
1.  Introduction
Coseismic landslides represent a major cascading hazard associated with high-magnitude earthquakes in 
mountainous environments (Fan, Scaringi, Domènech, et al., 2019; Fan, Scaringi, Korup, et al., 2019). The 
widespread landsliding observed in many recent large continental earthquakes has led to substantially 
higher death tolls when compared to earthquakes without landslides (Budimir et al., 2014), disruption to in-
frastructure (Aydin et al., 2018; Bird & Bommer, 2004), and the mobilization and transport of large volumes 
of sediment (M. Y. F. Huang & Montgomery, 2012; Wang et al., 2015). Increased interest in understanding 
the spatial distribution, impacts, and timing of coseismic landslides in recent decades has resulted in the 
production of a growing number of coseismic landslide inventories (Tanyas et al., 2017). In contrast, despite 
growing evidence for the persistence of enhanced landslide rates and the consequent long-term impacts of 
coseismic hillslope damage in the years to decades after a major earthquake (e.g., Dadson et al., 2004; Hovi-
us et al., 2011; Marc et al., 2015; Parker et al., 2015), our current understanding of the post-seismic evolution 
of landslides is limited. As a result, we remain incapable of anticipating the spatio-temporal evolution of 
landslide hazard after a large earthquake, which frustrates our ability to inform response, recovery, and 
reconstruction (e.g., Robinson et al., 2017; Williams et al., 2018), and limits understanding of the long-term 
role of earthquakes in the overall mountain sediment cascade.

A standard approach to tracking post-seismic landsliding is to develop multi-temporal landslide inventories, 
usually by mapping from airborne or satellite imagery. This is a time-consuming and potentially expensive 
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process, however, with the result that much of our existing understanding of post-seismic landsliding comes 
from just two earthquakes: the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, and the 2008 Mw 7.9 Wenchuan 
earthquake in China. The Chi-Chi earthquake triggered >20,000 landslides and elevated suspended sedi-
ment concentrations in rivers draining the affected area by a factor of four relative to decadal background 
levels (Dadson et al., 2004). Analysis of stream gauge data and time series landslide mapping following 
this event suggested a post-seismic decay in suspended sediment flux (Hovius et al., 2011) and the rate of 
new landsliding (Marc et al., 2015) that returned to pre-event levels within approximately 6 years. Marc 
et al. (2015) extended this analysis to three other shallow thrust-faulting earthquakes, demonstrating that 
the rate of new landslide occurrence peaked immediately after each event and then decayed to pre-event 
values within 1–4 years, with the recovery time tentatively suggested to be proportional to earthquake mag-
nitude. Khan et al. (2013) and Barth et al. (2019) suggested similarly short recovery times after the 2005 Mw 
7.6 Kashmir and 2012 Mw 7.8 Haida Gwaii earthquakes, respectively. This recovery time is a critical factor 
in post-seismic landslide hazard, because it determines the time period over which persistent and repeated 
disruption might be expected across the earthquake-affected area.

In contrast, studies of the Wenchuan earthquake have suggested a more complex response, with a wide range 
in inferred recovery times. The earthquake triggered >60,000 landslides over an area of >100,000 km2 (Dai 
et al., 2011; Xu et al., 2014). A large and growing number of studies have assessed spatio-temporal changes 
in the occurrence of new landslides as well as the remobilization and transport of pre- and coseismic land-
slide debris. These studies have used a variety of approaches, but have tended to focus on small portions of 
the overall landslide-affected area. For example, Fan et al. (2018); Fan, Scaringi, Domènech, et al. (2019); 
and Fan, Scaringi, Korup, et al. (2019) compiled four post-earthquake inventories over a 463 km2 area near 
the epicenter (∼0.4% of the total affected area). New post-seismic landslides made up less than 10% of each 
of their inventories; instead, post-earthquake landslide activity was dominated by remobilization of existing 
landslide scars and their deposits into debris flows. Both the proportion of landslides that were remobilized 
and the extent of remobilization declined over time, returning to background levels within approximately 
seven years. Similarly, Tang et al. (2016) compiled six inventories spanning 2005–2015 over a 172 km2 area 
near the epicenter (∼0.1% of the affected area), demonstrating a 100-fold decrease in the number of active 
landslides in the 7 years after the earthquake. While most post-earthquake landsliding occurred in the first 
three years, landslide rates had still not decayed to pre-earthquake levels by the end of their study. In con-
trast, other studies have argued that the rates of landsliding (e.g., R. Huang & Li, 2014) or post-seismic debris 
flows (e.g., Zhang & Zhang, 2017) are likely to remain elevated for several decades, with C. Li et al. (2018) 
speculating that a full return to pre-earthquake conditions could take 50–100 years. Studies of vegetation 
damage and recovery, using satellite image-based vegetation proxies (e.g., Chen et al., 2020; Ni et al., 2019; 
Shen et al., 2020; Yang et al., 2018; Yunus et al., 2020), have also tended to infer longer recovery times, on 
the order of several decades, but have pointed to strong spatial heterogeneities in recovery, with time scales 
expected to be longer in the areas with the highest density of coseismic landslides (Ni et al., 2019).

These disparities in inferred recovery time likely stem from two separate sources: (1) real differences in re-
covery time between different earthquakes, which we would like to understand, and (2) differences in defi-
nition, methodology, and resolution, which we would like to correct for. Even the term “recovery” is used 
in a range of ways, from a decline in the rate of new landslides or debris flows to pre-earthquake values, to 
stabilization of coseismic landslide debris, to the re-establishment of pre-earthquake vegetation. There is 
little consensus on whether to focus solely on the occurrence of new post-earthquake landslides on previ-
ously unfailed hillslopes or on the continued evolution of pre- and coseismic landslide scars. For example, 
landslide rates following the 2005 Kashmir earthquake differ markedly depending on the specific method 
used to generate the inventory, with full recovery estimates ranging from <5 years (Khan et al., 2013) to 
>13 years (Shafique, 2020). Inventories that contain only new landslides can show a rapid post-earthquake 
decline in landslide rates (e.g., Marc et al., 2015), but will underpredict the hazard from pre-seismic or co-
seismic landslides that remain active. Identifying landslides that remain active but which have not changed 
overall shape or size in a distinct, measurable way is problematic without detailed field surveys, often re-
sulting in only broad definitions of activity. There is evidence, however, that the hazard posed by landslides 
can persist, even when the overall mapped footprint does not change. For example, in their field-based 
study of landslide development along two critical highways in Nepal in the three years following the 2015 
Mw 7.8 Gorkha earthquake, Tian et al. (2020) documented repeated activity and continued hazard across 
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the majority of sites investigated. Importantly, this included landslides that had not changed in overall size 
but had either reactivated or had undergone a change in dominant failure mechanism, such as from dry 
debris cascades to wet debris flows. Increasing revegetation of a coseismic landslide was also not necessarily 
indicative of a cessation of hazard, with five revegetating landslides noted as still active three years after the 
earthquake. Multi-temporal inventories that focus solely on new or substantially altered landslide footprints 
may potentially therefore underestimate the overall level of landslide hazard, and potentially overestimate 
the rate of landscape recovery.

In addition, many studies have focused on only small portions of the total earthquake-affected area, de-
spite growing evidence of strong spatial variations in both post-seismic landsliding and recovery (e.g., Shen 
et al., 2020; Yunus et al., 2020). Differences in methodology may play a role as well; airborne and satellite 
images are well-suited for distinguishing between vegetated and unvegetated areas, but not for determin-
ing the stability of the ground surface or the extent of landslide activity and downslope transport (Bernard 
et al., 2020). Indirect measures of landslide activity, such as downstream suspended-sediment discharge 
(e.g., Dadson et al., 2004; Wang et al., 2015; F. Zhang et al., 2019), may reflect changes in sediment supply or 
transfer to rivers rather than changes in landslide activity. Comparison of such direct and indirect measures 
relies on a comprehensive understanding of sediment transport pathways and storage within the landscape 
which is often lacking. Finally, it is also important to recall that recovery of landslide rates to pre-earthquake 
levels is not synonymous with the removal of all coseismic landslide debris from the landscape. Careful 
documentation of debris volumes and transport in portions of the Wenchuan earthquake rupture area has 
demonstrated that >80% of the material liberated by coseismic landsliding continued to reside on hillslopes 
or in low-order channels after a decade (Fan et al., 2018; R. Huang and Li, 2014; S. Zhang & Zhang, 2017). 
This suggests that the response to large earthquakes evolves over multiple overprinting time scales: rela-
tively short-term changes in the rate of new and persistent mass wasting on the one hand, and long-term 
enhancement of erosion rates and sediment flux due to hillslope damage and sustained high rates of sedi-
ment supply on the other (Fan et al., 2018).

Together, these issues mean that we do not yet have a comprehensive picture of how landslide inventories 
evolve in space and time after a large earthquake, despite the importance of this picture for understanding 
dynamic landslide hazard and the associated risk. To begin to address this gap, we document coseismic 
and post-seismic landsliding across the area that was significantly impacted by the 2015 Mw 7.8 Gorkha 
earthquake in Nepal over the period 2014–2018. We use a consistent mapping methodology, based on pre- 
and post-monsoon medium-resolution satellite imagery, that is designed to optimize our ability to assess 
change through time. Critically, we map each of the 11 time epochs independently and in full, resulting 
in an internally coherent set of 11 inventories that each include all visible landslides at each point in time. 
As a result, our approach deliberately accounts for the persistence and evolution of pre-existing landslides, 
rather than just the occurrence of new failures, providing an alternative perspective on the rate of post-seis-
mic landscape recovery. This allows the first documentation of both the evolution of the total distribution 
of landslide activity and detailed shifts in landslide form and location resulting from the earthquake and the 
four subsequent monsoon seasons.

2.  The 2015 Mw 7.8 Gorkha Earthquake and Landslide Inventories
The 25 April 2015 Mw 7.8 Gorkha earthquake initiated ∼80 km northwest of Kathmandu in the district 
of Gorkha, with rupture propagating eastwards for ∼140 km along the Main Himalayan Thrust (Avouac 
et al., 2015). A series of large aftershocks followed, including a Mw 7.3 event on 12 May ∼75 km east-north-
east of Kathmandu in Dolakha district (Figure 1). Intense shaking triggered extensive landsliding across 
the east-west extent of fault rupture, with the density of landslides generally increasing toward the east 
(Martha et al., 2017). Multiple coseismic landslide inventories have been produced for the Gorkha event 
(e.g., Kargel et al., 2016; Martha et al., 2017; Meena & Tavakkoli Piralilou, 2019; Roback et al., 2018; Tiwari 
et al., 2017; Williams et al., 2018; Xu et al., 2016), resulting in estimates of landslide numbers ranging from 
<5,000 to ∼25,000. The most detailed assessment, and therefore probably the most complete inventory to 
date, was produced from high-resolution satellite imagery by Roback et al. (2018) and documented ∼25,000 
landslides with a combined area of ∼90 km2, distributed across an area of 28,300 km2 of central Nepal.
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Assessments of post-seismic landslide rates and distributions are so far fairly limited for the Gorkha earth-
quake sequence. Tian et al. (2020) used imagery and field surveys to document the evolution of c. 30 land-
slides along two major highway corridors. They found that most of the landslides enlarged or remained 
active through the first three years after the earthquake, with frequent remobilization of pre- and coseis-
mic landslide material into debris flows. Marc et al. (2019) suggested that rainfall-induced landslide rates 
in three selected catchments covering 7% of the total affected area were ∼3–6 times higher for the 2015 
monsoon when compared to pre-earthquake levels. Between 70% and 80% of the landslides in their 2015 
monsoon inventory were in new locations when compared with the coseismic landslides from Roback 
et al. (2018), suggesting that new failures occurred on hillslopes weakened by the earthquake rather than 
by reactivation of pre-existing landslides. By 2017, the rate of new rainfall-induced landslides in all three 
catchments had returned to pre-earthquake levels (Marc et al., 2019). Enhanced rates of post-seismic debris 
flows also appear to have been relatively short-lived, with the exhaustion of loose material mobilized from 
coseismic failures during the 2015 monsoon and a reduction in the number of new debris flows back to 
pre-earthquake levels by 2016 (Dahlquist & West, 2019). Dahlquist and West (2019) reported that only ∼2% 
of coseismic landslides developed into post-seismic debris flows, with the majority of failures likely to either 
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Figure 1.  Location of the study area in central Nepal. (a) Shaded relief elevation map derived from a 30 m ALOS DEM of the study area (Credit: AW3D30—
JAXA). Stars show the main epicenters of the 2015 Gorkha earthquake sequence: 25 April Mw 7.8 and 12 May Mw 7.3. Gray polygons show areas of persistent 
cloud or snow cover throughout the study period, which were excluded from the analysis. Red box shows location of panel (c). (b) Spatial distribution of 
coseismic landslides (epoch 4) mapped across the 14 administrative districts that were most intensively affected by the earthquake. (c) Example of multi-
temporal landslide inventory results for an area of the upper Bhote Kosi river basin in Sindhupalchok. Note complex patterns of overlap between polygons from 
different inventories; this complicates spatial correlation and analysis of regional-scale evolutionary patterns, and motivates our focus on area density estimates. 
ALOS, Advanced Land Observing Satellite; DEM, digital elevation model.
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be in more stable hillslope positions (Dahlquist & West, 2019) or directly coupled with fluvial channels and 
so exhausted of loose sediment immediately following the earthquake (Roback et al., 2018).

3.  Data and Methodology
3.1.  Landslide Inventory Mapping

We mapped landslides from a time series of freely available medium-resolution satellite imagery (Landsat 
and Sentinel-2) covering the period from 2014 to 2018, and focusing on an area of 25,575 km2 covering the 
14 administrative districts that were most intensively affected by the 2015 Gorkha earthquake, as identified 
by the Government of Nepal (Figure 1) This represents just over 90% of the landslide-affected area mapped 
by Roback et al. (2018). Mapping was divided into 11 individual epochs, including pre- and post-monsoon 
inventories for each individual year, as well as an additional coseismic inventory for 2015 (Table 1). Landsat 
8 imagery was used for epochs 1–5 (2014–2015), with the lower resolution (30 m) multispectral bands being 
pan-sharpened to 15 m resolution using the panchromatic band 8. Panchromatic sharpening involves the 
radiometric transformation of a lower spatial resolution multiband image using a higher resolution image 
band, effectively increasing the spatial resolution of the original color image to provide enhanced detail. We 
then switched to Sentinel-2 imagery (10 m spatial resolution) when coverage became available from epoch 
6 (pre-monsoon 2016) onwards. Medium-resolution imagery was chosen because it spans the full pre- and 
post-earthquake time period, allows for low-cost long-term monitoring over the entire earthquake-affect-
ed area, and suffers less geometric distortion compared to high resolution imagery, which is a particular 
problem in high-relief environments (Weiss & Walsh, 2009). For each epoch, we chose images that spanned 
the shortest possible time window while maintaining a consistent time series of mid-point dates (Table 1).

Identification of individual landslides was based on visual interpretation of true color (R-G-B) and false 
color (NIR) composites using bands 2-3-4-5 for Landsat 8 and 2-3-4-8 for Sentinel-2. Landslides were typ-
ically identified by the spectral contrast between exposed sediment or bedrock within the failure and the 
surrounding, undisturbed vegetation. Mapping of identified landslides in each epoch was conducted within 
QGIS v2.18 by two trained mappers using a 5 × 5 km fishnet grid to guide the mapping process. All land-
slides were manually digitized as vector polygons. The resolution of the satellite imagery meant that it was 
not possible to distinguish between failure source areas and deposits (cf. Roback et al., 2018). We charac-
terized landslides by their planimetric area and by the ratio of area to perimeter (A/P), which indicates the 
degree of elongation; more elongate landslides have lower A/P values than those that are more equant. We 
did not convert area to volume due to uncertainties in both scaling laws (e.g., Larsen et al., 2010), potential 
aggregation of multiple polygons (e.g., G. Li et al., 2014; Marc & Hovius, 2015), and the wide variety of land-
slide types triggered by the event (Kargel et al., 2016).
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Epoch number Epoch name Acquisition date range Interval (days) Midpoint date Sensor

1 Pre-monsoon 2014 02/04/2014–20/05/2014 48 April 26, 2014 Landsat 8

2 Post-monsoon 2014 04/10/2014–30/11/2014 57 November 01, 2014 Landsat 8

3 Pre-earthquake 2015 06/03/2015–22/03/2015 16 March 14, 2015 Landsat 8

4 Coseismic 2015 30/04/2015–10/06/2015 41 May 20, 2015 Landsat 8

5 Post-monsoon 2015 07/10/2015–17/11/2015 41 October 27, 2015 Landsat 8

6 Pre-monsoon 2016 13/02/2016–26/04/2016 73 March 20, 2016 Sentinel-2

7 Post-monsoon 2016 03/10/2016–29/12/2016 87 November 15, 2016 Sentinel-2

8 Pre-monsoon 2017 07/02/2017–28/05/2017 110 April 03, 2017 Sentinel-2

9 Post-monsoon 2017 04/11/2017–12/11/2017 8 November 08, 2017 Sentinel-2

10 Pre-monsoon 2018 09/03/2018–08/05/2018 60 April 08, 2018 Sentinel-2

11 Post-monsoon 2018 28/10/2018–30/10/2018 2 October 29, 2018 Sentinel-2

Table 1 
Landslide Mapping Epochs and Dates
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Unlike previous multi-temporal inventory assessments (e.g., Fan et  al.,  2018; Fan, Scaringi, Domènech, 
et al., 2019; Fan, Scaringi, Korup, et al., 2019; C. Li et al., 2018; Marc et al., 2019), we mapped the full extent 
of all landslides visible on imagery from each epoch, treating each epoch independently. This meant that 
we mapped landslides based solely on visibility in the imagery and irrespective of whether they had been 
documented during earlier epochs, rather than only recording landslides which had newly occurred or 
substantially changed since the preceding epoch. This approach was selected for a number of reasons. Fo-
cusing only on new landslides has the potential to underestimate any persistent hazard posed by previously 
failed slopes which have not yet fully stabilized or revegetated. In contrast, mapping all visible landslides 
from each epoch provides a measure of the total area of impacted ground for any given date, as well as al-
lowing the overall rates of hillslope recovery and revegetation back to pre-earthquake levels to be derived. 
Understanding the degree to which the landslide hazard footprint persists or alters in the years following a 
large earthquake is crucial for determining a realistic measure of spatially and temporally variable hazard 
and risk. Our approach also avoids the need to classify the extent of reactivation of each landslide based on 
qualitative criteria (e.g., Fan et al., 2018; C. Li et al., 2018). With the medium-resolution imagery used here, 
it is not possible to observe variations in reactivation or remobilization of debris within individual landslide 
scars. Thus, our hillslope recovery rates (in terms of landslide areal density) are expected to be slower com-
pared to studies that examine only new or clearly reactivated landslides in each epoch.

To assess the impact of this conceptual approach on our derived recovery rates, we also applied an alterna-
tive methodology based on the analysis of individual 10 × 10 m cells rather than entire mapped polygons. 
In this approach, every 10 × 10 m cell within the study area was assigned a series of binary values showing 
whether it was a landslide (“1”) or not (“0”) within each of the mapping epochs. Cells that had been newly 
impacted relative to previous epochs, whether through the occurrence of entirely new landslides or expan-
sion of existing landslide footprints, could then be isolated from persistent landslide cells and analyzed 
separately in terms of their distribution and recovery rate. Additional information relating to this alterna-
tive methodology is provided in supporting information 7, while a detailed consideration of the different 
conceptual approaches and the implications for assessing post-seismic hillslope recovery is discussed in 
Section 5.1.

A common issue with large-scale multi-temporal landslide inventory analysis is the presence of intermit-
tent and spatially variable cloud, shadow, and snow cover, which typically precludes the direct comparison 
of data from affected areas. Automated masking of cloud, shadow, and snow cover was undertaken using 
the Fmask (Function of mask) software v4.0 (Qiu et al., 2019), with manual checking and editing of the 
resulting mask layers to ensure accuracy. Areas of persistent cloud or snow (i.e., those for which the ground 
was not visible in any of the 11 epochs) totaled 1308.32 km2, 5% of the total study area, and were concentrat-
ed in the High Himalaya in the north of the study area. These areas were excluded from the analysis, leaving 
a “seen ground” mapping extent of 24266.68 km2.

A second issue with multi-temporal inventories is intermittent visibility—that is, landslides which are vis-
ible in some epochs but obscured in others, due to cloud cover, shadowing, or poor image contrast. To 
address this issue, we developed a novel approach of forward propagation of landslide polygons from suc-
cessive epochs based on a series of structured spatial overlap queries. Any landslides visible in both epoch 
n−1 and epoch n+1 that were obscured in epoch n, and that did not intersect a pre-existing epoch n pol-
ygon, were merged from epoch n−1 into the epoch n inventory. This process was extended to also extract 
landslides visible in epoch n−1 and epoch n+2 that were obscured in both epochs n and n+1. An additional 
spatial query identified landslides missed due to relief-based shadowing, a problem that was particularly 
acute on north-facing high-relief slopes in the study area. This involved selecting landslides from epoch n−1 
that were within a one-pixel distance (with 15 m as the coarsest pixel resolution) of an epoch n+1 landslide 
but were more than one pixel distant from any landslide present in epoch n, and then merging these select-
ed landslides into the epoch n inventory.

No landslides were propagated forward more than two epochs, equivalent to a maximum time interval of 
12 months, and propagated landslides were tagged as inferred rather than directly mapped. Results were 
manually checked to ensure that the propagated landslides were correctly identified, and any erroneous 
polygons were removed. The number of landslides propagated forwards varied between epochs due to the 
differing extents and distributions of cloud and snow cover (supporting information 1). An average of 940 

KINCEY ET AL.

10.1029/2020JF005803

6 of 27



Journal of Geophysical Research: Earth Surface

landslides were propagated into each mapping epoch, representing a mean of 8% of each inventory. The 
maximum number of inferred landslides was for epoch 3 (pre-earthquake 2015) when cloud cover was 
highest, with 2,094 landslides being propagated from the two previous epochs. This equates to 33% of the 
epoch 3 inventory but this is proportionally higher than later epochs, due to the relatively low numbers of 
landslides in the pre-earthquake inventories (see Table S1 for full inventory statistics).

3.2.  Mapping Uncertainties

Errors occur in all manually mapped landslide inventories and relate to issues such as image clarity and the 
interpretative skills and experience of the mappers (Fan et al., 2018; Meena & Tavakkoli Piralilou, 2019). 
Such errors were minimized for this study through (1) initial training of the mappers by repeat delineation 
of landslides within a 2,500 km2 area that spanned a range of physiographic settings and landslide densities 
to identify and then correct individual mapper bias (see supporting information 2), and (2) manual check-
ing and editing of each completed inventory by a team of independent analysts. Each 5 × 5 km fishnet 
cell was assessed by a minimum of one mapper and by two independent analysts. This validation process 
involved the visual checking of each landslide polygon against the base imagery for that particular epoch. 
Landslides that had not been identified during the initial mapping were added and features that were de-
termined to have been mistakenly mapped as landslides (such as quarries) were deleted from the inventory. 
Particular care was taken to ensure that any amalgamated landslides were segmented into individual poly-
gons representing discrete failures, in order to provide accurate area-frequency distributions for each epoch 
(Marc & Hovius, 2015).

Direct comparisons were made between the coseismic inventory from this current study and that produced 
by Roback et al. (2018) using higher-resolution satellite imagery (supporting information 3). We also quan-
tified the influence of sensor type and spatial resolution that might result from our two imagery types on 
landslide area characteristics through repeat mapping of a 121 km2 subset area using a range of base im-
agery (supporting information 4). This involved the repeat blind mapping of landslides visible on a Pleiades 
image tile from September 2015 (coincident with epoch 5) which had been resampled to different spatial 
resolutions (2, 10, and 15 m), as well as equivalent mapping from a concurrent Landsat 8 tile which had 
been pan-sharpened to 15 m resolution.

3.3.  Landslide Area Density Analyses

Direct analysis of multi-temporal landslide polygon inventories is potentially complicated by small varia-
tions in polygon boundaries and overlaps between epochs, which can frustrate attempts to correlate poly-
gons belonging to individual landslides. Without reliable correlation across epochs, it is difficult to establish 
the evolutionary trajectory of landsliding at a regional scale. An alternative means of monitoring temporal 
changes in landslide inventories is to divide the landscape into a grid of cells, and to consider the epochs 
in which cells first become affected by landsliding and then become inactive again once the hillslopes have 
healed and revegetated to the point that no potentially active landslides are visible. This framework can 
then be used to assess when each cell first and last experiences a landslide, the duration of activity, and the 
spatial extent of landslide activity at any given point in time.

We chose a cell size of 1 × 1 km as a compromise between retaining the spatial fidelity of the original 
mapped landslide inventories and detecting broad-scale spatio-temporal trends in landsliding across the en-
tire affected area. For each cell, we assigned a value for (1) the first epoch in which that cell was intersected 
by one or more landslides, (2) the last epoch in which that cell was intersected, (3) the total number of ep-
ochs for which the cell was impacted by landsliding, and (4) the per-epoch landslide area density, expressed 
as a percentage of the cell area. These metrics enabled an assessment of the spatio-temporal variability in 
landslide area density and the distributions of density values recorded in our inventories, as well as provid-
ing insights into potential controls on the spatial distribution and timing of when particular cells became 
active (here termed the landslide “birth” epoch) or inactive (the landslide “death” epoch).
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3.4.  Physical Controls on Landsliding

A range of topographic and distance-based variables were summarized by individual landslide polygon, and 
each polygon was also attributed with the birth and death results associated with the specific 1 km2 grid cell 
in which it was located. This approach allowed the different control variables to be analyzed for their po-
tential influence on spatial and temporal variability in landslide birth and death. Kernel density estimations 
were generated for each variable and by each birth/death category, with the results then being differenced 
from equivalent density estimations for the overall study area.

Topographic information was sourced from the Advanced Land Observing Satellite World 3D—30m 
(AW3D30) data set, a freely available global digital elevation model (DEM) at 30 m spatial resolution. Al-
though slightly coarser than the mapping resolution, this DEM represents the highest-resolution openly 
available data with full coverage of the study area, and has been shown to be particularly suitable for mode-
ling of topographic derivatives in mountainous terrain (Boulton & Stokes, 2018). We focused on derivatives 
that have previously been shown to relate to coseismic landsliding: slope, aspect, plan curvature, profile 
curvature, topographic wetness index, upslope contributing area, and hillslope relief (Parker et al., 2015; 
Robinson et al., 2017). The relative position of a landslide along the hillslope profile was calculated by meas-
uring the minimum distance from the polygon perimeter to the nearest ridge top, to capture the position of 
the head scarp, and to the nearest river, to define the position of the toe. Distance values were then normal-
ized to 0–1, with 0 representing the river and 1 the ridge. Earthquake-specific layers were also calculated, 
including distance to epicenter and slope direction to epicenter. The slope direction to epicenter was only 
calculated relative to the 25 April mainshock epicenter in Gorkha, rather than to both the mainshock and 
12 May aftershock epicenters. This was because previous studies have demonstrated that the majority of 
landsliding associated with the Gorkha earthquake sequence was associated with the 25 April mainshock, 
with only a small number of new landslides triggered by the 12 May aftershock (Roback et al., 2018).

Rainfall data covering the study period were analyzed to highlight any variation in precipitation trends that 
could potentially have contributed to temporal variability in landslide rates. Gridded monthly precipitation 
totals at a spatial resolution of 0.1° (11 × 11 km) were obtained from NASA’s Global Precipitation Measure-
ment (GPM) Integrated MultisatellitE Retrievals for GPM (IMERG) data set, covering the period from 2014 
to 2018 (supporting information 5). Individual NetCDF files were converted to geotiffs and then stacked to 
form a multiband raster containing 60 bands representing monthly precipitation totals. Mean monthly rain-
fall totals for the entire study area were then calculated by averaging the cell values from each raster band.

4.  Results
The spatial pattern of landsliding in epoch 4 (coseismic) is shown in Figure 1b, while the detailed temporal 
variability between inventories is shown in Figure 1c for a small section of the study area. The full inventory 
includes 160,332 individually mapped landslide features across the 11 epochs. Inventory data for the whole 
area of interest are described in Figure 2 and Table S1 in terms of number and area, in Figure 2a in terms 
of areal density, and compared to the timing and intensity of the monsoon in Figure S8. Because of the 
complexity of these patterns, we focus first on aggregate statistical descriptions of our inventories, before 
turning to the distribution and evolution of landslide area density estimates.

4.1.  Multi-temporal Landslide Inventory Statistics

Landslide numbers are consistently low for each of the three pre-seismic inventories, averaging ∼6,400, 
with little discernible difference between pre- and post-monsoon inventories (Figure 2a). The 2015 Gorkha 
earthquake sequence (epoch 4) and 2015 monsoon (epoch 5) both led to substantial increases in the number 
of mapped landslides, with these inventories totaling 13,684 and 18,370 respectively. This number peaked 
at 18,978 in pre-monsoon 2016 (epoch 6), declined steadily through post-monsoon 2017 (epoch 9), and then 
increased again for pre- and post-monsoon 2018 (epochs 10 & 11). Importantly, by the end of the study pe-
riod the number of visible landslides remained 4,908 greater than were recorded in the coseismic inventory 
(13,684) and 12,193 greater than the pre-earthquake inventory average.
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Total landslide area followed broadly the same pattern as landslide count, with consistency before the 2015 
earthquake (mean = 64.63 km2, σ = 1.71 km2) and sharp increases immediately following the earthquake 
(154.68 km2) and the 2015 monsoon (179.03 km2) (Figure 2a). Landslide area decreased steadily in 2016–17, 
albeit with pronounced fluctuations between pre- and post-monsoon epochs, with pre-monsoon inventories 
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being ∼22 km2 (∼16%) higher on average than their subsequent post-monsoon inventories. While this ap-
pears large, this variability averages less than c. 30 m2/km2 across our study area. In contrast, areas in both 
pre- and post-monsoon 2018 inventories were similar, and still exceeded the area recorded by the immediate 
post-earthquake inventory (epoch 4).

The area-frequency distribution of landslides in the coseismic inventory is markedly different to the pre- 
and post-seismic inventories (Figure 2b). Prior to the earthquake, the mean landslide area was ∼10,000 m2 
with an A/P ratio of 14, and these values were relatively invariant across the three epochs. On average, co-
seismic landslides were both larger and less elongate than landslides before and after the earthquake, with 
a mean area of 11,300 m2 and an area/perimeter (A/P) ratio of 15.3. Following the earthquake, both average 
area and A/P ratio declined through post-monsoon 2016 and then stabilized at values that were substan-
tially lower than pre-earthquake levels—indicating a systematic shift to both smaller and more elongate 
failures than were observed before the earthquake.

Comparison with the independent inventory compiled by Roback et al.  (2018) shows that our inventory 
contains fewer small landslides (areas <103 m2) and an overall shift in the area distribution toward larger 
failures, consistent with our use of coarser resolution imagery (supporting information 3; Figure S4). Our 
coseismic inventory exhibits a characteristic probability density distribution with a rollover between 1,000 
and 1,500 m2 and power-law scaling with an exponent of 2.93 beyond a size threshold of 48,000 m2 (Ta-
ble S2). In comparison, the portion of the comparable inventory compiled by Roback et al. (2018) that over-
laps with our study area has a rollover between 100 and 300 m2 and a power-law exponent of 2.74 beyond a 
threshold area of 18,000 m2. These differences are primarily due to the base imagery used for the mapping 
in each case, with our coseismic inventory being generated from 15 m resolution pan-sharpened Landsat 8 
imagery, compared with the 0.2–0.5 m resolution Worldview imagery used by Roback et al. (2018). Repeat 
mapping of the 121 km2 subset area outlined above (Section 3.2) shows a similar change in the probability 
density distributions when progressively coarsening image spatial resolution from 2 to 15 m (supporting 
information 4; Figure S6). The overall distribution is shifted toward proportionally larger failures as image 
resolution is degraded and smaller failures become undetectable, with a corresponding increase in the aver-
age size of mapped landslides and decrease in the overall number of landslides in the inventory (Figure S7). 
Power-law scaling of these subset inventories broadly indicates that the minimum landslide size threshold 
for the power-law fit increases as image resolution is degraded, although with pronounced variability which 
is likely the result of a relatively small mapping area and inventory sample size (Table S3).

4.2.  Evolution of Landslide Area Density Distribution

When averaged using a 1 × 1 km grid, the overall landslide area density increased markedly as a result of 
the earthquake. The per-epoch mean area density followed the same pattern as total landslide area: increas-
ing to 0.62% after the earthquake and 0.72% after the 2015 monsoon, declining through 2016–2017, and 
remaining higher than the coseismic value after the 2018 monsoon (Figure 2a). The spatial distribution of 
landslide area density provides a useful visualization of the pattern of pre-seismic, coseismic, and post-seis-
mic landsliding (Figure 3a). The landscape-scale impact of the earthquake is clearly visible as a widespread 
increase in landslide area density at epoch 4 across the entire study area, focused in particular along a broad 
northwest-southeast band following the physiographic divide between the Lesser Himalaya/Middle Hills 
and the High Himalaya (Figure 3a). In each of the pre-earthquake epochs, 15% of grid cells within the study 
area were impacted by landslides, increasing to 24% following the earthquake then to 29% following the 
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Figure 2.  Summary statistics derived from the 2014–2018 multi-temporal landslide inventories. (a) Landslide count and area statistics for the 11 mapping 
epochs. Horizontal bars on each data point represent the timespan covered by the satellite imagery used for the mapping. Maximum pre-earthquake landslide 
number and area are shown by the green horizontal lines, with coseismic number and area shown by the red horizontal lines. Blue bars indicate the mean 
landslide area density per epoch based on a 1 km2 fishnet grid covering the mapped extent. Vertical orange lines indicate the dates of the 25 April Mw 7.8 
Gorkha earthquake and the 12 May Mw 7.3 aftershock. (b) Landslide area change through time, shown as box plots including area data from all mapped 
polygons, and the mean landslide area and mean area/perimeter ratio for each mapping epoch. Horizontal lines on boxes represent the median value, gray 
boxes show the interquartile range (IQR), and the whiskers define all data within 1.5 IQR of the nearer quartile. Data points beyond 1.5 IQR are shown 
individually. The horizontal green line shows the median landslide area for the coseismic inventory (epoch 4). The differences between the mean and median 
values highlight the skew in the size distribution of the inventories. High mean area/perimeter ratio values indicate more compact, rounded shapes; lower ratio 
values indicate greater elongation.
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2015 monsoon (Figure 3b). The proportion of cells impacted by landslides then stayed high (28%–30%) for 
the remainder of the time series.

Pairwise differencing between individual epochs shows that changes in the spatial pattern of landslide 
density through time were highly spatially correlated (Figure 4a). The change between pre-seismic and 
coseismic inventories (epochs 3–4) clearly shows the focusing of landslide activity within the major valleys 
draining the High Himalaya, particularly within Gorkha, Sindupalchok, Rasuwa, Dhading, and Dolakha 
districts (see Figure 1 for district names). Between the earthquake and the 2015 monsoon (epochs 4–5) 
there was a systematic shift in landslides toward the higher-elevation regions of the northerly districts of 
the study area. Within those areas, however, there were also clusters of reduced landslide density, with more 
areas experiencing a reduction in landslide density (16% of the study area) than an increase (13%) between 
post-monsoon 2015 and pre-monsoon 2016 (Figure 4b). As expected from the temporal changes in landslide 
area (Figure 2), area densities tended to decrease during subsequent monsoons and increase between the 
end of one monsoon and the start of the next. In epochs 9–10 and 10–11, we observe secondary increases in 
landslide density through the central and north-central parts of the study area, including the northern part 
of Kabhrepalanchok district—well outside of the main northwest-southeast band of intense landsliding.

Overall, landslide area density across much of the area was still markedly higher in post-monsoon 2018 than 
it was immediately prior to the 2015 earthquake, especially within the major river valleys that flow from 
the High Himalaya (Figure 5a). Over 25% of the study area had an increased density relative to pre-earth-
quake conditions, compared with only 7% with a decreased density (Figure 5c). When compared to the 
coseismic landslide pattern, the post-seismic pattern of change, up to and including post-monsoon 2018, is 
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Figure 3.  (a) Landslide area density for each of the 11 mapping epochs. Density values are expressed as a percentage of each 1 km2 grid cell. Gray polygons 
show areas of persistent cloud or snow cover which were excluded from the analysis. (b) Distribution of area density values within each mapping epoch, using 
the same color scale.
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more spatially complex (Figure 5b), with approximately the same proportion of cells having experienced 
increased (19%) and decreased (16%) landslide densities (Figure 5c). Much of the central northwest-south-
east band of intense coseismic landsliding experienced a decrease in density over this time period, with the 
greatest changes concentrated on the lower slopes of major river valleys. At the same time, there are sub-
stantial zones of increased post-seismic landsliding in western Sindhupalchok and northern Nuwakot, as 
well as the higher ground across the northern margin of the study area. A more dispersed area of increased 
landslide density is also present within the Lesser Himalaya in the southeast of the study area, stretching 
across Okhaldunga, Ramechhap and northern Sindhuli districts (Figure 5b). Qualitative observations from 
districts recording pronounced post-seismic changes demonstrate a range of commonly observed behaviors, 
including the occurrence of new post-seismic landslides, expansion of pre-existing landslides through both 
retrogression and downslope channelized runout, and recovery of coseismic landslide scars; some of these 
behaviors can be seen in the detailed changes visible in Figure 1c.

4.3.  Spatial and Temporal Distribution of Landslide Birth and Death

Categorizing grid cells by landslide “birth” and “death” results in nine discrete classes (Figure 6). For exam-
ple, there were three classes associated with landslides that were triggered by the 2015 earthquake (“coseis-
mic birth”), distinguished based on whether the landslides were no longer visible after the coseismic inven-
tory (“coseismic death”), disappeared during one of the post-seismic epochs (“pre-2018 monsoon death”) 
or were still visible in the final mapping epoch (“post-2018 monsoon survival”). The distribution of these 
classes is spatially correlated, with clustering of areas that have recovered since the earthquake and those 

KINCEY ET AL.

10.1029/2020JF005803

12 of 27

Figure 4.  (a) Landslide area density change between pairwise mapping epochs. Data are shown as change in landslide area density as a percentage of each 
1 km2 grid cell, with red colors indicating an increase in area density and blue colors a decrease. Gray polygons show areas of persistent cloud or snow cover 
which were excluded from the analysis. (b) Distribution of change values for all cells across each successive pair of epochs, using the same color scale.
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where new post-earthquake landslides have occurred (Figure 6a). Grid cells in which the landslide hazard 
persisted to the end of the study period—that is, areas where landslides were still visible in the post-mon-
soon 2018 inventory—dominate the distribution. Those cells where landslides were born before the earth-
quake are distributed throughout the study area, although somewhat clustered in the high-relief areas to 
the north and also the foothills to the south and east of the Kathmandu valley. In contrast, cells where 
landslides were born during the earthquake are largely restricted to the main northwest-southeast band of 
intense landsliding between the two epicenters. Cells where landslides were born after the earthquake are 
particularly concentrated in the valleys peripheral to the coseismic distribution, with a notable shift north-
ward toward areas of higher elevation and the upstream reaches of the drainage network.

To assess the extent of clustering, we considered cells in each category in turn, and examined the distribution 
of categories within the eight cells adjacent to each cell. Clustering is noticeably greater for the three classes 
containing landslides which persisted to the end of the study period than for those which recovered before 
that time (Figure 6b). For example, 34% of cells adjacent to those which were activated in the earthquake 
and which still contained mapped landslides in post-monsoon 2018 are from the same class, compared with 
only 21% for cells which were coseismically activated but which had recovered prior to post-monsoon 2018. 
In general terms, cells which recovered at any point during the time series were more spatially isolated and 
tended to occur around the periphery of clusters of cells containing persistent landsliding.

More grid cells were initially activated during the three pre-earthquake mapping epochs (17% of the total 
number) than were activated by the earthquake (9%). Importantly, this observation indicates that, although 
the density of landsliding caused by the earthquake was much higher (Figure 3), the spatial area impacted 
was comparatively confined (Figure 6c). The persistence of both pre-earthquake and coseismic landsliding 
through time is clear, as 81% of the cells activated prior to the earthquake and 77% of the cells activated 
during the earthquake still contained landslides by post-monsoon 2018. Of the total population of cells, 13% 
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Figure 5.  Landslide area density change between (a) the pre-earthquake 2015 and post-monsoon 2018 landslide inventories and (b) the coseismic 2015 and 
post-monsoon 2018 landslide inventories. Change in landslide area density is shown as a percentage of each 1 km2 grid cell, with red colors indicating an 
increase in area density and blue colors a decrease. Gray polygons show areas of persistent cloud or snow cover which were excluded from the analysis. Black 
inset boxes mark the locations of detail images shown in Figures 8 and 9. (c) Distribution of change values for all cells, using the same color scale.
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were first impacted by landsliding during a post-earthquake epoch, with 73% of these still containing one or 
more landslides by post-monsoon 2018.

For the majority of epochs, the proportion of grid cells newly affected relative to the preceding epoch was 
low (1%–2%), with the exception of the earthquake (10%), the 2015 monsoon (6%), and pre-monsoon 2018 
(3%) (Figure 6d). About 11% of grid cells in the post-monsoon 2018 epoch had been newly affected relative 
to the earthquake distribution, indicating that the spatial pattern of landsliding had altered steadily but 
progressively since the earthquake.

4.4.  Topographic Controls on Regional-Scale Landslide Birth and Death

Of the 10 topographic derivatives tested, four variables showed clear skill in explaining landslide birth and 
death: elevation, slope angle, slope direction to epicenter, and normalized distance from river to ridgeline. 
The other topographic variables showed either no consistent relationships or no clear difference between 
birth and death epochs and so were omitted from further analysis. We focus here on understanding po-
tential controls on patterns of landslide activation and recovery post-earthquake, and we note that more 
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Figure 6.  Spatial and temporal distributions of landslide birth and death across all 11 mapping epochs. (a) Map showing landslide birth and death categories 
for each 1 km2 grid cell. The “birth” epoch indicates the period in which the cell was first impacted by a landslide and the “death” epoch indicates the date 
when the cell was last impacted by a landslide. Cool colors denote areas where landslides were born before the 2015 earthquake, warm colors denote areas 
where landslides were born during the earthquake, and purple shades denote areas where landslides were born after the earthquake. (b) Pie charts for cells in 
each birth/death category, summarizing the proportion of eight neighboring grid cells belonging to each of the other eight birth/death categories. The color 
represented by each category is shown at the bottom of the panel, and corresponds to those in panel (a). A larger proportion of neighboring cells from the same 
category as the central cell indicates a higher degree of spatial clustering—visible, for example for the pre-EQ birth/post-2018 monsoon survival and post-EQ 
birth/post-2018 monsoon survival categories. (c) Percentage of all cells belonging to each of the three birth categories, subdivided by corresponding percentage 
of cells from each death category. (d) Change in the proportion of cells impacted for each of the 11 mapping epochs, shown as a percentage of the total number 
of cells (n = 25,012) and percentages relative to (i) pre-monsoon 2014 (blue line), (ii) the previous epoch (gray line), (iii) all previous epochs (orange line), and 
(iv) the coseismic inventory (red line).
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detailed analysis of the controls on landsliding within individual inventories can be found elsewhere (e.g., 
Martha et al., 2017; Roback et al., 2018).
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4.4.1.  Elevation

Landslides within grid cells that were first activated during pre-earthquake epochs preferentially occurred at 
elevations between 2,500 and 5,000 m, representing the elevation range of the intermediate hillslopes cover-
ing much of the High Himalaya to the north of the study area (Figure 7a). In contrast, the distribution of co-
seismically activated cells was shifted toward lower elevations between 1,500 and 4,000 m. This corresponds 
with the band of intense seismic shaking caused by the 2015 earthquake and correlates with other studies 
of the coseismic inventory (e.g., Roback et al.,  2018). The elevation distribution for landslides occurring 
within cells that were first activated after the earthquake shows a shift back toward higher elevations, with 
a modal peak in the density difference at 3,000 m. This shift toward higher elevations is also reflected in the 
northward movement of high post-seismic landslide area density (Figures 4–6). In all three birth catego-
ries, landslides occurred much less often at lower (<1,500 m) and higher (>5,000 m) elevation ranges. For 
context, 46% of the mapping area has an elevation <1,500 m and 8% of the area has an elevation >5,000 m.

Elevation is also correlated with the timing of grid cell recovery (Figure 7b). Landslides within cells that re-
covered prior to the earthquake tended to preferentially occur within elevations between 1,500 and 4,500 m. 
This is lower than the range for pre-earthquake birth cells, suggesting that lower-elevation locations were 
more likely to recover. Locations which recovered after the earthquake were similarly shifted toward lower 
elevations, likely reflecting the elevation range at which most coseismic landslides occurred. The coseismic 
landslide death distribution (i.e., landslides that disappeared between the coseismic 2015 and post-mon-
soon 2015 epochs) is peaked at higher elevations of 3,000–4,500 m, albeit with a small sample size (n = 117 
cells) compared with the other classes. Cells in which landslide activity persisted through the end of the 
study period typically occurred at higher elevations (mostly >2,500 m), again indicating that hillslopes at 
higher elevations are recovering more slowly.

4.4.2.  Slope Angle

The influence of slope angle on landslide birth and death also differs between categories. Landslides within 
grid cells with a pre-earthquake landslide birth preferentially occurred on slopes of between 30 and 55°, 
with a modal peak of 40° (Figure 7c). The coseismic birth distribution was shifted toward noticeably higher 
slope angles, occurring more commonly than would otherwise be expected between 35 and 65° and with 
a pronounced peak at 45°. Landslides in cells activated after the earthquake showed a partial return to 
pre-seismic conditions. Locations which recovered prior to the earthquake were typically within the same 
range of slope values as those where pre-seismic landslides had occurred, 30–55° (Figure 7d). Locations 
which recovered after the earthquake broadly reflect the slope distribution of coseismic births, but with 
a shift toward slightly lower slopes. In contrast, the distribution for cells in which landsliding persisted 
beyond post-monsoon 2018 was offset toward higher slope angles and with a peak at 42°, indicating that 
landslides on steeper hillslopes were generally more likely to persist whereas those on shallower slopes were 
likely to recover more quickly. Cells which recovered during the coseismic inventory show a very different 
distribution, with a peak at much lower slope angles (20°), but this curve is again defined by a relatively 
small sample size.

4.4.3.  Slope Direction to Epicenter

Slope direction relative to the Gorkha earthquake epicenter is defined so that 0° represents hillslopes that 
directly face the epicenter, 90° represents those perpendicular, and 180° represents those that face directly 
away from the epicenter. Pronounced asymmetry in the density of landslides due to slope direction rela-
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Figure 7.  Topographic controls on landslide birth and death, displayed as difference in kernel density values relative to the density distribution from the 
overall study area. Results are shown for elevation (a, b), slope angle (c, d), slope direction relative to the Gorkha earthquake epicenter (e, f), and normalized 
distance from river to ridge (g, h), with the left column showing landslide birth categories and the right column showing landslide death. Difference data are 
based on the individual landslide polygons, with the density distribution for the overall study area shaded in light gray. Blue, black, and red lines show results 
for landslides in cells that were activated or recovered before, during, or after the earthquake, respectively. Green lines in the right column show results for 
landslides which persisted through the end of the study period, irrespective of birth epoch. The half-width of the kernel has been delimited in dark gray for 
each graph. Density values within these areas are likely to be less accurate due to edge effects during the density estimation. Further information on how to 
interpret this figure is provided in Section 6 of the supporting information.
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tive to the seismic source has been previously demonstrated for coseismic landslide inventories (Robinson 
et al., 2017), due to localized variability in topographic amplification of seismic waves (Meunier et al., 2008). 
The distribution of values for grid cells that were activated during and after the earthquake shows that 
landslides occurred preferentially on hillslopes facing away from the epicenter (90–175°) (Figure 7e). The 
pre-earthquake distribution also shows, however, that landslides occurred preferentially at these slope di-
rection values. Since this distribution is entirely independent of the direction of seismic shaking, the pattern 
is likely to instead be related to the direction of prevailing monsoonal rains in the region, which typical-
ly originate from the south-southeast and which may therefore preferentially impact upon south-facing 
hillslopes with relative slope directions of 90–180°.

The pre-earthquake and coseismic landslide death distributions show that hillslopes approximately per-
pendicular to the epicenter (75–150°) were more likely to recover than those facing more directly toward or 
away from the epicenter (Figure 7f). Again, because the pre-earthquake distribution is independent of the 
earthquake, this likely reflects the aspects on which most rainfall-triggered landslides occurred, and may 
also indicate that hillslopes directly facing the direction of monsoonal rains were less likely to recover than 
those which were partially sheltered. In contrast, grid cells which recovered after the earthquake as well as 
those that persisted beyond post-monsoon 2018 broadly reflect the equivalent birth distributions. This again 
suggests that, for this particular earthquake and study area, the slopes most affected by the earthquake are 
also those which are most susceptible to rainfall-triggered landsliding due to the predominant direction of 
monsoonal rains.

4.4.4.  Normalized Distance from River to Ridgeline

Landslides are often observed to occur more frequently toward the top and bottom of a normalized hillslope 
profile. Seismic shaking is amplified by topography, triggering a concentration in landsliding near ridge tops 
(Meunier et al., 2008). In contrast, locations close to a river can also result in larger landslide frequencies 
due to high pore fluid pressure and undercutting of hillslopes (Densmore & Hovius, 2000). Landslides in 
grid cells activated prior to the Gorkha earthquake showed a clear tendency toward lower hillslope positions 
close to rivers and were underrepresented toward ridge tops (Figure 7g). In contrast, coseismic landslides 
occurred more uniformly along the entire hillslope profile, with the exception of the extreme ridge top 
locations. Landslides in cells activated after the earthquake show a similar distribution to the coseismic 
inventory, although shifted slightly toward the pre-seismic pattern.

Although pre-earthquake landslides were more likely to occur at lower hillslope positions, landslides within 
cells which recovered prior to the earthquake were typically at mid-slope locations (Figure 7h). Landslides 
within cells which recovered after the earthquake broadly followed the coseismic and post-seismic birth 
distributions. Landslides in cells which had not recovered by post-monsoon 2018, however, show a clear 
tendency toward lower hillslope positions close to the river network. This persistent activity may be due to 
fluvial undercutting of hillslopes (Cook et al., 2018) or downslope movement of landslide material by debris 
flows (Dahlquist & West, 2019; Tian et al., 2020).

5.  Discussion
Our results provide the first comprehensive, regional-scale demonstration of how the pattern of landsliding 
has varied in the years after a large continental earthquake. While our findings agree in some ways with 
the understanding gained from studies of previous earthquakes, there are also some important differenc-
es—most notably, our observation that the number and area of potentially active landslides remained high 
through the first 3.5 years after the earthquake, and were nowhere close to recovering to pre-earthquake lev-
els. Our study also documents systematic and profound shifts in the pattern of landslide activity over time, 
both during and after the earthquake, and at both the regional scale and the scale of individual hillslopes. 
Below, we discuss the spatio-temporal evolution of landsliding in more detail and speculate on some po-
tential controls behind the patterns that we observe, before considering the implications of our results for 
post-earthquake hazard, response, and reconstruction efforts.
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5.1.  Spatiotemporal Evolution of Post-seismic Landsliding

5.1.1.  Conceptual Approach

Determining the rate of landscape recovery after a large earthquake depends fundamentally on (1) the 
definition of recovery and (2) the data that are used to assess it. Most previous multi-temporal inventory 
studies have tended to focus on either the occurrence of new landslides (e.g., Marc et al., 2015, 2019) or new 
landslides plus visible reactivation of coseismic landslides (e.g., Fan et al., 2018; C. Li et al., 2018) to define 
the rate of post-seismic landsliding; the temporal decay of this rate to pre-earthquake levels is then used as a 
proxy for recovery to assumed pre-earthquake conditions of hillslope stability (e.g., Marc et al., 2015). While 
this approach accurately characterizes the susceptibility of the landscape to new failures, it will underes-
timate the hazard posed by coseismic and post-seismic landslides as long as those failures are persistent 
within the landscape—that is, as long as they continue to move and supply sediment to downslope areas. 
The widespread occurrence of debris flows after large earthquakes (e.g., Dahlquist & West, 2019; Zhang & 
Zhang, 2017) illustrates the ease with which landslide debris may be remobilized from pre-existing fail-
ures. Some studies have attempted to address this shortcoming with qualitative estimates of reactivation 
or remobilization (e.g., Fan et al., 2018; C. Li et al., 2018). In the absence of intensive field monitoring, 
however, this determination is challenging, even with high-resolution imagery; furthermore, neither field 
monitoring nor the acquisition and analysis of high-resolution imagery are yet feasible over the scale of the 
entire rupture area in a large continental earthquake. An exclusive focus on new landsliding also implicitly 
assumes that revegetation happens rapidly enough to stabilize existing failures and impede the further 
transport of debris downslope. A growing number of studies have now demonstrated that the link between 
revegetation and reduced failure rates after the Wenchuan earthquake is complex (e.g., Shen et al., 2020; 
Yang et al., 2017, 2018), with both spatial and temporal variations in vegetation regrowth and landslide 
occurrence (Ni et al., 2019). This complexity is to be expected from the diverse mechanical and hydrological 
ways in which vegetation affects shallow hillslope stability, especially in a landscape recently impacted by 
an earthquake (e.g., Cohen & Schwarz, 2017; Stokes et al., 2014).

In contrast, by mapping each epoch independently, our approach implicitly assumes that, to first order, 
landslide activity is only effectively impeded once bare earth is no longer visible in the medium-resolution 
imagery. Until that point, we assume that the landslide can potentially undergo continued failure or remo-
bilization of landslide debris and can continue to supply sediment to downslope areas. This is clearly also 
an oversimplification of recovery—not least because the point at which bare earth is no longer visible will 
depend upon the specific sensor, band combination, and spatial resolution that are used. By employing 
Landsat 8 and Sentinel-2 data throughout our study, we have sought to minimize these variations across 
the different epochs. The trade-off with this approach is a decreased ability to resolve both the smallest 
failures (Figures S4 and S6) and the extent of continued activity or remobilization within existing failures 
(e.g., Fan et al., 2018). Our approach therefore provides a precautionary view of the potential hazard posed 
by existing landslides, due to the overestimation of the time period over which they may remain active, but 
this may be a more defensible approach when assessing risk. In sum, both approaches have advantages 
and disadvantages, and it is critical to bear their differences in mind when considering the results of any 
multi-temporal analysis. These differences point to the need to better understand the detailed biophysical 
relationships between what is visible in imagery, and how vegetation recovery and mass wasting evolve in 
the aftermath of a large earthquake.

5.1.2.  Temporal Variability in Landslide Rates

Our results demonstrate that both the number of landslides and the total landslide area remained well 
above coseismic levels to the end of 2018, approximately 3.5 years after the Gorkha earthquake (Figure 2). 
This indicates that the recovery period when measured in terms of the number and extent of persistent and 
therefore potentially active landslides present within the landscape is considerably longer than initial esti-
mates suggested (e.g., Marc et al., 2019), and is instead likely to be on the order of 10 years or more, based 
on extrapolation of the landslide area results beyond our current time series. We note that studies which 
mapped all visible failures in the years after the Wenchuan (e.g., Chen et al., 2020; R. Huang and Li, 2014; C. 
Li et al., 2018; Tang et al., 2016) and Kashmir (Shafique, 2020) earthquakes have also inferred decade-scale 
recovery times.
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Our results do match the rapid recovery inferred by other studies, however, in terms of a return to pre-earth-
quake landslide and debris flow rates within 1–2 years (Dahlquist & West, 2019; Marc et al., 2019), when 
we focus only on the changing number of newly impacted 1 km2 grid cells (Figure 6d) or the landslide birth 
rate based on individual 100 m2 landslide cells (supporting information 7). Analyzing the multi-temporal 
inventory data in this way indicates that the number of new landslide cells remained high in post-monsoon 
2015 but then declined rapidly, with the post-monsoon 2018 level being only marginally higher than that 
for the post-monsoon 2014 inventory (Figure  S11). The difference in per-epoch landslide cell birth and 
death counts is even more pronounced, with the net change indicating that more landslide cells were dis-
appearing than being newly created by the pre-monsoon 2016 epoch. This suggests that, when measured 
simply in terms of the occurrence of new landslide activity, the recovery rate following the earthquake was 
comparable to that obtained from previous studies that have taken a similar methodological approach, with 
the landscape returning close to pre-earthquake levels within just a few years. Importantly, however, this 
approach overlooks the persistence of existing landslide scars within the landscape, as illustrated by the 
high number of cells which were still mapped as landslides in post-monsoon 2018.

While the spatial and temporal patterns of post-earthquake recovery revealed by our data are highly com-
plex, there is evidence for distinct clustering and evolution of landslide activity after the earthquake (Fig-
ure  6). The complexity of the changes that we describe reflects the numerous landslide types and sizes 
triggered by the earthquake (Kargel et al., 2016), which are likely to each change through time in a different 
manner. It is therefore reasonable to assume that the recovery of each landslide reflects both failure mech-
anism and setting, and so exploring recovery as a function of landslide type or mechanism would be desir-
able. While the nature of coseismic landslides is to some extent controlled by conditions at the time of the 
earthquake (Roback et al., 2018), the degree to which sediment production from coseismic landslides is 
fully accomplished during initial shaking must also define the future potential for continued landsliding in 
the period that follows (Marc et al., 2015). It is widely understood that some coseismic landslide types are 
more sensitive to reactivation under rainfall (e.g., as debris flows), but equally that some evolve via mech-
anisms that have a more complex relationship with controlling conditions and hence time. This includes, 
for example, progressive landslides initiated by the earthquake (Terzaghi, 1950), which are likely to exhibit 
some independence from environmental forcing and so remain difficult to associate with characteristic 
timescales of recovery beyond those set by site-specific conditions.

Interestingly, there remains only limited forensic research on how landslide failure mechanism or the evolu-
tion of hillslope-scale rock strength influence the trajectory of post-seismic recovery (e.g., Chen et al., 2020), 
beyond the exhaustion of supply to debris flows (e.g., Dahlquist & West, 2019). It seems reasonable to ex-
pect some form of asymptotic reduction in the intensity of many post-seismic landsliding processes, due 
for example to exhaustion of supply. Temporal changes in other processes may be quite different in form, 
however, which may be reflected in the landscape-scale patterns that we report. For example, we note an 
incremental post-seismic shift to failures at higher elevation which may tentatively reflect a retrogressive 
mode of landslide change; this is only mechanically possible for some types of landslide in some positions in 
the landscape. We also note that some processes which are incorporated into the inventory mapping, such 
as landslide runout and scarp stabilization, may act to cancel each other out in aggregated statistics, and so 
are not captured in averaged measures of landslide activity. Therefore, without a single dominant coseismic 
landslide type, it remains to be shown how such mechanism-dependent timescales interleave, and at what 
scale these can be summarized into a single event ‘recovery’ timescale. New post-seismic landslides are one 
relatively well-constrained component of this wider range of processes, but again that approach commonly 
aggregates landslides driven by a number of failure mechanisms. It is clear that a fuller understanding of 
post-earthquake landsliding needs to unpick how these various landslide types and mechanisms evolve and 
recover.

We have not converted total landslide area to volume because of uncertainty relating to scaling relationships 
(e.g., G. Li et al., 2014) as well as potential amalgamation of landslide areas (Marc & Hovius, 2015) that 
cannot be resolved with our medium-resolution imagery. Nonetheless, the persistence of large areas of po-
tentially active landsliding across the study area through to the end of the post-monsoon 2018 period is con-
sistent with, although not conclusive proof of, the continued presence of large amounts of coseismic and 
post-seismic landslide debris. We tentatively infer from this observation that much of this material is there-
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fore still sequestered within the landscape. Similarly, R. Huang and Li (2014) documented that 80%–90% 
of erodible material remained on hillslopes 5 years after the Wenchuan earthquake, while Fan et al. (2018) 
suggested that more than 90% of the coseismic landslide debris produced during the Wenchuan earthquake 
was still contained on hillslopes and in low-order channels after 7 years.

Somewhat surprisingly, our results show slightly higher total landslide areas for the pre-monsoon inven-
tories in 2016 and 2017, compared to their post-monsoon equivalents (Figure 2). All else being equal, we 
would expect the monsoon both to trigger new landslides and to reactivate existing landslides, leading to 
higher total post-monsoon areas. Close examination of the inventories suggests, however, that this coun-
ter-intuitive result may be due at least in part to the visibility of landslide outlines under post-monsoon 
vegetation conditions, relative to pre-monsoon conditions (Figure  8). Ground visibility is greater in our 
medium-resolution imagery in pre-monsoon imagery, whereas landslide boundaries in the post-monsoon 
mapping periods are partly obscured by overhanging vegetation. This leads to persistent decreases in the 
mapped extent of post-monsoon landslides compared to their pre-monsoon equivalents. In support of this 
observation, we note that the area distributions for the pre-monsoon 2016 and 2017 inventories are shifted 
toward larger areas relative to the post-monsoon inventories (Figure 2b), but that the number of mapped 
landslides does not show the same fluctuation (Figure 1a). Comparable seasonal variability has been noted 
in multi-inventory landslide studies that analyze vegetation recovery (e.g., Ni et al., 2019; Yang et al., 2018), 
but our results indicate that these phenological variations may also be important for inventories created 
from manual mapping of optical imagery. Importantly, the observed cyclicity in pre- and post-monsoon 
landslide area totals does not appear to correlate with interannual variability in monsoon rainfall totals (Fig-
ure S8), and remains small in proportion to the wider longer-term changes that we observe. Our results do, 
however, highlight a potential uncertainty in single epoch inventories, or single inventories that are mapped 
from imagery that spans multiple vegetation seasons.

5.1.3.  Spatial Distribution of Landslides

Our area density results indicate that, even at the resolution of our approach (1 km2), there is clear and con-
sistent evidence for both persistence of existing pre-seismic and coseismic landslides and new post-seismic 
landsliding. Overall, the most intense areas of landslide activity appear to have migrated northward, from 
a northwest-southeast belt of intense coseismic activity to lower-order parts of the regional-scale drainage 
network by the end of the study period (Figure 5). We also observe an overall shift in activity up and away 
from trunk streams toward higher parts of the landscape (Figure 7a), with clear reductions in landslide den-
sity on the lower slopes of the major N—S river valleys through Gorkha, Rasuwa, Dhading, Sindhupalchok, 
and Dolakha districts.
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Figure 8.  Detailed view of the upper Ankhu (Netrawati) Khola, Dhading district, showing the influence of seasonal vegetation extent and character on the 
definition of landslide scars. (a) Pre-monsoon 2017 and (b) post-monsoon 2017 Sentinel-2 imagery of the area. (c) Mapped polygons derived from the images in 
(a) and (b), indicating that pre-monsoon landslides are routinely mapped as slightly larger than their post-monsoon equivalents. Sentinel-2 imagery is from the 
European Space Agency—ESA/Copernicus Sentinel data (2018). Digital elevation data are based on the 30-m ALOS DEM (Credit: AW3D30—JAXA). ALOS, 
Advanced Land Observing Satellite; DEM, digital elevation model.
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Somewhat paradoxically, this large-scale shift in the locus of landslide activity occurs at the same time 
that debris from existing pre-seismic and (especially) coseismic landslides is remobilized and transported 
downslope and into the drainage network (Figure 1c). Changes in area-perimeter ratios through time show 
increasing elongation of landslide form between the earthquake and post-monsoon 2016, followed by a re-
duction in elongation through 2018 (Figure 2b). By the end of the study period the area-perimeter ratio was 
still well below the average levels from the three pre-earthquake inventories, likely indicating widespread 
progressive runout and remobilization of coseismic failures in the years after the earthquake. This remobi-
lization has led to persistent disruption to infrastructure, particularly the highway network, as documented 
by Tian et al. (2020). It is important to distinguish these distinct patterns of migration from each other, as 
they are occurring at different scales, and again may otherwise cancel out in wider scale averaged meas-
ures of change. We note as well that our ability to assess remobilization and downslope transport is almost 
certainly limited by the constrained widths of landslide and debris-flow deposits within the confines of the 
channel network, especially given the resolution of our imagery and concealment by vegetation at lower 
elevations. Thus, our estimates of downslope runout and landslide elongation must be taken as minima.

It would be reasonable to expect that the spatial footprint of landsliding triggered by the 2015 earthquake 
might evolve with time to one more characteristic of monsoon-triggered landsliding. By the end of the 
study, the area of the landscape that exceeded pre-earthquake landslide densities remained largely coinci-
dent with the full coseismic landslide footprint (Figures 4a and 5a), rather than being concentrated around 
the areas with the highest coseismic landslide densities. The implication is that even after 3.5 years, a wide 
area remained subject to continued landslide hazard, and thus that at the event scale coseismic landslide 
density alone is a poor predictor of the potential for persistent landsliding in the post-earthquake period. 
In other words, persistent landsliding should be expected anywhere within the affected area, not just in the 
areas with highest coseismic landslide density—a key point for post-earthquake recovery that we explore 
below. Within the overall affected area, the spatial changes in landslide distribution through time are not 
random, and show clear patterns in terms of which areas have recovered since the earthquake and which 
have not (Figure 6). Clustering was greater for areas with landslides which persisted until the end of the 
study period than for those which recovered prior to that time, with the latter tending to be more spatially 
isolated and located around the periphery of clusters containing persistent landslides (Figures 6a and 6b).

An important outcome of our study is the recognition of substantial new post-seismic landsliding, occurring 
in areas that did not fail during the earthquake. Almost 10% of cells across the study area show post-seismic 
onset of landsliding that persisted through the end of the 2018 monsoon (Figure 6c). The clustering of these 
areas indicates that at this scale, the location of coseismic landsliding is not necessarily a good predictor 
of the location of post-seismic landsliding, which raises important considerations for hazard assessment. 
We note specifically that, had we chosen to focus on a smaller study area, recognition of this pattern would 
have been considerably more difficult. In future large continental earthquakes, it is therefore important to 
establish the overall spatio-temporal distribution of landsliding, rather than making wider inferences based 
on small subsets of the affected area.

5.2.  Controls on the Evolution of Co- and Post-seismic Landsliding

The systematic spatial evolution of co- and post-seismic landsliding after the 2015 Gorkha earthquake sug-
gests that there are some underlying physical controls on the locations that are most susceptible to reactiva-
tion and continued activity, as well as those that have recovered. Understanding these controls is critical to 
our ability to anticipate how landslide hazard is likely to change after a future event. Here, we compare our 
results to inferences from previous large continental earthquakes.

Stark spatial variations in the speed of recovery have been noted following the 2005 Kashmir and 2008 
Wenchuan earthquakes (e.g., Khan et al., 2013; Ni et al., 2019; Shafique, 2020; Shen et al., 2020), but to our 
knowledge our study is the first to demonstrate this effect over (nearly) the entire earthquake-affected area. 
A number of studies have tried to link these variations to elevation, slope angle, or aspect. For example, 
Khan et al. (2013) argued that landsliding rates stabilized within the first few years after the Kashmir earth-
quake, and that sites at lower elevations recovered faster in terms of the regrowth of vegetation and inferred 
cessation of activity. We observe qualitatively similar shifts after the Gorkha earthquake, although the lack 
of spatio-temporal information in Khan et al. (2013) means that we cannot directly compare the spatial pat-
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terns observed in Nepal (Figures 3 and 4) with those in Kashmir. Similarly, both Fan et al. (2018) and Yunus 
et al. (2020) observed that post-seismic landslides after the 2008 Wenchuan earthquake were more likely to 
occur at higher elevations, a trend that Yunus et al. (2020) linked to slower rates of vegetation recovery in 
those locations. In contrast, C. Li et al. (2018) argued that new landslides in part of the Wenchuan earth-
quake-affected area occurred preferentially at lower elevations except during periods of high rainfall; they 
tentatively linked this preference to river erosion and human activities, and distinguished between new 
landsliding and the progressive shift of coseismic landslide debris toward lower parts of the landscape. At 
present, we do not know whether the progressive shift in landslide activity toward the headwater reaches of 
the drainage network after Gorkha, as visible in Figure 5b, reflects large-scale vegetation change, or is due 
to another mechanism, such as the subsequent failure of hillslopes that were damaged in the earthquake 
but did not fully collapse (cf. Dadson et al., 2004), large-scale retrogression of failure upslope from existing 
landslide locations, or some other cause. Investigation of this spatial shift is a priority for future research.

Slope angle and aspect have also been invoked in disparate ways to explain landslide patterns after past 
earthquakes. Fan et al. (2018) argued that post-seismic landsliding typically occurred on lower slope angles, 
reflecting remobilization of landslide debris within the channel network—a pattern also noted by Hovius 
et al. (2011), who showed that the locus of landslide activity migrated to lower hillslope positions over time 
after the 1999 Chi-Chi earthquake. In contrast, both C. Li et al. (2018) and Yunus et al. (2020) documented 
a shift in new landslides toward progressively higher slope angles, a trend that Yunus et al. (2020) linked 
to slower revegetation on those steeper hillslopes. Our results provide evidence of a return in post-seismic 
landsliding toward similar slope angle values to those that were active before the earthquake (Figure 7c), 
as well as continued persistence of landslide activity on the steepest hillslopes in the landscape (Figure 7d). 
In terms of aspect, Fan et al.  (2018) showed that post-seismic landslides typically occurred on the same 
southeast-facing hillslopes as the coseismic inventory. They suggested that this could be due to both cli-
matic factors as well as the distribution of earthquake damage. This similarity is broadly reflected in our 
results, which demonstrate coseismic and post-seismic landsliding on hillslopes with common orientations 
(Figure  7e). In their study of landslide patterns in the 10 years after the Wenchuan earthquake, Yunus 
et al.  (2020) showed that west- and northwest-facing hillslopes, in the shadow of the regional monsoon 
wind direction, had fewer landslides but also recovered more slowly than hillslopes at other aspects. This 
suggests that post-earthquake hillslope recovery will vary over multiple spatial and temporal scales de-
pending on, among other factors, the distribution of hillslope damage, the local aspect, and the prevailing 
climatic conditions of the area.

A number of prior studies have also linked post-seismic landslide persistence to human activities, including 
road-building, construction, terracing and other agricultural activities, and mining (e.g., Khan et al., 2013; 
C. Li et al., 2018). Anecdotal observations from the Gorkha earthquake show that comparable links are like-
ly to have been present in Nepal as well. This is an important phenomenon, not least because reconstruction 
activities are likely to be focused in the first few years after a large earthquake when landslide rates also 
remain high. Similarly, it is highly likely that (re)construction on ground damaged by the earthquake, or in 
areas previously considered safe for occupation or infrastructure, will subsequently be far more challenging. 
Some of the post-seismic increases in landslide density within the Lesser Himalaya and south of Kathman-
du (Figure 5b) correspond directly to major road corridors, and are almost certainly indicative of failures 
along either these corridors or along lesser branch roads, visible even at the regional scale.

Landslides associated with the construction of new rural roads are visible in our medium-resolution image-
ry (Figure 9), particularly in the pre- and post-monsoon 2018 inventories. This uptick tallies with the prolif-
eration of rural road construction associated with the set-up of the new federal structure of government in 
Nepal in 2017 (Sudmeier-Rieux et al., 2019). We are not aware of any systematic attempt to document the 
growth of the rural road network in Nepal or its links to persistent post-earthquake landslide activity, and 
this remains another priority for future research. It may be the case that post-seismic landsliding will not 
return to pre-earthquake levels in locations undergoing widescale infrastructure development due to the 
consequent impacts on the landscape.
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5.3.  Implications for Recovery and Reconstruction Following a Large Earthquake

It is common that the scientific effort focused on understanding catastrophic earthquakes is poorly aligned 
with decision making and information needs on the ground (Datta et al., 2018; Williams et al., 2018). A key 
challenge relates to providing timely information on the likely future dynamics of landsliding triggered 
by earthquakes in a timeframe that dovetails with response and reconstruction. In this context, the rate 
and pattern of landslide activity and landscape recovery after a large earthquake are a first-order control 
on long-term seismic hazard, and so both synoptic and site-specific knowledge of what is likely to occur 
are highly valuable for both recovery and reconstruction, and future preparedness planning. We have doc-
umented the persistence of large areas of potentially active landsliding across the entire Gorkha earth-
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Figure 9.  Examples of new landslides caused by road construction. (a) Pre-monsoon 2018 and (b) post-monsoon 2018 Sentinel-2 imagery of road construction 
along the Sun Koshi river, north-eastern Kabhrepalanchok district. (c) Pre-Monsoon 2017 and (d) post-monsoon 2018 Sentinel-2 imagery of road construction 
near Jholi, western Okhaldhunga district. Dashed lines in (b) and (d) show the routes of newly cut roads, while light areas show disturbance triggered by 
construction. The corresponding increased landslide area density results for these locations can be clearly seen in Figure 5. Sentinel-2 imagery is from the 
European Space Agency—ESA/Copernicus Sentinel data (2018).
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quake-affected area, even after 3.5 years, indicating that hillslopes have not recovered as rapidly as might 
be inferred by studies that focus only on new failures (e.g., Marc et al., 2019). Our data also illustrate that, 
importantly, the nature of landslide hazard and therefore risk can significantly change through time after 
an earthquake. Our mapping illustrates that landslides triggered on the day of the earthquake, or even in 
the first few years after the earthquake, can evolve in terms of location. This dynamic risk must be reflect-
ed in messaging for earthquake-affected populations, and recovery and reconstruction efforts need to be 
cognizant of the potential continued changes that the landscape might experience. Our approach is in part 
intended to inform this type of effort in future and to feed into risk sensitive planning that accounts for 
rainfall- and earthquake-triggered landslide risk (e.g., Milledge et al., 2019), as well as the processes that 
play out in the aftermath of a large earthquake. Our approach provides a more conservative view of the per-
sistence of landslide activity than earlier studies, which is arguably more appropriate in guiding risk averse 
planning that must also recognize people’s everyday livelihood concerns and wider systemic risks (Oven 
et al., 2021). While there is an understandable desire to rebuild, doing so too quickly and ignoring the risk 
of post-seismic landsliding and remobilized landslide debris can have devastating impacts on people, their 
homes, and infrastructure.

Our results demonstrate three key messages for dynamic landslide hazard. First, for the study area as a 
whole, coseismic landslide occurrence—but not landslide density—is a reasonable first-order guide to the 
locations of persistent post-seismic landsliding over the 3.5 years of our study period (Figures 6c and 6d). 
Second, the coseismic landslide pattern cannot capture the nearly 10% of cells that show new and persistent 
post-earthquake landsliding—so the coseismic pattern should not simply be projected forward in time to 
anticipate the evolution of the hazard. Finally, the spatial clustering observed in our data means that areas 
of post-earthquake landslide activity should be expected to persist, all else being equal. These findings are 
useful for triaging areas of greatest risk in the immediate aftermath of a large earthquake, and for highlight-
ing the manner in which landslide hazard is likely to evolve as disaster response and reconstruction pro-
gresses. More locally, one important caution illustrated by the dynamic nature of the hazard is that cultural 
memory or experience of living with landslide risk in these regions developed prior to a large earthquake 
may be less relevant in dealing with coseismic and post-seismic landsliding in the years after an earthquake 
(Alexander, 2000).

We see several promising ways in which our multi-temporal inventories could be used in order to provide 
a better assessment of future landslide hazard across the Gorkha earthquake-affected area in Nepal. The 
first relates to providing a regional-scale understanding of the continued evolution of landslide activity, 
as coseismic and post-seismic landslide debris is remobilized and as existing landslide complexes evolve, 
with a view to informing ongoing recovery and reconstruction (Figure 1c). Further analysis would require 
physically based modeling of the release, entrainment and transport of landslide debris (e.g., Croissant 
et  al.,  2019), perhaps embedded within a wider consideration of the earthquake-triggered hazard chain 
(e.g., Fan, Scaringi, Domènech, et  al.,  2019; Fan, Scaringi, Korup, et  al.,  2019). Second, our inventories 
could be used to tune regional-scale post-earthquake landslide susceptibility models, in order to improve 
their skill in anticipating the occurrence of new failures relative to static models that do not account for the 
Gorkha earthquake. Finally, our data provide an assessment of the trajectory of stability for individual land-
slides, which adds considerably to static one-off site assessments, providing insight for ongoing mitigation 
of landslide risk in this region of Nepal. This is relevant to the National Reconstruction Authority’s on-going 
National Geohazards Assessment, which seeks to support landslide-affected communities following the 
2015 earthquake.

6.  Conclusions
We have systematically mapped pre-, co-, and post-seismic landslides across the 14 administrative districts 
of Nepal that were most intensively affected by the 2015 Gorkha earthquake, covering about 90% of the total 
area affected by coseismic landsliding and continuing until the end of the 2018 monsoon. This represents, to 
our knowledge, the first systematic multi-temporal landslide inventory that spans nearly the entire rupture 
area of a large continental earthquake across both the earthquake itself and the following four monsoon 
seasons. Our mapping documents a sharp increase in both number and area of landslides caused by the 
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earthquake, and further increases after the first post-earthquake monsoon in 2015. The numbers and total 
area of mapped landslides have fluctuated in the following years, with greater areas in the pre-monsoon 
inventories—likely due to seasonal changes in vegetation and visibility of landslide margins. Nevertheless, 
both landslide number and area remained greater than the coseismic inventory at the end of this study 
period, indicating a high degree of persistent and evolving landslide activity. It is therefore important to 
recognize that landslide hazard remains significant several years after this earthquake.

Coseismic landsliding was concentrated in a northwest-southeast band along the physiographic divide be-
tween the Lesser and Higher Himalaya. In general, coseismic landslides were larger on average than those 
that occurred before the earthquake, and they occurred at lower elevations, on steeper slopes, and higher 
up on individual hillslope profiles. The years immediately after the earthquake have seen the continued 
evolution of landsliding across the whole impacted area, rather than a progressive constriction around 
the most severely impacted locations. We see clear evidence that post-seismic landslide activity has shifted 
northwards, higher in the drainage network, although there is also some evidence of recovery to pre-earth-
quake patterns in terms of slope gradients and hillslope positions. This northward shift is superimposed 
upon a smaller-scale change in the pattern of landslide activity, as pre- and coseismic landslide material has 
been remobilized and transported downslope into the drainage network. We also see substantial evidence of 
post-seismic landsliding in areas that were not badly affected by coseismic impacts, both in the far northern 
margins of the rupture area and within parts of the Lesser Himalaya.

When amalgamated into landslide area density estimates on a 1 km2 spatial grid, our results indicate that 
most areas of high landslide activity have persisted throughout the study period, irrespective of wheth-
er activity started before or during the earthquake. These areas of persistent activity are highly spatially 
correlated and are somewhat predictable on the basis of simple topographic metrics, which is important 
for understanding the temporal evolution of landslide hazard. We see evidence of local systematic shifts 
in landsliding, with notable reductions in landsliding in the lower slopes of major river valleys over time, 
and a tendency for spatial clustering of specific landslide birth and death trajectories. Further studies of 
post-earthquake landslide hazard could focus on the continued remobilization and transport of existing 
landslide debris, or on the ways in which our inventories can be used to constrain changes in landslide 
susceptibility.

Our study takes a distinct conceptual approach in mapping all visible areas of disturbance during each ep-
och, rather than concentrating solely on the occurrence of new landslides. We demonstrate that unpacking 
landsliding after an earthquake in this manner reveals a wide variety of mass wasting processes that may 
each follow a different trajectory to recovery, so that recovery warrants both careful definition and choice 
of how it is described. This methodology assesses directly the time period over which an existing landslide 
may remain active, and thus yields a more precautionary approach to generating information about hazards 
that is suitable for understanding the regional-scale development of landsliding.

Data Availability Statement
Landslide area density data are freely available from https://doi.org/10.5281/zenodo.4274486.
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