
J
H
E
P
0
1
(
2
0
2
1
)
1
0
8

Published for SISSA by Springer

Received: October 1, 2020
Accepted: November 30, 2020

Published: January 19, 2021

Scale and isolation sensitivity of diphoton distributions
at the LHC

Thomas Gehrmann,a Nigel Glover,b Alexander Hussb,c and James Whiteheadb
aPhysik-Institut, Universität Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
bInstitute for Particle Physics Phenomenology, Durham University,
Durham, DH1 3LE, U.K.
cTheoretical Physics Department, CERN,
1211 Geneva 23, Switzerland
E-mail: thomas.gehrmann@uzh.ch, e.w.n.glover@durham.ac.uk,
alexander.huss@cern.ch, james.c.whitehead@durham.ac.uk

Abstract: Precision measurements of diphoton distributions at the LHC display some
tension with theory predictions, obtained at next-to-next-to-leading order (NNLO) in QCD.
We revisit the theoretical uncertainties arising from the approximation of the experimental
photon isolation by smooth-cone isolation, and from the choice of functional form for
the renormalisation and factorisation scales. We find that the resulting variations are
substantial overall, and enhanced in certain regions. We discuss the infrared sensitivity at
the cone boundaries in cone-based isolation in related distributions. Finally, we compare
predictions made with alternative choices of dynamical scale and isolation prescriptions to
experimental data from ATLAS at 8TeV, observing improved agreement. This contrasts
with previous results, highlighting that scale choice and isolation prescription are potential
sources of theoretical uncertainty that were previously underestimated.

Keywords: NLO Computations, QCD Phenomenology

ArXiv ePrint: 2009.11310

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2021)108

mailto:thomas.gehrmann@uzh.ch
mailto:e.w.n.glover@durham.ac.uk
mailto:alexander.huss@cern.ch
mailto:james.c.whitehead@durham.ac.uk
https://arxiv.org/abs/2009.11310
https://doi.org/10.1007/JHEP01(2021)108


J
H
E
P
0
1
(
2
0
2
1
)
1
0
8

Contents

1 Introduction 1

2 Photon isolation 3
2.1 Matched-hybrid isolation 5
2.2 Infrared sensitivity 11
2.3 Comparison of hybrid and smooth-cone distributions 14

3 Scale choice 18
3.1 Scale choice for photon processes 18
3.2 Perturbative convergence 19
3.3 Kinematic effects 19
3.4 Alternative scale functional forms 22

4 Combined effect of isolation and scale variation 24
4.1 Comparison to ATLAS data: four-way comparison 25
4.2 Comparison to ATLAS data: two-way comparison 28

5 Conclusions 28

1 Introduction

The production of pairs of isolated photons at hadron colliders is important as a test of
perturbative QCD, as a clean background against which to measure the properties of the
Higgs boson [1, 2], and as a possible channel for the detection of new physics [3, 4].

These alternatives reflect the different ways pairs of final-state photons can be produced
at hadron colliders: directly in the partonic hard scattering (‘prompt’ photons), or as decay
products. Hadrons which may decay to photon pairs (e.g. η or π0 mesons) are produced in
huge numbers in the collider environment. Each such decay produces a highly-collimated
photon pair, which is typically identified as a single photon accompanied by hadronic
radiation. For photonic final-states, such ‘non-prompt’ photons are produced in sufficient
abundance to overwhelm the prompt photon signal to which they form the background.

To test our understanding of prompt photon production, it is therefore necessary to
impose isolation cuts to suppress this overwhelming background. Schematically, a photon
is considered isolated if it is accompanied by relatively low levels of hadronic energy. The
standard (‘fixed-cone’) implementation of this idea is to veto events in which the total
hadronic transverse energy deposited in a cone of fixed radius about the photon exceeds
some threshold. In practice, many additional sophisticated corrections are applied to cor-
rect for detector pileup and the fake rate from jets misidentified as photons. These detector
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effects are unfolded in the experimental analysis to give parton-level fiducial cuts, which
are then used for the corresponding theory predictions, obtained using numerical Monte
Carlo calculations.

This difference between the experimental isolation cuts on the transverse energy de-
tected in calorimeter cells, and the corresponding theoretical isolation cuts on the transverse
energy of simulated partons, is compounded by the theoretical difficulty of computing the
fragmentation contribution to the process. Final-state collinear singularities occur wher-
ever a hard parton produced in the short-distance hard scattering undergoes a series of
splittings, ending with a quark-photon splitting. These are factorised to all orders into
a fragmentation function Dγ

a(z;µf ), encoding the probability that a photon is found in
parton a with momentum fraction z (at fragmentation scale µf ). Analogously to parton
distribution functions, these obey evolution equations in µf , with boundary conditions that
must be extracted from fits to experimental data. Uncertainties in the data and in the fit
propagate to uncertainties in the functions, and hence to predictions made with them.

The fragmentation contribution could be eliminated entirely by setting the threshold
for the isolation criterion to zero, but this restriction of the phase space of soft gluon
emissions would spoil the necessary cancellation of real and virtual divergences in the direct
contribution. Instead, in fixed-order calculations theorists typically eliminate it formally,
using ‘smooth-cone’, or ‘Frixione’ isolation [5], in which the energy threshold for permitted
partonic radiation is promoted to a function χ(r) of the angular separation between the
photon and the parton. This function may be chosen freely, subject to the requirement
that its limit vanishes towards the centre of the cone, with the dependence of the prediction
on the unphysical profile function χ entering as a new source of theoretical uncertainty.

The finite granularity of the angular resolution of calorimeters makes this condition
impossible to implement exactly at detectors, though a discretised version has been ap-
plied at the level of reconstructed particles at OPAL [6] and investigated for the LHC [7].
Other isolation procedures that can be implemented both theoretically and experimentally
have recently been proposed, such as ‘soft-drop isolation’ [8], based on jet substructure
techniques and related both to ‘democratic isolation’ [9] and to smooth-cone isolation in
specific limits. These however have not yet been commonly adopted. As a result, all exper-
imental measurements of final-states containing isolated photons so far performed at the
LHC use fixed-cone isolation, whilst the majority of next-to-next-to-leading-order (NNLO)
QCD predictions [10–12] use smooth-cone isolation.

In [13] a compromise was introduced, called ‘hybrid-cone’ isolation. Formally a subset
of smooth-cone isolation, it restricts the profile function χ(r) to be constant above some
inner radius Rd, resulting in an annulus on which fixed-cone isolation is applied. If this con-
stant is chosen to match an experimental fixed-cone isolation cut, the artificial suppression
of the cross-section resulting from the use of smooth-cone rather than fixed-cone isolation
should be reduced. Imposing continuity of the profile function at the boundary Rd leads
to ‘matched-hybrid’ isolation, which was used in the photon-isolation study of [14].

Here we apply matched-hybrid isolation to a new NNLO QCD calculation of the pro-
duction of pairs of isolated prompt photons. The calculation of the NNLO corrections uses
antenna subtraction, making this the first such calculation with a local subtraction scheme,
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and avoiding the possible influence of isolation cuts on the power-corrections of qT- and
N -jettiness subtraction [15] used in prior NNLO calculations [10, 11, 16].

We find that relative to the standard smooth-cone parameters used in previous cal-
culations [10, 11, 16], matched-hybrid isolation gives a substantially larger cross-section,
though still without signs of violating perturbative unitarity at NLO. The localised effect
of the suppression of smooth-cone isolation on differential cross-sections is explored and
found to be connected kinematically to a similar, but opposing effect, resulting from the
conventional scale choice µR = µF = Mγγ . We explore the effect of making an alternative
choice, focusing on the average pT of the identified photons 〈pγT〉, and find that the resulting
prediction accurately describes the 8TeV ATLAS data [17].

2 Photon isolation

As outlined above, within fixed-cone isolation a photon is considered isolated if the total
hadronic transverse energy deposited within a fixed cone of radius R around photon i in
the (η, φ)-plane, Ehad

T (R), is smaller than some threshold:

Ehad
T (R) 6 Eiso

T (γi), (2.1)

where we allow the threshold to vary between photons and events, typically as an affine
function of the transverse energy of the photon EγiT ,

Eiso
T (γi) := Ethr.

T + εγE
γi
T . (2.2)

This threshold is set by experiment on a case-by-case basis, differing between studies of
different processes. The experimental cut applied to calorimeter cells is unfolded using
detector simulations to an approximately equivalent fiducial cut on simulated partons.
Motivated by experimental studies of diphoton production, we will consider εγ = 0.

Smooth-cone isolation [5] tightens this requirement. Rather than imposing a fixed
threshold on the total hadronic transverse energy deposited within the cone, it imposes a
threshold function on the radial profile of hadronic transverse energy deposited within the
cone, requiring that

Ehad
T (r) 6 Eiso

T (γi) χ(r;R) ∀r 6 R. (2.3)

The function χ(r) may be chosen freely subject to the requirement that it vetoes exactly-
collinear radiation, however soft, so that

lim
r→0

χ(r;R) = 0. (2.4)

It is typically additionally required to be continuous, monotonic, and such that χ(R;R) = 1
on the boundary of the cone. We use the original choice introduced in [5],

χ(r;R) =
( 1− cos r

1− cosR

)n
≡
(

sin 1
2r

sin 1
2R

)2n

. (2.5)
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For R 6 π
2 , this is approximately equal1 to the other profile function common in the

literature,

χ(r;R) =
(
r

R

)2n
. (2.6)

Fixed-cone isolation corresponds to the constant profile function χ(r) ≡ 1, which does
not satisfy eq. (2.4), and so is not a legitimate smooth-cone choice of χ. By permitting some
amount of collinear radiation, fixed-cone isolation leads to a non-zero contribution from
the fragmentation process, in contrast to smooth-cone profile functions which exclude it.

For any two isolation schemes with matching Eiso
T and R and profile functions χ1(r)

and χ2(r), if

χ1(0) = χ2(0) and χ1(r) 6 χ2(r) ∀r 6 R, (2.7)

it follows that the permitted phase-space for the former is a subset of that for the latter,
and so on physical grounds we expect that

dσ1 6 dσ2. (2.8)

Hybrid isolation [13] describes a family of profile functions which interpolate between
smooth-cone isolation with a given profile function, and fixed-cone isolation. It can be
formulated as smooth-cone isolation with the profile function

χhyb(r;Rd, R) =

E1 χ(r;Rd) r ∈ [0, Rd]
E2 r ∈ (Rd, R].

(2.9)

As in eq. (2.2), E1 and E2 are, in general, affine functions of the photon transverse momenta.
For E1 6 E2, this is equivalent to applying fixed-cone isolation on the cone r 6 R in
addition to smooth-cone isolation on an inner cone r 6 Rd. For E1 > E2, these two
formulations differ on the inner annulus r ∈ (Reff, Rd] on which χ(r;Rd) > E2/E1. The
latter formulation is then equivalent to a variant of the former, eq. (2.9), with a smaller
effective radius Reff < Rd. In the limit Rd → R, hybrid isolation reduces to smooth-cone
isolation with the profile function χ, whilst the pointwise limit as Rd → 0 corresponds to
the fixed-cone profile function, except at r = 0, where the former is 0 and the latter 1.

This point is where photonic and partonic radiation are exactly collinear. Fragmen-
tation in QCD is a strictly collinear phenomenon, so these different values of the profile
function at r = 0 correspond to the formal exclusion or inclusion of the fragmentation
contribution respectively. The quark-to-photon fragmentation function Dγ

q (z, µf ) contains
a divergent and negative NLO mass-factorisation term, which compensates for the diver-
gence that would otherwise arise from probing the quark-photon collinear limit, and so
yields a finite cross-section for fixed-cone isolation upon integration.

1This holds to high precision, since( 1− cos r
1− cosR

)n
=
(
r

R

)2n
(

1 + n

12
(
R2 − r2)+O

((
R

2

)4
))

.
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Figure 1. The matched-hybrid isolation profile function χhyb for n ∈
{ 1

2 , 1, 2
}
and several choices

of the inner cone radius, Rd (dashed). As Rd → 0 (dotted), the smooth-cone (solid) suppression of
the collinear singularity is retained, but the numerical deviation from the constant profile function
of fixed-cone isolation is diminished. For all values of Rd, exactly-collinear radiation is vetoed.

From eq. (2.8) and (2.9) we can deduce that the hybrid isolation cross-section grows
as Rd decreases. This is in accordance with the intuition that additional radiation is
permitted within the isolation cone. Because the fragmentation contribution is vetoed by
the value of the profile function at r = 0, the Rd parameter acts as the sole regulator of
the collinear quark-photon singularity, and we should expect the resulting dependence on
Rd to be logarithmic. It follows that there is some value of the parameter Rd for which
the hybrid cross-section and the fixed-cone cross-section must coincide, and the divergent
cross-section of vetoed radiation in the inner-cone numerically matches that of the missing
fragmentation counterterm.

2.1 Matched-hybrid isolation

Throughout we chiefly consider matched-hybrid isolation, where we impose continuity at
the boundary between the inner-cone and the outer annulus: E1 = E2. Other choices
are discontinuous at r = Rd, which is expected to lead to instabilities.2 In this scheme,
when making experimental predictions, once the inner-cone profile function χ is chosen, the
parameters Eiso

T and R are fixed by the fiducial cuts of the experiment. The only remaining
unphysical parameter is then Rd, the radius of the inner cone.

Since we are concerned with the physical criterion in eq. (2.8), we consider the hybrid-
isolation cross-section relative to the corresponding smooth-cone prediction,

∆σ (Rd) = σhybrid − σsmooth, (2.10)

using the profile function of eq. (2.5). We can consider ∆σ (Rd) as the physical cross-section
resulting from the presence of the generalised isolation measurement function

Θ
[
χhyb ({pi} ; Rd)− Ehad

T (R)
]
−Θ

[
χsmooth ({pi})− Ehad

T (R)
]
. (2.11)

2For matched-hybrid isolation, only the derivative χ′ is discontinuous at r = Rd. It is possible to define
more sophisticated piecewise schemes which are arbitrarily smooth at Rd, and non-piecewise smooth-cone
profile functions with similar properties to hybrid isolation, but we do not consider these alternatives
further here.
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Figure 2. The variation ∆σ (Rd) = σhybrid−σsmooth at NLO as a function of the inner-cone radius
Rd, for R = 0.4. All other parameters are kept constant. As expected, the gluon splitting gives rise
to a quadratic dependence, whilst the quark splitting gives rise to a logarithmic divergence arising
from the integrated collinear singularity.

in the integrand. This is zero for, and hence vetoes, events that are treated commonly by
the two isolation criteria, and, since χhyb(r;Rd, R) > χsmooth(r;R) selects those that are
vetoed under smooth-cone isolation but permitted under hybrid isolation. The Heaviside
step functions implementing the isolation criteria induce discontinuities in the resulting
distributions, which will be discussed further in section 2.2.

We begin by summarising the Rd-dependence of ∆σ (Rd), where other parameters are
fixed, so R and Ethr.

T are common to both profile functions. Where a gluon is emitted inside
the cone,

∆σ (Rd) ∼ n(R2 −R2
d) (2.12)

in accordance with the intuition that the additional cross-section allowed is proportional to
the area over which the gluon can additionally be emitted, which is the difference in areas
between the outer and the inner cone. Where a quark is emitted, the collinear behaviour
of the splitting function gives

∆σ (Rd) ∼ log R

Rd
. (2.13)

This behaviour is verified at NLO in figure 2. The dependence of the inner-smooth-cone
cross-section on its remaining isolation parameters is unchanged from the detailed descrip-
tion in [16], whilst the R-dependence of the outer cone is that of fixed-cone isolation as
described in [18].

The logR/Rd scaling of eq. (2.13) indicates that the cross-section diverges in the small-
inner-cone limit, as can be seen in figure 2, and as expected from the above discussion. This
is a known feature of narrow-cones in both smooth- and fixed-cone isolation [19]. It arises
because the partition of phase-space into a cone of radius R and its complement induces
logR contributions in both, which cancel in their sum. Any isolation procedure applied only
inside the photon cone changes the former but not the latter, leading to a miscancellation
of logarithms, the remainder of which will become large in the small-R limit.
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We must therefore be careful to choose a value of Rd that is large enough to regulate
the collinear singularity, but small enough to approximate the fixed-cone result better than
the smooth-cone value Rd = R. Ideally, this would be approximately equal to that at which
the compensation that was discussed above occurs, to reproduce the cross-section given by
fixed-cone isolation.

To determine the value of Rd at which this compensation occurs, in [14] we compared
NLO cross-sections and differential distributions obtained at fixed order with hybrid iso-
lation to those obtained using Diphox with fixed-cone isolation. Diphox [20] is a Monte
Carlo event generator implementing the NLO QCD corrections to diphoton production,
together with the single- and double-fragmentation contributions. We found that for the
ATLAS-motivated cuts Ethr.

T = 11 GeV, R = 0.4 and Rd = 0.1 the hybrid isolation result
was almost fully contained within the Diphox uncertainty band, except where the frag-
mentation contribution populated regions of phase-space that first enter the fixed-order
calculation at the subsequent order of perturbation theory.

At NLO the underlying kinematics restrict the relevance of photon isolation to a rel-
atively minor region of phase-space. The only part of the fixed-order NLO calculation
sensitive to the isolation parameters is the real emission, and within the real contribution,
the final state parton p1 may only enter the isolation cone of the second-hardest photon,
as they must together balance pγ1

T . The collinear invariant being regulated by the isolation
criterion is therefore

sγ2p1 ≈ E
γ2
T E1

T ∆R2
γ2p1 = Eγ2

T pγγT ∆R2
γ2p1 , (2.14)

where

pγγT = ‖pγ1
T + pγ2

T ‖ (2.15)

is the transverse momentum of the diphoton system, and the last equality is valid only for
three-particle final-states.

For any monotonic profile function χ, it follows from eq. (2.8) that the resulting iso-
lation criterion is at least as restrictive as fixed-cone isolation with the same boundary
condition, so the effect of isolation will be confined to pγγT = E1

T 6 Eiso
T (γ2) purely from

kinematic constraints.3 This implies that any differences between two isolation schemes
are only resolved at this order on the strip

pγ2
T ∈

[
max

{
p
γ2,cut
T ,

pγ1
T − Ethr.

T
1 + εγ

}
, pγ1

T

]
. (2.16)

For asymmetric photon cuts with a pcut
T -gap greater than Ethr.

T , this would exclude events
close to the threshold of the photon cuts from isolation dependence entirely, at this order.
For the more conventional case, the dependence of the NLO cross-section on the parameters
is dominated by events on the threshold of the cuts.

3As a consequence, for fixed radius R we would expect the constraints imposed by unitarity to force a
larger choice of Rd for more restrictive isolation thresholds Ethr.

T , and to permit a smaller choice for less
strict threshold energies.
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Figure 3. Isolation cone effects at NLO, showing the difference between matched-hybrid and
smooth-cone isolation ∆σ. The d∆σ/d∆Rγj distribution has regions of highly-local sensitivity to
Rd, whilst the d∆σ/d∆yγγ distribution is sensitive only through a small global normalisation. In
the first plot the jet cut is 1GeV; at this order all jets comprise a single parton. Higher values of
the jet cut increase the minimal value of ∆Rγj at which partons of that pT can be emitted and
not vetoed, with the minimum approximately R

√
pjT/E

iso
T , leading to steeper slopes to the left of

the peak.

In figure 3 and 4 we show a selection of differential cross-sections d∆σ(Rd)/dX for
a range of values for Rd to illustrate the distributional counterparts to figure 2. As in
figure 2, the cuts are chosen to match those used in the 8TeV ATLAS study, whilst the
theory parameter Rd is varied.

As can be seen in the first plot of figure 3, the characteristic kinematic configuration
of the events additionally allowed by hybrid isolation is very sensitive to the choice of Rd.
The peak at Rd arises because the difference between the smooth-cone and hybrid profile
functions is maximised at Rd. This leads to a localised sensitivity to the Rd parameter
in certain distributions. This exposure of the collinear singularity shown in figure 3 with
decreasing Rd illustrates the kinematics underlying the logarithmic behaviour of eq. (2.13),
and shows a gradual bias within the photon-cone towards increasingly collinear events as
the inner-cone is reduced in size. In other distributions such as d∆σ/d∆yγγ , also shown
in figure 3, the logarithmic behaviour manifests itself only as a global normalisation.

Further distributions in which the effect is localised are shown in figure 4 alongside
the corresponding smooth-cone distributions. These illustrate interesting features of the
isolated differential cross-sections at NLO. In the first figure, the d∆σ/dpγγT distribution
shows a discontinuity at pγγT = Eiso

T . The shape of this distribution is sensitive to the
parameters of hybrid isolation and the offset between asymmetric photon cuts. Here, the
peak occurs at the offset whilst the discontinuity occurs at E2, in the notation of eq. (2.9)
(including for non-matched isolation). If E2 were allowed to depend on pγ2

T this discontinu-
ity would be smoothed over an interval in pγγT , but would reappear in another distribution.
This arises directly from the boundary of the fixed-cone criterion in phase-space and will

– 8 –



J
H
E
P
0
1
(
2
0
2
1
)
1
0
8

be discussed further, including its consequences for higher-orders, in section 2.2.
The d∆σ/dpγ2

T distribution, and as a direct consequence, the d∆σ/dMγγ distribution,
show discontinuities, in the differential cross-section and its derivative respectively, at the
boundaries of the Born phase-space. The latter was analysed in [16]. The former arises
because real soft QCD radiation is kinematically restricted to arise only close to the back-
to-back configuration pγ2

T . pγ1
T , which is permitted by the isolation criteria by design, and

cannot cancel as anticipated against virtual poles outside the Born kinematics.4

These (unphysical) features arise commonly in both smooth-cone and fixed-cone iso-
lation. They are a direct consequence of the requirement that soft gluon radiation be
permitted, to allow the general cancellation of real and virtual singularities. Where the
virtual singularities are kinematically prohibited, but real soft singularities are not, a mis-
cancellation arises.

Since the behaviour of the isolated cross-section at NLO is highly sensitive to the
unphysical behaviour in these regions, it is a priori unclear to what extent the variation of
isolation parameters based on NLO behaviour will lead to conclusions that hold at higher
orders. Running enough calculations at NNLO with sufficient resolution to investigate the
Rd-dependence of distributions in the regions of non-analyticity shown in figure 4 would be
prohibitively computationally expensive. In section 2.3 we therefore compare smooth-cone
isolation to matched-hybrid isolation with fixed Rd = 0.1.

To illustrate the overall dependence of the NNLO cross-section on Rd, in figure 5 we
show the NNLO counterpart to figure 2. The dependence on Rd is again dominated by
the qg channel. Overall, the magnitude of the effect is similar to that at NLO despite
the contribution from events outside the strip of eq. (2.16), whilst the shape is no longer
logarithmic. Channels in which a parton is permitted to enter the photon cone for the first
time at NNLO have the same Rd-dependence shown in figure 2. This suggests that the
procedure used to justify the choice Rd = 0.1 above, by comparison to the fragmentation
calculation, should remain valid at NNLO.

The Rd-dependence illustrated in figure 2 and 5 can be used to estimate the uncer-
tainty resulting from the choice of Rd = 0.1. This uncertainty does not arise directly from
hybrid isolation, but rather from the inherent uncertainty in the freedom to choose a pro-
file function within generalised smooth-cone isolation. The hybrid-isolation profile function
parametrises the local regulation of the collinear singularity directly, allowing this uncer-
tainty to emerge from parameter variation, unconstrained by the properties of the profile
function far from the collinear point r = 0. Twofold variation in Rd about Rd = 0.1 gives
an uncertainty band of approximately 1000-1500fb for both NLO and NNLO, smaller than
that induced by scale variation at the corresponding order and so of comparable magnitude
to the general theory uncertainty we assign to the calculation.

The natural comparison of these isolation uncertainties is with the fragmentation
uncertainty that would arise within a fragmentation-inclusive calculation in which the
collinear singularity is absorbed via a mass factorisation counterterm. This will eliminate

4The kinematic prohibition of these soft emissions is the underlying mechanism for the unphysical
dependence of σNLO on the pγT cuts when moving from asymmetric to symmetric cuts, first remarked upon
in the context of jet production in [21]. This can clearly be seen from the lower-right plot in figure 4.
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Figure 4. Detailed isolation cone effects at NLO, showing the difference between matched-hybrid
and smooth-cone isolation ∆σ. The absolute predictions for smooth-cone isolation are shown for
reference. At this order, isolation criteria only apply at all in the limited region of phase-space
defined by pγγT 6 Eiso

T . Here, as for the ATLAS 8TeV data considered throughout, Eiso
T = 11 GeV.

the Rd-dependence of the hybrid-isolation predictions, but at the expense of introducing a
sensitivity to photon fragmentation functions, which are only loosely constrained by current
experimental data. Such a comparison cannot yet be made at NNLO, and must be post-
poned until such a calculation has been completed. As at NLO, we expect that the NNLO
calculation using hybrid isolation should coincide with the fragmentation-inclusive calcu-
lation at the same order for some finite positive value of Rd, and its associated uncertainty
can be assessed by a variation around this value.
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Figure 5. The variation ∆σ (Rd) = σhybrid − σsmooth at NNLO as a function of the inner-cone
radius Rd, for R = 0.4. All other parameters are kept constant. The two channels not shown, qq̄
and gg, have comparable shape (but smaller magnitude) to qg and qq respectively.

In practice we limit the exposure of the hybrid-isolation cross-section to the Rd → 0
limit through the ‘perturbative unitarity’ heuristic argument outlined above, using the
constraints imposed by fragmentation at NLO. Since the Rd-dependence at NNLO seems
to be dominated by the NLO real-radiation effects, we can reasonably expect this heuristic
argument to limit the possible size of deviation between fragmentation-inclusive and hybrid-
cone isolated cross-sections just as it does at NLO, and to approximate the uncertainty
inherent to the limited knowledge on the fragmentation process.

2.2 Infrared sensitivity

In general, any parton-level cone-based isolation criterion of the generic form eq. (2.3)
amounts to a veto implemented through a measurement function containing factors of
the form ∏

γ

n∏
i=1
Iγi, (2.17)

where the index i ranges over final-state partons, and

Iγi = Θ
[
Eiso

T (γ) χ (min (∆Rγi, R) ;R)−
n∑
j=1

EjT Θ [min (∆Rγi, R)−∆Rγj ]
]

(2.18)

(using the Θ(0) = 1 convention). This is zero, and hence vetoes, events in which the
accumulated partonic energy in the cone exceeds the profile function.

It can readily be seen from this formalism that the Heaviside step function implies
a discontinuity in the integrand at the bounding surface on which the isolation criteria
inequalities are exactly saturated. This is an intrinsic property of veto-based isolation
techniques. At NLO, where there is a single parton that can only enter the photon cone of
the softer photon, the consequences of this become clearer:

Iγ1 = Θ
[
Eiso

T (γ) χ (min (∆Rγ1, R) ;R)− E1
T Θ [min (∆Rγ1, R)−∆Rγ1]

]
(2.19)

That is, we expect to have introduced a step-like discontinuity inside the physical region at

pγγT ≡ E
1
T = Eiso

T (γ) χ (∆Rγ1;R) ∀∆Rγ1 6 R (2.20)

– 11 –



J
H
E
P
0
1
(
2
0
2
1
)
1
0
8

where the integrand is zero for pγγT > Eiso
T (γ) χ (∆Rγ1;R) and non-zero below it, through

the formulation of the isolation criterion. This is precisely the source of the discontinuity
visible in figure 4. For the complementary region ∆Rγ1 > R where the parton is outside
the cone, there is no discontinuity in the integrand: the measurement function eq. (2.19)
is never zero, and so the isolated and unisolated integrands are identical everywhere. Con-
versely, examining instead the region defined by pγγT > Eiso

T (γ) we see the same step-like
discontinuity arising at ∆Rγ1 = R, the boundary of the isolation cone.

Such discontinuities within the physical region were first described in general in [22].
For diphoton production they first arise in the NLO-plus-fragmentation calculation and
were remarked upon in [20], but have not previously been identified in the NNLO direct
production calculation. They represent a localised breakdown of perturbation theory in
which a step-like discontinuity leads at higher orders to infrared Sudakov singularities.
These arise from the disruption of the expected cancellation between soft real gluons and
the corresponding virtual corrections, since isolation vetoes a subset of the former without
affecting the latter. Resummation of the generated logarithms is then expected to restore
continuity of the distribution, resulting in a characteristic ‘Sudakov shoulder’. Following
the logic outlined in [22], the step-like isolation behaviour shown in figure 4 leads to a
double-logarithmic divergence in the region pγγT < Ethr.

T ,

∆±
pγγT =Ethr.

T
∼ − ln2

1−
(
pγγT
Ethr.

T

)2
 . (2.21)

This behaviour does indeed arise in the NNLO dσ/dpγγT distribution as expected. It
is shown alongside the corresponding NLO discontinuity in figure 6, together with the
corresponding (continuous) smooth-cone distribution. The distinctive double-singularity
shape of the hybrid-isolation distribution is as anticipated in [22], and represents a clear
deviation from the expected behaviour of the hybrid-isolation distribution on physical
grounds from eq. (2.8).

There is an additional Sudakov critical point arising from the boundary of the Born
kinematic region at pγγT = 0 which would also be expected to require resummation to gen-
erate reliable predictions. The practical effect of this additional singularity at small pγγT
is therefore to revise upwards the lower boundary of the region of the pγγT -distribution at
which we might expect NNLO calculations to accurately describe the data. For current
experimental binnings, this effect is negligible. The singularities are integrable, and the
positive and negative logarithmic contributions typically cancel against each other in a
single bin that contains the critical point. However, as the target precision of both experi-
mental data and theoretical predictions increases, these effects may not remain negligible,
especially if a bin-edge coincides with the Sudakov critical point.

We briefly remark on the second discontinuity implied by eq. (2.19), in the ∆Rγj
distribution. The NLO isolation function eq. (2.19) implies a discontinuity in ∆Rγ1 at the
boundary of the isolation cone. At NLO, where each identified jet comprises a single parton,
this would lead to a discontinuity in a ∆Rγ2j1 distribution, were the jet definition set small
enough to allow partons to be simultaneously soft enough to be permitted inside the cone by
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isolation, and hard enough to be identified as a jet. The obvious tension between these two
conditions makes this a theoretical, rather than a phenomenological, concern. At NNLO,
however, the possibility arises for partons soft enough to be permitted inside the cone by
the isolation criteria to be combined with harder partons outside the cone, resulting in a
jet with ∆Rγj > R. The underlying discontinuity at one order and the resulting Sudakov
singularities at the next order would then be displaced relative to one another, and would
resemble a new phenomenon of unclear origin. These boundary effects can be expected to
lead to unphysical results in any fixed-order prediction of photon-jet separation.

At NLO, the nature of the isolation-induced discontinuity shown in figure 4 is specific
to hybrid- and fixed-cone isolation with εγ = 0. The surface defined in eq. (2.19) is a
surface of constant pγγT , and hence the discontinuity introduced into the integrand remains
in the dσ/dpγγT distribution, and at higher orders gives rise to a Sudakov critical point.
More generally, for εγ = 0 a discontinuity in the pγγT -distribution arises from any interval
on which χ(r;R) is constant.

The discontinuity is fully regulated in smooth-cone isolation in NLO kinematics, since
the boundary in pγγT at which the discontinuity would arise is no longer a constant Ethr.

T , but
a monotonic function of r, and the threshold of permitted events is spread evenly across pγγT
rather than discretely at a boundary. This masks the IR critical point and gives a smooth
pγγT distribution. However, it instead introduces one into the pγγT /χ(r) distribution.

Within hybrid isolation, continuity can be restored to the pγγT -distribution by, for exam-
ple, introducing a small non-zero εγ . This amounts to a rotation of the boundary surface,
and moves the discontinuity from the pγγT -distribution into the (pγγT − εγp

γ2
T ) distribution.

The resulting Sudakov singularities in the latter distribution then manifest themselves in
the pγγT distribution as an unphysical bump resulting from the remainder of the cancellation
of positive and negative Sudakov logarithms in each bin.

These discontinuities, and the resulting singularities, are therefore a necessary conse-
quence of cone-based isolation, and can only be moved between distributions, rather than
avoided entirely. The effect of the logarithms is not confined to the distribution that is
discontinuous at a lower order, but can leak into correlated distributions, where it may be
harder to identify.

In general, any observable whose definition is constructed to align with the axis of
the step-function will exhibit this threshold behaviour. Where this coincides at a lower
order with an observable of physical interest, it is likely to lead to infrared sensitivity. For
sufficiently wide histogram bins (including those used for the ATLAS 8 TeV data), the
integrable singularities are masked, whilst binnings that combine both critical points, at
pγγT = 0 and pγγT = Ethr.

T into a single bin disguise both Sudakov critical points entirely, as
in figure 13 of [16].

Given this, it appears that the phenomenological significance of these singularities
is limited, provided that deviations from fixed-order predictions in these regions are not
misunderstood to have physical significance. This is easier to recognise in distributions
such as pγγT that are directly constrained by photon isolation than it might be where the
analogous observable is not of direct physical interest. This is the case, for example, for
the photon-plus-jet process, where different experimental cuts and attention to different
observables change the relevance of the expected non-analytic behaviour of pγjT .
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Figure 6. Discontinuity in the dσ/dpγγT distribution arising from hybrid isolation at NLO with
Ethr.

T = 11GeV, and the resulting Sudakov singularity at NNLO.

However, for colourless final-states including the diphoton final state, the differential
cross section with respect to the transverse momentum of the identified final state has
particular significance, as it is relied upon by alternative subtraction schemes such as qT-
or N -jettiness subtraction. It is clear from figure 6 that the pγγT -dependence of the cross-
section at small pγγT is sensitive to the details of the isolation used and not universal,
which would explain the absence of a plateau in the rcut-dependence plots for diphoton
production using qT-subtraction with Matrix in [23]. These power corrections have been
explored analytically in [15], where it was found that for smooth-cone isolation, they grow
in magnitude as

(
Q/Eiso

T
)1/n, with a proposal for how they could be accounted for. As

a result, the phenomenological significance of these power corrections should grow as we
move to higher centre-of-mass energies. It remains to be seen whether they will pose a
meaningful problem for these alternative subtraction schemes.

2.3 Comparison of hybrid and smooth-cone distributions

We now outline the key differences of phenomenological significance between hybrid and
smooth-cone isolation, as applied to a selection of differential cross-sections. We use a setup
corresponding to the ATLAS 8TeV data [17], which we will return to in section 4.1, and
plot data for those distributions where it exists for later reference. The relevant fiducial
cuts are:

pγ1
T > 40 GeV , pγ2

T > 30 GeV , (2.22a)
∆Rγγ > 0.4 , |yγ | ∈ [0, 1.37) ∪ (1.56, 2.37) , (2.22b)

Eiso,part
T < 11 GeV within cone ∆R 6 0.4. (2.22c)

We choose Rd = 0.1 for hybrid isolation, as outlined in section 2.1, and smooth-cone
isolation parameters n = 1 and Eiso

T = 11 GeV for both χ and χhyb. Here and throughout
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(a) ∆Rγγ at NLO and NNLO using matched-hybrid and smooth-cone isolation.
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(b) The induced effects at low ∆Rγγ on Mγγ .

Figure 7. dσ/∆Rγγ and dσ/Mγγ at NLO and NNLO using matched-hybrid and smooth-cone
isolation. The deviations for small Mγγ and ∆Rγγ are related, as events with small Mγγ can only
pass the photon cuts if they have sufficiently small ∆Rγγ . For example, for these cuts, Mγγ 6
27 GeV requires ∆Rγγ 6 0.8.

we use the NNPDF 3.1 parton distribution functions [24]. The QED coupling constant α
is set at αem(0) = 1/137.

We first explore the effect of moving from smooth-cone to hybrid isolation on differen-
tial cross-sections chosen to illustrate the underlying features.

In figure 7 we show dσ/d∆Rγγ and dσ/dMγγ . The relative enhancement is greatest at
low Mγγ , whilst the absolute enhancement d∆σ/dMγγ follows the shape of the underlying
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Figure 8. The absolute difference between the hybrid- and smooth-cone isolation differential cross-
sections dσ/dMγγ and dσ/dpγγT for Rd = 0.1, 0.2, 0.3, for diphoton production in association with
an anti-kT jet of pT > 25 GeV, with R = 0.4.

distribution, with the difference largest at the Born threshold of Mγγ = 80 GeV. Broadly
these reflect the two dominant configurations in which soft partonic emissions can enter
into isolation cones: either the photons are balanced against each other (Born-like), or the
diphoton system is relatively collimated and balanced against a jet. Accordingly, config-
urations with the explicit requirement of an extra jet see a further peak in d∆σ/dMγγ

at Mγγ ≈ pjcut
T corresponding to ∆Rγγ ≈ ∆Rcut

γγ , as shown in figure 8. In the pjcut
T → 0

limit, this is effectively truncated by the cuts on ∆Rγγ , which is the configuration corre-
sponding to the small ∆Rγγ effects seen in figure 7. As the jet cut increases this peak will
become dominant.

The requirement of a jet imposes a lower bound on pγγT and so removes the Sudakov
instabilities of the inclusive distribution that were discussed in section 2.2. The two peaks
in the two plots correspond to the same physics in the opposite order, with the peak at
pγγT ≈ pjcut

T corresponding to the configuration in which the photons and jet are balanced,
and the second peak at pγγT ≈ 75 GeV corresponding to the threshold at 70GeV, the smallest
value that can be generated within the cuts for every value of ∆φγγ . As discussed in [16, 25],
below this threshold the photon cuts imply an implicit minimum for ∆φγγ , restricting the
available phase-space. Contributions from this peak give rise to a distinctive cusp in both
the experimental and the NNLO distributions which, corresponding to the small-∆Rγγ
region, is especially sensitive to isolation. Smooth-cone isolation suppresses the kinematic
peak in this region, which is restored by the less restrictive hybrid isolation profile function.

Finally, for completeness, in figure 9 we consider four further differential cross-sections
of interest. The pγ1

T and pγ2
T distributions are affected most substantially at the boundary

of the photon cuts, as expected from figure 4, but are elsewhere mostly unchanged by
modifications of the cuts. These regions dominate the cross-section, and explain the large
Rd-sensitivity of figure 5. Whether the correction here is purely physical or, particularly
for the pγ2

T distribution, arises from unphysical behaviour at the boundary of the Born
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Figure 9. The NNLO distributions dσ/dpγ1
T , dσ/dpγ2

T , dσ/dpj1
T and dσ/d∆yγγ for hybrid-cone

and smooth-cone isolation respectively, and the ratio between the smooth-cone and the hybrid
distributions. The defining jet requirement for the third plot is of an anti-kT jet with pjT > 25GeV
and R = 0.4.

phase-space, is unclear. As at NLO, for the rapidity separation ∆yγγ the additional events
permitted by hybrid isolation amount to an overall constant factor in d∆σ/d∆yγγ .

In this section we have compared smooth-cone to hybrid isolation at NNLO for a range
of differential cross-sections of phenomenological significance. The effect of interchanging
them, which indicates the uncertainty associated to the theoretical implementation of the
isolation criteria, is substantial and leads to effects of approximately 10% in uncorrelated
distributions, and localised effects of up to 40% in distributions highly sensitive to the
specifics of the isolation criteria. Uncertainties of this magnitude are compatible with the
size of the scale-uncertainty band, and therefore represent a substantial theory uncertainty
that should be accounted for.

We will return to consider isolation effects in tandem with scale choice in section 4.
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3 Scale choice

A further uncertainty in the theoretical calculation arises from the choice of functional form
µ0 for the renormalisation and factorisation scales. The conventional choice is µ0 = Mγγ ,
the invariant mass of the diphoton system, with the magnitude of missing higher-order-
uncertainties (MHOUs) estimated through the envelope of the variation µR,F = ξR,F · µ0

for ξR, ξF ∈
{

1
2 , 1, 2

}
.

Where two a priori reasonable choices of µ0 themselves differ by a factor greater than
2, either locally or globally, this procedure fails to span the uncertainty of the calculation
even at the known orders. Any estimate of MHOUs is therefore potentially unreliable.

We begin by briefly reviewing the common scale choices for related processes. In
section 3.2 and 3.3 we then look at the effects of moving between two choices motivated by
these, µ0 = Mγγ and µ0 = 〈pγT〉, the arithmetic mean of the photon transverse momenta of
the two required photons. Finally, in section 3.4 we generalise to a wider class of possible
scale choices.

3.1 Scale choice for photon processes

We briefly summarise the scale choices used in the literature for this and related pro-
cesses. In [20], the first NLO study of diphoton production with fragmentation (Diphox),
the authors used µ0 = 11

20 〈p
γ
T〉 for fixed-target data, and µ0 = Mγγ as the central scale

for LHC predictions. This scale is also used for NNLO calculations making predictions
for or comparisons with data in [10, 11, 16] and the experimental papers applying them
to measurements at the Tevatron [26, 27] and the LHC [17, 28, 29]. In [16] the scale
µ0 = Mγγ

T =
√
M2
γγ + (pγγT )2 is additionally considered, finding that the results differ from

those for Mγγ only in regions of distributions that correspond to the presence of a hard,
high-pT jet.

For an inclusive single photon and a single photon in association with a jet, pγT is used
in the NNLO calculations of [30, 31]. In the context of PDF fits, it was found in [32] that
direct photon production data with the former NNLO calculation and scale pγT could be
incorporated into the NNPDF 3.1 global fit without exhibiting tensions with other data.

For triphoton production, Mγγγ is used for the MCFM NLO calculation in [33], and
1
4HT = 3

4 〈p
γ
T〉 and

1
2HT = 3

2 〈p
γ
T〉 are both found to be in agreement with data in the

NNLO calculation of [12].
Finally, we note that the closest kinematically-related process whose measurements

were used in the NNPDF 3.1 fit is that of single-inclusive jets, for which the jet pT was
used as the central scale. A more recent study of the scale-choice for single-inclusive jet
cross-sections [34] used the central choice ĤT, the scalar sum of the transverse momenta
of all partons in the event.

This illustrates that the conventional choice for diphoton production of µ0 = Mγγ is
somewhat atypical among related processes. Its main advantage is for Higgs processes or
through the analogy with dilepton final states arising from heavy-boson decay. For such
processes the invariant mass of the conditioned-upon two-particle final-state particles gives
the imputed invariant mass of the virtual boson. For QCD photon production, however,
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there is no particle to which this invariant mass is expected to correspond, and no QCD
vertex with which it can be associated. To explore the significance of this convention we
therefore choose to compare µ0 = Mγγ against alternatives below, focusing on µ0 = 〈pγT〉.

3.2 Perturbative convergence

We first consider the perturbative convergence of the cross-section. In figure 10 we show
the cross-section and K-factors at NLO and NNLO for a number of choices of dynamic
scale, as well as the scale evolution calculated from the renormalisation group equations.

The NLO K-factors are consistently large due to the opening of the qg channel, and
vary according to its considerable dependence on the scale choice. The K-factor for the qq̄
channel alone is approximately 1.5. The cross-sections for dynamic scale choices are largely
consistent with the fixed-scale calculation corresponding to their mean value, suggesting
the reweighting of phase-space by the dynamism of the dynamic central scales has a limited
effect on the total cross-section. At NNLO, theK-factor is still considerable (approximately
1.4), due to sizeable NLO corrections in the qg channel (K-factor ~1.3), NNLO corrections
in the qq̄ channel (~1.2), and the opening of the gg and qq′ channels, but is stable for all
the choices of scales considered.

Overall, as expected from the running of αs, dynamic scales which range over smaller
values lead to larger predictions than those with larger values. Purely in terms of the dis-
tribution of their magnitude, the scales 〈pγT〉 and Mγγ represent the two extremes between
which other reasonable dynamic scales are likely to fall.

Despite the stability of the NNLO-to-NLO K-factor across these choices of scales, it
is clear from the gradient of the grey band that the scale-dependence remains significant.
The use of a dynamic rather than a fixed scale can be seen to bring the scales into closer
agreement than would be expected from their central values alone.

3.3 Kinematic effects

We now consider the kinematics of the two scales Mγγ and 〈pγT〉, focusing on regions of
phase-space in which we expect the ratio Mγγ/〈pγT〉 to become large (or small) and poten-
tially lead to discrepancies arising from large logarithms of ratios of the scales. Although
we focus on the diphoton context, including the ATLAS cuts, the underlying kinematic
properties are universal.

In the Born kinematics, 〈pγT〉 = pγ1
T = pγ2

T and

Mγγ = 2 〈pγT〉 cosh
(1

2∆yγγ
)
> 2 〈pγT〉 . (3.1)

The fiducial cuts on rapidity separation restrict |∆yγγ | 6 4.74 and hence in the Born
kinematics,

2 〈pγT〉 6Mγγ 6 10.8 〈pγT〉 . (3.2)

Thus already at leading order, the two scales differ by at least the factor of 2 used
in the conventional renormalisation and factorisation scale variation. We can therefore
anticipate there to be regions of differential distributions in which the scale uncertainty
bands around the two choices of µ0 do not overlap.
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Figure 10. Scale dependence of the cross-section. Each cross-section associated with a dynamical
scale µ0 is plotted against its mean, 〈µ0〉. The x-error bars indicate the lower- and upper-quartiles
of the scale-variable distribution, calculated from the binned data. The scale bands are the scale
uncertainties associated with the usual 7-point scale variation around the central scale. The grey
bands give the cross-section for the fixed scales µR, µF specified, calculated from the renormalisation
group equations.

The exponential behaviour of the scale Mγγ at high rapidity separations persists to all
orders, with the general expression

Mγγ =
√

2pγ1
T p

γ2
T (cosh ∆yγγ − cos ∆φγγ). (3.3)

At higher orders, Mγγ 6 〈pγT〉 becomes possible. Mγγ is bounded below only as a result of
the photon separation cut ∆Rγγ > 0.4, which restricts

Mγγ > 2
√
pγ1

T p
γ2
T sin

(1
2∆Rcut

γγ

)
> 13.76 GeV (3.4)

for the ATLAS cuts described in eq. (2.22). Without this cut, which is set to be equal
to the isolation cone radius by experiment specifically to exclude each photon from the
isolation cone of the other, Mγγ would in principle be permitted within the calculation to
get arbitrarily small. Thus for fixed pγ1

T and pγ2
T (and hence fixed 〈pγT〉), Mγγ can vary over

a factor of approximately 25:

0.397 6
Mγγ√
pγ1

T p
γ2
T

6 10.8, (3.5)
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Figure 11. Ratio of scale variables. As phase-space constraints are lifted by the emission of
additional partons, large ratios of scales become possible.

with the size of this factor entirely dependent on cuts chosen for primarily experimental
reasons. Were the photon-separation cut allowed to become smaller (e.g. to ∆Rγγ > 0.2),
or the maximum rapidity separation allowed to grow (e.g. from 4.74 to 6), this ratio would
span two orders of magnitude.

To illustrate the range of values taken by the ratioMγγ/〈pγT〉 we show the corresponding
normalised distribution at LO, NLO and NNLO in figure 11. We see that the modal value
for the ratio is 2, and that the regions where the logarithm of the ratio will be large are
suppressed in their contribution to the cross-section, and predominantly arise from the
NNLO contribution as additional partonic radiation allows the kinematic configuration to
depart further from the Born.

The distortive effect of the scale choice on differential cross-sections depends substan-
tially on the order of the strong coupling αs, through the renormalisation group equations.
This is illustrated in figure 12. The dσ/d∆yγγ distribution exposes the exponential be-
haviour remarked upon in eq. (3.3). At leading-order α0

s , the calculation is independent of
µR, and so the dependence is only on µF through the PDFs. The dependence is mild: the
results for the scale choice µ0 = Mγγ are modestly larger than those for µ0 = 〈pγT〉, with
the deviation largest for ∆yγγ = 0 where Mγγ = 2 〈pγT〉 exactly, due to eq. (3.1), and as
can be seen through the coincidence of the scale bands of one scale with the central scale
of the other.

Additional powers of the coupling constant αs reverse that hierarchy, due to the mono-
tonicity of the running of the coupling that ensures αs(µ1) > αs(µ2) for µ1 6 µ2. Thus in
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the regions of large rapidity-separation, the µ0 = Mγγ predictions are suppressed relative
to those for µ0 = 〈pγT〉 by up to 30%.

In the extremes of the distribution, this is driven by the constructive interference of
factorisation- and renormalisation-scale variation, in the sense that larger µF and larger
µR both act to suppress the result. The substantial correlation between ∆yγγ and Mγγ

in these bins leads to an implicit cut on Mγγ in each bin, which leads to artificially small
scale-uncertainty bands for the µ0 = Mγγ result compared to variation over an inclusive
dynamical scale variable. This might lead to the conclusion that the µ0 = Mγγ distributions
display improved perturbative convergence due to the narrower scale bands, when it is in
fact an artefact of correlation of the scale with the binned observable, leading to a restricted
domain for the scale variation procedure.

The behaviour of the dσ/d∆Rγγ distribution at low ∆Rγγ shows exactly the inverse be-
haviour: small values of the ratio Mγγ/〈pγT〉 lead to an enhanced distribution. As discussed
in section 2.3, the low-Mγγ distribution corresponds exactly to small values of ∆Rγγ , as a
result of the cuts on photon transverse momenta. This accounts for the common behaviour
between the bottom two plots. For an event in the lowest Mγγ-bin, the NNLO contribu-
tions to the cross-section with the scale µ0 = Mγγ are weighted relative to the µ0 = 〈pγT〉
contribution with a factor proportional to the ratio of α2

s evaluated at the two scales, which
is imperfectly compensated by the corresponding dependence in the real-virtual matrix el-
ements. This gives rise to the extreme ∼ 30% deviations between the scale choices in this
region; the factorisation-scale dependence is negligible. Since the lower bound on Mγγ is
set by the experimental ∆Rγγ and pγT cuts rather than any theory considerations, smaller
values of these cuts would lead to still greater distortions between the scale choices. Note
that this is in contrast to the problem of scale choices for the dijet process, in which scale
choices Mjj and 〈pjT〉 differ substantially at NLO but less so at NNLO [34].

3.4 Alternative scale functional forms

We remark on the elements of the above discussion which carry over to scale choices with
functional forms other than µ0 = Mγγ and µ0 = 〈pγT〉. Popular candidates commonly found
in studies of other processes typically involve a weighted average, mixing four-momentum-
invariant-type observables with transverse-plane observables, schematically of the form

µ0 =
(
αM r

γγ + βf ({pT,i})r
) 1
r (3.6)

where common choices for f include pγγT , the transverse momentum of the diphoton system,
or the total transverse momentum of all partons, all jets, or both photons. A variety of
functional forms of this type were considered in [35] for the production of a photon pair in
association with up to three identified jets.

Functional forms containing Mγγ , i.e. with α 6= 0, are dominated by the exponential
function of rapidity separation in the (sufficiently) large rapidity-separation region dis-
cussed above, and so behave like Mγγ there. The results in this region therefore lie within
the envelope bounded by the scale variation µ ∈

{
1
2Mγγ , 2Mγγ

}
. Of particular importance
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Figure 12. Order-by-order comparison of the difference between the scale choice µ0 = Mγγ and
µ0 = 〈pγT〉. Leading order here means α0

s , so the counterbalancing effects of the PDFs and the
running of αs can be deduced.
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is the choice

µ0 = MT,γγ =
√
M2
γγ + (pγγT )2

=
√

(pγ1
T )2 + (pγ2

T )2 + 2pγ1
T p

γ2
T cosh ∆yγγ (3.7)

which was considered in [16] and shows identical behaviour in this limit. In addition, the
scales H ′T, Ĥ ′T,

√
Σ2 and

√
Σ̂2 that were investigated for diphoton production in associ-

ation with up to three jets in [35] all have similar behaviour, as a consequence of their
dependence on Mγγ .

From a physical perspective, the behaviour in this limit represents the scale ambiguity
between transverse-plane and four-momentum observables. For central final-states, both
classes of observable are of the same order of magnitude and induce a similar ordering of
events by scale. For events with large rapidity separation, the projection onto the trans-
verse plane dramatically changes the apparent energy scale of the event. In the extremes
of rapidity separation we enter the two-large-scales regime, in which resummation or other
approaches may become relevant to correct for large logarithms of the form ln

(
ŝ/E2

T
)
. It

is possible that compensating behaviour partially accounting for these logarithms would
arise in the parton distribution functions if one or the other type of scale was used consis-
tently in fits.

The second region discussed above, of small ∆Rγγ , arises as a direct consequence of
the specific form of the angular factor (cosh ∆yγγ − cos ∆φγγ) in Mγγ , which reduces to
∆Rγγ in this limit. As a result, modifying Mγγ by any offset function f with a non-zero
limit as ∆Rγγ → 0 rectifies the problematic behaviour. This is the case for MT,γγ in
eq. (3.7) above, and all other scales considered with non-zero β. Whilst candidates for f
with similar asymptotic behaviour toMγγ do exist (e.g. f = pγ1

T p
γ2
T ∆Rγγ), they do not arise

naturally from a consideration of the scale of the process. From a physical perspective,
problematic behaviour in this region can be explained as the failure of the scale Mγγ to
capture the natural scale of the underlying process, in which the collimated diphoton pair
recoils against a hard jet. The scale variable vanishes as the two photons become collinear,
restricted only by the experimental cut, even as the event maps onto a photon-plus-jet
event of characteristic scale pγT ∼ pjT. This leads to exaggerated contributions from αs
which are not compensated by the real-virtual matrix elements.

We can understand this substantial exposure as follows. The diphoton final-state is a
two-particle final-state, so the Born-level kinematics are highly restricted; it is colourless, so
only the qq̄-channel is fully NNLO, and there is no resonant propagator, so the cross-section
is not dominated by a single modal value of the final-state invariant mass. It might therefore
be expected that other final-states are unlikely to yield similar sensitivities. Nevertheless,
with the same cuts, the same ratios of scales would arise for, e.g., the Z → 2` process, and
it may be worth investigating their impact further.

4 Combined effect of isolation and scale variation

Finally we illustrate the combined effect of the simultaneous variation of scale and isola-
tion choice on the distributions. We have previously seen in figure 7 that the region of
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Figure 13. Combined ratio plots for four-way scales and isolation comparison, at NNLO (ratio to
µF = µR = 〈pγT〉 with hybrid isolation).

phase-space most affected by the difference between smooth-cone and hybrid isolation is
that in which ∆Rγγ is small, and that the same region is highly sensitive to the scale
choice, growing starkly with the running coupling relative to a prediction using a scale
independent of ∆Rγγ .

We therefore examine the relative size of these competing effects in figure 13. In the top
panel, suppression of the cross-section for smooth-cone isolation as ∆Rγγ → 0 competes
with the enhancement from the scale Mγγ to leave the ratio almost flat. As a result, for
this specific combination of isolation procedure and scale choice, the competing effects of
each choice shown in the lower two panels are disguised, leaving distributions that differ
by an overall normalisation.

Away from this region, which is the region not populated by the Born kinematics, the
ratio is stable.

4.1 Comparison to ATLAS data: four-way comparison

In this section we compare the four combinations of choices for isolation and scale to
ATLAS 8TeV data [17], with the cuts of eq. (2.22). As elsewhere, for both smooth-cone
and (matched) hybrid isolation we use a cone of radius 0.4 and a threshold Ethr.

T = 11 GeV,
whilst for matched-hybrid isolation we use inner-cone radius Rd = 0.1.

We begin in figure 14 with the two fully-NNLO distributions dσ/dMγγ and
dσ/d

∣∣∣cos θ∗η
∣∣∣. The features highlighted above can now be seen to dramatically improve

the overall agreement of the prediction with the data.
We consider first theMγγ distribution. The first panel shows that the overall prediction

for the conventional scale choice and isolation procedure, µ0 = Mγγ with smooth-cone
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isolation, consistently underestimates the data by about 20%, except in the largest Mγγ

bins. Agreement within the scale uncertainty band of the NNLO prediction occurs only at
the extremes of the distribution, in the lowest and highest Mγγ bins.

The second panel shows that, in the low-Mγγ region, the agreement observed in the first
panel is a direct consequence of the low-Mγγ enhancement for µ0 = Mγγ outlined previously.
Without it, the suppression resulting from smooth-cone isolation prevents agreement in this
region. Conversely, the third panel shows that without the additional suppressive behaviour
of smooth-cone isolation on the low-Mγγ prediction, it grows substantially relative to the
data, which does not follow the same low-Mγγ behaviour.

Comparing the first and third panels, we see that with µ0 = Mγγ , moving from smooth-
cone to hybrid isolation leads to a prediction in better agreement with the data, though
still not consistently within the scale uncertainties of the theory calculation. We also see
that with the scale choice Mγγ , and without the suppression due to smooth-cone isolation,
the low-Mγγ behaviour arising from the scale choice is untamed, and leads to a growing
deviation between theory and data as Mγγ decreases.

The last panel shows that without either the enhancement due to µ0 = Mγγ for small
Mγγ , or the suppression in the same region due to smooth-cone isolation for small ∆Rγγ ,
we see agreement in this region between the theory prediction and the data. The combined
effects on the overall normalisation of more permissive isolation and of the alternative
scale choice µ0 = 〈pγT〉 correct the 20% suppression throughout the distribution, resulting
in theory predictions and experimental measurements largely agreeing within the scale
uncertainty bands throughout the distribution, except in the highest Mγγ bin where we
might expect missing electroweak contributions to become significant.

We now turn to the
∣∣∣cos θ∗η

∣∣∣ distribution, defined by

∣∣∣cos θ∗η
∣∣∣ = tanh

(1
2 |∆ηγγ |

)
(4.1)

which is plotted for reference in figure 15. In the first panel in figure 14 we see that
the prediction with the scale choice µ0 = Mγγ and smooth-cone isolation substantially
undershoots the data, by 15% at small rapidity-separations and 40% at high rapidity-
separations. This is absent for the scale choice µ0 = 〈pγT〉 in panels 2 and 4, and is therefore
an artefact arising directly from the scale Mγγ and its approximately-exponential growth
with rapidity separation as discussed in section 3.3. Any other scale that is independent
of ∆yγγ (or, in the notation of section 3.4, with α = 0) would be expected to show a
similarly flat ratio to the data. Clearly, for fixed-order predictions made with µ0 = Mγγ

to exhibit such a ratio, the PDFs would need to grow to counterbalance the suppression
of the cross-section. It is not clear that this would be possible in such a way as to allow
simultaneous agreement with data with both categories of scales.

As expected, between panels 1 and 3, and 2 and 4, the change in isolation between
smooth-cone and hybrid-isolation yields an flat upwards normalisation, resulting in very
good agreement across the rapidity range for the combination µ0 = 〈pγT〉 and hybrid
isolation.
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Figure 14. Combined ratio plots for the four-way scales and isolation comparison, at NNLO (ratio
to data).
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η
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the result the in final bin, which otherwise extends to infinite rapidity separations.
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4.2 Comparison to ATLAS data: two-way comparison

We have up to now separately investigated the effect of altering scale and isolation inde-
pendently. Here we examine the combined effect on the agreement with ATLAS data of
the simultaneous transition between the combinations corresponding to panels 1 and 4 of
the plots in figure 14, namely

(a) µ0 = Mγγ with smooth-cone isolation, and

(b) µ0 = 〈pγT〉 with hybrid isolation.

These are plotted for the six observables which ATLAS measured in figure 16, with axis
limits and layout set to enable easy comparison with the corresponding figure (figure 5) in
the ATLAS experimental paper [17].

Across all six distributions, combination (b) gives better agreement with data almost
everywhere. The regions where agreement is notably worse are those in the neighbourhood
of the Sudakov singularities described in section 2.2, and hence where poor agreement is
expected in the absence of resummation. In these effectively-NLO distributions we continue
to see an incomplete description of the data. We can infer from the Sherpa results of [17]
that the missing radiative corrections that would feature in an NNLO diphoton-plus-jets
calculation are required to adequately describe the data in these distributions.

For completeness, in figure 17 we show the order-by-order breakdown of the NNLO
calculation for choice (b) of scale and isolation criterion, showing the relative magnitude
of the NNLO corrections with these parameters.

5 Conclusions

Photon isolation is a substantial source of uncertainty in precision calculations, whose sub-
tleties have not yet been fully explored. These uncertainties will only become more signifi-
cant for phenomenology as the target precision of experiment and theory narrows. Whilst
they can be mitigated through the careful choice of alternative isolation parameters, such
as smaller isolation cones, it is important to understand the full effect of approximations
made in the theoretical modelling of experimental isolation.

We have shown that better approximating the fiducial region defined by the experi-
mental isolation criterion, using so-called hybrid isolation, leads to substantially improved
agreement with data than the presently-favoured smooth-cone isolation. Comparing the
two, smooth-cone isolation results in a suppression of the cross-section that is consistently
of the order of 10%, and in regions of some distributions up to 50%.

This has re-exposed the issue of the infrared sensitivity of isolated photon differen-
tial cross-sections to fixed-cone isolation cuts. Although this was first discussed in the
context of fragmentation cross-sections at NLO [20], it has been absent from more recent
discussions of fixed-cone and hybrid isolation. We have found that, as might be expected
from the step-function formulation of all cone-based isolation criteria, discontinuities and
resulting Sudakov singularities arise in all of them, but are most significant for the dσ/dpγγT
distribution for fixed-cone isolation with a constant threshold. These pathological regions
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Figure 16. Re-evaluation of figure 5 from [17] showing the effects of the modified scale choice and
isolation criteria on the prediction.
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Figure 17. Illustration of the perturbative convergence of the fixed-order predictions, for the six
measured ATLAS distributions.
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are not currently of direct phenomenological significance, but may become so in future.
Indirectly, they are likely to have implications for phenomenology by hindering cut-based
subtraction procedures for higher-order perturbative calculations.

We have likewise studied the uncertainty resulting from the choice of functional form for
the dynamic renormalisation and factorisation scales. As for the profile-function-induced
uncertainty, we have found that the envelope of predictions spanned by different reasonable
choices of functional form is not adequately described by the usual scale variation procedure
of varying a central scale up and down by combinations of factors of 2 in each direction. We
have identified the regions of phase-space in which two reasonable choices are most likely
to give very different results, and verified that the sensitivity in these regions is indeed
substantial.

We have identified competing effects arising from the conventional choices of the two
theoretical functions described above, each of which disguises the effect of the other on
the result. We have shown that these choices, of smooth-cone isolation and µ0 = Mγγ ,
are interdependent, in that unphysical behaviour introduced by the choice of smooth-cone
isolation is only absent from the result with the scale choice µ0 = Mγγ , and vice versa.

Comparing the above findings to ATLAS 8TeV data, we conclude that these two effects
account both for the deviation of the central NNLO predictions from the experimental data,
and for the underestimation of the theoretical uncertainty that places the experimental
result outside of the theoretical uncertainty bands. Without properly accounting for this
uncertainty, the natural conclusion is that the experimental measurements disagree with
the theoretical predictions at NNLO. In fact, reasonable choices for scale setting and
isolation procedures give excellent agreement. Further measurements of other genuine
NNLO distributions will be required to test whether this agreement persists at higher
centre-of-mass energies and in other NNLO distributions.
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