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There are well-developed theoretical tools to analyze how quantum dynamics can solve computational
problems by varying Hamiltonian parameters slowly, near the adiabatic limit. On the other hand, there are
relatively few tools to understand the opposite limit of rapid quenches, as used in quantum annealing and
(in the limit of infinitely rapid quenches) in quantum walks. In this paper, we develop several tools that
are applicable in the rapid-quench regime. Firstly, we analyze the energy expectation value of different
elements of the Hamiltonian. From this, we show that monotonic quenches, where the strength of the
problem Hamiltonian is consistently increased relative to fluctuation (driver) terms, will yield a better
result on average than random guessing. Secondly, we develop methods to determine whether dynamics
will occur locally under rapid-quench Hamiltonians and identify cases where a rapid quench will lead to
a substantially improved solution. In particular, we find that a technique we refer to as “preannealing”
can significantly improve the performance of quantum walks. We also show how these tools can provide
efficient heuristic estimates for Hamiltonian parameters, a key requirement for practical application of
quantum annealing.
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I. INTRODUCTION

Quantum computing using continuous-time evolution
has gained much interest in recent years. This includes
adiabatic quantum computing (AQC) [1], quantum anneal-
ing [2,3], and continuous-time quantum walks (QWs) [4].
Optimization tasks are a natural application for quan-
tum computing in this setting and have been explored in
many diverse fields, including traditional computer sci-
ence [5–7], decoding communications [8], finance [9–11],
error correction of quantum memories [12], scheduling
[13–15], computational biology [16], flight gate assign-
ment [17], air traffic management [18], and hydrology [19].
This is partially due to advances in the theoretical foun-
dations of adiabatic quantum computing, including proofs
that it is universal in certain settings [20,21], improved
versions of the adiabatic condition [22–24], and an exten-
sion of the adiabatic theorem to open systems [25]. For
a comprehensive review of these and other advances, see
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Ref. [26]. More recently, it was shown by Hastings [27]
that even when no sign problem exists, there is a super-
polynomial oracle separation between adiabatic quantum
computing and classical computing. Other recent advances
have come from new ways to map problems; for instance,
the methods of encoding more connected graphs than
the native hardware connections using parity, often called
“parity AQC” [28–31]. These provide an alternative to the
more traditional minor embedding techniques [32,33] and
may be easier to implement experimentally.

In this paper, we focus on the coherent regime of
operation, for which the effects of thermal dissipation
and decoherence can be ignored. Such a regime could
be experimentally reached by reducing noise, implement-
ing quantum error correction [34–42], or quenching on a
timescale that is much faster than the decoherence time.
A complementary approach to reduce noise is to imple-
ment dynamics that reduce or eliminate the interaction
between the system and its environment through quantum
interference effects, known as dynamical decoupling [42–
44]. Although current superconducting quantum annealing
hardware operates in a dissipative regime [45], quantum
annealing has been implemented in atomic settings, where
coherence is easier to maintain than in superconducting
circuits [46], and progress has been made to reduce noise
in superconducting circuit settings [47]. There have been
experimental implementations of simple forms of error
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correction in quantum annealing [40,48–51], and efforts
have been made to circumvent experimental limitations on
quench rates in superconducting systems [52].

In a fully coherent regime, the dynamics are straightfor-
ward to model theoretically, since they can be described
by a set of qubits (two-state quantum systems) under
the action of a Hamiltonian, evolving according to the
Schrödinger equation. Conventionally, the Hamiltonian
for this evolution is written as the sum of a problem
Hamiltonian Hprob, which is diagonal in the computational
basis and encodes the classical problem being solved,
and a driver Hamiltonian Hdriver, which implements quan-
tum dynamics to explore the solution space. We use two
equivalent forms for the total Hamiltonian. First,

HAB(t) = A(t)Hdriver + B(t)Hprob, (1)

where A(t) and B(t) are positive, time-dependent control
functions. However, typically the crucial feature is what
happens to the ratio of driver strength to problem strength
A(t)/B(t) as the algorithm progresses. Therefore, we define
an alternative parametrization of the Hamiltonian, up to an
overall (time-dependent) scaling factor B(t), as

H�(t) = �(t)Hdriver + Hprob, (2)

where there is a single control function �(t) > 0 for the
ratio A(t)/B(t). Since Eqs. (1) and (2) are equivalent up
to a rescaling of the time parameter, results for one form
of the Hamiltonian will generalize to results for the other.
We use both forms, choosing the most convenient for the
specific problem or example.

Hamiltonians of the form of Eqs. (1) and (2), which
begin with A(t) > 0 and B(t) = 0 and end with A(t) = 0
and B(t) > 0, or equivalently begin with �(t) � 1 and
end with �(t) = 0, are used for most types of continuous-
time quantum computing. When such a protocol is run
on a much shorter timescale than required for adiabatic
quantum computing, we call this a “rapid quench.”

The simplest form of continuous-time quantum com-
puting in the coherent regime is continuous-time QW
introduced in Refs. [4,53], in which the control functions
are time independent and set so that �(t) = γ , where γ
is a constant hopping rate. This can be viewed as the
limit of an infinitely fast quench, in which B(0) jumps
from zero to A(0)/γ at t = 0 and A(tf ) drops to zero
at the final time tf . The other pure state continuous-
time quantum computing that is commonly considered is
AQC introduced in Ref. [1], for which the control func-
tions A(t) and B(t) are varied slowly from A(0) = 1 and
B(0) = 0 to A(tf ) = 0 and B(tf ) = 1. By the adiabatic
theorem of quantum mechanics, this achieves a success
probability (probability of finding the ground state of the
problem Hamiltonian Hprob) that approaches 1 as tf →
∞. For a review of AQC, see Ref. [26]. For a thor-
ough discussion of the relationship between AQC and QW,

see the introductions in Refs. [54,55]. The fully coher-
ent regime has provable quantum speedups in the case
of both AQC and QW. For instance, unstructured search,
the continuous-time analog of Grover’s search, can yield
the same speedup in the AQC [56] and QW [53] settings
as the gate-based counterpart. It is possible to interpo-
late between these two techniques while preserving the
speedup [54].

For problems that are closer to real-world optimiza-
tion, theoretical studies have focused mostly on AQC [26],
likely because the adiabatic theorem provides a general
way to show that such algorithms could, in principle, suc-
ceed with high probability. While theoretically tractable,
the adiabatic regime is difficult to reach experimentally and
contains some counterintuitive effects in the deep adiabatic
regime [57–59]. Solving NP-Hard problems (i.e problems
at least as hard as any in the non-deterministic polyno-
mial time complexity class NP) adiabatically will at most
obtain a polynomial speed up (assuming P �= NP). Since
AQC requires the system to remain coherent throughout,
an exponentially long run time requires an exponentially
long coherence time, which is experimentally challenging
for near-term quantum computing. When the run time is
limited by a constant or mildly scaling coherence time,
such an algorithm could solve the problem only with an
exponentially low probability and therefore requires expo-
nentially many repeats to succeed with high probability.
This approach, however, is a valid one for problems other
than search. Recent numerical results on spin glasses using
QW show favorable scaling from many short run repeats
[55]. It has also been numerically demonstrated that rapid
quenches can be superior to long quenches for AQC-
like algorithms [60]. Recently, Crosson and Lidar [61]
made an important contribution to the theory of quantum
annealing outside the adiabatic limit by introducing dia-
batic quantum annealing, which formalizes ideas described
in Refs. [62,63]. Diabatic quantum annealing relies on
a generalization of the adiabatic theorem from Ref. [64]
and describes a class of quantum annealing algorithms in
which the amplitude is restricted to a low-energy part of
the Hamiltonian spectrum.

Finally, for single-shot, high success probability algo-
rithms for NP-hard problems, achieving even a polyno-
mial speedup typically requires setting, with exponential
precision, the control functions to values that lead to
exponential small gaps in the Hamiltonian spectrum. This
was shown to be necessary for unstructured search in
Refs. [54,56,65] and for the random energy model [66] in
Ref. [55]. This requirement is problematic, as there are no
general methods for determining where these gaps occur
and because such precise control settings can be difficult
to achieve in real hardware. Recent work by Chakraborty
et al. [67] demonstrates that some of the fine-tuning
requirements in unstructured search can be avoided by for-
mulating the Hamiltonian differently; it is unclear whether
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this approach would extend to the random energy model of
Ref. [66].

Given the near-term importance of methods that can
succeed with limited coherence time, in this paper, we
develop mathematical tools to increase our understanding
of how computation is achieved in both the rapid-quench
regime and quantum walks. These tools are important not
only for theoretical understanding of when adiabatic algo-
rithms and rapid quenches will be effective but also for
choosing parameters for the Hamiltonians used. While
some theoretical arguments [55,68] can be made for why
QW with short run times seems to perform well, a theoret-
ical understanding of rapid quenches with time-dependent
Hamiltonians, but far from the regime where the adiabatic
theorem applies, is essentially missing.

It was recently shown numerically [69] that the optimal
protocol for solving problems often involves an anneal-
ing step, as opposed to bang-bang controls where driver
and problem Hamiltonians are not active simultaneously.
Previous theoretical work based on Pontryagin’s mini-
mum principle showed that optimal control patterns would
always take the bang-bang form [70], but that these con-
trols would sometimes require unphysically switching
between the driver and problem Hamiltonians an infi-
nite number of times in a finite time span. The work by
Brady et al. [69] is restricted to cases with a finite num-
ber of “bangs” and found that in this more realistic setting
protocols involving annealing may be superior.

We begin in Sec. II with some numerical examples to
illustrate the performance gains that can be obtained from
well-chosen rapid quenches in quantum annealing. This
provides motivation to understand why rapid quenches
work and how to exploit the effects more systematically.
We then analyze the energy flow between different quan-
tum states, altering the expectation values of driver and
problem terms in the Hamiltonian, as laid out in Sec. III.
Next we provide a general set of conditions (essentially
requiring that quenches be monotonic) under which rapid
quenches will preferentially seek out high-quality solu-
tions. We augment this analysis by studying the transitions
between different computational basis states, to deduce the
level of dynamics that will occur, in Sec. IV, and we apply
our tools to different problem settings, including discussing
the conditions for general optimization problems to yield
a significant level of dynamics. In Sec. V we show how
the tools developed here can be used to construct heuris-
tics for setting the parameters for continuous-time quantum
walks and rapid quenches. Section VI provides details of
our numerical methods, and we summarize and discuss our
results in Sec. VII.

II. RAPID QUENCH EXAMPLES

As motivation for our theoretical tools, we start with
three illustrative examples showing the power of rapid

quenches to solve problems. For simplicity and concrete-
ness, we focus on monotonic quenches; that is, quenches
for which the control parameter �(t′) ≤ �(t) for all t′ > t.

A. Two-stage quantum walk

This is a minimal modification to the time-independent
continuous-time quantum walk. It consists of two time-
independent stages of evolution separated by an infinitely
fast quench. Because each stage is effectively a continuous-
time quantum walk, we refer to this as a “two-stage
quantum walk.” We use a simple transverse field driver
Hamiltonian

Hdriver = n1 −
n∑

j =1

X̂j , (3)

where 1 is the identity operator and X̂j is the Pauli X̂ oper-
ator acting in qubit j . Instead of using a constant control
function (�(t) = γ ), we use the time-dependent schedule

�(t) =
{
γ1, 0 < t < t1,
γ2, t1 < t < (t1 + t2),

(4)

which consists of two consecutive evolution stages with
two different time-independent Hamiltonians. Each of
these stages is effectively a quantum walk, although the
second stage uses nonstandard starting conditions as its ini-
tial state is the final state of the first stage. The standard
initial state is the equal superposition of all basis states,
|ψ0〉 = 2−n/2 ∑

j |j 〉, chosen because it is the ground state
of the driver Hamiltonian and also represents our igno-
rance of which basis state is the solution to the problem.
The schedules we use for the two-stage quantum walks are
shown in Fig. 1 for each of our three examples. As dis-

FIG. 1. The annealing schedule for the two-stage quantum
walks in Fig. 2 (solid red line), Fig. 3 (dot-dashed blue line),
and Fig. 4 (dashed magenta line). In all cases the step occurs at
t = 10 (dotted black line).
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cussed in Ref. [55], a quantum walk can be understood
from an energetic perspective according to a mechanism
referred to there as the “energy conservation mechanism.”
Being time independent, quantum walks conserve the total
energy of the system. To show the effect of changing the
hopping rate γ part way through the walk, thus disrupt-
ing the energy conservation, our first example is a simple
two-qubit problem Hamiltonian

H (2Q)
prob = −Ẑ1Ẑ2 − 1

2
Ẑ1, (5)

where Ẑj is the Pauli Ẑ operator acting on qubit j . We start
the system at t = 0 in the state |ψ0〉 = 1

2 (|00〉 + |01〉 +
|10〉 + |11〉), the two-qubit ground state of the driver
Hamiltonian Hdriver in Eq. (3). To simplify the notation, we
define 〈Hprob〉ψ(t) ≡ 〈

ψ(t) | Hprob | ψ(t)〉, the instantaneous
expectation value of the problem Hamiltonian with respect
to the state |ψ(t)〉 at time t. Likewise, 〈Hdriver〉ψ(t) ≡
〈ψ(t) | Hdriver | ψ(t)〉 for the driver Hamiltonian. We have
the total energy E�(t) = �(t)〈Hdriver〉 + 〈Hprob〉.

Figure 2 (top) shows that the expectation value 〈Hdriver〉
for the transverse field is zero initially (t = 0). As
in Ref. [55], the energy conservation mechanism then
decreases the expectation value of the problem Hamilto-
nian at the expense of increasing the expectation value of
the driver Hamiltonian. When the instantaneous quench is
performed, the problem Hamiltonian expectation value is
unchanged, but the driver Hamiltonian expectation value
[and therefore the total energy expectation value E�(t)] is
reduced. As the minimum eigenvalue of Hdriver is zero, the

FIG. 2. Two-stage quantum walk using the Hamiltonian in Eq,
(5) with γ1 = 2 and γ2 = 1

2 . The instantaneous quench occurs
at time t1 = 10 (vertical dotted line). The top panel shows
energy expectation values E� = �〈Hdriver〉 + 〈Hprob〉 (gold line),
�〈Hdriver〉 (green line), and 〈Hprob〉 (blue line). Also shown are a
guide for the eye at zero energy (dashed black line) and the min-
imum eigenvalue of Hprob (dashed red line). The bottom panel
shows the probability P(t) of being in the ground state of Hprob at
time t (blue line) and the probability of random guessing (dashed
red line).

total energy expectation value E�(t) acts as an effective
upper bound on 〈Hprob〉ψ(t). The net effect is that even if all
of the energy stored in the transverse field were returned
to the problem Hamiltonian, its expectation value would
still be less than it was at the beginning of the algorithm.
What actually happens, however, is that the transverse field
is able to capture even more of the energy, thereby reduc-
ing the problem Hamiltonian expectation value further and
increasing the average probability of finding the ground
state; see Fig. 2 (bottom).

A more realistic problem is the Sherrington-Kirkpatrick
(SK) spin-glass [71] ground-state problem investigated in
Ref. [55]. This has the problem Hamiltonian

H (SK)
prob = −1

2

n−1∑

(a�=b)=0

JabẐaẐb −
n−1∑

b=0

hbẐb, (6)

where the couplings Jab and fields hb are drawn indepen-
dently from the normal distribution N (0, σ 2) with mean 0
and variance σ 2.

Figure 3 shows a two-stage quantum walk performed
on a nine-qubit Sherrington-Kirkpatrick Hamiltonian [73]
from the public repository in Ref. [72] associated with
Ref. [55]. In the setting of this larger problem, the fluc-
tuations after each stage of the quantum walk are smaller
relative to the dynamical range than in the two-qubit case,
a very early sign of the approach to the thermodynamic
limit. Apart from this, the behavior is qualitatively similar
to that of the two-qubit toy model H (2Q)

prob of Eq. (5) shown in
Fig. 2 and produces a significant increase in the probability
of finding the ground state.

FIG. 3. Two-stage quantum walk on a nine-qubit Sherrington-
Kirkpatrick spin glass, ID code ovcjhwbhtcpcvwicoxpdpvjzqo-
jril from the public repository in Ref. [72] with γ1 = 4 and
γ2 = 1. The instantaneous quench occurs at time t1 = 10, (verti-
cal dotted line). The top panel shows energy expectations E� =
�〈Hdriver〉ψ(t) + 〈Hprob〉ψ(t) (gold line), �〈Hdriver〉ψ(t) (green line),
and 〈Hprob〉ψ(t) (blue line). Also shown are a guide for the eye at
zero energy (dashed black line) and the minimum eigenvalue of
Hprob (dashed red line). The bottom panel shows the probability
P(t) of being in the ground state of Hprob at time t (blue line).
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B. Biased two-stage quantum walk

We introduce a biased driver Hamiltonian, similar to the
one used in Refs. [74,75]. We formulate our biased driver
Hamiltonian slightly differently as

Hbias(g, θ) = n1 −
n∑

i=1

[
cos(θ)X̂i + gi sin(θ)Ẑi

]
, (7)

where gi ∈ {−1, 1} is a candidate (or guess) solution, and
takes the value 1 if the ith bit of the guess solution is 0
and the value −1 if it is 1. The certainty of the guess is
parametrized by 0 ≤ θ ≤ π/2; if θ = 0, the guess goes
unused and the driver reduces to a transverse field of
Eq. (3). In the other extreme, if θ = π/2, then the ground
state of Hbias(g, θ = π/2) is the candidate solution and
there are no dynamics. The ground state of the biased
driver Hamiltonian has zero energy for all allowed values
of θ and g, and is a tensor product of spin states that are
each antiparallel to the fields in Eq. (7); this state is used
as the initial state. For simplicity, in this example we con-
sider only biasing toward the optimal solution (i.e., correct
guesses), and we use the same nine-qubit SK spin glass as
in the previous subsection.

As Fig. 4 shows, the effect of biasing toward the optimal
solution is to lower the initial values of E� and 〈Hprob〉ψ(t);
biasing toward a well-chosen guess effectively gives the
algorithm a “head start” with respect to energy expecta-
tion values. This is qualitatively similar to what happens at

FIG. 4. Biased two-stage quantum walk on a nine-qubit
Sherrington-Kirkpatrick spin glass, ID code ovcjhwb-
htcpcvwicoxpdpvjzqojril from the public repository in
Ref. [72] with γ1 = 3 and γ2 = 1, using a biased driver
[Eq. (7)], biased toward the optimal solution of Hprob using
θ = π/8. The instantaneous quench occurs at time t1 = 10
(vertical dotted line). The top panel shows energy expectations
E� = �〈Hdriver〉ψ(t) + 〈Hprob〉ψ(t) (gold line), �〈Hdriver〉ψ(t) (green
line), and 〈Hprob〉ψ(t) (blue line). Also shown are a guide for
the eye at zero energy (dashed black line) and the minimum
eigenvalue of Hprob (dashed red line). The bottom panel shows
the probability P(t) of being in the ground state of Hprob at time t
(blue line).

the beginning of the second stage of the two-stage quan-
tum walk, except that the driver energy 〈Hbias(g, θ)〉ψ(t)
starts at exactly zero rather than having some initial energy
left over from a previous stage. The bias increases the
initial-stage success probability by a factor of 10 com-
pared with the unbiased walk in Fig. 3, while the second
stage again provides a (further) factor of 3 increase. This
biased two-stage quantum walk example provides proof of
concept that the mechanism we describe can be leveraged
on top of a biased search. A thorough analysis of biased
(single-stage) quantum walks as a subroutine for hybrid
quantum-classical computing is to be published [76].

C. Preannealed quantum walk

Our final example is again in two stages, but this time
the first stage is a quantum annealing stage and the second
stage is a quantum walk that starts from the point where
the annealing stops. The motivating intuition is that the
initial time-dependent annealing stage will prepare an ini-
tial state for the quantum walk that has a lower average
problem energy 〈Hprob〉ψ(t) than the usual uniform super-
position state. If performed too slowly, such a quench will
put the system into its instantaneous ground state, by the
adiabatic theorem of quantum mechanics, and there will
be no quantum walk dynamics. If performed too rapidly,
the state will not evolve much during the annealing stage
and the resulting quantum walk will be similar to one
without a preannealing stage. However, if the annealing
is performed at an intermediate rate, it leads to significant
quantum walk dynamics, starting from a lower problem
Hamiltonian expectation value 〈Hprob〉ψ(t).

Using the HAB parametrization defined in Eq. (1), we
consider preannealing with a quadratic schedule for a
time t1, and then a steady-state quantum walk afterward;
specifically, we define the schedule

A(t) =

⎧
⎪⎨

⎪⎩
γ

[
1 +

(
t
t1

− 1
)2

]
, 0 ≤ t ≤ t1,

γ , t1 < t ≤ (t1 + t2),
(8)

B(t) =

⎧
⎪⎨

⎪⎩

[
1 −

(
t
t1

− 1
)2

]
, 0 ≤ t ≤ t1

1, t1 < t ≤ (t1 + t2),
(9)

which is plotted in Fig. 5 for the values of t1 we use.
Using the same nine-qubit SK problem as before, with
its optimal γ value of approximately 1.004, we show the
results for three different values of t1 in Fig. 6. Prean-
nealing both decreases the average problem expectation
value 〈Hprob〉ψ(t) and increases the success probability, but
causes the peak values to be reached more slowly. In the
longest preannealing with t1 = 4, the success probabil-
ity undergoes small-amplitude, approximately sinusoidal,
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FIG. 5. Schedule A(t) (solid lines) and B(t) (dashed lines) of a
preannealed quantum walk using γ ≈ 1.004 and t1 = 4 (vertical
dotted blue line), t1 = 0.5 (vertical dotted magenta line), and t1 =
0 (red line; pure QW).

oscillations, suggesting that the dynamics are dominated
by a two-level subspace. For t1 = 0.5 and t1 = 0, the oscil-
lations are less structured, indicating that more than two
energy levels are playing a nontrivial role in the dynam-
ics. The increases in the success probability seen in Fig. 6
are relatively modest for this example. To determine the
typical increase in success probability due to preanneal-
ing, we use all 10 000 Sherrington-Kirkpatrick instances
from Ref. [72] at each size from n = 5 to n = 11 and
compare the quantum walk success probability averaged
over the quantum walk stage using 20 different linearly
spaced preannealing times up to t1 = 4. In Fig. 7 (top),

FIG. 6. Preannealing performed on a nine-qubit Sherrington-
Kirkpatrick spin glass, ID code ovcjhwbhtcpcvwicoxpdpvjzqo-
jril from Ref. [72], for preannealing times t1 = 4 (blue lines),
t1 = 0.5 (magenta lines), and t1 = 0 (red lines; i.e., pure quan-
tum walk). Dotted lines show when the preannealing ends. The
top panel shows expectation values E�(t) = (A/B)〈Hdriver〉ψ(t) +
〈Hprob〉ψ(t) (dot-dashed lines), 〈Hprob〉ψ(t) (solid lines), and
A
B 〈Hdriver〉ψ(t) (dashed colored lines). The dashed black line indi-
cates the minimum eigenvalue of Hprob. The bottom panel shows
the success probability P(t) to be in the lowest eigenstate of Hprob
at time t.

FIG. 7. The top panel shows the success probability 〈P〉 for
n = 5 to n = 11 for 21 different linearly spaced preannealing
times from t1 = 0 to t1 = 4; darker magenta color indicates
higher n. All data are averaged over all 10 000 Sherrington-
Kirkpatrick instances from Ref. [72] at each size. The bottom
panel shows the scaling exponent κ for a model where psuccess ∝
2κn extracted from the linear fit on log-linear axes for different
preannealing times in the inset. The inset shows the scaling of
success probability versus n for the same t1 values, with t1 = 0
in red and t1 = 4 in dark blue (same color coding as the main
figure).

we see that the success probability increases with prean-
nealing time, up to a plateau, and the relative effect of
preannealing becomes larger as n increases. To quantify
this effect, we calculate the scaling exponent at each pre-
annealing time by fitting a linear model on log-linear axes.
We find a scaling exponent κ such that the success prob-
ability psuccess ∝ 2κn. The fitted values of κ are plotted in
Fig. 7 (bottom). As the inset in Fig. 7 (bottom) shows, the
success probability is modeled well by a simple exponen-
tial function, as in Ref. [55]. We find that preannealing
significantly improves the scaling from κ = −0.418 for
a pure quantum walk, in agreement with Ref. [55], to a
maximum of κ ≈ −0.278. It is, of course, an open ques-
tion whether this scaling will continue to problem sizes
that are of practical interest, but the lack of visible finite-
size effects in Fig. 7 suggests that it might. Since very fast
quenches can be experimentally challenging to implement,
although methods are being explored [52], determining the
effects of quenching at a finite rate is of practical impor-
tance. Our results show that such quenches are potentially
a better strategy than trying to speed up or slow down to
approach QW or adiabatic extremes.

III. ENERGY REDISTRIBUTION MECHANISM

In all the examples in Sec. II, we observe that the total
energy expectation value E�(t) never increases during a
rapid quench and that E�(t) serves as an upper bound to the
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problem expectation value 〈Hprob〉ψ(t), assuming that the
ground state of Hdriver is arranged to be at zero energy [the
identity term in Eq. (3) ensures this]. In this section, we for-
malize these observations into a mechanism that we refer
to as the “energy redistribution mechanism.” Our analy-
sis extends the energy conservation mechanism described
in Ref. [55] and recapped in Appendix A 1 (similar argu-
ments are also made by Hastings [68]) to quenches where
the Hamiltonian is not time invariant and therefore total
energy is not conserved.

Consider a closed-system quantum annealing schedule
on a system with a Hamiltonian H(t) defined by Eq. (2):

H(t) = �(t)Hdriver + Hprob. (10)

We show that (for duration tf ≥ 0) the energy expectation
value with respect to the problem Hamiltonian at the end
is never higher than at the initial time t = 0,

〈
ψ(tf ) | Hprob | ψ(tf )

〉 ≤ 〈
ψ(0) | Hprob | ψ(0)〉 , (11)

provided the following conditions are satisfied:

(1) Initial ground state. The initial state |ψ(t = 0)〉 is a
ground state of the driver Hamiltonian Hdriver.

(2) Positivity. The control function is non-negative:
�(t) ≥ 0 for all t.

(3) Monotonicity. The control function is monotoni-
cally decreasing: �(t) ≥ �(t′) for all t′ > t.

Condition 1 is simply that the system is initially prepared in
the ground state of the driver Hamiltonian. This condition
is necessary for AQC, and is also standard for QW. Con-
dition 2 prevents pathological behavior where the driver
spectrum is effectively inverted by taking negative values
of the control function �(t). This condition is satisfied in
all traditional AQC and QW settings. Condition 3 is that
the quench is monotonic; this condition excludes methods
such as reverse annealing, both the dissipatively driven
form proposed in Ref. [77] and implemented on D-Wave
Systems devices [78] and the similar coherent method pro-
posed in Ref. [79] that is sometimes also referred to as
“reverse annealing.” The biased driver Hamiltonian pro-
posed in Refs. [74,75] is compatible with condition 3. Our
results do not rely on the adiabatic theorem, and the control
function �(t) does not need to be a continuous function.

Without loss of generality, the driver Hamiltonian Hdriver
can be chosen such that its ground-state eigenvalue (and
hence its expectation value with the initial state) is zero,
〈ψ(0) | Hdriver | ψ(0)〉 = 0. In other words, we impose
semidefiniteness on Hdriver by defining its ground state
|ψ(0)〉 to have eigenvalue 0. Let

E�(t) = 〈ψ(t) | H�(t) | ψ(t)〉 (12)

be the expectation value of the energy at time t. Then it
follows immediately from condition 1 that at time t = 0,

E�(0) = 〈
ψ(0) | Hprob | ψ(0)〉 . (13)

Furthermore, it follows from conditions 1 and 2 that at any
later time t > 0,

E�(t) ≥ 〈
ψ(t) | Hprob | ψ(t)〉 , (14)

since 〈ψ(t) | Hdriver | ψ(t)〉 ≥ 〈ψ(0) | Hdriver | ψ(0)〉 = 0
can only increase from the ground-state initial energy.

It can be shown that the energy expectation value E�(t)
defined in Eq. (12) decreases monotonically in time; that
is,

E�(t′) ≤ E�(t) for all t, t′ (t′ > t). (15)

To see this, consider the discretized approximation to the
evolution

|ψ(q)
k 〉 = T

1∏

k′=k

exp
[
−iH�

(
k′tf
q

)
tf
q

]
|ψ(0)〉 (16)

for 1 ≤ k ≤ q and where the symbol T is added to empha-
size that the time order of the product must be preserved,
since the Hamiltonians at different times are noncommut-
ing. This discretized approximation becomes exact in the
limit q → ∞. The evolution of a quantum system under
the time-dependent Hamiltonian given in Eq. (1) from time
t = 0 to time t = tf from the initial state |ψ(0)〉 is broken
down as follows: The initial state is evolved under the con-
stant Hamiltonian H(tf /q) for time tf /q to produce a state
|ψ(q)

1 〉 that then evolves under the constant Hamiltonian
H(2tf /q) for time tf /q and so on, until a final state |ψ(q)

q 〉 is
reached. Then, in the limit, |ψ(tf )〉 = limq→∞ |ψ(q)

q 〉. This
kind of discretization can be thought of as an extension of
the Suzuki-Trotter decomposition [80,81] and is therefore
sometimes informally referred to as Trotterization. In the
same manner, we can define a discretized version of the
energy expectation value as

E(q)�,k = �

(
k′tf
q

) 〈
ψ
(q)
k | Hdriver | ψ(q)

k

〉
+

〈
ψ
(q)
k | Hprob | ψ(q)

k

〉
. (17)

During each time-independent evolution step, the energy
expectation value E(q)�,k is conserved. Furthermore, since by
definition Hdriver is positive semidefinite and
�((k + 1)tf /q) ≤ �(ktf /q) (by conditions 2 and 3), it
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follows that

E(q)�,k+1 ≤ E(q)�,k. (18)

Repeated application of this inequality results in the more
useful inequality

E(q)�,q ≤ E(q)�,1. (19)

Since E(q)�,1 is the energy during the whole of the first
evolution step, it follows that

E(q)�,1 = E�(t = 0). (20)

Furthermore, we have

lim
q→∞ E(q)�,q = E�(tf ), (21)

which means

E�(tf ) ≤ E�(0). (22)

Since this equation holds for all tf > 0, we have shown
that E�(t) monotonically decreases with t, and Eq. (15) is
proven.

Taken together, the statements in Eqs. (13), (14),
and (15) imply

〈
ψ(t = 0) | Hprob | ψ(t = 0)

〉 ≥
〈
ψ(t = tf ) | Hprob | ψ(t = tf )

〉
(23)

for final time tf . In other words, the energy expectation
with respect to the problem Hamiltonian can only decrease
compared with the initial state. If the energy expectation of
the problem Hamiltonian decreases, then the probability of
measuring low-energy states increases.

The result in Eq. (23) holds for quenches, parameterized
with the single control function �(t), in the form of Eq. (2).
However, since the control function �(t) is identified with
the ratio A(t)/B(t) of control functions for quenches in the
form of Eq. (1), the result in Eq. (23) follows automatically
for quenches in A(t), B(t) form, except for when B(0) = 0,
when �(0) is not well defined. In Appendix A 2, we extend
quenches to the case where B(0) = 0, with the additional
condition that the driver Hamiltonian Hdriver has a finite
gap between its ground-state and first-excited-state mani-
folds (which is automatically true for all Hamiltonians on
Hilbert spaces of finite dimension).

The key result is that for quenches where the control
function �(t) decreases monotonically, the energy expec-
tation value of the problem Hamiltonian Hprob cannot be
higher than its initial value. Put another way, on average, a
monotonic quench can never perform worse than random
guessing. This result is important for two reasons. Firstly,

although not being harmful to average solution quality is a
rather weak statement, it applies very generally to a broad
class of algorithms. Secondly, and more importantly, this
result can be built upon to determine control functions that
can provide a significant improvement, which is impor-
tant for algorithm design. To do this, we need to combine
the result in this section with criteria for when the trans-
fer of amplitude between computational basis states will
be significant, which we obtain in the next section.

IV. ENSURING SIGNIFICANT DYNAMICS

In Sec. II, we showed examples of a quantum quench
giving significantly better performance than pure quantum
walks. In this section, we consider theoretically how a sig-
nificant improvement can occur. We know from Sec. III
that dynamics will never be detrimental; this means that
if dynamics occur, in general they will be beneficial.
What remains is to determine the circumstances in which
significant dynamics will occur.

A. Quantifying the strength of short-time dynamics

In the analytical solutions for unstructured search in a
continuous-time setting [53,56], the method involves ana-
lyzing the dynamics in a two-dimensional subspace. To
obtain significant dynamics in this setting, the hopping
rate γ or schedule functions A(t), B(t) must carefully
balance the relative strengths of the driver and problem
Hamiltonians such that the off-diagonal terms in the two-
dimensional subspace are maximized. Motivated by this,
but being interested in shorter timescales, we instead inves-
tigate local subspaces spanned by a pair of basis states.
To analyze whether significant dynamics will occur, we
perform a similar analysis to characterize how strong the
transitions are to locally redistribute amplitude. If these are
large for most of the transitions mediated by the driver,
then the system will generate a high level of dynamics on
a short timescale; otherwise, it will not, although dynamics
may still occur on longer timescales.

As we want a measure of dynamics that can be effi-
ciently estimated at all sizes, we analyze individual pairs of
computational basis states connected by the driver to deter-
mine whether significant transfer occurs between them,
assuming the rest of the system remains in its initial state.
For classical problems in the setting we are considering,
the problem Hamiltonian is diagonal in the computational
basis and hence all of its subspaces are too. Consider
two basis states |j 〉 and |k〉 connected by the driver (i.e.,
〈 j |Hdriver|k〉 �= 0) and define an effective two-level system
Hamiltonian

H (jk)
� (t) = �(t)H (jk)

driver + H (jk)
prob (24)
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with the local problem Hamiltonian H (jk)
prob defined as

H (jk)
prob =

(
E(j ) 0

0 E(k)

)
, (25)

where E(j ) = 〈
j |Hprob|j

〉
is the energy of computational

basis state |j 〉 with respect to the problem Hamiltonian
(similarly for k) and with the local driver Hamiltonian
H (jk)

driver defined as

H (jk)
driver =

(〈 j |Hdriver|j 〉 〈 j |Hdriver|k〉
〈k|Hdriver|j 〉 〈k|Hdriver|k〉

)
. (26)

The extent to which the local subspace Hamiltonian
H (jk)
� (t) can transfer amplitude between the basis states

|j 〉 and |k〉 can be characterized by comparing the off-
diagonal energy scale with the diagonal one. We define a
local transfer coefficient, which takes values 0 ≤ T(jk) ≤ 1,
as

T(jk) = R
(
�(t)H (jk)

driver, H (jk)
prob

)
(27)

≡ 2�(t)| 〈k|Hdriver|j 〉 |
2�(t)| 〈k|Hdriver|j 〉 | + |	jk| , (28)

where

	jk = {
�(t) 〈 j |Hdriver|j 〉 + E(j )

}

− {
�(t) 〈k|Hdriver|k〉 + E(k)

}
(29)

is the difference between the diagonal elements in the
diagonal basis of the problem Hamiltonian.

Similarly, as implied by the energy redistribution mech-
anism described in Sec. III, transfer between driver eigen-
states is also important. To capture this, we define a
local driver coefficient D(jk) by transforming the local sub-
space Hamiltonian H (jk)

� (t) into the diagonal basis of the
local driver Hamiltonian H (jk)

driver and writing an expression
similar to Eq. (28). That is,

D(jk) = R
[
U(jk)†H (jk)

probU(jk),

�(t)U(jk)†H (jk)
driverU

(jk)
]
, (30)

where U(jk) is a unitary such that U(jk)†H (jk)
driverU

(jk) is
diagonal.

It is easily shown that for unbiased drivers such as
Eq. (3), the local driver coefficient D(jk) and the local trans-
fer coefficient T(jk) are related by D(jk) = 1 − T(jk). This
makes it clear there is a trade-off between the two quan-
tities to obtain significant dynamics under the combined

Hamiltonian. We quantify the overall level of amplitude
transfer we expect by the product of the transfer and driver
coefficients T(jk) and D(jk), which we call the “dynamic
coefficient”:

χ(jk) = T(jk)D(jk). (31)

For unbiased drivers, since D(jk) = 1 − T(jk) and 0 ≤
D(jk), T(jk) ≤ 1, it follows that χ(jk) satisfies 0 ≤ χ(jk) ≤
0.25.

The dynamic coefficient χ(jk) captures the level of algo-
rithmically useful local dynamics experienced by the sys-
tem. In particular, if � � 1, then the driver Hamiltonian
dominates and the problem Hamiltonian Hprob will have
little effect on the dynamics of the system. Since the ini-
tial state is the ground state of the driver Hamiltonian, the
dynamics are driven by the much smaller problem Hamil-
tonian on short timescales. This limit is captured by the
dynamic coefficient, as D(jk) ≈ 0, and hence χ(jk) ≈ 0. In
the opposite extreme, if � � 1, then the problem Hamilto-
nian dominates, but since it is diagonal, the dynamics will
consist almost entirely of phase rotations in the computa-
tional basis, and the amplitudes will change very little. This
limit is captured by the transfer coefficient, as T(jk) ≈ 0,
and hence χ(jk) ≈ 0.

To characterize the level of dynamics in the entire sys-
tem, we can simply take a mean value of χ(jk) over the
values of j and k that correspond to a nonzero off-diagonal
element in Hdriver. That is, we define the average dynamic
coefficient

χ̄ = 〈χ(jk)〉jk, (32)

where 〈·〉jk represents the mean over all pairs of compu-
tational basis states j , k connected by the driver Hamilton
Hdriver. Although Eq. (32) cannot be exactly calculated effi-
ciently, it should, in general, be possible to approximate
it efficiently (up to additive error) by sampling. This fol-
lows from the fact that the values of χ(jk) are bounded
0 ≤ χ(jk) ≤ 0.25, and therefore the error δχ̄ can be reduced
to the range this value can take, multiplied by the statistical
noise in the sample, which scales as the square root of the
number of samples; that is,

δχ̄ ∼ 0.25

N 1/2
samples

. (33)

As the average dynamic coefficient χ̄ is calculated by
considering only those states that are directly connected by
the driver Hamiltonian Hdriver, it naturally captures only the
the fastest quantum dynamics that are present in the sys-
tem. For example, in the case of the transverse field driver
from Eq. (3), χ̄ depends only on transitions between states
that differ by a single bit flip, which will typically be hap-
pening much faster than those that involve two or more bit
flips.
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The minimum gap between the ground state and the
first excited state of the total Hamiltonian is often used
in the adiabatic limit of quantum annealing as an indica-
tion of the computational difficulty of different parts of
the annealing. Although inspired by the analytical solu-
tion to the search problem, where balancing the driver and
problem Hamiltonians corresponds to this minimum gap,
we have no reason to expect the local Hamiltonians bal-
anced by maximizing χ̄ to also locate the global minimum
gap, except in special cases. Figure 8 shows a comparison,
for two different n = 9 SK instances, between the average
dynamic coefficient χ̄ (solid red line, right axis) and the
gap between the ground state and first excited state (solid
blue line, left axis). The quantities are plotted against the
schedule parameter s(t) in the AQC-like paramaterization
A(t) = 1 − s(t), B(t) = s(t). The maximum of χ̄ and the

(a)

(b)

FIG. 8. Comparison, for two different n = 9 SK instances,
between the average dynamic coefficient χ̄ (solid red line,
right axis) and the gap between the ground state and the first
excited state (solid blue line, left axis). The quantities are plot-
ted against the schedule parameter s in the AQC-like parama-
terization A(t) = 1 − s(t), B(t) = s(t). The maximum of χ̄ and
the minimum gap are indicated by the dotted red and blue
lines, respectively. (a) The instance with ID code ovcjhwb-
htcpcvwicoxpdpvjzqojril from Ref. [72], used in Figs. 3, 4,
and 6. (b) The n = 9 instance from Ref. [72] (ID code cpahzp-
paxangdnisyqutdbbjlkqamc) with the smallest minimum gap.

minimum gap are indicated by the dotted red and blue
lines, respectively. As in these examples, it is typical in
SK spin glasses for the maximum χ̄ value to appear signif-
icantly before the minimum gap (i.e., closer to the driver
end of the schedule). This could be related to the fact that
the smallest gaps occur in a spin-glass phase in which
dynamics are expected to be much slower, as described
in Ref. [82] and discussed in relation to the SK problem
in Ref. [55]. Transitioning slowly through the minimum
gap is important for the long timescales of adiabatic quan-
tum computing, but it is not necessarily related to what is
needed for maximizing the success probability for shorter
run times. Away from the adiabatic limit, there are different
mechanisms at play, as highlighted by Wong and Meyer
[83] and discussed elsewhere [54,55].

B. Analytical bounds on χ̄

Equipped with the definition of the average dynamic
coefficient χ̄ , we can investigate when it is possible to find
a value of �(t) such that χ̄ is large enough for signifi-
cant short-time dynamics to be generated. For simplicity,
we restrict ourselves to the unbiased driver case, when
the local driver coefficient D(jk) and local transfer coeffi-
cient T(jk) are related by D(jk) = 1 − T(jk). In this case, the
local dynamic coefficient χ(jk) can be written in terms of
the driver strength �(t) and a single scaled gap parameter
ζjk = |	jk |

2|〈k|Hdriver|j 〉| as

χ(jk) = ζjk/�(t)
[1 + ζjk/�(t)]2 . (34)

If we write pζ for the probability density function that
governs the distribution of ζjk in the particular problem
and driver Hamiltonians under consideration, then it can
be shown that the maximum value attained by the aver-
age dynamic coefficient χ̄ for any choice of driver strength
�(t) has a lower bound that can be stated formally as

max
�
(t)(χ̄)

≥ max
0<c<1

[
1 − c
(2 − c)2

(
1 − 1

c2

μ2(pζ )
μ2

1(pζ )

)]
, (35)

where μ1(pζ ) (μ2(pζ )) is the first (second) central moment
of the distribution governed by the probability density
function pζ . This bound is obtained by choosing the spe-
cific driver strength � = μ1(pζ ) (i.e., the mean of the
rescaled local gaps), which is not necessarily optimal but
serves to produce a nontrivial lower bound. We give the
proof of the formal lower bound (35) in Appendix B 2.

It is illuminating to look at the shape of this bound,
which can be easily computed numerically for any given
value of the ratio of moments μ2(pζ )/μ2

1(pζ ). The bound
is plotted for the interesting range of the ratio of moments
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FIG. 9. Semianalytical lower bound (solid red line) on χ̄ as
a function of the ratio of moments μ2(pζ )/μ2

1(pζ ) of the distri-
bution, governed by pζ , of the rescaled energy gaps ζjk between
computational basis states connected by the driver Hamiltonian
Hdriver. Also shown are minimum (0.0, dot-dashed green line) and
maximum (0.25, dotted blue line) possible values of χ̄ . The lower
bound is nontrivial for μ2(pζ )/μ2

1(pζ ) < 1.0 (left of dashed gray
line) and is trivially zero otherwise.

in Fig. 9. It can be seen that the lower bound is nontrivial
when μ2(pζ )/μ2

1(pζ ) < 1.0 but is trivially zero otherwise.
This shows that there is a continuous range where χ̄ is
bounded away from zero, and hence dynamics will def-
initely happen on short timescales, even for nonoptimal
choices of �(t). This bound is, in general, far from tight
but still allows us to produce some interesting examples.
We next illustrate the calculation of χ̄ and the lower bound
in Eq. (35) for some specific cases.

C. Example: two-qubit system

As a simple example, consider the problem Hamiltonian

H (2Q)
prob = −Ẑ1Ẑ2 − 1

2
Ẑ1

as defined in Eq. (5), with a transverse field driver as
defined in Eq. (3). For this problem Hamiltonian, there
are four two-level subspaces connected by the driver,
|00〉 ↔ |10〉, |00〉 ↔ |01〉, |10〉 ↔ |11〉, and |01〉 ↔ |11〉,
with |	jk| = 3, 2, 2, 1, respectively We can thus calculate
χ̄ exactly:

χ̄ = 1
4

(
3/2�

(1 + 3/2�)2
+ 1/2�
(1 + 1/2�)2

+ 2
2/2�

(1 + 2/2�)2

)

= �

2

(
3

(3 + 2�)2
+ 1
(1 + 2�)2

+ 4
(2 + 2�)2

)
, (36)

where the time dependence in �(t) is omitted for clar-
ity. To obtain the maximum value of χ̄ , we need to
maximize the expression in Eq. (36) with respect to �.
This is done most easily numerically, giving max�(χ̄) ≈
0.241 for � ≈ 0.941. From comparison with the bound
in Eq. (35), the first moment of pζ is μ1(pζ ) = 1, while
the second moment is μ2(pζ ) = 0.125. On the basis of the
ratio μ2(pζ )

μ2
1(pζ )

= 0.125, we obtain the lower bound max� χ̄ �
0.135. This is just more than half the actual value but
holds for any Hamiltonian with the same moments of the
distribution.

D. Example: Sherrington-Kirkpatrick spin glass

We consider the Sherrington-Kirkpatrick spin-glass
problem Hamiltonian given in Eq. (6). We take the driver
Hamiltonian Hdriver to be the transverse field defined in
Eq. (3). Because of the promising results found in Ref. [55]
for solving this problem with quantum walks, as well as for
the more general quenches presented in Sec. II, we expect
intuitively that it should be generally possible to find val-
ues of � for which the average dynamic coefficient χ̄ takes
an appreciable value.

The transverse field driver connects pairs of states j , k
that differ only by a single bit flip. Thus, it can be seen
from Eq. (6) that for all such pairs, the energy difference
can be written as

	jk = −
∑

b�=a

s(j )ab Jab − 2s(j )a ha, (37)

where a is the index of the spin that is flipped between
states |j 〉 and |k〉, the sum runs over b, which indexes
the other spins, s(j )ab is the eigenvalue (±1) of the opera-
tor ẐaẐb on the state |j 〉, and s(j )a is the eigenvalue (±1) of
the operator Ẑa on the state |j 〉. The gap 	jk in Eq. (37)
is a sum of normally distributed variables with mean 0,
and so 	jk is itself a normally distributed variable with
mean 0 and can be shown to have a standard deviation
ς = √

2(n + 1)σ , where n is the number of spins (qubits).
Then, since 〈k|Hdriver|j 〉 = 1 for the unbiased transverse
field driver, the scaled gap ζjk is distributed according
to the half-normal distribution with probability density
function

pζ (ζ ) = 1

ς
√

2π
exp

(
− ζ 2

8ς2

)
, ζ ≥ 0. (38)
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For this distribution, it can be shown that the ratio of
moments is

μ2(pζ )
μ2

1(pζ )
= 1 − 2/π

2
π

≈ 0.571, (39)

which we emphasize is independent of the width ς of the
distribution of the scaled gap ζjk. For this value of the ratio,
the lower bound shown in Fig. 9 is

max
�

χ̄ � 0.03. (40)

While this value is small compared with the maximum pos-
sible value of χ̄ = 0.25, which is not unexpected for a hard
problem (NP hard), we emphasize that it is independent of
the width ς of the distribution of the scaled gap ζjk and thus
does not scale with the system size. Bounding χ̄ away from
zero for all sizes proves that dynamics will occur over short
timescales for suitable control parameters, thus providing
evidence that the scaling found in Ref. [55] may continue
to useful problem sizes.

E. Example: unstructured search

As a contrasting example, we consider the problem of
unstructured search on n qubits, in which a single compu-
tational basis state |m〉, out of the total N = 2n basis states,
is marked by being given a lower energy. The Hamiltonian
for this problem is

Hsearch = 1 − 2|m〉〈m|, (41)

and again we take the driver Hamiltonian Hdriver to be
the transverse field defined in Eq. (3). While unstructured
search is a well-known example with a provable quan-
tum advantage, the algorithms that yield this advantage all
involve coherent operations on timescales of order

√
N =

2n/2 rather than the short-time dynamics we are discussing
in this paper. Therefore, we would intuitively not expect
the lower bound in Eq. (35) to be large in this case.

Of the n2n−1 total off-diagonal matrix element pairs
in the transverse field driver, only n of these will con-
nect a pair of computational basis states with nonzero
energy difference, having energy difference 	jk = 2, with
the remaining n2n−1 − n pairs having zero energy differ-
ence	jk = 0. Therefore, the distribution of scaled gaps ζjk
can be written as

pζ (ζ ) = n
n2n−1 δ(ζ − 1)+

(
1 − n

n2n−1

)
δ(ζ ). (42)

Calculating the first and second central moments of this
distribution gives

μ1(pζ ) = 1
2n−1 , (43)

μ2(pζ ) = 1
2n−1 −

(
1

2n−1

)2

, (44)

and so the relevant ratio of moments is

μ2(pζ )
μ2

1(pζ )
= 2n−1 − 1. (45)

Looking at the plot of the lower bound in Fig. 9, we can
see that for unstructured search the bound is trivially zero
for all n > 1 We can also calculate the exact value using
Eq. (34). For each of the n 2n−1 − n pairs of states j , k with
|	jk| = 0, χ(jk) = 0 for all �. For the remaining n pairs of
states j , k with |	jk| = 1, the choice of driver strength � =
1.0 will maximize χ(jk) = 0.25. Thus, the average dynamic
coefficient for unstructured search is

χ̄ = 1
2n−1 × 0.25

= 1
2n+1 , (46)

which tends toward the lower bound of zero in the limit as
n → ∞.

This tells us that, for search, most two-level subspaces
do not exhibit dynamics and probability enhancement of
the marked state can happen only through finely tuned con-
trol. For an adiabatic algorithm, this is achieved by slowly
adjusting the Hamiltonian within a precise range so that
the system can follow a very delicate path, whereas for
quantum walk, this is achieved by reaching a finely tuned
resonance between the marked state and the rest of a sym-
metric subspace of the Hilbert space. While interpolations
between these two extremes are possible [54], all of the
interpolated algorithms also rely on dynamics of a two-
level system with a gap proportional to

√
N = 2n/2. In

such a system, significant dynamics cannot occur on the
timescales of rapid quenches, O(1) or O(poly(n)).

V. USING DYNAMICS TO FIND HEURISTIC
QUENCH PARAMETERS

As mentioned in Sec. IV, the average dynamic coeffi-
cient χ̄ can, in general, be efficiently estimated by sam-
pling. In this section, we show via two practical examples
that this estimate can be used to develop heuristic meth-
ods for setting the control function �(t), or equivalently
A(t) and B(t), for a rapid quench in both quantum walk
and quantum annealing settings. In both cases, we use
the unbiased transverse field driver Hamiltonian defined in
Eq. (3). First, we consider the quantum walk algorithm,
starting with a simplified example of a two-qubit sys-
tem. We then develop a heuristic for the Sherrington-
Kirkpatrick spin glass and show that it performs almost
as well as the numerically fine-tuned heuristic described
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in Ref. [55], without needing any fine-tuning. Second, we
develop a simple heuristic method for defining a sched-
ule for a time-dependent rapid quench, also applied to
the Sherrington-Kirkpatrick spin glass, that outperforms a
linear ramp.

In all the examples discussed in this section, we com-
pute the average dynamic coefficient χ̄ numerically using
all nonzero j -k pairs rather than estimating it by sampling
such pairs. This is computationally easy to do at these
problem sizes and allows us to separate the effectiveness
of the heuristic from errors due to sampling.

A. Heuristic hopping rate for a quantum walk

For a quantum walk, the average dynamic coefficient
χ̄ is a function of the hopping rate chosen �(t) = γ .
Informed by the result in Sec. III that dynamics will typ-
ically be useful, it follows that by maximizing χ̄ we can
obtain a heuristic hopping rate γχ that should ensure sig-
nificant dynamics occur over short timescales. For the
two-qubit Hamiltonian from Eq. (5), Fig. 10 shows how
the average success probability within 100 dimensionless
time units P100 varies with γ . For this two-qubit system,
we can exactly calculate χ̄ (see Sec. IV C), as shown in
Fig. 10. The maximum value of χ̄ gives a value for γχ
that is a good-quality estimate for the value of γopt. Using
bisection and a numerically calculated derivative, we find
that γχ ≈ 0.864, while the peak of P100 occurs at a slightly
lower value of γ . Since the peak of P100 is quite broad, the
discrepancy between γχ and γopt reduces P100 only by a
small amount, as can be seen in Fig. 10.

To test how well this heuristic hopping rate works for
a more realistic example, we numerically calculate γχ for
each instance of size 5 ≤ n ≤ 15 of the spin-glass prob-
lems from Ref. [72]. This is done by our performing a
bisection optimization to maximize the value of χ̄ as a

FIG. 10. Average success probability P100 between t = 0 and
t = 100 (solid blue line) calculated on the basis of 10 000 inde-
pendent random points within this range and χ̄ (dashed red line)
versus γ for the two-qubit system given in Eq. (5). The vertical
dotted line indicates the value of γχ .

function of γ for each instance. Following the methods
in Ref. [55], we perform a short-time quantum walk and
calculate the success probability Pshort, which is time aver-
aged over a short run time. Averaging over all instances
of a given size, we obtain the average short-time success
probability

Pshort =
∫ 17.5/

√
n

12.5/
√

n
dtP(t), (47)

defined in Ref. [55]), for measuring the problem ground
state. This is shown (red line) for each size in Fig. 11.
Included for comparison (blue line) are the results
from Ref. [55] obtained with the fine-tuned heuristic
γheur defined there, using properties of the eigenvalue
distribution for the spin-glass problem Hamiltonian. It
can be seen that despite γheur being numerically fine-
tuned specifically for the Sherrington-Kirkpatrick spin-
glass problem, it performs only marginally better than
the general method we use here. Fitting the data pro-
duces 〈Pshort〉 ∼ O(N (−0.411±0.002)) for γheur compared with
〈Pshort〉 ∼ O(N (−0.425±0.001)) for γχ . The eigenvalue distri-
bution used in Ref. [55] would not generally be available to
calculate γ for real problems; this comparison shows that
using χ̄ is a viable method for determining a useful value
for γ in this case.

For the small size instances we are using, we use all the
values of χ(jk) to calculate the average in the definition
of χ̄ in Eq. (32). We can show that the error in γχ due
to sampling a subset of χ(jk) values stays manageable for
larger sizes. Consider a small error δγ in γ . Doing a Taylor

FIG. 11. Log-linear plot of average short-time success proba-
bility 〈Pshort〉 against number of qubits n for quantum walks on
the spin-glass dataset from Ref. [72] using the heuristic hopping
rate γχ derived for each instance by optimization of the average
dynamic coefficient χ̄ (red line). Also shown for comparison is
〈Pshort〉 obtained with the fine-tuned heuristic hopping rate γheur
(blue line) described in Ref. [55].
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expansion of χ̄ (γ ) around its peak value χ̄max gives

δχ̄ = χ̄max − χ̄ (γχ + δγ )

= −(δγ )2 ∂
2χ̄ (γ )

∂γ 2

∣∣∣∣
γ=γχ

+ O((δγ )3), (48)

where γχ is the value of γ our heuristic would find [84]
with the exact χ̄max. Using the sampling error in χ̄ from
Eq. (33) and rearranging, we obtain

δγ ∝ N−1/4
sample

(
− ∂2χ̄(γ )

∂γ 2

∣∣∣∣
γ=γχ

)−1/2

. (49)

This is a general expression that can be used for any prob-
lem Hamiltonian. For the Sherrington-Kirkpatrick spin
glass, we can use the distribution of the scaled gaps from
Eq. (38) and the definition of χ(j ,k) from Eq. (34) to obtain
the average value of χ̄(γ ) for SK instances, 〈χ̄〉(γ ):

〈χ̄〉(γ )

= 1

ς
√

2π

∫ ∞

0
dζ exp

(
− ζ 2

8ς2

)
ζ/γ

(1 + ζ/γ )2
. (50)

Making the substitution z = ζ/(2
√

2ς) to remove the ς
dependence in the exponential and differentiating twice
with respect to γ , we obtain

∂2

∂γ 2 〈χ̄〉(γ )

= 8

ς2
√

2π

∫ ∞

0
dz 2z exp

(−z2) (γ /ς)− 4
√

2z

[(γ /ς)+ 2
√

2z]4
.

(51)

This needs to be evaluated at γ = γχ , at the peak of
〈χ̄〉(γ ), which doing the substitution z = ζ/(2

√
2ς) in

Eq. (50) shows occurs at a fixed value of γ /ς . Hence,
the scaling with n of the double derivative at γ = γχ is
determined solely by the ς−2 prefactor in Eq. (51). Recall-
ing from Sec. IV D that ς = √

2(n + 1) for these SK spin
glasses and putting it back into Eq. (49), we have

δγ ∝ N−1/4
sample(n + 1)1/2. (52)

The peak in the success probability as a function of γ is
very broad for SK spin glasses, and the width of this peak
decreases as 1/n (determined numerically [55]). Combined
with Eq. (52), this means the sampling rate to calculate χ̄
needs to increase by a poly(n) factor as n increases in order
to determine γχ to sufficient accuracy. Since n corresponds
to the number of qubits, this can be done efficiently.

B. Heuristic schedule for quantum annealing

For a time-dependent rapid quench of the form HAB(t)
defined in Eq. (1) and total duration tf , a common choice
of control functions, inspired by the adiabatic algorithm,
is A(t) = 1 − s(t) and B(t) = s(t), where s(t) is a schedule
function with boundary conditions s(0) = 0 and s(tf ) = 1.
In the absence of any knowledge of where along the sched-
ule useful computation can happen, the schedule function
is often set to be the linear function s(t) = t/tf . The aver-
age dynamic coefficient χ̄ provides a measure of the level
of dynamics at each point along the schedule. Intuition
gained from Sec. III suggests that the linear schedule can,
in general, be improved by spending less time in regions
where χ̄ is small and more time in regions where χ̄ is large.
A straightforward way to do this is to choose ds/dt ∝ 1/χ̄
[the constant of proportionality is set by the boundary con-
ditions s(0) = 0 and s(T) = 1]. We approximate such a
schedule for a typical nine-qubit Sherrington-Kirkpatrick

(a)

(b)

FIG. 12. (a) A heuristic quench schedule of duration tf = 2.0
(red line) derived from the average dynamic coefficient χ̄ for a
typical nine-qubit spin-glass instance from Ref. [72]. For com-
parison, a linear schedule (also of duration tf = 2.0) is also
shown. (b) The instantaneous success probability P(t) for mea-
suring the problem ground state for each time t as the quench
progresses along the heuristic schedule (red line) and the linear
schedule (blue line).
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spin-glass instance, as shown in Fig. 12(a) (red line). We
do this by fixing the value of the points marked by circles
according to 	s ∝ 	t/χ̄ , subject to the boundary con-
ditions, and then linearly interpolating between them. A
linear schedule s(t) = t/tf (blue line) is also shown for
comparison. Figure 12(b) shows the instantaneous suc-
cess probability P(t) for measuring the problem ground
state as the quench progresses along the heuristic schedule
(red line) and the linear schedule (blue line) for a quench
duration of tf = 2. It can be seen that the simple heuris-
tic we use here results in a significant increase in success
probability at the end of the schedule. We check suffi-
ciently many of the instances to determine that this level
of increase is typical for this size of problem and total
time duration tf = 2. Further increases may be achievable
by varying tf or choosing a different function of χ̄ for
ds/dt.

VI. NUMERICAL METHODS

Numerical simulation and optimization are used exten-
sively throughout this work, as much of the analysis we
perform is not analytically tractable. The simulations are
performed and the plots are produced with use of the
PYTHON language [85], aided extensively by the NumPy
[86], SciPy [87], quimb, [88], and Matplotlib [89] libraries.
We also use the IPython interpreter [90] and Jupyter note-
book system [91]. MATLAB was used for some early numer-
ical experiments, but not for any results that directly appear
in this paper.

The numerical optimization used to produce Figs. 9–12,
as well as the curve fitting used in Figs. 7 and 11, is
performed using the optimization tools in SciPy [87].

The Sherrington-Kirkpatrick spin-glass instances in the
data repository at Ref. [72] are used extensively. In any
cases where a single example Sherrington-Kirkpatrick
spin-glass instance is used, it is the instance ovcjhwb-
htcpcvwicoxpdpvjzqojril. The plot of average short-time
success probability 〈Pshort〉 against number of spins n in
Fig. 11 uses all of the Sherrington-Kirkpatrick spin-glass
instances in the repository.

VII. SUMMARY AND FURTHER WORK

In this paper, we generalize and extend work begun in
Ref. [55] to time-varying quantum annealing schedules.
Callison et al. [55] provide numerical evidence for the
ability of quantum walks to solve NP-hard problems using
many repeats of short runs. This strategy scales better than
quantum search by exploiting the correlations in the prob-
lem Hamiltonian. The energy conservation mechanism
identified in Ref. [55] explains how energy-conserving
quantum walks can find lower-energy states with better
than guessing probability. In Sec. III, we generalize the
energy conservation mechanism to an energy redistribu-
tion mechanism that holds for all monotonic quenches that

start in the ground state of the driver Hamiltonian and have
non-negative control functions. This thus includes a wide
range of quantum annealing protocols used in both theoret-
ical and experimental work. The improvements leveraged
by time-varying rapid quenches can be considerable, as we
illustrate in Sec. II.

To generate significant energy redistribution, there
needs to be significant dynamics driving the system away
from the initial state. To characterize the dynamics, in
Sec. IV we define the average local dynamic coefficient
that balances the contributions from both the driver Hamil-
tonian and the problem Hamiltonian. This allows the con-
trol functions in the Hamiltonian to be optimized for fast
dynamics and provides a very general way to estimate
good values to use for specific problems. For the spin-
glass data [92], we show in Fig. 11 that such estimates
are almost as good as the numerically optimized values
used in Ref. [55]. We verify in Sec. IV E that our aver-
age local dynamic coefficient correctly predicts that the
search problem will not have significant dynamics on short
timescales. The average dynamic coefficient we define
is one way to capture the local dynamics in a quantum
annealing Hamiltonian system; doubtless there are other
formulations that would serve equally well. In the trans-
verse Ising setting, it focuses on single spin flips, which
intuitively are likely to provide the fastest dynamics. Set-
tings with driver Hamiltonians applying multiple spin flips
(see, e.g., Refs. [53,56]) may prove less favorable for
obtaining fast dynamics, a worthwhile direction for future
investigations.

Taken together, the energy redistribution mechanism
and the average dynamic coefficient are powerful tools
for understanding, designing, and optimally controlling
rapid-quench quantum annealing algorithms. We provide
a simple example of how to do this to good effect for
annealing schedules in Sec. V B, and in Sec. V A verify
that it is both efficient and effective for estimating hopping
rates for quantum walks on spin glasses. While adiabatic
quantum computing and quantum walk search have long
had theoretical underpinnings, this represents a significant
step in understanding how to exploit quantum annealing
schedules run for short times. For current state-of-the-art
noisy quantum computers, short run times are a big advan-
tage over the long coherence times required for adiabatic
quantum computing, or quantum walk search.

We show that our tools apply to the biased drivers pro-
posed in Refs. [74,75], which provide a method of incor-
porating prior information into annealing schedules. This
can produce significant improvements, as we illustrate in
Sec. II B. On the other hand, reverse annealing sched-
ules, both as proposed in Refs. [79,93,94] and discussed
in Ref. [77] and as implemented in the latest D-Wave Sys-
tems devices [78] are by definition not monotonic, so the
tools and mechanisms identified here cannot be applied.
Since reverse annealing is a powerful tool, extending our
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results to nonmonotonic cases is an important direction for
further research.
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APPENDIX A: PROOF: MONOTONIC QUENCHES
DO NO WORSE THAN GUESSING

1. Energy conservation mechanism

In this appendix, we recap the special case presented
in Refs. [55,68] for time-independent controls. Quantum
walks can be viewed as a closed-system annealing pro-
tocol with a discontinuous schedule [54]. For QW, when
formulated in terms of Eq. (1) A(t) and B(t) are con-
stant, independent of time. This picture however does not
follow the convention of how annealing protocols are for-
mulated, where the system starts in the ground state of
the initial Hamiltonian and the driver is completely absent
at the end of the annealing. Following such a conven-
tion is important, for instance, to define an interpolation
between annealing protocols and QW, as was done in
Ref. [54]. To define QW as an annealing protocol in which
A(0) = B(tf ) = 1 and A(tf ) = B(0) = 0, we can write
A(t) = γ�(tf − t + ε) and B(t) = �(t − ε), where � is
the Heaviside � function, �(a > 0) = 1, �(a < 0) = 0,
�(a = 0) = 1

2 , and take the limit where ε → 0.
Since the initial state |ψ(t = 0)〉 is a ground state

of the driver Hamiltonian Hdriver, it follows immedi-
ately that the expectation value of the driver Hamiltonian
is at its lowest at t = 0–that is, 〈ψ(t) | Hdriver | ψ(t)〉 ≥
〈ψ(t = 0) | Hdriver | ψ(t = 0)〉–since the expectation value
of the driver Hamiltonian Hdriver for any quantum state
cannot be less than that of the ground state.

The total energy expectation as a function of time can
be written as

E(t) = 〈
ψ(t) | γHdriver + Hprob | ψ(t)〉

= γ 〈Hdriver〉ψ(t) + 〈Hprob〉ψ(t), (A1)

where the notation 〈.〉ψ is used to denote the expectation
value with respect to the state |ψ〉. Since energy is con-
served for 0 < t < tf , it follows that for ε → 0, E(ε) =

E(tf − ε), and therefore

γ 〈Hdriver〉ψ(t=0) + 〈Hprob〉ψ(t=0)

= γ 〈Hdriver〉ψ(tf ) + 〈Hprob〉ψ(tf ). (A2)

Rearranging terms, and recalling that ψ(t = 0) is the
ground state of Hdriver and γ ≥ 0, we observe that

〈Hprob〉ψ(tf ) − 〈Hprob〉ψ(t=0)

= γ [〈Hdriver〉ψ(t=0) − 〈Hdriver〉ψ(tf )] ≤ 0, (A3)

and therefore 〈Hprob〉ψ(tf ) ≤ 〈Hprob〉ψ(t=0). Since ψ(t = 0)
is not an eigenstate of the full Hamiltonian, some dynamics
are guaranteed to happen, and thus there will be times t > 0
when 〈Hprob〉ψ(t) is strictly less than 〈Hprob〉ψ(t=0).

2. Energy redistribution mechanism in the case of
B(t) → 0: divergence of �

The result in Sec. III is that the inequality (23) holds for
any quench with a Hamiltonian in the form of Eq. (2) that
satisfies the three conditions listed in Sec. III. We now con-
sider quenches with a Hamiltonian in the form of Eq. (1).
Any Hamiltonian in the form of Eq. (1) with B(0) > 0
can be put in the form of Eq. (2) by identifying the ratio
A(t)/B(t) with �(t) and rescaling by a factor of 1/B(t),
which can be formally compensated for by rescaling time
by a factor of B(t). Thus, the inequality (23) holds also for
any quench with a Hamiltonian in the form of Eq. (1) with
B(0) > 0 and that otherwise satisfies the three conditions
listed in Sec. III. Here we show that this can be extended
to the case where B(0) = 0.

In the case that B(0) = 0, consider the modified Hamil-
tonians

H ′
driver = Hdriver − ε

A(0)
Hprob, (A4)

H ′
prob = Hprob (A5)

and the modified control functions

A′(t) = A(t), (A6)

B′(t) = B(t)+ A(t)
A(0)

ε

= B(t)
(

1 + �(t)
ε

A(0)

)
, (A7)

where ε � 1. It can be seen that that total Hamiltonian is
unchanged,

H ′
A,B(t) ≡ A′(t)H ′

driver + B′(t)H ′
prob

= A(t)Hdriver + B(t)Hprob, (A8)
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but we have

B′(0) = ε. (A9)

We define

�′(t) ≡ A′(t)
B′(t)

. (A10)

�′(t) = �(t)(
1 + �(t) ε

A(0)

) . (A11)

It can be immediately seen that �′(t) is non-negative
if �(t) is non-negative, and so condition 2 is satisfied.
Furthermore,

d�′(t)
d�(t)

= 1
(

1 + �(t) ε
A(0)

)2 . (A12)

Thus, �′(t) is monotonically decreasing if �(t) is mono-
tonically decreased, and so condition 3 is satisfied.

If we were to start the protocol in the state |ψ ′
GS〉, a

ground state of H ′
driver, condition 1 would be satisfied and

the result would be proven. However, the original protocol
we are considering starts in the state |ψ(0)〉, a ground state
of Hdriver. Applying first-order perturbation theory in ε to
H ′

driver, we find that H ′
driver has a ground state

|ψ ′
GS〉 = |ψ(0)〉 + O

(
ε

A(0)	

)
|ψ⊥〉, (A13)

where |ψ⊥〉 is a normalized state vector orthogonal to
|ψ(0)〉 and 	 is the energy gap between the ground-
state and first-excited-state manifolds of the actual driver
Hamiltonian Hdriver. Thus, assuming the driver Hamilto-
nian Hdriver is not gapless (which is automatically true for
all Hamiltonians on Hilbert spaces of finite dimension), the
inequality in Eq. (23) is satisfied in the limit as ε → 0.

APPENDIX B: LOWER BOUND ON THE
AVERAGE DYNAMIC COEFFICIENT

1. Bound on probabilities in a range based on second
moment

Here we prove a useful bound that is applied in the fol-
lowing subsection. Assume that the distribution p(x) has a
finite second moment

μ2(p) =
∫ ∞

−∞
dx p(x)[x − μ1(p)]2, (B1)

where

μ1(p) =
∫ ∞

−∞
dx p(x)x (B2)

is the first moment (mean). Let us choose some values
xmax > xmin such that μ1(p) = 1

2 (xmax + xmin). The distri-
bution q(x) = 1

2δ(xmin − ε)+ 1
2δ(xmax + ε) has the mini-

mum possible second moment while having no support in
the interval [xmin, xmax], where δ is the Dirac δ distribution.
In the limit ε → 0, the second moment of this distribution
is μ2(q) = 1

4 (xmax − xmin)
2. Thus, if μ2(p) < μ2(q), then

p(x) must have some support within the range [xmin, xmax].
In particular, because the second moment μ2(p) can be
lower bounded as

μ2 =
∫ ∞

−∞
dx p(x)[x − μ1(p)]2

≥
∫ xmin

−∞
dx p(x)[x − μ1(p)]2

+
∫ ∞

xmax

dx p(x)[x − μ1(p)]2

≥ μ2(q)
(∫ xmin

−∞
dx p(x)+

∫ ∞

xmax

dx p(x)
)

= μ2(q)
(

1 −
∫ xmax

xmin

dx p(x)
)

,

the probability for x to be in the interval [xmin, xmax] can
also be lower bounded as

∫ xmax

xmin

dx p(x) ≥ 1 − μ2(p)
μ2(q)

= 1 − 4μ2(p)
(xmax − xmin)2

. (B3)

2. A simple lower bound

Let ζjk = |	jk|
2|〈k|Hdrive|j 〉| and let ηjk = ζjk/�. Furthermore,

let pζ and pη be probability density functions that govern
the distribution of the values ζjk and ηjk, respectively, over
a set of problem instances. Letμ1(p) andμ2(p) refer to the
first and second moments, respectively, of a distribution
governed by the probability density function p .

The dynamic coefficient is

χ(jk) = ηjk

(1 + ηjk)2
, (B4)

so we consider the function

f (x) = x
(1 + x)2

, (B5)

where x > 0.
Let x be distributed according to the probability density

function pη. We know that the expectation value 〈f (x)〉x is
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then

〈f (x)〉x =
∞∫

0

dxpη(x)f (x)

=
xmax∫

xmin

dxpη(x)f (x)+
xmin∫

0

dxpη(x)f (x)

+
∞∫

xmax

dxpη(x)f (x)

= Pη(xmin < x < xmax)〈f (x)〉xmax
xmin

+ Pη(x ≥ xmin)〈f (x)〉xmin
0

+ Pη(xmax ≥ x)〈f (x)〉∞xmax
, (B6)

where xmax > xmin, Pη(. . . ) is the probability of its argu-
ment being true if η is distributed according to pη, and
〈f (x)〉b

a is the expectation value of f (x) if x is distributed
according to a (renormalized) version of pη with all sup-
port on x < a and x > b removed. As f (x) is positive for
all x > 0, we get the lower bound on 〈f (x)〉x,

〈f (x)〉x ≥ Pη(xmin < x < xmax)〈f (x)〉xmax
xmin

> Pη(xmin < x < xmax) min
xmin<x<xmax

f (x).

Since f (x) is also convex, we know that

min
xmin<x<xmax

f (x)

= min [f (xmin), f (xmax)] . (B7)

Let the interval [xmin, xmax] be of width 2c (for some c >
0) and centered at the mean μ1(pη), thereby also constrain-
ing c < μ1(pη). That is, xmin = μ1(pη)− c and xmax =
μ1(pη)+ c, and we must find out which of f (μ1(pη)− c)
and f (μ1(pη)+ c) is smaller. To do this, we consider
under what conditions it is true that

f (μ1(pη)− c) < f (μ1(pη)+ c). (B8)

It can be shown that Eq. (B8) is true when

c2 > μ2
1(pη)− 1. (B9)

This inequality means that when the meanμ1(pη) is greater
than 1, the truth of the inequality in Eq. (B8) depends on
the value of c, but for μ1(pη) ≤ 1, it is always true. There-
fore, if we choose � = μ1(pζ ) (the mean of the distribution
of ζ rather than η), then we have μ1(pη) = 1, which means

the inequality f (1 − c) < f (1 + c) is always true (where
now 0 < c < 1), and consequently

min
(1−c)<x<(1+c)

f (x) = f (1 − c),

〈f (x)〉1+c
1−c > f (1 − c),

〈f (x)〉x > Pη(1 − c < x < 1 + c)f (1 − c).

(B10)

Since ζjk ≡ �ηjk = μ1(pζ )ηjk, we have

Pη(1 − c < x < 1 + c)

= Pζ (μ1(pζ ) (1 − c) < x < μ1(pζ ) (1 + c) ), (B11)

where Pζ (. . . ) is the probability of its argument being true
if x is distributed according to pζ .

Applying the result in Appendix B 1, we have

Pζ (μ1(pζ ) (1 − c) < x < μ1(pζ ) (1 + c) )

≥ 1 − 4μ2(pζ )
{[
μ1(pζ ) (1 + c)

] − [
μ1(pζ ) (1 − c)

]}2

= 1 − 1
c2

μ2(pζ )
μ2

1(pζ )
. (B12)

Putting this all together gives

max
�

χ̄ ≥ f (1 − c)
(

1 − 1
c2

μ2(pζ )
μ2

1(pζ )

)
(B13)

= 1 − c
(2 − c)2

(
1 − 1

c2

μ2(pζ )
μ2

1(pζ )

)
. (B14)

While this inequality gives a valid lower bound on χ̄ , the
greatest lower bound can be written as

max
�

χ̄

≥ max
0<c<1

[
1 − c
(2 − c)2

(
1 − 1

c2

μ2(pζ )
μ2

1(pζ )

)]
, (B15)

which can be found numerically for any given value of
μ2(pζ )/μ2

1(pζ ) by optimization over the parameter c. This
is plotted in Fig. 9.
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