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A monotonicity property of weighted log-rank tests

Tahani Coolen-Maturi and Frank P. A. Coolen

Department of Mathematical Sciences, Durham University, Durham, UK

ABSTRACT
The logrank test is a well-known nonparametric test which is often
used to compare the survival distributions of two samples including
right-censored observations, it is also known as the Mantel-Haenszel
test. The Gq family of tests, generalizes the logrank test by using
weights assigned to observations. In this paper, we present a switch
monotonicity property for the Gq family of tests, which was moti-
vated by the need to derive bounds for the test statistic in case of
imprecise data observations. This property states that, when all obser-
vations from two independent groups are ranked together, the value
of the z-test statistic is monotonically increasing after switching a pair
of adjacent values from the two groups. Two examples are provided
to motivate and illustrate the result presented in this paper.
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1. Introduction

The logrank test is a well-known nonparametric test which is often used to compare the
survival distributions of two groups containing right-censored observations. It general-
izes the Wilcoxon test, for data without right-censored observations, and is also known
as Mantel-Haenszel test (Mantel 1966). Several variations to this test have been intro-
duced in the literature, e.g., Gehan’s Generalized Wilcoxon test (Gehan 1965; Lou and
Lan 1998), Weighted Logrank tests (Latta 1977) and Wilcoxon-Peto test (Peto and Peto
1972). The Mantel-Haenszel test (Mantel 1966) gives equal weights to observations
regardless of the time at which an event occurs. On the other hand, the Wilcoxon-Peto
test statistic assigns more weights to earlier event times (Peto and Peto 1972).
Harrington and Fleming (1982) introduced a class of tests, the Gq family, which can be
used to test the null hypothesis H0 : S0ðtÞ ¼ S1ðtÞ for all t> 0 against the alternative
hypothesis H1 : S0ðtÞ 6¼ S1ðtÞ for some t> 0.
In this paper, we consider the Gq family of tests for right-censored data introduced

by Harrington and Fleming (1982), in which the weight assigned to each observed fail-

ure time t is of the form ½ŜðtÞ�q for fixed q � 0, where ŜðtÞ is the well-known Kaplan-
Meier estimate of the survival function. Note that the use of ‘failure time’ does not
restrict the test applications and could be interpreted as time of any event of interest, as
long as each individual (or ‘item’) has only one event associated with it, which may
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either be observed (failure time) or only known to be greater than an observed right
censoring time. Throughout this paper it is assumed that right censoring is non-inform-
ative, which means that the residual lifetime of the censored observation is independent
of the censoring process. As special cases, q¼ 0 gives the log-rank Mantel-Haenszel test
(Mantel 1966) and q¼ 1 gives the Peto-Prentice extension of the Wilcoxon statistic
(Peto and Peto 1972; Prentice 1978). Several R packages are available to perform these
tests, e.g., the function survdiff within the survival package (Therneau 2015) and the
comprehensive FHtest package (Oller and Langohr 2017).
In this paper we prove a monotonicity property of the Gq class family of tests for

right-censored data introduced by Harrington and Fleming (1982). Formally, a function
f is called monotonically non-decreasing if it preserves the order, that is if for all a and
b with a � b we have f ðaÞ � f ðbÞ: This research was motivated by possible applications
of such tests in case of imprecise data (Augustin et al. 2014; Coolen, Ahmadini, and
Coolen-Maturi 2021), where the ordering of observations per group is known but where
the ranking of observations between the groups may not be precisely determined due to
lack of precise values for some or all of the observations, it is most natural to assume
that each observation is only known to belong to an interval. In such cases, when inter-
vals are overlapping, different combined rankings of the data from different groups may
be possible and one typically would like to find the minimum and maximum values of
the test statistic corresponding to all possible combined rankings. The result in this
paper makes the derivation of these minimum and maximum values straightforward, it
has been applied to develop robust statistical inference for accelerated life testing by
Coolen, Ahmadini, and Coolen-Maturi (2021).
This paper is organized as follows: Section 2 introduces the notation and the setting,

while the main results are presented in Section 3. Two examples to motivate and illus-
trate the result presented in this paper are provided in Section 4. The paper ends with
concluding remarks in Section 5.

2. Notation and setting

Let s1 < s2 < ::: < sk denote k times of observed failures. Let YiðsjÞ be the number of
individuals in group i who are at risk at sj (i¼ 0, 1), i.e., the number of individuals
from both groups at risk at sj is YðsjÞ ¼ Y0ðsjÞ þ Y1ðsjÞ, j ¼ 1, 2, :::, k: Let dij be the
number of individuals in group i who fail at sj (i¼ 0, 1), so the total number of failures
at sj from both groups is dj ¼ d0j þ d1j, j ¼ 1, 2, :::, k: The information at time sj can be
summarized in the following 2� 2 table:

Consider the test statistic

Z ¼ O� Effiffiffiffi
V

p ¼
P

j Oj �
P

j EjffiffiffiffiffiffiffiffiffiffiffiffiP
j Vj

q (1)

Fail at sj Do not fail at risk at sj
Group 0 d0j Y0ðsjÞ � d0j Y0ðsjÞ
Group 1 d1j Y1ðsjÞ � d1j Y1ðsjÞ

dj YðsjÞ � dj YðsjÞ
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with

Oj ¼ ŜðsjÞ
h iq

d1j (2)

Ej ¼ ŜðsjÞ
h iq Y1ðsjÞ

YðsjÞ

 !
dj (3)

Vj ¼ ŜðsjÞ
h i2q Y0ðsjÞY1ðsjÞ

ðYðsjÞÞ2
YðsjÞ � dj
YðsjÞ � 1

 !
dj (4)

where q � 0 and ŜðsjÞ is the Kaplan-Meier estimate at time sj (Kaplan and Meier
1958). Then under the null hypothesis H0 : S0ðtÞ ¼ S1ðtÞ for all t> 0, the test statistic Z
follows the standard normal distribution, i.e., Z � Nð0, 1Þ, so Z2 � v21:
For simplicity of notation, we assume throughout this paper that there are no ties,

therefore dj ¼ d0j þ d1j ¼ 1, and O ¼Pj ŜðsjÞ
h iq

d1j is the weighted number of failures

from group G1. The expected value formula (3) and the variance formula (4) can be
simplified (as dj ¼ 1) as

Ej ¼ ŜðsjÞ
h iq Y1ðsjÞ

YðsjÞ (5)

Vj ¼ ŜðsjÞ
h i2q Y0ðsjÞY1ðsjÞ

ðYðsjÞÞ2
(6)

Now let skj�1 � xji < yj � skj , and let u0 (u1) be the number of censored observations

from group G0 (G1) between skj�1 and skj , thus u ¼ u0 þ u1: Define diðsjÞ to be equal

to 1 if sj is a failure from group Gi, and zero otherwise, i¼ 0, 1. Let YiðskjÞ be the num-

ber of individuals in group Gi who are at risk at skj , i¼ 0, 1, and let YðskjÞ ¼
Y0ðskjÞ þ Y1ðskjÞ be the number of individuals from both groups at risk at skj , kj 2
f1, 2, :::, kg: This is illustrated in the first row of Figure 1. The next section introduces
the main results of this paper.

Figure 1. Setting and Scenario S1.
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3. Main results

In this section, we consider the following setting. For a particular data set, with fixed
failure-censored status, suppose that all observations from group G0, x1 < x2 < ::: <

xn0 , precede all observations from group G1, y1 < y2 < ::: < yn1 : We would like to swap
between neighboring data observations, one pair of a G0 observation and a G1 observa-
tion at a time, where the latter is the smallest G1 observation greater than the G0 obser-
vation, until we have all observations from group G1 preceding all observations from
group G0. In total we can do that in n0n1 steps (switches), where n0 and n1 are the sam-
ple sizes of group G0 and group G1, respectively. For example, if we have 3 observations
from each group, the number of switches from x1 < x2 < x3 < y1 < y2 < y3 to y1 <
y2 < y3 < x1 < x2 < x3 is 9. The property presented in this paper is that, under the null
hypothesis, the z-test statistic behaves monotonically throughout this switching process.
This is stated in the following theorem.

Theorem 3.1 (Switch monotonicity). Suppose we have data observations from two inde-
pendent groups, their ordered values are denoted by x1 < x2 < ::: < xn0 and
y1 < y2 < ::: < yn1 . Let ZB be the z-test statistic value, obtained from (1), corresponding
to these data sets and ZA be the value of the z-statistic after a switch of two adjacent val-
ues xi < yj, with all observations ranked together, then ZB � ZA:

Note that for the special case where there are no right-censored observations, this test
is the same as the Wilcoxon rank-sum test, for which this theorem trivially hold as the
sum of the ranks for one group clearly changes monotonically with such switches. The
remainder of this section consists of the proof of this theorem. To this end, suppose we
swap xji and yj, that is now xji > yj, then we have four different scenarios we need
to consider:

3.1. Scenario 1 (S1): when both xji and yj are censoring times

In this case, nothing will change to the 2� 2 tables in Figure 1, where the first row is
corresponding to before the swap and the second row to after the swap. As the value of

ŜðsjÞ is a step function that change value only at the time of observed failure, therefore
the expected value and the variance formula are the same before and after the swap.
That is if we swap any two censored observations between skj�1 and skj this will not
affect the expected value and the variance, as it does not affect the margins in the 2� 2

tables in Figure 1. Thus ZB ¼ ðO�EBÞffiffiffiffi
VB

p and ZA ¼ ðO�EAÞffiffiffiffiffi
VA

p are equal, ZA ¼ ZB, where we use

B as subscript for the case before the swap and A for the case after the swap.
The proofs for the next three cases are very similar, yet for the sake of completeness

full details are given.

3.2. Scenario 2 (S2): when xji is a failure time and yj is a censoring time

This second scenario is illustrated in Figure 2, and the expect values for before and after
the swap are given as
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EB ¼ R
j6¼kj

Ej þ ŜðsjÞ
h iq Y1ðskj�1Þ � u1

Yðskj�1Þ � u� 1

EA ¼ R
j6¼kj

Ej þ ŜðsjÞ
h iq Y1ðskj�1Þ � u1 � d1ðskj�1Þ

Yðskj�1Þ � u� 1

Clearly EB � EA thus ðO� EBÞ � ðO� EAÞ: And the variances

VB ¼ R
j 6¼kj

Vj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � u0 � 1ÞðY1ðskj�1Þ � u1Þ

ðYðskj�1Þ � u� 1Þ2

VA ¼ R
j 6¼kj

Vj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � u0 � d0ðskj�1ÞÞðY1ðskj�1Þ � u1 � d1ðskj�1ÞÞ

ðYðskj�1Þ � u� 1Þ2

We have two main cases:

i. If d0ðskj�1Þ ¼ 1, that is skj�1 is a failure from group G0 and thus d1ðskj�1Þ ¼ 0,
then V B ¼ V A. Thus ZB � ZA, as from above ðO� EBÞ � ðO� EAÞ:

ii. If d1ðskj�1Þ ¼ 1, that is skj�1 is a failure from group G1 and thus d0ðskj�1Þ ¼ 0,
then

VA ¼ R
j6¼kj

Vj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � u0ÞðY1ðskj�1Þ � u1 � 1Þ

ðYðskj�1Þ � u� 1Þ2

and thus we have two sub-cases:

(iia) If Y1ðskj�1Þ � u1 > Y0ðskj�1Þ � u0 then V B < V A, i.e. 1
VB

> 1
VA

:

� If ðO� EBÞ > 0, then ðO� EAÞ also has to be positive.
� We multiply ðO� EBÞ � ðO� EAÞ by 1ffiffiffiffi

VB
p and by 1ffiffiffiffiffi

VA
p , then we have

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p
ðO� EBÞffiffiffiffiffiffi

VB
p � ðO� EAÞffiffiffiffiffiffi

VB
p

Figure 2. Scenario S2.
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Now we multiply 1ffiffiffiffiffi
VA

p < 1ffiffiffiffi
VB

p by ðO� EAÞ and by ðO� EBÞ, then we have

ðO� EAÞffiffiffiffiffiffi
VA

p <
ðO� EAÞffiffiffiffiffiffi

VB
p

ðO� EBÞffiffiffiffiffiffi
VA

p <
ðO� EBÞffiffiffiffiffiffi

VB
p

thus we obtain the following inequalities

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p <
ðO� EAÞffiffiffiffiffiffi

VB
p

ðO� EBÞffiffiffiffiffiffi
VA

p <
ðO� EBÞffiffiffiffiffiffi

VB
p � ðO� EAÞffiffiffiffiffiffi

VB
p

Then the proof follows the same argument given in the Appendix, and
indeed ZB � ZA:

� If ðO� EBÞ < 0, then

1ffiffiffiffiffiffi
VB

p >
1ffiffiffiffiffiffi
VA

p

ðO� EBÞffiffiffiffiffiffi
VB

p <
ðO� EBÞffiffiffiffiffiffi

VA
p � ðO� EAÞffiffiffiffiffiffi

VA
p

thus ZB � ZA:

(iib) If Y1ðskj�1Þ � u1 < Y0ðskj�1Þ � u0 then V B > V A, i.e. 1
VB

< 1
VA

:

� If ðO� EBÞ > 0 then ðO� EAÞ also has to be positive.
� In this case, we multiply ðO� EBÞ � ðO� EAÞ by 1ffiffiffiffi

VB
p < 1ffiffiffiffiffi

VA
p , to obtain

that ZB � ZA:

� If ðO� EAÞ > 0, then ðO�EAÞffiffiffiffi
VB

p < ðO�EAÞffiffiffiffiffi
VA

p ,
and if we divide ðO� EBÞ � ðO� EAÞ by

ffiffiffiffiffiffi
VB

p
then we have ðO�EBÞffiffiffiffi

VB
p � ðO�EAÞffiffiffiffi

VB
p

and therefore we have ZB � ZA: Note this includes the case when ðO� EBÞ is
negative but ðO� EAÞ is positive.

� If both ðO� EBÞ and ðO� EAÞ are negative

We multiply ðO� EBÞ � ðO� EAÞ by 1ffiffiffiffi
VB

p and by 1ffiffiffiffiffi
VA

p we have

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p
ðO� EBÞffiffiffiffiffiffi

VB
p � ðO� EAÞffiffiffiffiffiffi

VB
p
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Now we multiply 1ffiffiffiffiffi
VA

p > 1ffiffiffiffi
VB

p by ðO� EAÞ and by ðO� EBÞ we have

ðO� EAÞffiffiffiffiffiffi
VA

p <
ðO� EAÞffiffiffiffiffiffi

VB
p

ðO� EBÞffiffiffiffiffiffi
VA

p <
ðO� EBÞffiffiffiffiffiffi

VB
p

thus we obtain the following inequalities

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p <
ðO� EAÞffiffiffiffiffiffi

VB
p

ðO� EBÞffiffiffiffiffiffi
VA

p <
ðO� EBÞffiffiffiffiffiffi

VB
p � ðO� EAÞffiffiffiffiffiffi

VB
p

Then the proof follows the same argument given in the Appendix, and
indeed ZB � ZA:

3.3. Scenario 3 (S3): when xji is a censoring time and yj is a failure time

This third scenario is illustrated in Figure 3.
Similarly we calculate the expected value and the variance before and after the swap

as follows:

EB ¼ R
j6¼kj

Ej þ ŜðsjÞ
h iq Y1ðskj�1Þ � u1 � d1ðskj�1Þ

Yðskj�1Þ � u� 1

EA ¼ R
j6¼kj

Ej þ ŜðsjÞ
h iq Y1ðskj�1Þ � u1 � 1

Yðskj�1Þ � u� 1

Clearly EB � EA, thus ðO� EBÞ � ðO� EAÞ: And the variances are

VB ¼ R
j 6¼kj

Vj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � u0 � d0ðskj�1ÞÞðY1ðskj�1Þ � u1 � d1ðskj�1ÞÞ

ðYðskj�1Þ � u� 1Þ2

VA ¼ R
j 6¼kj

Vj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � u0ÞðY1ðskj�1Þ � u1 � 1Þ

ðYðskj�1Þ � u� 1Þ2

Figure 3. Scenario S3.
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i. If d0ðskj�1Þ ¼ 0 then d1ðskj�1Þ ¼ 1 and V B ¼ V A. Thus ZB � ZA, as from above
ðO� EBÞ � ðO� EAÞ:

ii. If d0ðskj�1Þ ¼ 1 then d1ðskj�1Þ ¼ 0,

VB ¼ Rj6¼kjVj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � u0 � 1ÞðY1ðskj�1Þ � u1Þ

ðYðskj�1Þ � u� 1Þ2

then we have two sub-cases:

(iia) if Y1ðskj�1Þ � u1 > Y0ðskj�1Þ � u0 then VB < VA,

(iib) if Y1ðskj�1Þ � u1 < Y0ðskj�1Þ � u0 then VB > VA.

The proof for both cases (iia) and (iib) are similar to scenario S2.

3.4. Scenario 4 (S4): when both xji and yj are failure times

This final scenario is illustrated in Figure 4.
We calculate the expected value before and after the swap as follows:

EB ¼ R
j 6¼kj

Ej þ ŜðsjÞ
h iq Y1ðskj�1Þ

Yðskj�1Þ � 1

EA ¼ R
j 6¼kj

Ej þ ŜðsjÞ
h iq Y1ðskj�1Þ � 1

Yðskj�1Þ � 1

Clearly EB � EA, thus ðO� EBÞ � ðO� EAÞ: And the variances are

VB ¼ R
j 6¼kj

Vj þ ŜðsjÞ
h i2q ðY0ðskj�1Þ � 1ÞY1ðskj�1Þ

ðYðskj�1Þ � 1Þ2

VA ¼ R
j6¼kj

Vj þ ŜðsjÞ
h i2q Y0ðskj�1ÞðY1ðskj�1Þ � 1Þ

ðYðskj�1Þ � 1Þ2

Figure 4. Scenario S4.
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i. If Y0ðskj�1Þ ¼ Y1ðskj�1Þ then VB ¼ VA. Thus ZB � ZA, as from
above ðO� EBÞ � ðO� EAÞ:

ii. As we know that both xji and yj are failure times, we have the two-sub cases:
(iia) If Y1ðskj�1Þ > Y0ðskj�1Þ then V B < V A, thus 1

VB
> 1

VA� If ðO� EBÞ > 0, then ðO� EAÞ also has to be positive, we obtain similarly that

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p <
ðO� EAÞffiffiffiffiffiffi

VB
p

ðO� EBÞffiffiffiffiffiffi
VA

p <
ðO� EBÞffiffiffiffiffiffi

VB
p � ðO� EAÞffiffiffiffiffiffi

VB
p

Then the proof follows the same argument given in the Appendix, and
indeed ZB � ZA:

� If ðO� EBÞ < 0, then

1ffiffiffiffiffiffi
VB

p >
1ffiffiffiffiffiffi
VA

p
ðO� EBÞffiffiffiffiffiffi

VB
p <

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p

then ZB � ZA:

(iib) if Y1ðskj�1Þ < Y0ðskj�1Þ then V B > V A, thus 1
VB

< 1
VA

:

� If ðO� EBÞ > 0 then ðO� EAÞ also has to be positive.
� In this case, we can multiply ðO� EBÞ � ðO� EAÞ by 1ffiffiffiffi

VB
p < 1ffiffiffiffiffi

VA
p , to obtain

that ZB � ZA:

� If ðO� EAÞ > 0, then ðO�EAÞffiffiffiffi
VB

p < ðO�EAÞffiffiffiffiffi
VA

p ,
and if we divide ðO� EBÞ � ðO� EAÞ by

ffiffiffiffiffiffi
VB

p
then we have ðO�EBÞffiffiffiffi

VB
p � ðO�EAÞffiffiffiffi

VB
p thus

we obtain that ZB � ZA: Note this include the case when ðO� EBÞ is negative
but ðO� EAÞ is positive.

� If both ðO� EBÞ and ðO� EAÞ are negative, we obtain similarly that

ðO� EBÞffiffiffiffiffiffi
VA

p � ðO� EAÞffiffiffiffiffiffi
VA

p <
ðO� EAÞffiffiffiffiffiffi

VB
p

ðO� EBÞffiffiffiffiffiffi
VA

p <
ðO� EBÞffiffiffiffiffiffi

VB
p � ðO� EAÞffiffiffiffiffiffi

VB
p

Then the proof follows the same argument given in the appendix, and
indeed ZB � ZA:

4. Examples

In this section, two examples are presented to motivate the theory presented in this
paper and to illustrate the application of the main result.
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4.1. Example 1

Suppose that there are two groups with 5 observations each, where all observations
from group G0 are smaller than all observations from group G1. Let the censoring status
for G0 be (1, 0, 1, 1, 0) and for G1 be (1, 1, 0, 1, 0). Because only the ranks of the obser-
vations play a role in this paper, we denote the observations by there initial ranks, add-
ing superscriptþ for right-censored observations, so observations for group G0 are
denoted by 1, 2þ, 3, 4, 5þ and for group G1 by 6, 7, 8þ, 9, 10þ: Setting q ¼ 0:5, the z-
test value for this initial data case, obtained using Equation (1), is �2.1901, it is given
in the first row of Table 1. In the following rows, 25 switches of neighboring pairs in
the ordering are presented with corresponding z-test values, note that the observations
remain indicated by their initial ranks. These switches are such that, at each switch, one
G1 observation becomes smaller than one G0 observation. For example, the second row
in this table, indicated by switch 1 in the first column, presents the case where the larg-
est G0 observation, 5þ, and the smallest G1 observation, 6, have swapped in the overall
ranking. After 25 switches, the total reversal of the observations of the two groups has
been achieved, with all G1 observations smaller than all G0 observations. Of course, dif-
ferent specific pairwise switches could have been chosen to get from the initial ranking
to this final ranking, all such possibilities lead to similarly monotonically changing z-
test values.
Figure 5 shows the z-test values for all 25 switches in Table 1, for different values of

q, q ¼ f0, 0:1, 0:2, :::, 1g: The different color lines in this figure are in the order of the
different values of q, with the lowest line corresponding to q¼ 0 and the highest line
corresponding to q¼ 1. Clearly, the z-test values are in ascending order regardless of

Table 1. z-test values and q ¼ 0:5, Example 1.
switch z-test

– 1 2þ 3 4 5þ 6 7 8þ 9 10þ –2.1901
1 1 2þ 3 4 6 5þ 7 8þ 9 10þ –1.8797
2 1 2þ 3 6 4 5þ 7 8þ 9 10þ –1.5791
3 1 2þ 6 3 4 5þ 7 8þ 9 10þ –1.3374
4 1 6 2þ 3 4 5þ 7 8þ 9 10þ –1.2602
5 6 1 2þ 3 4 5þ 7 8þ 9 10þ –1.0872
6 6 1 2þ 3 4 7 5þ 8þ 9 10þ –0.8729
7 6 1 2þ 3 7 4 5þ 8þ 9 10þ –0.6236
8 6 1 2þ 7 3 4 5þ 8þ 9 10þ –0.4107
9 6 1 7 2þ 3 4 5þ 8þ 9 10þ –0.3533
10 6 7 1 2þ 3 4 5þ 8þ 9 10þ –0.1873
11 6 7 1 2þ 3 4 8þ 5þ 9 10þ –0.1873
12 6 7 1 2þ 3 8þ 4 5þ 9 10þ –0.1096
13 6 7 1 2þ 8þ 3 4 5þ 9 10þ –0.0175
14 6 7 1 8þ 2þ 3 4 5þ 9 10þ –0.0175
15 6 7 8þ 1 2þ 3 4 5þ 9 10þ 0.0722
16 6 7 8þ 1 2þ 3 4 9 5þ 10þ 0.2798
17 6 7 8þ 1 2þ 3 9 4 5þ 10þ 0.5884
18 6 7 8þ 1 2þ 9 3 4 5þ 10þ 0.8718
19 6 7 8þ 1 9 2þ 3 4 5þ 10þ 0.9208
20 6 7 8þ 9 1 2þ 3 4 5þ 10þ 1.1602
21 6 7 8þ 9 1 2þ 3 4 10þ 5þ 1.1602
22 6 7 8þ 9 1 2þ 3 10þ 4 5þ 1.4627
23 6 7 8þ 9 1 2þ 10þ 3 4 5þ 1.7874
24 6 7 8þ 9 1 10þ 2þ 3 4 5þ 1.7874
25 6 7 8þ 9 10þ 1 2þ 3 4 5þ 2.0898
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the values of q, this illustrates the monotonicity property presented in this paper. Table
1 and Figure 5 also show that the z-test value does not change when a switching occurs
between two right-censored observations, which happens at switches 11, 14, 21 and 24.

4.2. Example 2

The data set used in this example concerns the survival of 30 patients with cervical can-
cer, where 16 patients received control treatment A, which was the use of radiotherapy
alone, and 14 patients received new treatment B, where radiosensitizer is added to
radiotherapy. The data, given in Table 2, represents the number of days between the
start of the study and death of the patients caused by this cancer or a right-censoring
event (Machin, Cheung, and Parmar 2006, p. 53). We use this data set to illustrate the
use of the monotonicity result presented in this paper, by assuming imprecision in the
recording of the events such that an observed time ti would actually imply that the
event occurred during interval ½ti � d, ti�: For example, a hospital may only record
events once per week, neglecting the precise day it occurred, or there may be some
vagueness about the start date of the study and the actual start of recording of individ-
ual patients.
Figure 6 shows the z-test values for increasing values of d, so for increasing impreci-

sion in the data, obtained using Equation (1), for q¼ 0, so for the log-rank Mantel-
Haenszel test, and Figure 7 shows the z-test values for q ¼ 0:5: The red horizontal line
is the z critical value at 10% and the blue horizontal line is the z critical value at 5%.
The green horizontal line is the value of the test statistic of this data set, without any
imprecision in the data so with d¼ 0, which is equal to z ¼ �1:296818: The black lines
are the minimum and the maximum values of the z test statistic over different values of
d. These are derived by applying the monotonicity result presented in this paper. The

Figure 5. z-test values for different values of q, Example 1.
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minimum value is obtained when we subtract d from all the data observations from
treatment A, while keeping the data of treatment B at the original values. The

Table 2. Data set, Example 2.
A 90 142 150 269 291 468þ 680 837 890þ 1037 1090þ

1113þ 1153 1297 1429 1577þ
B 272 362 373 383þ 519þ 563þ 650þ 827 919þ 978þ 1100þ

1307 1360þ 1476þ

Figure 6. z-test values for different values of d and for q¼ 0, Example 2.

Figure 7. z-test values for different values of d and q ¼ 0:5, Example 2.
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maximum value is obtained when we subtract d from all the data observations from
treatment B, while keeping the data of treatment B at the original values. The intersec-
tion points between the black line and the red and the blue lines are at d¼ 122 and
d¼ 271 for both values of q. This analysis shows that, for the original data, the null
hypothesis that both data sets may come from the same underlying population is not
rejected, and this conclusion will remain the same with quite large imprecision added to
the data, so the conclusion is very robust with regard to inaccuracies in the data.

5. Concluding remarks

This paper studies the monotonicity of the Gq class of weighted logrank tests introduced
by Harrington and Fleming (1982). We proved a convenient monotonicity property for
the two-sample class of logrank tests. This property holds trivially for the special case
where there are no right-censored observations (the Wilcoxon test), but, while intui-
tively quite clear, its proof required care due to the right censoring affecting the data.
One can utilize this property to derive optimal bounds for the test statistic in case of
imprecise data, as has been briefly illustrated via small examples in this paper, and it
has recently been applied for robust inference with accelerated life testing data (Coolen,
Ahmadini, and Coolen-Maturi 2021). Note that the form of imprecise data considered
in this paper, in particular in Example 2, can also be regarded as interval-censored data.
There is a huge literature on statistical inference with interval-censored data, but mostly
methods based on additional assumptions are being considered. A feature of the impre-
cise data that is not standard in interval-censoring is the possible imprecision in a
recorded right-censoring time, which was the main challenge in achieving the result in
this paper.
For future research, it will be interesting to investigate the construction of statistical

tests for equality of survival functions based on the number of switches, in a way that is
similar to tests for perfect ranking in ranked set sampling presented by Li and
Balakrishnan (2008). Possible generalization of the monotonicity property for tests with
more than two groups of data is also of interest, it is left as a topic for future research.
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Appendix

Lemma 5.1. Let x and y be any two real numbers in an interval ½a, b�, where a< b. Then if x�
a < y� a and b� y < b� x then x< y.

Proof: The setting is illustrated in the figure below.

As y� a ¼ ðx� aÞ þ ðy� xÞ and b� x ¼ ðb� yÞ þ ðy� xÞ, then in order for both inequal-
ities to hold, the second term in the right hand side must be positive, i.e., y� x > 0 thus x< y.

w

We use the lemma above to prove that O�EAffiffiffiffiffi
VA

p > O�EBffiffiffiffi
VB

p : First we define the 4 differences D1,
D2, D3 and D4, which is illustrated in the figure below, as
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D1 ¼ O� EBffiffiffiffiffiffi
VB

p � O� EBffiffiffiffiffiffi
VA

p

D2 ¼ O� EAffiffiffiffiffiffi
VB

p � O� EBffiffiffiffiffiffi
VB

p

D3 ¼ O� EAffiffiffiffiffiffi
VA

p � O� EBffiffiffiffiffiffi
VA

p

D4 ¼ O� EAffiffiffiffiffiffi
VB

p � O� EAffiffiffiffiffiffi
VA

p

In order for the inequality O�EAffiffiffiffiffi
VA

p > O�EBffiffiffiffi
VB

p to hold, both inequalities D3 > D1 and D2 > D4

must be hold. We can express D2 and D3 as

D2 ¼ D4 þ O� EAffiffiffiffiffiffi
VA

p � O� EBffiffiffiffiffiffi
VB

p
� �

D3 ¼ D1 þ O� EAffiffiffiffiffiffi
VA

p � O� EBffiffiffiffiffiffi
VB

p
� �

So O�EAffiffiffiffiffi
VA

p � O�EBffiffiffiffi
VB

p has to be positive, therefore O�EAffiffiffiffiffi
VA

p > O�EBffiffiffiffi
VB

p :
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