EB II-III societies. Journal of Mediterranean Archaeology 28.1, 51-79.

Chesson, M.S., Philip, G., 2003. Tales of the cities? 'Urbanism' in the Early Bronze Age Levant from Mediterranean and Levantine perspective. Journal of Mediterranean Archaeology 16.1, 3-16.

Clarke, J., Brooks, N., Banning, E.B., Bar-Matthews, M., Campbell, S., Clare, L., Cremaschi, M., di Lernia, S., Drake, N., Gallinaro, M., Manning, S., Nicoll, K., Philip, G., Rosen, S.,Schoop, U.-D., Tafuri, M.A., Weninger, B., Zerboni, A., 2016. Climatic changes and social transformations in the Near East and North Africa during the 'long' 4th millennium BC: A comparative study of environmental and archaeological evidence. Quaternary Science Reviews 2015, 96-121.

Cordova, C., 2007. Millennial landscape change in Jordan. Geoarchaeology and cultural ecology. The University of Arizona Press, Tucson.

Costantini, L.; Biasini, L.C., 2018. 15. Archaeobotanical investigations at Pantanello. In: Carter, J.C., Swift, K. (Eds.), The chora of Metaponto 7: The Greek sanctuary at Pantanello. University of Texas Press, Texas, pp. 371-378.

Deckers, K., submitted. Vegetation and wood use at the Early Bronze Age Tell Fadous-Kfarabida (Lebanon). In: Genz, H., Damick, A. (eds.), Tell Fadous-Kfarabida I: The site and its environment. De Miroschedji, P., 1999. Yarmuth: The dawn of the city-states in southern Canaan. Near Eastern Archaeology 62.1, 2-19.

Dighton, A., Fairbairn, A., Bourke, S., Tyler Faith, J., Habgood, P., 2017. Bronze Age olive domestication in the north Jordan valley: New morphological evidence for regional complexity in early arboricultural practice from Pella in Jordan. Vegetation History and Archaeobotany 26, 403-413.

Douglas, K., 2007. Die Befestigung der Unterstadt von Hirbet ez-Zeraqōn im Rahmen der frühbronzezeitlichen Fortifikationen in Palästina (ADPV 27/3). Harrassowitz, Wiesbaden.

Finkelstein, I., Piasetzky, E., 2008. Radiocarbon dating and the Late-Iron I in northern Canaan. A New proposal. In: Dietrich, M., Loretz, O. (eds.), Ugarit-Forschungen. Internationales Jahrbuch für die Altertumskunde Syrien-Palästinas. Band 39, 247-276.

Fuller, D.Q., 2018. Long and attenuated: comparative trends in the domestication of tree fruits. Vegetation History and Archaeobotany 27, 165-176.

Galili, E., Stanley, D.E., Sharvit, J., Weinstein-Evron, M., 1997. Evidence for earliest olive oil production in submerged settlements off the Carmel Coast, Israel. Journal of Archaeological Science 24, 1141-1150.

Garfinkel, Y., Hasel, M.G., Klingbeil, M.G., Kang, H.-G., Choi, G., Chang, S.-Y., Hong, S., Ganor, S., Kreimerman, I., Ramsey, C.B., 2019. Lachish fortification and state formation in the Biblical Kingdom of Judah in light of radiometric datings. Radiocarbon 61.3, 695-712.

Genz, H., 2002. Die frühbronzezeitliche Keramik von Hirbet ez-Zeraqōn. Mit Studien zur Chronologie und funktionalen Deutung frühbronzezeitlicher Keramik in der südlichen Levante (ADPV 27/2). Deutscher Verein zur Erforschung Palästinas e.V., Wiesbaden.

Genz, H., 2003. Cash crop production and storage in the Early Bronze Age southern Levant. Journal of Mediterranean Archaeology 16.1, 59-78.

Genz, H., Çakırlar, C, Damick, A., Jastrzebska, E. Riehl, S., Deckers, K., Donkin, A., 2009. Excavations at Tell Fadous-Kfarabida: Preliminary report on the 2009 season of excavations. Bulletin d'Archéologie et d'Architecture Libanaises 13, 71-124.,

Genz, H., Daniel, R., Pustovoytov, K., Woodworth, M., 2011. Excavations at Tell Fadous-Kfarabida: Preliminary report on the 2011 season of excavations. Bulletin d'Archéologie et d'Architecture Libanaises 15, 151-174.

Genz, H, Riehl, S., Çakırlar, C., Slim, F., Damick, A., 2016. Economic and political organization of Early Bronze Age coastal communities: Tell Fadous-Kfarabida as a case study. Berytus 55, 79-119.

Goren-Inbar, N., Feibel, C.S., Verosub, K.L., Melamed, Y., Kislev, M.E., Tchernov, E., Saragusti, I., 2000. Pleistocene milestones on the out-of-Africa corridor at Gesher Benot Ya'aqov, Israel. Science 289, 944-947.

Gucci, R., Lodolini, E.M., Rapoport, H.F., 2009. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiology 29, 1575-1585.

Hammam, S.B.M., Manrique, T., Rapoport, H.F., 2011. Cultivar-based fruit size in olive depends on different tissue and cellular processes throughout growth. Scientia Horticulturae 130, 445-451.

Hannachi, H., Gómez, J.V.M., Saadaoui, E., Cervantes, E., 2017. Stone diversity in wild and cultivated olive trees (Olea europaea L.). Dendrobiology 77, 19-32.

Helbaek, H., 1958. Plant economy in ancient Lachish. In: Tufnell, O. (Ed.), Lachish IV: The Bronze Age. Oxford University Press, Oxford, pp 309-317.

Höflmayer, F, Dee, M.W, Genz, H., Riehl, S., 2014. Radiocarbon evidence for the Early Bronze Age Levant: The site of Tell Fadous-Kfarabida (Lebanon) and the end of the Early Bronze Age III period. Radiocarbon 56.2, 529-542.

Jalali, A, Seifi, E., Alizadeh, M., Fereidooni, H., 2014. The study of morphological diversity among some olive genotypes in northern Iran. Asian Jr. of Microbiol. Biotech. Env. Sc. Vol. 16. 4, 1215-1221.

Kislev, M., 1994. Wild olive stones at submerged Chalcolithic Kfar Samir, Haifa, Israel. Journal of the Israel Prehistoric Society 26, 134-145.

Langgut, D., Cheddadi, R., Carrión, J.S., Cavanagh, M., Colombaroli, D., Eastwood, W.J., Greenberg, R., Litt, T., Mercuri, A.M., Miebach, A., Roberts, N., Woldring, H., Woodbridge, J., 2019. The origin and spread of olive cultivation in the Mediterranean Basin. The Holocene 29.5, 902-922.

Lipschitz, N., 2007. Timber in ancient Israel. Dendroarchaeology and dendrochronology. Monograph Series 26. Tel Aviv University, Tel Aviv.

Lipschitz, N., Gophna, R., Hartman, M., Biger, G., 1991. The beginning of olive (Olea europaea) cultivation in the Old World: A reassessment. Journal of Archaeological Science 18, 441-453.

Lipschitz, N., Gophna, R., Bonani, G., Feldstein, A., 1996. Wild olive (Olea europaea) stones from a Chalcolithic cave at Shoham, Israel, and their implications. Tel Aviv 23, 135-142.

Meadows, J., 2005. Early farmers and their environment: archaeobotanical research at Neolithic and Chalcolithic sites in Jordan. Unpublished PhD thesis, La Trobe University Melbourne.

Melamed, Y., Kislev, M.E., Geffen, E., Lev-Yadun, S., Goren-Inbar, N., 2016. The plant component of an Acheulian diet at Gesher Benot Ya‘aqov, Israel. PNAS 13, 51, 14674-14679.

Namdar, D., Amrani, A., Getzov, N., Milevski, I., 2014. Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, northern Israel. Israel Journal of Plant Sciences 62, 65-74.

Neef, R., 1990. Introduction, development and environmental implications of olive culture: The evidence from Jordan. In: Entjes-Nieborg, van Zeist, W. (Eds.), Man's role in the shaping of the Eastern Mediterranean Landscape. Balkema, Rotterdam, pp. 295-306.

Neef, R., 1997. Status and perspectives of archaeobotanical research in Jordan. In: Gebel, H.G.K., Kafafi, Z., Rollefson, G.O. (Eds.), The prehistory of Jordan II. Perspectives from 1997. Studies in early Near Eastern production, subsistence, and environment 4. Ex Oriente, Berlin, pp. 601-609.

Newton, C., Lorre, C., Sauvage, C., Ivorra, S., Terral, J.-F., 2014. On the origins and spread of Olea europaea L. (olive) domestication: Evidence for shape variation of olive stones at Ugarit, Late Bronze Age, Syria-a window on the Mediterranean Basin and on the westward diffusion of olive varieties. Vegetation History and Archaeobotany 23.5, 567-575.

Philip, G., 2003. The Early Bronze Age of the southern Levant. A landscape approach. Journal of Mediterranean Archaeology 16.1, 103-132.

Rapoport, H.F., Cotagli, G., Gucci, R., 2004. The effect of water deficit during early fruit development on olive fruit morphogenesis. Journal of the American Society of Horticultural Sciences 129.1, 121127.

Richard, S., 2014. The southern Levant (Transjordan) during the Early Bronze Age. In: Steiner, M.L., Killebrew, A.E. (Eds), The Oxford handbook of the archaeology of the Levant c. 8000-332 BCE. Oxford University Press, Oxford, pp.330-352.

Riehl, S., submitted. 10. Flourishing surplus in coastal lands: Archaeobotany and stable carbon isotopes. In: Genz, H., Damick, A. (Eds.), Tell Fadous-Kfarabida I: The site and its environment Riehl, S., 2004. Archaeobotany at the Early Bronze Age settlement of Khirbet ez-Zeraqon: A preliminary report. Zeitschrift des Deutschen Palästina-Vereins 120.2, 102-122.

Riehl, S., Bryson, R., Pustovoytov, K., 2008. Changing growing conditions for crops during the Near Eastern Bronze Age (3000-1200 BC): The stable carbon isotope evidence. Journal of Archaeological Science 35, 1011-1022.

Riehl, S., Pustovoytov, K.E., Weippert, H., Klett, S., Hole, F., 2014. Drought stress variability in ancient Near Eastern agricultural systems evidenced by $\delta 13 \mathrm{C}$ in barley grain. Proceedings of the National Academy of Sciences 111.34, 12348-12353.

Robinson, S.A., Black, S., Sellwood, B.W., Vades, P.J., 2006. A review of palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000 to 5000 years BP: Setting the environmental background for the evolution of human civilization. Quaternary Science Reviews $25,1517-1541$.

Rodrigues, M.A., Lopes, J.I., Ferreira, I.Q., Arrobas, M., 2018. Olive tree response to the severity of pruning. Turkish Journal of Agriculture and Forestry 42, 103-113.

Salavert, A., 2008. Olive Cultivation and Oil Production in Palestine during the Bronze Age (3500-2000 B.C.): The Case of Tel Yarmouth, Israel. Vegetation History and Archaeobotany 17. Suppl. 1, 53-61. Schackleton, C.M., Prins, F., 1992. Charcoal Analysis and the "Principle of Least Effort" -A Conceptual Model. Journal of Archaeological Science 19, 631-637.

Schiebel, V., 2013. Vegetation and climate history of the southern Levant during the last 30,000 years based on palynological investigation. PhD Dissertation Rheinischen Friedrich-Wilhelms-Universität Bonn.

Sharon, I., Gilboa, A., Jull, T.A.J., Boaretto, E., 2007. Report on the first stage of the Iron Age dating project in Israel: Supporting a Low Chronology. Radiocarbon 49, 1-46.

Talhouk, S. N., Zurayk, R., Khuri, S., 2001. Conservation of the coniferous forests of Lebanon: Past, present and future prospects. Oryx 35.3, 206-215.

Talozi, S., Al Waked, L., 2016. The effects of regulated deficit irrigation on the water demand and yield of olive trees. Applied engineering in agriculture, 32.1, 55-62.

Terral, J.-F., Alonso, N., Buxó I Capdevilla, R., Chatti, N, Fabre, L., Fiorentino, G., Marinval, P., Jordá, G., Pradat, B., Rovira, N., Alibert, P., 2004. Historical biogeography of olive domestication (olea europaea) as revealed by geometrical morphometry applied to biological and archaeological material. J. Biograpr 31, 63-77.

Tufnell, O., 1953. Lachish III (Tell Ed Duweir). The Iron Age. Oxford University Press, Oxford.

Tumolo, V., Höflmayer, F., 2020. Khirbet ez-Zeraqon and Early Bronze Age chronology revisited. In: Richard, S. (Ed.), New horizons in the study of the Early Bronze III and Early Bronze IV in the Levant. The Pennsylvania State University Press, Pennsylvania, pp.249-264.

Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R., Swennen, R., 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from Jeita Cave, Lebanon. Quaternary Research 70, 368-381.

Wilkinson, T.J., Philip, G., Bradbury, J., Dunford, R., Donoghue, D., Galiatsatos, N., Lawrence, D., Ricci, A., Smith, S., 2014. Contextualising early urbanization: Settlement cores, early states and agropastoral strategies in the Fertile Crescent during the fourth and third Millennia BC. Journal of World Prehistory 27, 43-109.

Yazbeck, E., Abi Rizk, G., Hassoun, G., El-Khoury, R., Geagea, L., 2018. Ecological characterization of ancient olive trees in Lebanon-Bshaaleh area and their age estimation." IOSR Journal of Agriculture and Veterinary Science 11.2, 35-44.

Zaitschek, D.V., 1980. Plant remains from the Cave of the Treasure. In: Bar-Adon, P. (Ed.), The Cave of the Treasure. The finds from the Caves in Nahal Mishmar. Israel Exploration Society, Jerusalem, pp. 223-227.

Fig. 2. Maps of Khirbet-ez Zeraqon: a) overview of the site, b) upper town, b) lower town (courtesy of the Khirbet-ez Zeraqon expedition).

Fig. 3a and b. Excavation maps of Tell Fadous-Kfarabida.

Fig. 4. Ubiquities of major crops in the upper and lower city of Khirbet-ez Zeraqon and phases II-IV at Tell Fadous-Kfarabida.

Fig. 5. Charcoal fragment percentages for Khirbet-ez Zeraqon and Fadous-Kfarabida (phases II-IV only): a) proportion of Olea europaea, b) fragment percentages of all other taxa.

Fig. 6. Linear regressions with confidence bands for a) mean olive stone length over time, b) variance of olive stone lengths over time, c) mean olive stone widths over time, d) olive width/length relation, e) variance of olive stone widths over time. Khirbet-ez Zeraqon and Fadous-Kfarabida are labeled with respectively Z and F, as well as outliers according to the abbreviations listed in Table 1.

Fig. 7. Distribution of the olive stone lengths (in mm) at the different sites: FA= Fadous-Kfarabida, Iran= present-day Iran, TC= Late Chalcolithic Teleilat Ghassul Late Chalcolithic, TN= Late Neolithic/Middle Chalcolithic Teleilat Ghassul, Z= Khirbet-ez Zeraqon

Ised in figures)	Country	Phase	Date range	Approximate average Cal. BP	Number of measured stones	State of stones	Mean olive stone lengths	Mean olive stone widths	$\begin{gathered} \text { Mean } \\ \text { length/width } \\ \hline \end{gathered}$	Variance olive stone lengths	Variance olive stone widths	Reference	Notes
	Jordan	Late Neolithic	$5100-4700 \mathrm{BC}$	6920	32	c	9,17	5,73	1,60	2,5	0,57	Dighton et al. 2017	
	Jordan	Late Neolithic/Early Chalcolithic	4845-4368 BC	6626	75	c	9,73	5,78	1,69	3,29	0,6	Meadows 2005	
	Israel	Late Neolithic/Early Chalcolithic	$5567-4367$ BC	6990	100	uw	9,27*	5,55*	1,67*	3,56	0,76	Kislev 1994	See Galili et al (1997) for the chronology. Old dates on wood have been omitted.
	Jordan	Chalcolithic	$4700-3900 \mathrm{BC}$	6320	34	c	9,42	5,69	1,66	2,18	0,57	Dighton et al. 2017	
	Jordan	Late Chal colithic	4496-4085 BC	6310	76	c	8,99	5,57	1,63	1,46	0,64	Meadows 2005	
	Jordan	Early Bronze Age I	$3600-3000 \mathrm{BC}$	5320	70	c	9,8	6,2	1,58	not given	not given	Lipschitz et al. 1996	
	Israel	Late Chal colithic	3942-3646 BC	5815	23	c	7,52	4,8	1,57	1,42	0,49	Lipschitz et al. 1996	
ftreasure) (M)	\|srael	Late Chal colithic	$3800-3600 \mathrm{BC}$	5720	58	u	9,85*	4,87*	1,92*	not given	not given	Fuller 2018 from Zaitchek 1980	
	Jordan	Early Bronze Age II-III	$3100-2850 \mathrm{BC}$	4995	L (23); W (30)	c	9,29	5,24	1,77	2,29	0,44	new data	
	Lebanon	Early Bronze Age II-III	$3000-2500 \mathrm{BC}$	4770	L(132); W (181)	c	8,52	5,56	1,53	2,91	0,38	new data	
	Israel	Early Bronze Age I-IV	$3600-2000 \mathrm{BC}$	4820	20	c	11,2	5,7	1,96	not given	not given	Helbaek 1958	
	Jordan	Late Bronze Age	$1500-1150 \mathrm{BC}$	3345	41	c	10,72	6,12	1,75	0,98	0,28	Dighton et al. 2017	
	lsrael	Late Bronze Age	1550-1200 BC	3395	28	c	10,71	5,65	1,90	0,09	0,02	Lipschitz et al. 1996	
	Israel	Iron Age	1112-925 BC	3040	100	c	11,31	6,55	1,73	0,96	0,17	Kislev 1994	See also Finkelstein and Pianetzy (2008); Sharon et al. (2007) for the chronology
	Jordan	Iron Age	1100-800 BC	2970	171	c	10,78	6,26	1,72	1,2	0,28	Dighton et al. 2017	
	\|srael	Iron Age	1015-586 BC	2820	25	c	10,1	5,7	1,77	not given	not given	Helbaek 1958	See also Tuffnel 195; Garfinkel et al. 2019.
	Israel	Hellenistic	$300 \mathrm{BC}-64 \mathrm{AD}$	2140	64	c	12,85	6,39	2,01	0,14	0,49	Lipschitz et al. 1996	
nel region (8trees)	Israel	Recent	1996 AD	25	100?	u	13,93	6,47	2,15	8,11	1,52	Lipschitz et al. 1996	
tal variety Surey	Israel	Recent	1996 AD	25	100	U	15,01	5,99	2,51	6,38	1,22	Lipschitz et al. 1996	
ivated olives	Iran	Recent	2014 AD	5	31	U	14,27	6,78	2,10	2,50	0,98	Jalali et al. 2014	
by 20% to compensate for being uncharred (cf. Fuller 2018)													

Table 1. List of published olive measurements with references. Unlike in Fuller (2018) only Levantine sites with more than 10 measurements are listed and used in the plots. Besides own measurement data from Khirbet-ez Zeraqon and Fadous-Kfarabida, recent measurement data as well as data from Meadows (2005) for Teleilat-Ghassul and Neolithic data for Pella (Dighton et al. 2017) was added to the Fuller (2018) chart. An approximate date was calculated for the occupation of the site as an average date for the period available, which is also used for the graphs in Fig. 6. Note that the chronological designation deviates somewhat from Fuller (2018). C=carbonized, U=uncharred, $\mathrm{W}=$ waterlogged, ${ }^{*}=$ results were reduced by 20% to compensate for being uncharred (cf. Fuller 2018)

	Length	Width
Iran	A	A
Teleilat Ghassul Neolithic	BC	B
Teleilat Ghassul Chalcolithic	BDE	B
Khirbet-ez Zeraqon	BCD	B
Fadous-Kfarabida	DE	B

Table 2. Results of the Games Howell-Test for length and width. The sites that are not connected with the same letter differ significantly for the mean length, respectively mean width of their olives.

Sample number	Occupation phase	Length	Width
TF2005-K111-F64_1	III	8,4	5,6
TF2005-K111-F64_2	III		6,7
TF2005-K109-F61_1	III	7,2	4,6
TF2005-K109-F61_2	III	10	5,9
TF2005-K109-F61_3	III	10	5,5
TF2005-K109-F61_4	III	11,9	4,9
TF2005-K109-F61_5	III	8,7	5,3
TF2005-K109-F61_6	III	7,1	5,1
TF2005-K109-F61_7	III	9,2	5,9
TF2005-K109-F61_8	III	9,1	4,8
TF2011-S295/10-C2206-F107-BP176_1	IV	9,6	6,6
TF2009-S290/295-C522-F206-BP112_1	III		5,7
TF2009-S290/300-C614-F68-BP109_1	IV	10	5,1
TF2009-S290/300-C614-F68-BP109_2	IV	10,8	5,9
TF2009-S290/300-C617-F71-BP97_1	III		5,2
TF2009-S290/295-C502-F232-BP100_1	IV?	8,7	4,5
TF2007-285.300.67-C308_1	III		7
TF2007-285.300.67-C308_2	III	6,3	4,5
TF2007-285.300.67-C308_3	III	6,8	5,6
TF2007_285/295-C210-F73_1	III	10,2	5,2
TF2007_285/295-C210-F73_2	III	7,7	5,6
TF2007_285/295-C210-F73_3	III	6,4	4
TF2007-285/295-F117-C213_1	III	10	6,6

TF2007-285/295-F117-C213_2	III	6,9	5
TF2001-S310/295-C1712-F69-BP166_1	V	9,7	6,2
TF2001-S310/295-C1712-F69-BP166_2	V	8,2	5,3
TF2001-S295/305-C1925-F142-			
BP165_1	III		5
TF2011-S305/295-C1628-F206-			
BP164_1	IV		6
TF2011-S305/295-C1628-F206-			
BP164_2	IV	6,5	5,4
TF2011-S305/295-C1628-F206-			
BP164_3	IV	6,6	4,5
TF2011-S305/295-C1628-F206-			
BP164_4	IV		5,8
TF2011-S305/295-C1628-F206-			
BP164_5	IV	8	5,4
TF2011-S305/295-C1639-F298-			
BP159_1	IV	11	6,1
TF2011-S305/295-C1639-F298-			
BP159_2	IV	7,4	5,3
TF2001-S23'5/295-C1621-F188-			
BP161_1	IV	7,6	5,7
TF2001-S23'5/295-C1621-F188-			
BP161_2	IV	7,8	6
TF2001-S23'5/295-C1621-F188-			
BP161_3	IV	10,9	5,8
TF2001-S23'5/295-C1621-F188-			
BP161_4	IV		6,8
TF2001-S23'5/295-C1621-F188-			
BP161_5	IV		6,8
TF2004-BP05_1	III?		6,7
TF2004-BP05_2	III?		5,2
TF2004-BP08_1	II		5,1
TF2004-BP02_1	IV	6,4	4,6
TF2005-K68-F23_1	II	8	5,7
TF2005-K107-F26	I	9,9	4,9
TF2008-285/295-222-F185_1	III		6,1
TF2008-285/295-222-F185_2	III	5,9	5
TF2008-285/295-222-F185_3	III	9,4	6,3
TF2008-285/295-222-F185_4	III	8,2	5,1
TF2008-285/295-222-F185_5	III	7,3	5,7
TF2008-285/295-222-F185_6	III		4,6
TF2008-285/295-222-F185_7	III	7,9	
TF2008-285/295-222-F185_8	III	10,4	5,6
TF2008-285/295-222-F185_9	III	8	5,6
TF2008-285/295-222-F185_10	III	8,8	6,2
TF2008-285/295-222-F185_11	III	6,7	5,6
TF2008-285/295-222-F185_12	III	6,5	5
TF2008-285/295-222-F185_13	III	9,1	5,4
TF2008-285/295-222-F185_14	III	7,6	5,9
TF2008-290/295-509-F60_1	III	11,7	6,5

TF2008-290/295-522-F137_1	III		5,4
TF2008-290/295-522-F137_2	III		5
TF2008-290/295-522-F137_3	III	6,5	4,5
TF2008-285/305-420-F83_1	III		4,7
TF2008-290/295-522-F140_1	III	9,2	6
TF2008-290/295-522-F140_2	III	6,8	5,1
TF2008-290/295-522-F140_3	III	9,7	5,6
TF2008-290/295-522-F140_4	III		4,9
TF2008-290/295-522-F140_5	III	6,8	5,7
TF2008-290/295-522-F140_6	III	10,8	
TF2008-290/295-522-F140_7	III		4,7
TF2008-255/280-1311-F26_1	Below fortification wall. No phase.		5,7
TF2008-255/280-1311-F26_2	Below fortification wall. No phase.	10,7	6,1
TF2008-255/280-1311-F26_3	Below fortification wall. No phase.	6,5	5
TF2008-255/280-1311-F26_4	Below fortification wall. No phase.		5,5
TF2008-285/295-230-F216_1	III	7,8	4,8
TF2007-285/295-C211-F82_1	III	9,1	6,3
TF2007-285/295-C211-F82_2	III		5,7
TF2007-285/295-C211-F82_3	III		6
TF2007-285/295-C211-F82_4	III	12,4	5,7
TF2007-285/298-213-21.8.07_1	III		5,2
TF2007-285/298-2B-21.8.07_2	III		5
TF2007-285/298-2B-21.8.07_3	III		6,3
TF2007-285/298-2B-21.8.07_4	III		5,9
TF2007-285/298-2B-21.8.07_5	III		5,6
TF2007-285/298-2B-21.8.07_6	III		5,5
TF2007-285/298-2B-21.8.07_7	III	7,4	7,2
TF2007-285/298-2B-21.8.07_8	III		5,9
TF2007-285/298-2B-21.8.07_9	III		5,6
TF2007-285/298-2B-21.8.07_10	III	8,3	5
TF2007-285/298-2B-21.8.07_11	III	7,8	5,3
TF2007-285/298-2B-21.8.07_12	III		5,4
TF2007-285/298-2B-21.8.07_13	III	9,1	5,3
TF2007-285/298-2B-21.8.07_14	III	8,4	5,6
TF2007-285/298-2B-21.8.07_15	III	11	5,3
TF2007-285/298-2B-21.8.07_16	III	8,5	5,8
TF2007-285/298-2B-21.8.07_17	III	8,2	5,6
TF2007-285/298-2B-21.8.07_18	III		6
TF2007-285/298-2B-21.8.07_19	III		6,1
TF2007-285/298-2B-21.8.07_20	III	8,1	6
TF2007-285/298-2B-21.8.07_21	III	8,5	
TF2008-285/295-C222-F146_1	III	10,8	5,7
TF2008-285/295-C222-F146_2	III	10,6	5,8
TF2008-285/295-C222-F146_3	III	10,2	5
TF2007-285/295-C218-F111_1	III	10,4	5,7
TF2007-285/295-C218-F111_2	III	9,9	5,4
TF2007-285/295-C218-F111_3	III	7,3	5,3

TF2007-285/295-C218-F111_4	III	14,3	5,7
TF2007-285/295-C218-F111_5	III	10	5,8
TF2007-285/295-C218-F111_6	III	10,6	6,2
TF2007-285/295-C218-F111_7	III	8,4	5,7
TF2007-285/295-C218-F111_8	III	7,5	5,6
TF2007-285/295-C218-F111_9	III	12,5	5,7
TF2007-285/295-C218-F111_10	III	11,8	5,7
TF2007-285/295-C218-F111_11	III	8,7	6,2
TF2007-285/295-C218-F111_12	III	12,2	6,1
TF2007-285/295-C218-F111_13	III	7,8	5,6
TF2007-285/295-C218-F111_14	III	7,1	5,3
TF2007-285/295-C218-F111_15	III		6,5
TF2007-285/295-C218-F111_16	III		6
TF2007-285/295-C218-F111_17	III		6
TF2007-285/295-C218-F111_18	III		4
TF2007-285/295-C218-F111_19	III	10,1	
TF2008-285-295-C222-F151_1	III	5,9	5
TF2008-290-195-C522-F139_1	III	12,9	6,1
TF2008-290-195-C522-F139_2	III	6,9	5,5
TF2008-290-195-C522-F139_3	III		5,3
TF2008-290-195-C522-F139_4	III		5,9
TF2008-290-195-C522-F139_5	III	7,8	6,9
TF2008-290-195-C522-F139_6	III		4,9
TF2008-285/295-C228-F198_1	III	7,4	5,4
TF2008-285/295-C228-F198_2	III		5,7
TF2008-285/295-C228-F198_3	III		6,8
TF2008-285/295-C228-F198_4	III	7,4	5,3
TF2008-285/295-C228-F198_5	III	10,8	5,8
TF2008-285/295-C228-F198_6	III	9,1	5,8
TF2008-285/295-C228-F198_7	III	9,8	5,7
TF2008-285/295-C228-F198_8	III	6,9	5,3
TF2008-285/295-C228-F198_9	III	9,4	5,8
TF2008-285/295-C228-F198_10	III	7,5	5,4
TF2008-285/295-C228-F198_11	III	10,2	5,1
TF2008-285/295-C228-F198_12	III	9,2	6
TF2008-285/295-C228-F198_13	III	7,3	5,1
TF2008-285/295-C228-F198_14	III	8,7	5,3
TF2008-285/295-C228-F198_15	III	8,4	4,6
TF2008-285/295-C228-F198_16	III	11,6	5,1
TF2008-285/295-C228-F198_17	III	7,4	5,6
TF2008-285/295-C228-F198_18	III	8	6,1
TF2008-285/295-C228-F198_19	III	6,1	5,1
TF2008-285/295-C228-F198_20	III	8,3	5,7
TF2008-285/295-C228-F198_21	III	7,3	4,6
TF2008-285/295-C228-F198_23	III	7,4	6
TF2008-285/295-C228-F198_24	III	6,2	4,2
TF2008-285/295-C228-F198_25	III	7,1	5,3

TF2008-285/295-C228-F198_26	III	7,6	5,1
TF2008-285/295-C228-F198_27	III	5,8	5,3
TF2008-285/295-C228-F198_28	III	5,8	4,4
TF2008-285/295-C228-F198_29	III	6,3	5,2
TF2008-285/295-C228-F198_30	III		6,3
TF2008-285/295-C228-F198_31	III	8,4	
TF2008-285/295-C228-F198_32	III		5,5
TF2009-S285/300-C340-F117-BP107_1	III	6,7	5,3
TF2009-S285/295-C254-F363-BP96_1	II		7,1
TF2009-S285/295-C254-F363-BP96_2	II	11,4	6,3
TF2009-S285/300-C342-F150-BP101_1	III	8	
TF2009-S285/300-C342-F150-BP101_2	III	6,9	5,5
TF2009-S285/300-C342-F150-BP101_3	III	6,3	4,4
TF2009-S285/300-C342-F150-BP101_4	III		5,1
TF2009-S285/300-C342-F150-BP101_5	III		5,3
TF2009-S285/300-C342-F150-BP101_6	III		5,9
TF2008-285/305-424-F91_1	III		5,2
TF2008-285/305-424-F91_2	III	7,8	5,5
TF2008-285/305-424-F91_3	III	8,4	4,8
TF2008-285/305-424-F91_4	III		5,3
TF2008-285/305-424-F91_5	III	7,9	4,9
TF2008-285/295-224-F210_1	III	7,7	6,6
TF2008-285/305-411-F55_1	III?	7,1	6,1
TF2008-285/305-411-F55_2	III?		5,1
TF2008-285/305-411-F55_3	III?		5,7
TF2008-285/295-227-F225_1	II	8,2	6,6
TF2008-285/295-227-F225_2	II	7,2	
TF2008-285/295-227-F225_3	II	8,4	6
TF2008-285/295-227-F225_4	II	10,3	5,1
TF2008-285/295-227-F225_5	II	7,5	4,9
TF2008-285/295-227-F225_6	II	7,6	5,7
TF2008-285/295-227-F225_7	II		5,8
TF2008-285/295-227-F225_9	II	8,5	6,2
TF2008-285/295-227-F225_10	II	7,6	4,3

Appendix A. Single olive stone measurements in mm from Fadous-Kfarabida. Those measurements
depicted in grey were not included into the statistics since those samples do not belong to Phase II-IV

Sample	Horizon	Length	Width
HZ93-225_1	early horizon	12	4,8
HZ93-225_2	early horizon	8,2	5,3
HZ91-738_1	middle horizon	11,1	5,5

HZ93-117_1 late horizon		6,2	
HZ93-117_2	late horizon	9,1	5,1
HZ93-117_3 late horizon	8,6	5,9	
HZ93-117_4 late horizon	8,7	5,8	
HZ93-117_5 late horizon	7,9	4,1	
HZ93-117_6 late horizon	11,7	5,6	
HZ91-179_1	10,6	5,6	
HZ91-179_2		5,6	
HZ93-138_1	middle horizon	8	3,9
HZ93-138_2	middle horizon	7,9	5,7
HZ93-152_1 late horizon		4,4	
HZ91-769_1	early horizon		5,7
HZ91-719_1	early horizon		5,1
HZ91-719_2	early horizon	8	4,7
HZ91-719_3	early horizon		5,5
HZ91-697_1	middle horizon	9	4,3
HZ91-187_1	middle horizon		5,9
HZ91-416_1	middle horizon	12,1	6,4
HZ91-416_2	middle horizon	11,1	5,9
HZ91-416_3	middle horizon	10,7	5,9
HZ91-416_4	middle horizon	9,3	6,5
HZ91-416_5	middle horizon	9	5,5
HZ91-416_6	middle horizon	11,2	5,9
HZ91-416_7	middle horizon	10,4	6,1
HZ91-416_8	middle horizon	11,5	5,5
HZ91-416_9	middle horizon	11,3	5
HZ91-		9	4,9
416_10	middle horizon	9	

Appendix B. Single olive stone measurements in mm from Khirbet-ez Zeraqon

