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Abstract
We present a model for convection in a Kelvin–Voigt fluid of order one when the layer
is heated from below and simultaneously salted from below, a problem of competitive
double diffusion since heating from below promotes instability, but salting from below
is stabilizing. The instability surface threshold is calculated and this has a complex
shape. The Kelvin–Voigt parameters play an important role in acting as stabilizing
agents when the convection is of oscillatory type. Quantitative values of the instability
surface are displayed. The nonlinear stability problem is briefly addressed.

Keywords Kelvin–Voigt fluid · Double diffusion · Thermal convection · Instability ·
Solar pond

1 Introduction

The classes of fluids being employed or discovered in geophysical and industrial
engineering applications is increasingly diverse. Many fluids are now highly complex
and are not adequately described by a stess tensor which depends linearly on the
velocity gradient. Complex fluids are those which include viscoelastic fluids where the
stress tensor depends on the history of the velocity gradient, and nanofluid suspensions,
cf. Haavisto et al. [1], which involve a suspension of extremely fine particles in a carrier
fluid. Such a suspension may require dependence on second gradients of the velocity
field to incorporate physical effects such as the flattening of the parabolic profile
of Poiseuille flow, cf. Straughan [2]. The field of viscoelastic fluids which includes
fading memory fluids is vast, as is witnessed by the work of Amendola and Fabrizio
[3], Amendola et al. [4], Anand et al. [5], Anand and Christov [6,7], Anh and Nguyet
[8], Christov and Christov [9], Fabrizio et al. [10], Franchi et al. [11–14], Gatti et al.
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[15], Jordan et al. [16], Jordan and Puri [17], Payne and Straughan [18], Yang et al.
[19].

In this article we concentrate on a particular class of viscoelastic fluids associated
with the names of Kelvin and of Voigt, cf. Avalos et al. [20], Anh and Nguyet [8], Chirita
and Zampoli [21], El Arwadi and Youssef [22], Layton and Rebholz [23], Rivera and
Racke [24]. Analytical studies of Kelvin–Voigt fluids have been presented by Oskolkov
[25,26], and generalizations of these to to incorporate temperature effects are given by
Sukacheva and Matveeva [27], Matveeva [28] and Sukacheva and Kondyukov [29].
The general complex relationship between the stress and the history of the velocity
gradient in a viscolelastic fluid is often approximated by including time derivatives
of the stress and/or velocity gradient of various orders. These typically result in what
are known as Maxwell fluids, Oldroyd fluids, or Kelvin–Voigt fluids. A very useful
account of Maxwell, Oldroyd and Kelvin–Voigt fluids of various orders is given by
Oskolkov and Shadiev [30] who discuss the solution existence question at length, cf.
also Christov and Jordan [31].

Double diffusive convection involves the motion of a fluid (Newtonian or viscoelas-
tic) wherein a salt is dissolved in the fluid and temperature effects are considered. This
phenomenon is widely studied in the literature, see e.g. Barletta and Nield [32], Capone
et al. [33], Galdi et al. [34], Gentile and Straughan [35], Harfash and Hill [36], Nield
[37], Matta et al. [38], Mulone [39], Payne et al. [40], Straughan [41–43], Straughan
[44], chapter 12, Straughan and Hutter [45]. We here present an analysis for a double
diffusion problem in a Kelvin–Voigt fluid of order one. We believe this is the first
presentation and analysis of this problem. We refer to the phenomenon of competitive
double diffusion because we treat instability in a fluid layer which is heated from below
while simultaneously subject to a heavier salt concentration below. These two physical
effects are opposing and lead to interesting mathematics and physics even for a New-
tonian fluid. The double diffusion problem just described is called the thermosolutal
convection or solar pond problem. When the convection Rayleigh number is increased
the instability Rayleigh number boundary also increases, see e.g. Joseph [46], Mulone
[39], Straughan [47]. However, for a Kelvin–Voigt fluid of order one the viscoelastic
term in the momentum equation also has the effect of increasing the critical insta-
bility Rayleigh number as the appropriate viscoelastic coefficient is increased. Thus,
we have two physical effects which each separately increase the Rayleigh number
threshold for the onset of convective motion. When both effects increase the critical
Rayleigh number, one may naively expect the additive effect to increase it further.
For a Newtonian fluid the effects of rotation and a vertical magnetic field each sep-
arately increase the critical Rayleigh number, Chandrasekhar [48], figure 29, p. 121,
and figures 39 and 43, pages 171 and 191. However, when both effects are combined
the result is not one of each being additive and having an enhanced increasing effect,
see Chandrasekhar [48], figure 47, p. 203. Therefore, one has to be careful and the
problem of thermosolutal convection in a Kelvin–Voigt fluid of order one as analysed
here leads to a complex array of behaviours.

We now present the equations of thermal and salt convection in a Kelvin–Voigt fluid
of order one. We have not seen these presented before. After that we derive a detailed
linear instability analysis and global nonlinear stability analysis for these equations.
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2 Kelvin–Voigt Order One Equations

We now denote by v(x, t), T (x, t), C(x, t), p(x, t) the velocity, temperature, concen-
tration of a dissolved solute, and pressure at position x and time t of a body of fluid.
When this fluid is of Kelvin–Voigt order one then the governing equations may be
taken to be, Sukacheva and Matveeva [27], Straughan [47],

(1 − λ̂Δ)vi,t + v jvi, j = − 1

ρ0
p,i + νΔvi + αTgki − ζCgki + β̂ΔWi ,

vi,i = 0,

T,t + vi T,i = κΔT ,

C,t + viC,i = κsΔC ,

Wi,t + γ̂Wi = vi ,

(1)

whereWi is a viscoelastic variable defined by (1)5. In addition λ̂, ρ0, ν, α, ζ, g, β̂, κ, κs
and γ̂ are, respectively, the Kelvin–Voigt coefficient, a reference density, the kinematic
viscosity, the coefficient of thermal expansion of the fluid, the expansion coefficient
due to the solute, gravity, the viscoelastic coefficient in the momentum equation,
thermal diffusivity, solute diffusivity, and the strength of viscoelasticity coefficient in
the definition of Wi . The symbol Δ denotes the Laplacian, k = (0, 0, 1), gravity acts
downward, and the body force term in (1)1 arises from a Boussinesq approximation
employing the density

ρ = ρ0[1 − α(T − T0) + ζ(C − C0)]

for reference temperature and concentration, T0, C0, cf. the procedure in Straughan
[49], section 14.1, Straughan [44], chapter 12.

We employ standard indicial notation throughout together with the Einstein sum-
mation convention. For example, the divergence of the velocity field is

vi,i ≡
3∑

i=1

vi,i = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

= ∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z

where v = (v1, v2, v3) ≡ (u, v, w) and x = (x1, x2, x3) ≡ (x, y, z). A further
example is

viC,i ≡
3∑

i=1

viC,i = u
∂C

∂x
+ v

∂C

∂ y
+ w

∂C

∂z
.

The Kelvin–Voigt terms, involving λ̂ and β̂ arise from a constitutive theory of form
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σi j = κ3
∂di j
∂t

+ 2μdi j + ξ1

∫ t

−∞
exp{−γ̂ (t − s)} di j ds, (2)

where di j = (vi, j + v j,i )/2, μ = ρ0ν > 0 is the dynamic viscosity, and σi j is the
Cauchy extra stress tensor, as shown by Oskolkov [25,26]. In fact, σi j is related to
the stress tensor ti j by ti j = −pδi j + σi j and equation (1)1 arises from the linear
momentum equation

ρ0(vi,t + v jvi, j ) = t j i, j + ρ0 fi ,

where fi is the body force. To see this observe equation (1)5 may be integrated
with an integrating factor to deduce, recalling the fading memory effect, Wi =∫ t
−∞ exp{−γ̂ (t − s)}vi ds. The coefficients κ3 and ξ1 have form κ3 = 2λ̂ρ0 and

ξ1 = 2β̂ρ0. It is noteworthy that the Kelvin–Voigt order one theory contains two extra
parameters ξ1 and γ̂ which are not present in the Kelvin–Voigt order zero theory (also
known as Navier–Stokes–Voigt theory), cf. Straughan [47], and these extra parameters
yield a more accurate fit to experiments and provide a more refined fit to the fading
memory behaviour, see e.g. Greco and Marano [50]. One should perhaps consider an
objective derivative in (2), as is discussed in another context by Christov [51], cf. also
Jordan et al. [52], equation (5b). However, in this article we follow the procedure of
Sukacheva and Matveeva [27] and Sukacheva and Kondyukov [29].

It is important to observe that Kelvin–Voigt theory is being employed in various
industrial and engineering applications to describe real materials. Gidde and Pawar
[53] employ this theory to describe polydimethylsiloxane in a micropump, Jayabal
et al. [54] use it to model skin in the context of the cosmetics industry, and Jozwiak
et al. [55] employ Kelvin–Voigt fluids in their work on the dynamic behaviour of
biopolymer materials. Erdel et al. [56] employ the complex shear moduli of a Kelvin–
Voigt fluid model to calculate time-dependent coefficients for anomalous diffusion in
a living cell nucleus. Askarian et al. [57] employ Kelvin–Voigt fluid models for the
foundation for pipes conveying fluid. An important use of Kelvin–Voigt fluids is in
the field of viscous dampers which are employed to reduce the effects of vibrations
in large civil engineering structures, see e.g. Greco and Marano [50], Lewandowski
and Chorazyczewski [58], Xu et al. [59]. In particular, high structures require viscous
dampers, such as in the tower Taipei 101 in the city of Taipei. This tower is 1667 feet
high and is very close to a fault line in the Earth’s crust and it has been constructed
to withstand typhoons and earthquakes. To make this possible Taipei 101 employs a
730 ton mass damper which is connected to eight viscous fluid dampers which act like
shock absorbers when the mass damper moves.

3 Double Diffusive Convection

We shall suppose the Kelvin–Voigt order one fluid occupies the horizontal layer 0 <

z < d where gravity is acting downward. Equations (1) are defined on the spatial
region R

2 × {z ∈ (0, d)}, for t > 0.
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The boundary conditions on the planes z = 0 and z = d are given by

vi = 0, Wi = 0, z = 0, d;
T = TL , z = 0, T = TU , z = d;
C = CL , z = 0, C = CU , z = d;

(3)

for prescribed constant values TL , TU ,CL ,CU , with TL > TU > 0 and CL > CU

where TL , TU are in ◦K. Thus, we analyse the interesting problem where the layer is
hotter below which physically causes the fluid to expand and rise upward, whereas
the layer is saltier below which causes the layer to be stable. The competition between
these two effects yields an interesting physical and mathematical problem.

The steady solution of interest is given by

v̄i ≡ 0, W̄i ≡ 0, T̄ = −βz + TL , C̄ = −βs z + CL , (4)

where the temperature and concentration gradients, β, βs , are given by

β = TL − TU
d

, βs = CL − CU

d
.

The steady pressure p̄ may then be derived up to a constant at ones disposal from (1)1.
To investigate stability of the steady solution (4) we introduce perturbations

(ui , qi , θ, φ, π) by

vi = v̄i + ui , Wi = W̄i + qi , T = T̄ + θ, C = C̄ + φ, p = p̄ + π .

The equations for the perturbations are then derived and non-dimensionalized with
the scalings, cf. similar details in section 14.1 of Straughan [49],

xi = x∗
i d, t = t∗T , U = ν

d
, T = d2

ν
,

P = ρ0νU

d
, ε = β̂T

ν
= β̂d2

ν2 = β̂d

Uν
, λ = λ̂

T ν
= λ̂

d2 ,

γ = γ̂T = γ̂ d2

ν
, T � = U

√
βν

κgα
, C� = U

√
βsν

γ gκs
.

The Prandtl number, Pr , salt Prandtl number, Pc, the Lewis number, Le, and the
Rayleigh and salt Rayleigh numbers, Ra = R2, and Rs = C2, are introduced as

Ra = αgβd4

νκ
, Rs = βsgγ d4

κsν
, Le = κ

κs
, Pr = ν

κ
, Pc = ν

κs
.

We next drop the *s and treat xi and t as the non-dimensional variables. In this manner,
we arrive at the following system of non - dimensional perturbation equations arising
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from (1),

ui,t − λΔui,t + u jui, j = −π,i + Δui + εΔqi + Rkiθ − Cφki ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw + Δθ ,

Pc(φ,t + uiφ,i ) = Cw + Δφ ,

qi,t + γ qi = ui ,

(5)

where w = u3.
Equations (5) are defined on the domain R

2 × {z ∈ (0, 1)} × {t > 0} and the
boundary conditions are

ui = 0, qi = 0, φ = 0, θ = 0, z = 0, 1, (6)

together with the fact that ui , qi , φ, θ and π satsify a plane tiling periodicity in the
x, y plane.

4 Instability Analysis

We commence with an analysis of linear instability for the conduction solution (4). This
analysis guarantees a threshold for instability. To initiate the procedure we linearize
(5) and seek solutions of the form ui = ui (x)eσ t , qi = qi (x)eσ t , φ = φ(x)eσ t ,

θ = θ(x)eσ t , π = π(x)eσ t . We then remove the pressure term from the equation
which arises from (5)1 by taking curl curl and retaining the third component. In this
way we reduce the system to solving the equations

σ(1 − λΔ)Δw = Δ2w + εΔ2q3 + +RΔ∗θ − CΔ∗φ,

Prσθ = Rw + Δθ ,

Pcσφ = Cw + Δφ ,

(σ + γ )q3 = w,

(7)

where Δ∗ = ∂2/∂x2 + ∂2/∂ y2 is the horizontal Laplacian. Introduce now the forms
q3 = q3(z)h(x, y), w = w(z)h(x, y), θ = θ(z)h(x, y), φ = φ(z)h(x, y), where
h(x, y) is a planform which reflects the shape of the instability cell, cf. Chandrasekhar
[48], pp. 43-52, and Δ∗h = −a2h, for a wavenumber a.

The resulting equations hold on the domain z ∈ (0, 1), and have form

σ(D2 − a2)w − σλ(D2 − a2)2w = (D2 − a2)2w + ε(D2 − a2)2q3

− a2Rθ + Ca2φ,

Prσθ = Rw + (D2 − a2)θ ,

Pcσφ = Cw + (D2 − a2)φ ,

(σ + γ )q3 = w,

(8)
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where D = d/dz.
The boundary conditions are

w = 0, q3 = 0, θ = 0, φ = 0, on z = 0, 1. (9)

We now consider two stress free surfaces and so we additionally require

D2w = 0, z = 0, 1. (10)

This allows us to write w, q3, φ and θ as a sin series in z of form sin(nπ z), n =
1, 2, . . . We have performed extensive computations and we found n = 1 always yields
the lowest value of the Rayleigh number. Therefore, we henceforth take n = 1 and
equations (8) reduce to a 4×4 determinant in w, q3, θ, φ and Λ, where Λ = π2 +a2.

After some calculation one shows the Rayleigh number Ra = R2 is given by the
expression,

R2 = C2
(

Λ + Prσ

Λ + Pcσ

)
+

[σΛ

a2 (1 + λΛ) + Λ2

a2

]
(Λ + Prσ) + ε

Λ2

a2

(
Prσ + Λ

σ + γ

)
.

(11)

The stationary convection threshold follows from (11) by taking σ = 0 and so we
find

R2 = C2 + Λ3

a2

(
1 + ε

γ

)
. (12)

Upon minimization in a2 we find the critical wave number value is a2
c = π2/2 and

then the critical stationary convection Rayleigh number is

Rastat = 27π4

4

(
1 + ε

γ

)
+ C2. (13)

To progress we take the real and imaginary parts of (11) and recall that R2 must
be real. To find the oscillatory convection curve we put σ = iω, ω ∈ R, and then the
real part of (11) yields

R2 = ε
Λ2

a2

(γΛ + Prω2

γ 2 + ω2

)
+ C2

(Λ2 + Pr Pcω2

Pc2ω2 + Λ2

)
− (1 + λΛ)Pr

Λ

a2 ω2 + Λ3

a2 .(14)

The imaginary part of (11) leads to the equation

εΛ

a2

(γ Pr − Λ)

(γ 2 + ω2)
+ C2(Pr − Pc)

(Pc2ω2 + Λ2)
+ λ

a2 (1 + λΛ + Pr) = 0. (15)
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For equation (15) to hold we require, at least,

Λ > γ Pr or Pc > Pr , (16)

or both conditions to hold simultaneously. Thus, (16) represent necessary conditions
for oscillatory convection.

Equation (15) is rearranged to yield a quadratic equation for ω2, namely,

ω4 + Aω2 + B = 0, (17)

where the coefficients A and B are given by

A = γ 2Pc2 + Λ2

Pc2 − C2a2(Pc − Pr)

Pc2Λ(1 + λΛ + Pr)
− ε(Λ − γ Pr)

(1 + λΛ + Pr)

and

B = γ 2Λ2

Pc2 − C2a2γ 2(Pc − Pr)

Pc2Λ(1 + λΛ + Pr)
− εΛ2(Λ − γ Pr)

Pc2(1 + λΛ + Pr)
.

The critical values of the oscillatory convection threshold, for R2, are then found by
employing the two solutions, ω2+ and ω2−, of (17), i.e. 2ω2 = −A ± √

A2 − 4B, in
(14), and minimizing Ra = R2 in a2 for fixed values of λ, ε, γ, Pr and Pc, while
simultaneously ensuring ω2+ and/or ω2− are positive. In fact, for all the values we tried
ω2− is always negative.

The fact that ω2− < 0 means that we have not found the interesting neutral curve
behaviour where “instability islands” may occur in the Ra, C, ε space (for fixed γ ).
The stationary convection curve (13) is a plane in this space (for fixed γ ) and it
means we do not find closed three dimensional structures underneath the stationary
convection plane given by (13), where ω2− > 0 inside, as is found in other areas of
multi-component convection, such as double diffusive convection in a rotating fluid,
first observed by Pearlstein [60], convection with temperature and two salt fields,
Pearlstein et al. [61], penetrative convection with temperature and two salt fields,
Straughan and Walker [62], Straughan [49], section 14.2, or inclined convection in a
bidisperse porous material, Falsaperla et al. [63].

The neutral curve behaviour obtained from (13), (17) and (14) is a complex relation
between Ra, C, ε, γ, λ, Pr and Pc, and we report numerical findings in Sect. 6.

5 Global Nonlinear Stability

If one writes the perturbation equations (5) in the form of an abstract equation

Aut = Lu + N (u)
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where A, L, N are operators mapping into a suitable Hilbert space, where L is the
linear operator and N (u) represent the nonlinearities, with

u ≡ (u, v, w, q1, q2, q3, θ, φ)T ,

then concentrating on the part of the linear operator pertaining to the variable
(w, q3, θ, φ)T the essential part of the linear operator has form

L A =

⎛

⎜⎜⎝

Δ εΔ R −C
−εΔ Δ 0 0
R 0 Δ 0
C 0 0 Δ

⎞

⎟⎟⎠

where we have operated first on equation (5)5 by −Δ and L A represents the skew
symmetric part of L . Upon inspection of LA there are two skew symmetric effects.
One is manifest in the 12 and 21 terms and reflects the presence of the viscoelastic
term in (5)1 involving ε. In the absence of the salt field this term yields an increasing
stability threshold Ra as ε increases, and may lead to oscillatory convection, Hopf
bifurcation, as shown in figures 2 and 4 of Straughan [64]. The second skew symmetric
term in L A is manifest in the 14 and 41 terms and is due to the fact that the basic layer
is heavier in salt at the base. Likewise, without the ε term, this salt effect leads to
an increase in the Rayleigh number stability threshold as C increases. It can also
lead to oscillatory convection, see Straughan [47], figure 1. Oscillatory convection
is increasingly important in multicomponent hydrodynamic systems as is seen in the
recent work of Rionero [65], see also Pearlstein [60], Pearlstein et al. [61], Straughan
and Walker [62], Falsaperla et al. [63].

In the current problem both skew symmetric effects are present simultaneously and
the joint effect is analysed numerically in Sect. 6. However, we may still obtain a
global nonlinear stability result by employing the energy functional

E(t) = 1

2
‖u‖2 + λ

2
‖∇u‖2 + ε

2
‖∇q‖2 + Pr

2
‖θ‖2 + Pc

2
‖φ‖2, (18)

where ‖ · ‖ denotes the norm on the Hilbert space L2(V ), V being a period cell for
the solution. From (5) and (18) one may obtain the energy equation

dE

dt
= RI − D, (19)

where the production term I , and the dissipation D, have form

I (t) = 2(θ, w),

D(t) = ‖∇u‖2 + εγ ‖∇q‖2 + ‖∇θ‖2 + ‖∇φ‖2

and (·, ·) denotes the inner product on L2(V ).
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Fig. 1 Graph of Ra, ε with γ = 0.2, Pr = 25, Pc = 541.75, C2 = 10. The transition to oscillatory
convection is shown for λ = 2, λ = 1 and λ = 10−3. The steady solution is unstable above the appropriate
stationary-oscillatory curve. The transition values are approximately Ra = 909.779, ε = 0.0737 when
λ = 10−3, Ra = 1107.054, ε = 0.1337 when λ = 1, and Ra = 1304.610, ε = 0.1938 when λ = 2.
Kelvin–Voigt fluid of order one

From equation (19) one may show that a global nonlinear energy stability threshold
for Ra is given by Ra ≤ 27π4/4, for two surfaces free of stress. Details are simi-
lar to the procedure in Straughan [49], section 14.1. This global stability threshold
is depicted in Fig. 5 of this work. We believe it is possible to increase the global
stability threshold by employing a generalized energy functional which contains, for
example, a term of form ψ = θ − δθ for a suitable constant δ > 0, cf. Joseph [46],
Mulone [39], and possibly a combination of terms involving ui , qi ,∇ui ,∇qi . This
will undoubtedly involve much analysis and effort employing numerical optimiza-
tion of coupling parameters with simultaneous minimization in the wavenumber for a
generalized energy, cf. Straughan [66], Straughan [41]. This will also require one to
involve the Kelvin–Voigt parameter λ > 0 in a non-trivial manner. This problem of
determining the region of possible sub-critical instabilities is currently open.

One thing which is evident from decay of the energy (18) is that for Ra less than the
global stability threshold one has decay also of ‖∇u‖ and ‖∇q‖, cf. the work of Layton
and Rebholz [23], on Kelvin–Voigt vortex solutions, and the numerical computations
of Matveeva [28], on a Navier–Stokes–Voigt fluid.
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Fig. 2 Graph of a2, ε with γ = 0.2, Pr = 25, Pc = 541.75, C2 = 10. The transition to oscillatory
convection is shown for λ = 2, λ = 1 and λ = 10−3. The transition values are approximately a2 =
5.053, ε = 0.0737 when λ = 10−3, see AB, a2 = 5.089, ε = 0.1337 when λ = 1, see CD, a2 =
5.125, ε = 0.1938 when λ = 2, see EF. The stationary convection values of a2 are π2/2 ≈ 4.9348.
Kelvin–Voigt fluid of order one

6 Numerical Results

In this section we report numerical results based on the stationary convection curve
(13) and the results of minimizing (14) with ω2 given by (17). For the parameters we
explore, the values of ω2+,− we find are always such that ω2− < 0 and we concentrate
only on the minimization when ω2+ > 0. Figures 1, 2, 3, 4, and 5 and Tables 1, 2, 3,
and 4 are based on this strategy.

For fixed γ > 0, (13) shows the stationary convection surface is a plane in
(Ra, Rs, ε) space, increasing in Ra as ε and Rs increase. For appropriate param-
eter values oscillatory convection may occur and interest is when the value of Ra,
is less than the stationary convection one. The two-dimensional surface of instability
for oscillatory convection is found to not be a plane in (Ra, Rs, ε) space, for fixed
γ . When ε = 0 oscillatory convection may occur as shown in Straughan [47] and
then the oscillatory convection branches appear to be straight lines, see Straughan
[47], Fig. 1, with positions depending on λ. When C = 0 oscillatory convection may
occur as shown in Straughan [64], Figs. 2 and 4. The oscillatory convection branches
again appear to be straight lines which increase in ε, and their position depends on λ.
However, when C �= 0 and ε �= 0 we find the situation is more complex.
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Fig. 3 Graph of Ra, ε with γ = 0.05, Pr = 25, Pc = 1750, C2 = 5. The transition to oscillatory
convection is shown for λ = 1 and λ = 10−4. The steady solution is unstable above the appropriate
stationary-oscillatory curve. The transition values are approximately Ra = 693.753, ε = 0.002376 when
λ = 10−4, and Ra = 729.694, ε = 0.00511 when λ = 1. Kelvin–Voigt fluid of order one

We select suitable values of parameters for realistic fluids as in Straughan [47]. To
do this recall Pr = ν/κ, Pc = ν/κc and we note the Lewis number Le = κ/κc. In
Straughan [47] justification is given for taking Pr in the range 6.99 to 400. Typical
values of κ and κc given there suggest κ = 1.43 × 10−7 m2 s−1, or in the range

4.4 × 10−8 ≤ κ ≤ 8 × 10−8 m2 s−1,

whereas

1.286 × 10−9 ≤ κs ≤ 2.03 × 10−9 m2 s−1.

In Straughan [64] γ is taken as 0.2 or 0.5 and λ values of 10−3, 10−2, 0.1 and 1 are
investigated. Given this information we here concentrate on Pr = 25, Pc = 541.75
or 1750, with λ in the range [10−4, 2].

Figure 1 shows the stationary convection-oscillatory convection branches when
γ = 0.2, Pr = 25, Pc = 541.75, C2 = 10, with λ = 10−3, 1 and 2. We have
also computed values for λ = 10−2 and 0.1, and the trend is in line with that seen
here. The transition to oscillatory convection increases in ε as λ increases but the
oscillatory convection branch is not a straight line. Hence the viscoelastic effect of
the parameters ε and γ is influencing the critical Rayleigh number values and the
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Fig. 4 Graph of a2, ε with γ = 0.05, Pr = 25, Pc = 1750,C2 = 5. The transition to oscillatory convection
is shown for λ = 1 and λ = 10−4. The transition values are approximately a2 = 4.956, ε = 0.002376
when λ = 10−4, see AB, and a2 = 4.960, ε = 0.00511 when λ = 1, see CD. The stationary convection
values of a2 are π2/2 ≈ 4.9348. Kelvin–Voigt fluid of order one

oscillatory convection surface in (Ra, Rs, ε) space is a complex one dependent upon
the values of Pr , Pc, Rs, ε, γ and λ. The analogous values of the critcal wavenumber
are shown in Fig. 2. We see that before the transition to oscillatory convection the
stationary convection value of a2 is always π2/2. However, at transition this value
jumps discontinuously and thereafter increases with increasing ε in a nonlinear way.
Since the wavenumber, a, measures the (aspect) ratio of width/depth of a convection
cell, larger wavenumber values mean the aspect ratio decreases and one witnesses
narrower convection cells. Thus, at transition the cell jumps to a narrower one which
then becomes more narrow with increasing ε in a nonlinear manner as indicated in
Fig. 2.

Figures 3 and 4 show similar transition curves for Ra vs. ε and a2 vs. ε when
γ = 0.05, Pr = 25, Pc = 1750, C2 = 5.

For fixed ε but varying C2 the oscillatory convection curve still has a transition
but on the oscillatory convection curve the Ra values increase only very slowly. For
example, when γ = 0.05, Pr = 25, Pc = 1750, ε = 0.003 with λ = 10−4, the
Ra value increases from transition at C2 = 9.90034, where Ra = 671.357, to the
value Ra = 672.593 when C2 = 100. That would indicate that physically the salt
field is having a more dominant effect on determining oscillatory convection than the
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Fig. 5 Graph of Ra, ε with γ = 0.2, Pr = 25, Pc = 541.75, C2 = 10. The instability and stability regoins
are shown for λ = 1. The transition values are as in Fig. 1. Kelvin–Voigt fluid of order one

Table 1 Transition from
stationary to oscillatory
convection values, hence
Raosc = Rastat . γ = 0.2,
Pr = 25, Pc = 541.75,
C2 = 10. λ varies as shown.
Kelvin–Voigt fluid of order one

λ ε Raosc a2

2 0.1938 1304.610 5.125

1 0.1337 1107.054 5.089

0.1 0.0796 929.197 5.057

0.01 0.0742 911.439 5.053

0.001 0.0737 909.779 5.053

viscoelastic effect of ε/γ . The a2 value over the range just reported stays the same at
a2 = 4.935, to 3 d.p.

Table 1 shows the transition to oscillatory convection values when γ = 0.2, Pr =
25, Pc = 541.75, C2 = 10, emphasizing the effect of changing λ. It is seen that
increasing λ leads to an increase in the equivalent ε value, and an increase in a2, at
the transition point.

Table 2 fixesγ = 0.5, Pr = 25, Pc = 1750 andλ = 1. The transition to oscillatory
convection values are reported as ε is increased from 0.6 to 2. The C2 values decrease
as ε is increased, with a substantial increase in the values of Ra and a2. The increase
in the Ra values is particularly noticeable and this shows that a large value of ε would
probably help stabilize the layer.
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Table 2 Transition from
stationary to oscillatory
convection values, hence
Raosc = Rastat

ε Raosc a2 C2

0.6 1459.97 4.951 13.437

0.8 1722.26 4.953 12.735

1.0 1984.56 4.956 12.028

1.2 2246.86 4.958 11.320

1.4 2509.16 4.961 10.612

1.6 2271.45 4.962 9.904

1.8 3033.75 4.964 9.195

2.0 3296.75 4.965 8.486

γ = 0.5, Pr = 25, Pc = 1750, λ = 1. ε varies as shown. Kelvin–
Voigt fluid of order one

Table 3 Transition from
stationary to oscillatory
convection values, hence
Raosc = Rastat

C2 ε Raosc a2

1 0.01896 783.193 4.992

2 0.01684 770.237 4.974

3 0.01472 757.295 4.967

4 0.01259 744.292 4.961

5 0.01046 731.288 4.956

6 0.00834 718.344 4.952

7 0.00620 705.279 4.948

8 0.00407 692.274 4.949

γ = 0.5, Pr = 25, Pc = 1750, λ = 10−4. C2 varies as shown.
Kelvin–Voigt fluid of order one

Tables 3 and 4 fix Pr = 25, Pc = 1750, λ = 10−4 and they employ γ = 0.5 and
γ = 0.05, respectively. C2 is increased from 1 to 8 in both tables and the transition
values of ε, Ra and a2 are observed. As C2 increases ε decreases, Ra decreases and a2

decreases in both cases. The instability values of ε and Ra are smaller when γ = 0.05
as opposed to γ = 0.5. The a2 values decrease for increasing C2 but the smaller value
of γ = 0.05 produces a larger range of a2.

It is clear that the oscillatory convection surface in (Ra, Rs, ε) space is dependent on
a complicated interaction between the parameters Pr , Pc, γ, C2 and λ. Once specific
values are known for a particular fluid the exact oscillatory instability surface may be
calculated.

An important point to observe is that Fig. 5 shows the linear instability transition
curve together with the global nonlinear stability one. In Fig. 5, C2 = 10, but an
analogous picture holds for any value of C2, mutatis mutandis. Given the complicated
nature of the linear instability surface, it would be interesting to see nonlinear sta-
bility results obtained from a weakly nonlinear analysis, or from three-dimensional
numerical simulations.
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Table 4 Transition from
stationary to oscillatory
convection values, hence
Raosc = Rastat

C2 ε Raosc a2

1 0.00430 715.062 5.003

2 0.00383 709.851 4.980

3 0.00333 704.3 4.993

4 0.00286 699.1 4.962

5 0.00238 693.8 4.956

6 0.00195 689.0 4.953

7 0.00141 683.0 4.947

8 0.00095 678.0 4.943

γ = 0.05, Pr = 25, Pc = 1750, λ = 10−4. C2 varies as shown.
Kelvin–Voigt fluid of order one

7 Conclusions

In this article we develop an analysis for a double diffusive convection problem in a
viscoelastic fluid of Kelvin–Voigt order one type. Attention is focussed on the phys-
ically interesting and mathematically challenging problem where the layer of fluid
is heated from below and simultaneously salted from below. The thermal convection
problem for a Navier–Stokes–Voigt fluid without a salt field or for a Kelvin–Voigt
fluid of order one without a salt field was suggested by Sukacheva and Matveeva [27],
Sukacheva and Kondyukov [29]. An analysis of the thermal convection problem for a
Kelvin–Voigt fluid of order one without a salt field is given by Straughan [64], whereas
an equivalent analysis of the thermal convection problem for a Navier–Stokes–Voigt
fluid is detailed by Straughan [47]. The isothermal models for a Kelvin–Voigt fluid
of orders zero, one and higher are explained at length by Oskolkov [25,26], see also
Oskolkov and Shadiev [30].

The Kelvin–Voigt fluid of order one contains two extra parameters than the Navier-
Stokes–Voigt fluid and these provide a richer structure to the viscoelasticity of the
model. From a thermal convection point of view these new effects act like a skew
symmetric operator in the instability process, just as the competing effects of heating
and salting below act like another, but different, skew symmetric operator. The combi-
nation of these two competing effects yields an interesting instability problem which
is investigated in some detail in this article.

For small enough Rayleigh number, or small enough viscoelastic parameter ε (with
γ fixed), the onset of thermally driven motion is by stationary convection. There is then
a transition to oscillatory convection as either parameter is increased, or as both are
increased. The transition surface is calculated for several realistic values of Prandtl and
salt Prandtl numbers. What we see here is that the transition to oscillatory convection
occurs at higher Rayleigh numbers as the Kelvin–Voigt parameterλ increases, although
the transition values are strongly dependent on the salt Rayleigh number C2 = Rs.

The increase observed as λ or ε increases is very important in real applications.
For example, in solar pond design, or in semiconductor crystal growth from a molten
liquid. A solar pond is a mechanism whereby solar energy is harnessed through a
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thermosolutal process and converted into renewable electric energy, cf. Abdullah et
al. [67]. A solar pond consists of a layer of salt water approximately 1–2 m thick in a
horizontal configuration with direct access to solar radiation. The salt field is arranged
so that the salt concentration decreases approximately linearly from the base of the
layer. The base of the layer is chosen to absorb solar radiation and this configuration can
achieve temperatures close to 100 ◦C in the solution near the base. The naturally heated
brine solution is drawn out and passed through a heat exchanger to generate renewable
electricity. It is important that convective motion does not commence, otherwise the
solution mixes and so it is key that the conditions remain in the stable case for the
problem studied herein. Our work suggest that adding a suitable additive to the salt
solution which increases the Kelvin-Voigt parameter will ensure the solar pond does
not commence overturning instability and will, therefore greatly improve the efficiency
of the device. In crystal growth, oscillatory convection may lead to striations in the
semiconductor crystal which may have a detrimental effect on the ability of the crystal
to function in a technical device, see e.g. Jakeman and Hu [68]. Thus an accurate
description of the instability surface may help in this field also.
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