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1. Introduction

The purpose of this article is to survey and expand on recent developments in
the theory of Gaussian multiplicative chaos at the so-called critical parameter.
Gaussian multiplicative chaos (GMC) is the theory, originally developed by
Kahane [76], that aims to rigorously define measures of the form

µγ(dx) := eγh(x)−
γ2

2 E(h(x)2) dx (1.1)

when h is a log-correlated Gaussian field and dx is Lebesgue measure on Rd.
The precise definition of such a field will be given shortly, see (2.1), but the main
problem is that h will not be realisable as a pointwise defined function. Rather,
it will only make sense as a random generalised function or Schwarz distribution,
making the meaning of (1.1) unclear a priori. The original interest in defining
such measures arose in the 1970’s; on the one hand to make mathematical
sense of a model of Mandelbrot [83] for energy dissipation in turbulence, and
on the other, to construct Euclidean quantum field theories with exponential
interactions, [63]. It has since found applications in many other fields, ranging
from mathematical finance to Liouville quantum gravity: see [94] for a survey.

Starting with the work of Kahane [76], and now generalised and developed
by many authors, it has been shown [26,97,103] that one can define µγ as in (1.1)
via a number of different regularisation procedures, as long as the parameter γ
in question is less than the critical value

γc =
√

2d. (1.2)

Importantly in this case, the limit µγ does not depend on the precise way that
the regularisation is carried out. This justifies that µγ is the “correct” interpre-
tation of (1.1). It is known that µγ is almost surely non-atomic but singular
with respect to Lebesgue measure, and many further properties concerning its
moments, multifractal behaviour and tail behaviour (among other things) have
now been proven. See [52,73,94,95,97,109] and the references therein for more
details.

When γ ≥ γc however, a different picture emerges. The regularisation
scheme that works perfectly when γ < γc now fails, in the sense that it yields
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a trivial (≡ 0) measure in the limit, [97]. This begs the question of whether
something meaningful can still be defined in this regime. Since the subcritical
measures become more and more localised as γ increases (roughly speaking,
they live on a set of Hausdorff dimension converging to 0) the natural guess is
that any definition of a supercritical measure will be atomic, and this indeed
turns out to be the case: see [94] for a summary. The value γ = γc is particu-
larly intriguing, as it represents the transition between these two different types
of measure. For a discussion of the relevance of this phase transition from a
physical perspective, the reader is referred to the introductions of [50,51].

As will be discussed in this article, there is a rich mathematical theory that
emerges at the critical value γ = γc, and it is possible to define a canonical
“critical measure”, denoted µ′, which is still non-atomic but only barely so
[50,51,66,73,75,91]. The article will be structured as follows.

• First, the various constructions of critical chaos will be stated in their
most general form, and some ideas will be given for the proofs. Several
important properties will also be discussed.

• Next, the idea of constructing critical chaos as a limit, or derivative, from
the subcritical regime will be explored. As part of the section a proof will
be given for this construction in the general setting, which seems to be
new.

• Finally, some applications of critical chaos will be surveyed, which are
surprisingly far-reaching and cover topics currently undergoing rapid and
active investigation.

The main aim of this article is to showcase the key ideas underlying the
construction(s) of critical chaos, and to hopefully not get too bogged down in
technicalities (of which there are many). It is intended that analogies with the
theory of branching random walks and branching Brownian motion should never
be too far from the forefront of the exposition.

2. Construction and properties

2.1. Log-correlated Gaussian fields

In this article, a log-correlated Gaussian field refers to a centred Gaussian
field X defined on a domain D ⊆ Rd, whose covariance kernel KX satisfies

KX(x, y) = − log(|x− y|) + g(x, y), (2.1)

with g ∈ Hd+ε
loc (D ×D) for some ε > 0.

This is the most general class of field for which results concerning critical
Gaussian multiplicative chaos exist, [75]. Such a field X cannot be defined as a
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function assigning values to the points of D, but does make sense as a random
generalised function, or distribution in the sense of Schwarz. This random
distribution will in fact have some additional regularity properties. For example,
it will almost surely be an element of H−ε(D) for any ε > 0, [74, Proposition
2.3].

There are some special types of field that are particularly nice to study in the
context of Gaussian multiplicative chaos, due to explicit and useful decorrelation
properties. As such they have played an important role in the development of
the theory, as well as often being mathematically and physically relevant for
separate reasons. For example:

• The planar Gaussian free field with zero boundary conditions on a sim-
ply connected domain D ⊂ C = R2 is the centred Gaussian field with
covariance kernel

K(x, y) = GD(x, y), (2.2)

where GD is the Green’s function for Brownian motion killed when leaving
D. This field is particularly important due to two special properties:
conformal invariance and a spatial Markov property. These properties
actually characterise the field [27], making it in some sense a “universal
object” describing the fluctuations of random planar height functions. See
[25,104,107] for a more detailed introduction. As will be mentioned later in
this article, the Markov property gives rise to some martingales that make
constructing chaos for the GFF somewhat more straightforward than in
the general case.

It should also be mentioned that chaos measures for the GFF are impor-
tant objects from a physical perspective. Very roughly speaking, they are
supposed to represent the volume form of a “uniformly chosen random sur-
face” weighted by the partition function of some statistical physics model.
They are often referred to as “Liouville quantum gravity measures” in the
probability literature.

• One can alternatively consider Gaussian free fields with non-zero bound-
ary conditions on D; a natural example being the Gaussian free field
with “Neumann” or “free” boundary conditions (again see [25,104]). This
has covariance kernel given by the Green’s function in D with Neumann
boundary conditions, with the caveat that a lack of uniqueness for this
kernel only defines the field up to an additive constant. One can fix the
additive constant in any number of ways to get back to the setting of (2.1).

• For example, taking D = D and K(x, y) = − log(|x − y||1 − xȳ|) yields
the GFF with “vanishing mean on the unit circle”. When this field is
restricted to the unit circle ∂D it gives rise to a centred Gaussian field
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with covariance

K(eiθ, eiθ
′
) = −2 log(|eiθ − e−iθ|) for θ, θ′ ∈ [0, 2π], (2.3)

sometimes referred to as the “GFF on the unit circle”. Note that one can
reparametrise by θ to define a field on [0, 2π] ⊂ R, but should divide by

√
2

to get a 1d log-correlated field as in (2.1). These fields play an important
role in extreme value theory; for example in connection to random matri-
ces. See [10] for a survey on this, and also the discussion in Section 4.1
below.

• Finally, there is a class of log-correlated Gaussian fields on D = Rd whose
covariance kernel has the special integral form,

K(x, y) =

∫ ∞
1

k(u(x− y))

u
du (2.4)

for some k : Rd → R such that (x, y) 7→ k(x − y) is a covariance on
Rd. For the rest of this article, the definition of ?-scale invariant will
also mean that k is rotationally symmetric, continuously differentiable,
supported in B(0, 1) and with k(0) = 1. Under these conditions, K defines
the covariance kernel of a log-correlated field as in (2.1), see [50, 51, 75].
These play an important role for a couple of reasons: firstly, there is a
particularly natural way to approximate these fields; and secondly, their
associated chaos measures satisfy a certain scaling relation. These will
both be discussed in the next section.

2.2. Approximations

Recall from the introduction that the Gaussian multiplicative chaos associ-
ated to X as in (2.1) is formally given by the measure

eγX(x)− γ
2

2 E(X(x)2) dx (2.5)

on D, for some γ ≥ 0. Since X is not a pointwise defined function, this does not
make sense a priori, and so one needs to define it via a regularisation procedure.

One natural way to approximate, or regularise, a rough (distribution-valued)
Gaussian field as in Section 2.1, is to convolve it with a smooth approximation
to the identity. More precisely, if X is defined on a subset of Rd and ψ ≥ 0 is a
smooth function with compact support and total integral one, one considers

Xε := ψε ∗X (2.6)

for each ε > 0, where ψε(·) = ε−dψ(ε−1·). Then for any x, y ∈ D such that
B(x, ε), B(y, ε) ⊂ D, the covariance between Xε(x) and Xε(y) is given by the
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(double) convolution of KX with ψε. The field Xε therefore has covariance close
to that of K for small ε, but is a bona fide continuous random field. Such an
approximation will be referred to forthwith as a convolution approximation to
the field.

For particular types of field there are some other natural approximations.
The examples below are especially convenient to work with, since they give rise
to approximate chaos measures with a simple martingale structure, which is of
course helpful when trying to prove convergence results. Moreover, they have
direct counterparts in the setting of branching random walks, whose behaviour
has been extensively studied and is by now very well understood. This point
will be expanded on throughout the present article.

• Suppose that X is a ?-scale invariant field with associated function k.
Then

Kt(x, y) =

∫ et

1

k(u(x− y))

u
du (2.7)

is the covariance kernel of a field Xt, approximating X as t→∞. More-
over, the fields (Xt; t ≥ 0) can be coupled, [9], so that (Xt(x); t ≥ 0) has
independent increments for any x, and such that (Xt(x)−Xt0(x); t ≥ t0)
and (Xt(y) −Xt0(y); t ≥ t0) are independent for any x, y with |x − y| ≥
e−t0 . This readily implies, for example, that for any x ∈ Rd, (Xt(x); t ≥ 0)
has the law of a standard linear Brownian motion started from 0.

For ease of reference, let us refer to such a coupled sequence of approxi-
mations (Xt; t ≥ 0) as the “?-scale cut-off approximations” to X.

• The form of the kernel in the ?-scale invariant case means that chaos
measures for such fields satisfy a special scaling relation, [50], called the “?-
equation”. More precisely, if µγ is a subcritical (γ <

√
2d) chaos measure

for a ?-scale invariant field, then for any t ≥ 0

(µγ(A); A ∈ B(Rd))
(law)
= (

∫
Rd

eγXt(x)−
γ2

2 E(Xt(x)2) e−td µγ,t(dx); A ∈ B(Rd)) (2.8)

where

(µγ,t(A); A ∈ B(Rd))
(law)
= (µγ(etA); A ∈ B(Rd)) and µγ,t ⊥⊥ (Xt(x);x ∈ Rd) (2.9)

(and the law of (Xt(x); x ∈ Rd) is as described in the previous bullet
point.
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This says that the measure looks the same after rescaling space, up to a
smooth independent Gaussian change of measure. Solutions of this equa-
tion are analogous to fixed points of the smoothing transform for the
branching random walk (see [29] for a review).

• When X is a planar Gaussian free field with zero boundary conditions, one
can define the circle average around any point in the domain, by taking
a sequence of smooth test functions approximating uniform measure on
the circle and then taking a limit of X tested against these functions.
It can easily be shown that these limits exist for every circle contained
in the domain, and moreover, that there exists a version of the process
that is almost surely jointly continuous in the centre and radius of the
circle, [65]. Write hε(z) for the average on the circle ∂Bε(z). Then the
Markovian property of the GFF means that for any z ∈ D, the process
t 7→ Xe−t(z) is continuous and centred, with stationary and independent
increments. It is therefore (some multiple of) a Brownian motion. In
fact, the Markov property further gives that if x and y are two distinct
points, then (Xe−t(x)−Xe−t0 (x); t ≥ t0) and (Xe−t(y)−Xe−t0 (y); t ≥ t0)
are independent if t0 ≥ − log |(|x− y)/2|.

• There is another special way to approximate the planar Gaussian free
field, that is even nicer for the purposes of constructing chaos measures.
This is because it very closely links the Gaussian free field with a branch-
ing random walk, and importantly, provides approximate GMC measures
with a martingale property. This approximation relies on a beautiful cou-
pling between the Gaussian free field and a conformal loop ensemble with
parameter 4, CLE4. The coupling is due to Miller and Sheffield [85]; see
also [16] for a proof.

For the purposes of this article, let us just mention very briefly that CLE4

is a random collection of disjoint simple loops defined in the unit disc,
whose law is conformally invariant, and such that the union of the inte-
riors of the loops has full Lebesgue measure. This means that CLE4 can
be unambiguously defined in any simply connected domain (by mapping
to the unit disc) and in particular, the construction can be iterated inside
each loop of the CLE4. This allows one to define an (infinitely) nested ver-
sion of the conformal loop ensemble. One can then associate a branching
random walk to the branching sequences of nested loops, where the walk
steps are Bernoulli ±1. If one stops this branching random walk after n
steps, and assigns the relevant value to the interior of each nth level nested
CLE loop, then this provides a function Xn(x) that is defined at all but a
Lebesgue-null set of points x in the disc (it is constant inside each loop).
Somewhat incredibly, it holds that

Xn(x)→ X as n→∞, (2.10)
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in probability (as generalised functions), where X is a multiple of the zero
boundary GFF on the disc.

2.3. The phase transition

Recall from the introduction that if (Xε)ε≥0 are a sequence of suitable ap-
proximations to the field, the method for constructing subcritical GMC mea-
sures (γ <

√
2d) is to take a limit of approximate measures

µγε (dz) := exp(γXε(z)−
γ2

2
E(Xε(z)

2)) dz (2.11)

as ε → 0. The limiting measure exists in probability, and is almost surely non
trivial [26,76,97,103]. Attempting to do the same when γ ≥

√
2d, one encounters

a phase transition. That is:

Lemma 2.1. Suppose that (Xε)ε≥0 are a sequence of convolution approxima-
tions to a log-correlated Gaussian field X as in Section 2.1. Define µγε as in
(2.11). Then for any A ⊂ D compact, µγε (A)→ 0 in probability as ε→ 0.

This is a well understood phenomenon in the branching random walk liter-
ature, and it is instructive to see how the proof works in this case. In fact, one
can use this to prove Theorem 2.1, as was done in [50, Appendix]: see below.

Take a branching random walk starting with one particle at a random posi-
tion W , where at each stage n for n ≥ 1, particles die and give birth to exactly
2d children particles. Suppose that the position of each of these children is
displaced by an independent copy of W from the position of their parent. For
concreteness, take W ∼ N(0, ln(2)) (although the argument works in a much
more general setting) and write P for the law of this process.

It is well known and easy to check that if (Xn(1), · · · , Xn(2dn)) are the
positions of the particles at time n, then

Mγ
n :=

2dn∏
i=1

eγXn(i)−(γ
2/2+d)n ln 2 (2.12)

is a positive martingale with respect to the natural filtration (Fn;n ≥ 0) of the
branching random walk. It therefore has an almost surely finite limit as n→∞.

A useful criterion to determine whether the limit is trivial, comes from the
following basic fact, [53]. If Q is the probability measure such that (dQ/dP)|Fn =
Mγ
n for each n then Mγ

n → 0 under P if and only if lim supn→∞Mγ
n =∞ under

Q (and this is further equivalent to Q being singular with respect to P). One can
determine rather easily if this is the case, since there is a very nice description of
the behaviour of the process under Q known as the “spine decomposition”. This
is an extensively used technique in the branching process literature: see [62] for
a general formulation.
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To describe the decomposition in this set-up, first write P∗ for the law of
the branching random walk, plus a distinguished “spine” chosen uniformly at
random. That is, take the spine particle at generation 0 to be the initial particle,
and then iteratively choose the spine particle at generation n by picking one of
the children of the spine particle at generation (n − 1) uniformly at random.
The motion (X∗n;n ≥ 0) of the spine particle under P∗ is just a random walk
with N(0, ln(2)) increments, and so ξn := exp(γX∗n−(γ2/2)n ln 2) is a unit-mean
martingale. Define Q∗ by setting (dQ∗/dP∗)|F∗n = ξn for each n, where (F∗n;n ≥
0) is the filtration generated by the branching random walk and the spine up
to generation n. It then follows easily from Girsanov’s theorem that under Q∗:
the spine particle evolves as a random walk with N(0, ln 2) increments plus a
drift of β ln 2; and at each stage the spine gives birth to exactly (2d − 1) non-
spine children, who each start (from their respective positions) an independent
P-branching random walk. The point of all this is that (dP∗/dQ∗)|Fn = Mγ

n for
each n, so that Q∗ and Q give the same marginal law to the branching random
walk. In particular, if lim supn→∞Mγ

n a.s. under Q∗, then the same holds under
Q.

It turns out that the knowledge the spine particle under Q∗ makes this
condition easy to check. Indeed, it is certainly true that Mγ

n is bigger than
exp(γX∗n − (γ2/2 + d)n ln 2), where under Q∗, (γXn − (γ2/2 + d)n ln 2; n ≥ 0)
is a random walk with N(0, γ2 ln 2) increments plus a drift of (γ2/2 − d)n ln 2.
This implies that if γ2 ≥ 2d, lim supn→∞Mγ

n =∞ almost surely under Q∗. As
explained above, this implies the same under Q, and hence that Mγ

n → 0 under
P.

To prove Theorem 2.1 we can essentially use the above, together with an
extremely useful comparison inequality due to Kahane, [76].

Theorem 2.2 (Kahane’s convexity inequality). Suppose that Z1 and Z2

are two almost surely continuous centred Gaussian fields defined on D ⊂ Rd,
with E[Zi(x)Zi(y)] = Ki(x, y) for i = 1, 2. Suppose further that K1(x, y) ≤
K2(x, y) for all x, y. Then if F : (0,∞)→ R is any convex function that grows
at most polynomially fast at 0 and ∞, it holds that

E(F (

∫
D

exp(Z1(x)−1

2
E(Z1(x)2)) dx)) ≤ E(F (

∫
D

exp(Z2(x)−1

2
E(Z2(x)2)) dx)).

(2.13)

Proof of Theorem 2.1. In order to make use of the preceding discussion, one
needs to find a way to relate Mγ

n to a “chaos measure” of some sort. In fact,
there is a very natural way to do this. Without loss of generality, assume that
A is the unit cube [0, 1]d ⊂ Rd. If X0 is the initial position of the branching
random walk, define Y0 to be the constant function equal to X0 on [0, 1]d. At
the next stage, divide the unit cube into 2d sub-cubes of side length 1/2 and set
Y1 to be constant in each of these sub-cubes: equal to X1(i) in sub-cube i, where
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the sub-cubes are ordered in some way and X1(1), · · · , X1(2d) are positions of
the particles in the branching random walk at generation one. Iterating this
procedure defines a centred Gaussian field Yn on [0, 1]d for every n, for which

Mγ
n =

∫
[0,1]d

exp(γYn(x)− γ2

2
E(Yn(x)2)) dx. (2.14)

So from the discussion above Theorem 2.2, it holds that Mγ
n → 0 whenever

γ ≥
√

2d. On the other hand, if x, y ∈ [0, 1]d are at distance greater than√
d2−n, then Yn(x) and Yn(y) correspond to positions of particles in the random

walk that “branched from each other” before stage n, and so E(Yn(x)Yn(y)) ≤
− log(|x− y|) + Cd for some Cd <∞ depending only on d.

Finally, if (Xε; ε ≥ 0) is as in the statement of the lemma, then for each
ε > 0 we can find n,C so that Kahane’s inequality applies to Z1 = γYn and
Z2 = γXε + CN with N a standard normal, independent of Xε.

1 This yields
that for any γ ≥

√
2d and F bounded, concave and increasing

lim sup
ε→0

E(F (eγCN−γ
2C2/2 µγε ([0, 1]d))) ≤ lim sup

n→∞
E(F (Mγ

n )) = E(F (0)). (2.15)

As a consequence (see for example [50, Appendix]) it holds that µγε ([0, 1]d)→ 0
in probability as ε→∞. 2

The borderline case γ =
√

2d is referred to as the critical regime of GMC,
and the case γ >

√
2d the subcritical regime accordingly.

Remark 2.3. Consider the ?-scale cut-off approximations (Xt; t ≥ 0) to a ?-
scale invariant field as described in the paragraph surrounding (2.7). The same
argument as above gives that if µγt (dx) := exp(γXt(x) − (γ2/2)E(Xt(x)2)) dx
are the associated approximate chaos measures for γ ≥ γc, then µγt (A) → 0 in
probability as t → ∞ for any A ⊂ Rd compact. In fact, in this case it is easy
to see that µγt (A) is martingale for each A. This means that the convergence
actually holds almost surely.

2.3.1. Spine decomposition/Rooted measures

At this point it is useful to discuss an analogous “spine decomposition” that
one has for Gaussian multiplicative chaos measures. For clarity, and because
this case will be used in detail later on, let us assume that (Xt)t≥0 is a ?-scale
cut-off approximation to a ?-scale invariant field, as in (2.7).

1There is a slight technicality here, since the field Z1 is not actually continuous, and so
Theorem 2.2 as stated cannot be applied. However, one can check (see [76, Proof of Lemma
1]) that the proof works for a field such as Z1, for which the chaos measure clearly exists and
has a density with well-behaved tails.
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Recall that (Xt(x); t ≥ 0) is a standard Brownian motion for each x, so in
particular, E(Xt(x)2) = t for all t, x. If

µγt (dx) := exp(γXt(x)− (γ2/2)t) dx (2.16)

then for any bounded subdomain A ⊂ Rd one can define a measure Q such that

dQ
dP
|Ft = |A|−1µγt (A), (2.17)

where F is the filtration generated by (Xs(x); x ∈ A, s ≤ t). One can also
append a uniformly chosen point x∗ in A to P (independently of F), thereby
defining a new measure P∗.

Since ζt = exp(γXt(x
∗)−(γ2/2)t) will be a martingale under P∗ (the classical

Brownian motion exponential martingale), one can define a measure Q∗ by

dQ∗

dP∗
|F∗t = ζt (2.18)

for each t. Here as in the branching random walk case F∗t is the filtration
generated by x∗ together with (Xs(x);x ∈ A, s ≤ t).

Then just as before, one has that (dQ∗/dP∗)|Ft = |A|−1µγt (A) so that the
Q- and Q∗-laws of (Xt(x);x ∈ Rd, t ≥ 0) are identical. On the other hand, it is
easy to check that:

• the Q∗-law of x∗ given Ft is proportional to µt(dx)1A;

• for any t, the Q∗-law of (Xt(x);x ∈ A, t ≥ 0) given x∗ is, by Girsanov’s
theorem, that of a Gaussian process with the same covariance structure
as (Xt(x);x ∈ A), but with mean given by γE(Xt(x)Xt(x

∗)) at the point
x;

• the Q∗ law of (Xt(x
∗); t ≥ 0) is that of a standard Brownian motion plus

a drift of γt.

2.4. Renormalisation

From now on, the focus will be on the case

γ = γc :=
√

2d. (2.19)

There is a separate and equally interesting story when γ >
√

2d, but it is not
within the scope of the present article. See [94, Section 6] for an overview.

When γ = γc and X is a field as in (2.1), the previous section shows that
convolution approximations µγcε as defined in (2.11) converge to 0 as ε→ 0. On
the other hand, for any γ < γc, µ

γ
ε converges to a non-trivial limiting measure.
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Thus one can hope that by giving the sequence µγcε an appropriate “push” in
the right direction, something interesting may still be obtained.

The next question is how, precisely, to do this. A simple solution would be
to take a limit of measures cεµ

γc
ε with some cε deterministic and converging to

∞ as ε→∞. But of course, cε must be chosen carefully, and it is not so clear
a priori what it should be.

Another approach arises from the following example.

Example 2.4. Recall the setting of Section 2.3.1, and note that for each fixed
x ∈ Rd, the martingale exp(γXt(x) − (γ2/2)t) is the classical “exponential
martingale” of γ times a Brownian motion. It is standard and easy to check
that this martingale is not uniformly integrable, and converges to 0 almost
surely as t→∞.

Therefore, the only way that µγt can have a non-trivial limit, is that there
are enough exceptional points where this martingale is atypically large. In fact,
from the discussion in Section 2.3.1 it can be deduced that if µγt does converge
in L1(P), then a point y sampled with probability proportional to the limiting
measure will have

lim
t→∞

Xt(y)

t
= γ (2.20)

almost surely. This is in contrast to a fixed deterministic point, for which the
above limit would correspond to limt→∞Bt/t and almost surely be 0.

When γ < γc the convergence in L1(P) is known, and so there are indeed
enough such points to support the measure. When γ = γc however, it can be
shown that the Hausdorff dimension of points satisfying (2.20) is zero, and for
any bounded A ⊂ Rd

lim sup
t→∞

sup
x∈A

(Xt(x)− γct) = −∞ (2.21)

a.s. (See Section 4.1 for a more refined statement). Note that for the branching
random walk case, (2.21) follows from the fact that Mγc

n → 0 as n → ∞. The
result for ?-scale invariant fields can be deduced by a comparison argument,
[50], and for general fields by comparison with a modified branching Brownian
motion, see e.g. [5].

So essentially, the reason that µγct converges to 0, is that the martingale
exp(γcXt(x) − (γ2c/2)t) is just too small everywhere. Nevertheless, there is an
alternative martingale that is natural to consider. This arises by taking the
derivative of exp(γcXt(x)− (γ2c/2)t) with respect to the parameter γ. That is,
considering

dt(x) := (−Xt(x) + γct) exp(γcXt(x)− (γ2c/2)t). (2.22)

Note that this is indeed a martingale, by its definition as the derivative of a
martingale.
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In fact, if one modifies this slightly and considers

dβt (x) := (−Xt(x) + γct+ β) exp(γcXt(x)− (γ2c/2)t)1Aβt (x)
(2.23)

Aβt (x) := {(−Xs(x) + γcs) ≥ −β ∀s ∈ [0, t]} (2.24)

instead (in order to work with a positive density) then this is again a martin-
gale. Moreover, for fixed x if one changes measure using this martingale, then
(−Xt(x) + γct + β) under the new measure will have the law of a 3d-Bessel
process started from β; see [93] for justification of these facts, and much more
information on general Bessel processes.

This means, very roughly, that a limit of

Dβ
t (dx) := dβt (x)dx (2.25)

as t→∞ (if it exists) could be supported on points x where −Xt(x)− γct goes
to −∞. Therefore one can be more hopeful (and it turns out rightly so) that

such a limit exists. In fact, since Dβ
t (dx) and µ′t(dx) := dt(x) dx are extremely

close for large β (by (2.21) and Theorem 2.1) then this should actually imply
that µ′t itself converges.

The analogue of this in the setting of convolution approximations is to con-
sider

µ′ε(dx) := − d

dγ

(
exp(γXε(x)− γ2

2
E(Xε(x)2))

) ∣∣
γ=γc

dx

=
(
−Xε(x) + γcE(Xε(x)2)

)
exp(γcXε(x)− γ2c

2
E(Xε(x)2)) dx (2.26)

and ask if

lim
ε→0

µ′ε(dx) (2.27)

exists. If it does, then this in turn provides a guess for a “deterministic renor-
malisation” that may work. Indeed, the discussion in Theorem 2.4 suggests that
a limit of the form (2.27) should be “supported” on points where (−Xε(x) +
γcXε(x)) behaves like a 3d-Bessel process at time log(1/ε). Since a 3d-Bessel
process at time t is typically of size

√
t, a reasonable guess is that

lim
ε→0

√
log(1/ε)µγcε . (2.28)

may exist and be non-trivial. This normalisation is known as the “Seneta–
Heyde” normalisation, and has a well-established counterpart in the branching
random walk literature [8]. In the ?-scale invariant setting of Theorem 2.4, one
instead tries to take a limit of

√
tµγct as t→∞.
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Another, related but somewhat more näıve, line of reasoning is the following.
For γ < γc it is known that the limit measure µγ = limε→0 µ

γ
ε exists and is non-

trivial, while on the other hand, limε→0 µ
γc
ε = 0. Since everything seems to

depend pretty nicely on γ, it is not too hard to believe that the measures µγ

are in some sense regular with respect to γ, and converge to 0 as γ ↑ γc. If this
were true, then even though the limit of µγ as γ ↑ γc is trivial, the rate at which
it approaches zero may not be. This leads one to ask if

lim
γ↑γc

µγ

γc − γ
(2.29)

exists in some appropriate sense. This turns out to be rather tricky to address,
but it is natural to expect that, if they exist, (2.29) and (2.27) should be closely
related. Indeed, they correspond to one another up to exchanging the order of
limit γ → γc and ε→ 0. This point will be explored in some detail in Section 3.

It turns out, as will be discussed in the next sections, that all of these
approaches are essentially equivalent, and correct.

2.5. Construction of critical Gaussian multiplicative chaos

Theorem 2.5 of this section is the most general statement to date concerning
the convergence of (2.26) and (2.28). This final version is due to [75], and builds
on a series of works [50,51,66,73,91] that will be summarised just below.

As in [75, Definition 5.1], if (µ, (µn;n > 0)) are random measures on some
compact set K, and µn(F )→ µ(F ) in probability for every continuous function
F on K, then µn is said to converge to µ in probability in the weak* sense.

Theorem 2.5 (General construction). Suppose that X is a log-correlated
field as in Section 2.1 and that (Xε)ε≥0 is a convolution approximation to X
(defined on the same probability space). Then there exists a non-trivial measure
µ′ on D such that for any K ⊂ D compact,

µ′ε|K → µ′|K (2.30)

in probability in the weak* sense, along any sequence εn converging to 0. The
measure µ′ does not depend on the choice of mollifier used.

Furthermore, for any such K,

(
√

log(1/ε)µγcε )|K → (

√
2

π
µ′)|K (2.31)

in probability ε→ 0 (in the same sense).

Remark 2.6. The same result holds for ?-scale invariant measures, with the anal-
ogous approximations

√
tµγct and µ′t described in Section 2.4. In this case the
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convergence of µ′t is actually a.s. for the topology of weak convergence of mea-
sures (due to the underlying martingale structure), while the convergence of√
tµγct only holds in probability. It should be expected that the latter conver-

gence cannot be lifted to almost sure convergence. Indeed in the branching
random walk setting of this result, [8], it is shown that there almost surely ex-
ists a sequence of t along which convergence does not hold (although this has
not been proven for Gaussian multiplicative chaos measures).

2.5.1. History

As already hinted at, the history behind this construction really begins with
the work of [30] concerning convergence of the so-called derivative martingale
for the branching random walk, and the subsequent work [8] on the Seneta–
Heyde normalisation. Motivated by these ideas, the picture for critical Gaussian
multiplicative chaos has gradually evolved towards Theorem 2.5. The timeline
is roughly as follows.

(2014) Duplantier, Rhodes, Sheffield and Vargas [50,51] construct critical Gassian
multiplicative chaos for ?-scale invariant fields as in (2.4). This is defined
as the almost sure limit of µ′t as t → ∞, where µ′t is as described in
Theorem 2.4, making use of the fact that approximate masses of fixed sets
are martingales in this set-up. The authors show further that

√
tµγct (again

defined using the ?-scale cut-off approximations) converges in probability
to (

√
π/2)µ′ as t → ∞. Finally, they allow some relaxation on the need

for k to have compact support. This allows them, among other things,
to consider and prove the same results for the planar Gaussian free field;
see [51].

(2015) Huang, Rhodes and Vargas [66] use a comparison argument, in the case
of the planar GFF and the GFF on the unit circle (2.3), to show that in
the Seneta–Heyde normalisation (2.28) with convolution approximations
to the field, the same limit (

√
2/π)µ′ defined in [50,51] can be obtained.

(2016) At essentially the same time, Junnila and Saksman prove a general com-
parison theorem [73] that allows for comparison between different approx-
imations in the Seneta–Heyde normalisation. This shows that if the limit
(2.28) (or its analogue for a non-convolution approximation) exists for one
approximation scheme, it also exists for other comparable ones, and the
limiting measures will be the same. In particular, it extends the result
of [51] (the Seneta–Heyde normalisation) to a wider class of approxima-
tions (e.g., convolution) for ?-scale invariant fields and the Gaussian free
field.

(2017) For the other, derivative, normalisation scheme (2.26), [91] again considers
?-scale invariant fields and the planar GFF. The article shows that if the
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limit (2.28) in the Seneta–Heyde normalisation for convolution approxi-
mations exists, then it also exists in the derivative normalisation (2.26),
and the two limits agree up to the constant

√
2/π. The proof can be

extended to the GFF on the unit circle, as explained in [14].

So at this point, Theorem 2.5 is known for ?-scale invariant fields, the
GFF on the circle, and the planar GFF. However, existence of limits is not
known in any scheme for more general fields, so the comparison theorems
of [73,91] cannot be applied.

(2018) In an attempt understand (2.27) (more on this in the next section) Aru,
Sepúlveda and the current author develop a new construction of GMC
measures for the planar Gaussian free field [15], using the approximation
(2.10). With this approximation, they show convergence to the critical
measure in both the Seneta–Heyde and derivative normalisations.

(2019) Finally, Junnila and Saksman return to the scene, now together with Webb
[75], and armed with a clever decomposition theorem. This essentially
says that you can write any log-correlated field as in (2.1) as a sum of a
?-scale invariant field and an independent continuous Gaussian field. As
a consequence, together with previous results, one obtains Theorem 2.5.

Alongside this there is another story, concerning the natural question of
whether one can construct critical chaos as a suitable limit from the subcritical
regime. This will be discussed later in Section 3, and we also postpone discussion
of the associated history to that section (although it is closely linked to the
above). See just below Theorem 3.1.

2.5.2. Ideas behind the proof of Theorem 2.5

(I) Convergence in the derivative normalisation for ?-scale invariant fields.

Let us consider the approximate measures µ′t as in Theorem 2.4, when the
underlying field X is ?-scale invariant and (Xt)t≥0 are the ?-scale cut off ap-
proximations to X with covariances (2.7). By standard results concerning con-
vergence of measures, see for example [50], it is enough to show that for any
A ⊂ Rd compact,

µ′t(A) =

∫
A

(−Xt(z) + γct) eγcXt(x)−
γ2c
2 t dx (2.32)

has an almost sure limit as t→∞. Recall that:

- for any x ∈ Rd, (Xt(x); t ≥ 0) has the law of a standard linear Brownian
motion;

- (Xt(x); t ≥ 0) is a martingale with respect to the filtration (Ft; t ≥ 0);
where Ft = σ((Xs(x); x ∈ A, s ∈ [0, t])).
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Exchanging integral and expectation means that µ′t(A) is itself a martingale
for the filtration (Ft; t ≥ 0). This is good news for taking limits, but on the
other hand, µ′t(A) need not be positive and so convergence is not guaranteed.
Note that this point really does deserve careful consideration, since the aim is
to construct a positive measure in the end.

In an attempt to get around this, one can turn to the measures

Dβ
t (dx) = dβt (x)dx = (−Xt(x) + γct+ β) eγcXt(x)−

γ2c
2 t 1Aβt (x)

dx for β > 0,

(2.33)

where Aβt (x) defined in (2.23) is the event that (−Xs(x) + γcs+ β) stays non-

negative for 0 ≤ s ≤ t. The advantage is that Dβ
t (A) is then non-negative (by

definition). Moreover, since dβt (x) is a martingale with respect to (Ft; t ≥ 0) for

each x (as explained in Theorem 2.4), Dβ
t (A) is also a martingale.

Therefore, for any β > 0, Dβ
t (A) has an almost sure positive limit Dβ(A)

as t →∞. Furthermore, it is clear that Dβ(A) must be increasing in β and so
also have an almost sure positive limit D(A) as β →∞. But what does this say
about the convergences of µ′t(A)? The key is that by (2.21),

P(∃β ∈ (0,∞) such that µ′t(A) = Dβ
t (A)− βµγct (A) for all t) = 1, (2.34)

while on the other hand by Theorem 2.3, βµγct (A)→ 0 almost surely. Combining
all of this, it follows that µ′t(A) converges almost surely to D(A) =: µ′(A) as
t→∞.

So all that is left to complete the picture in this setting is to show that µ′(A)

is non-trivial. Observe that for this, it suffices to show that Dβ
t (A) is uniformly

integrable for each β. Indeed, if this is the case then the martingale Dβ
t (A) will

converge in L1(P) for each β, and the limit Dβ(A) will have expectation β|A|
(since E(dβt (x) = β|A| for every x). Dβ(A) will therefore be non-trivial for each
β, and increasing as β →∞, meaning that µ′(A) is certainly non-trivial.

Notice that µ′t(A) then necessarily has infinite expectation, since it must be
greater than β|A| for any β. In particular, the convergence µ′t(A)→ µ′(A) does
not hold in L1(P).

(II)Spine decomposition/rooted measures.

To prepare for the proof of uniform integrability (and later proofs), it is
necessary to now discuss an analogue of the “spine decomposition” associated
with derivative measures and martingales. This is the natural extension of
Section 2.3.1.

Just as before, fix A ⊂ D compact and define P∗ to be the usual P law of
(Xt(x); x ∈ Rd, t ≥ 0) together with a random point x∗ chosen proportionally

to Lebesgue measure in A. Then from Theorem 2.4, it follows that dβt (x∗) is a
martingale with respect to the filtration (F∗t ; t ≥ 0) where F∗t for each t is the
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σ-algebra generated by x∗ together with (Xs(x); x ∈ A, s ∈ [0, t]). Since the

expectation of dβt (x∗) is β, it is possible to define a measure Q∗ via

dQβ,∗

dP∗
|F∗t :=

dβt (x∗)

β
∀t. (2.35)

Again observe that

dQβ,∗

dP∗
|Ft :=

Dβ
t (A)

β|A|
∀t, (2.36)

so if Qβ denotes the marginal law of (Xt(x); x ∈ Rd, t ≥ 0) under Qβ,∗, then

the Radon–Nikodym derivative (dQβ/dP)|Ft is proportional to Dβ
t (A) for every

t.
One can also easily compute that

Qβ,∗({x∗ ∈ B} |Ft) =
Dβ
t (B)

Dβ
t (A)

, ∀B ⊂ A; (2.37)

in other words, given Ft and under Qβ,∗, x∗ is chosen according to Dβ
t in A.

On the other hand, the Qβ,∗-marginal law of x∗ is just the uniform distribution
in A.

Finally it follows from the discussion in Theorem 2.4, that given x∗, the
conditional Qβ,∗ law of (−Xt(x

∗) + γct+ β; t ≥ 0) is that of a 3d-Bessel process
started from β.

Conclusion of (I).

Proof that Dβ
t (A) is uniformly integrable. By definition of Qβ , showing that

Dβ
t (A) is uniformly integrable amounts to showing that Qβ(Dβ

t (A) > K) → 0
as K → ∞, uniformly in t (cf. the discussion below Theorem 2.1). They key
idea is to replace Qβ by Qβ,∗ in this probability (since they give exactly the
same mass to the event in question) and then decompose according to whether
the spine (−Xt(x

∗)+γct+β) behaves reasonably, or not. Let us assume without
loss of generality that A ⊂ [0, 1]d.

Recall that (−Xt(x
∗) + γct + β) has the law of a 3d-Bessel process under

Qβ,∗, which at time t is typically of order
√
t. In fact, one can be much more

precise. It follows from [86], that if

ERt := {R(1+
√
s log(1 + s)) ≤ (−Xs(x

∗)+γcs+β) ≤ R
√
s

log(2 + s)2
∀s ∈ [0, t]}

(2.38)
then Qβ,∗(ER∞) → 1 as R → ∞. Since by Markov’s inequality, one can write

Qβ,∗(Dβ
t (A) ≥ K) ≤ Qβ,∗(ERt ) +K−1EQβ,∗(1ERt D

β
t (A)) for any R, it therefore

suffices to show that for any fixed R:

sup
t

EQβ,∗(1ERt D
β
t (A)) <∞. (2.39)
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So let us now show this. For each y ∈ A, write t∗0(y) = − log(|x∗ − y|). The
important fact is that under P∗ and given (x∗, (Xs(z); s ≤ t∗0(y), z ∈ A)),

dβt (y)− dβt∗0(y)(y) and dβt (x∗)− dβt∗0(y)(x
∗) are conditionally independent (2.40)

(and both with conditional expectation 0). Indeed this follows since x∗ is chosen

independently of (Xs(x); x ∈ A, s ≥ 0) under P∗, since dβt (x) is a martingale
for each x ∈ A, and by the nice decorrelation property of the approximations
Xs to X: recall the discussion below (2.7). Thus,

EQβ,∗(1ERt D
β
t (A))

= β−1
∫
A

EP∗(1ERt d
β
t (x∗)dβt (y)) dy by Fubini and (2.35)

≤ β−1
∫
A

EP∗(1ER
t∗0(y)

dβt (x∗)dβt (y))dy since ERs is increasing

= β−1
∫
A

EP∗(1ER
t∗0(y)

dβt∗0(y)
(x∗)dβt∗0(y)

(y))dy by (2.40)

. EP∗(

∫
A

R

√
t∗0(y)

log(2 + t∗0(y))2
e−γcR

√
t∗0(y) log(1+t

∗
0(y)) edt

∗
0(y) dβt∗0(y)

dy)

by definition of ERs

.
∫
B(0,1)

√
log(|w|−1)

log(2 + log(|w|−1))2
e−
√
2dR
√

log(|w|−1) log(1+log(|w|−1))

× ed log(|w|
−1) dw

where the implied constants in the final two inequalities depend only on the
fixed quantities A,R, β. The final line follows from the fact that x∗ is chosen
according to Lebesgue measure in A under P∗.

So, all that remains to check is that this integral is finite. This is easily
verified by changing to hyper-spherical coordinates in Rd, which nicely cancels
the blowing up term ed log(|w|

−1). Since the rest is very well behaved as |w| → 0,
it is not hard to conclude: see [50] for a step-by-step proof. 2

(III) The Seneta–Heyde normalisation for ?-scale invariant fields.

The convergence of
√
tµ′t as in Theorem 2.6 follows from a special case of

the next lemma.

Lemma 2.7. Take any A ⊂ Rd compact. Then if F is continuous, positive and
bounded in A, the convergence

√
t

∫
A

eγcXt(x)−
γ2c
2 t F (−Xt(x)+γct√

t
) dx

µ′t(A)
→
√

2

π
E(F (R1)) (2.41)
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holds in probability as t→∞, where R1 is a Brownian meander at time 1.2

In particular, taking F ≡ 1, it follows that

√
tµγct (A)

µ′t(A)
→
√

2/π (2.42)

in probability as t→∞. Together with fact that µ′t(A)→ µ′(A) almost surely
as t→∞, this implies that

√
tµγct (A) converges in probability to (

√
2/π)µ′(A).

As before, this suffices to show convergence in probability of the measures
√
t µγct

to (
√

2/π)µ′.

Remark 2.8. The lemma with F ≡ 1 is proved in [51], but the proof given below
(for general continuous and bounded F ) is essentially identical. The branching
walk analogue is due to Aı̈dékon and Shi, [8], from which many of the main
ideas originate. In fact, a streamlined proof of Aı̈dékon and Shi’s result was
recently given in [37]. This avoids using second moment calculations (as we will
see, this is the bulk of the proof below) and instead relies on truncated first
moment bounds. It is reasonable to expect that this strategy will work in the
continuum setting of Theorem 2.7 as well, but this has not yet been carried out
in detail.

Proof of Theorem 2.7. The backbone of this argument is based on its branching
random walk analogue in [8], although there are specific parts of the analysis that
are both easier and harder in the continuum setting. Namely, in the continuum
one has the advantage of working directly with Brownian motions rather than
random walks, which eliminates the need for some estimates (or makes them
straightforward by scaling). On the other hand, the independence structure is
more clear-cut in the branching random walk setting.

Let us now begin the proof. Write

F βt =

∫
A

1Aβt (x)
eγcXt(x)−

γ2c
2 t F (

−Xt(x) + γct√
t

) dx. (2.43)

Recalling the definition (2.36), the idea is to show that

√
tEQβ (

F βt

Dβ
t (A)

) =

√
2

π
E(F (R1)) + o(1) (2.44)

and

tEQβ ((
F βt

Dβ
t (A)

)2) ≤ 2

π
E(F (R1))2 + o(1) (2.45)

2A Brownian meander (Rt)t∈[0,1] has the law of ((1− τ1)−1/2(W(1−τ1)+tτ1 ))t∈[0,1], where
W a standard Brownian motion. It is also the weak limit as ε→ 0 of (Wt)t∈[0,1] conditioned
on its minimum value (on [0, 1]) being greater than −ε, [54].
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as t → ∞. By Markov’s inequality, (2.44) and (2.45) imply that for every β,√
t(F βt /D

β
t (A)) converges to

√
2/π in Qβ-probability as t→∞. This means by

(2.36), that for any β, δ > 0:

P
(
Dβ
t (A)−11{|

√
t(Fβt /D

β
t (A))−

√
2/π|>δ}

)
→ 0 as t→∞. (2.46)

On the other hand, by (2.21) and the fact that limβ→∞ limt→∞Dβ
t (A) = µ′(A)

is non-trivial, one can take β large enough and η small enough that the events F βt

Dβ
t (A)

=

∫
A

eγcXt(x)−
γ2c
2 t F (−Xt(x)+γct√

t
) dx

µ′t(A) + βµγct (A)
∀t ≥ 0


and {

Dβ(A) = lim
t→∞

Dβ
t (A) ≥ η

}
occur with probability arbitrarily close to one. Since µγct (A) → 0 as t → ∞,
Theorem 2.7 follows straightforwardly from these observations. Let us omit the
technical details, that can be found in [15, Appendix B] (or in [51] for F ≡ 1,
which is almost identical).

For the first moment estimate (2.44), the argument is pretty neat. Simply
write

√
tEQβ (

F βt

Dβ
t (A)

) =
√
t
EP(F βt )

β|A|
(2.47)

=
1

|A|

∫
A

√
t

β
EP(1Aβt (x)

eγcXt(x)−
γ2c
2 t F (

−Xt(x) + γct√
t

)) dx

and observe that the integrand on the right-hand side does not depend on x.
Indeed the law of Xt(x) under P is that of a standard linear Brownian motion
for each x. Moreover by Girsanov’s theorem, after changing measure with the
Radon–Nikodym martingale exp(γcXt(x)− (γ2c/2)t), the law of (−Xt(x) + γct)
becomes just that of a standard linear Brownian motion B. Writing P for the
law of B, the right-hand side of (2.47) can be expressed as

√
t

β
EP(F (t−1/2Bt)1{infs∈[0,t] Bs≥−β})

t→∞
=

√
π

2
EP(F (t−1/2Bt) | inf

s∈[0,t]
Bs ≥ −β) + o(1),

where the equality follows since P(infs∈[0,t]Bs ≥ −β) ∼
√
πβ2/2t as t → ∞.

(2.44) then follows by (scaling and the) characterisation [54] of a Brownian
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meander on [0, 1] as the limit as ε→ 0 of Brownian motion conditioned to stay
above −ε on [0, 1].

The second moment bound (2.45) is rather more complicated, but is based
around one clever trick. That is, to notice that

F βt

Dβ
t (A)

:= Qβ,∗(Lβt (x∗) | Ft) where Lβt (x∗) :=
F (t−1/2(−Xt(x

∗) + γct))

−Xt(x∗) + γct+ β
.

(2.48)

Indeed this just follows from the definition of (F βt , D
β
t (A)) and the expression

(2.37) describing the conditional density of x∗ given Ft.
This means, by the tower property of conditional expectation, that the left-

hand side of (2.45) can be rewritten as

tEQβ,∗(
F βt

Dβ
t (A)

Lβt (x∗)). (2.49)

Recall the aim is to bound this by (2/π)E(F (R1))2 + o(1). The basic strategy
is to say that the behaviour of the field close to the point x∗ will not have
a significant effect on the large-t behaviour of F βt /D

β
t (A): this is, essentially,

because limtD
β
t does not have any atoms. As a result, one can (roughly speak-

ing) factorise the expectation in (2.49) into the two parts EQβ,∗(F
β
t /D

β
t (A))

and EQβ,∗(L
β
t (x∗)), while incurring only an o(1) error in t. Applying the first

moment asymptotic (2.44) then yields the conclusion. This argument, although
simple in principle, becomes quickly quite technical. Below the technical de-
tails are again omitted, and the reader is referred to [51] for a more thorough
treatment.

The first step is to reduce the problem to showing that

tEQβ,∗(
F βt

Dβ
t (A)

1EtL
β
t (x)) ≤ 2

π
E(F (R1))2 + o(1) (2.50)

as t → ∞, for any sequence Et of events with Qβ,∗(Et) → 1 as t → ∞. The
advantage of this is that situations where Xt(x

∗) behaves abnormally can be
ignored. The reduction itself follows from some straightforward bounds: it is
shown in [51] with F ≡ 1, but exactly the same proof works when F is bounded.

Next, setting
ht = t5/12 (2.51)

(note that this is smaller than the typical growth of a 3d-Bessel process but still
blows up with t) one can decompose

Dβ
t (A) =

∫
A\B(x∗,e−ht )

dβt (x)dx+

∫
B(x∗,e−ht )

dβt (x) dx
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:= D̃β
t +

∫
B(x∗,e−ht )

dβt (x) dx

and similarly for F βt , thus defining F̃ βt . Then another technical argument, basi-

cally using the fact that e−ht decays sufficiently fast with t to say that (F βt −F̃
β
t )

does not contribute to the left-hand side of (2.50) in the limit, reduces the proof
of (2.50) to showing that

tEQβ,∗(
F̃ βt

D̃β
t

Lβt (x∗)1Et) ≤
2

π
E(F (R1)2) + o(1) (2.52)

as t→∞, where

Et := {F̃ βt ≤ D̃
β
t } ∩ {−Xht(x

∗) + γcht + β ∈ [h
1/3
t , ht]}. (2.53)

Since −Xs(x
∗)+γcs+β evolves as a 3d-Bessel process under Qβ,∗, it is straight-

forward to show that Qβ,∗(Et)→ 1 as t→∞. Again this is shown in full detail
in [51] with F ≡ 1, and the same argument works with bounded F .

The final trick is to condition on G∗t : the σ-algebra generated by x∗ and
(Xs(x); s ≤ ht, x ∈ A). The point is that, by the decorrelation property of

(Xt; t ≥ 0) (see after (2.7)) and the definition of (F̃ βt , D̃β
t ), the event Et is

measurable with respect to G∗t , while (F̃ βt /D̃
β
t ) and Lβt (x∗) are conditionally

independent given it. Thus,

tEQβ,∗(
F̃ βt

D̃β
t

Lβt (x∗)1Et) = EQβ,∗(1Et
√
tEQβ,∗(L

β
t (x∗) | G∗t )

√
tEQβ,∗(

F̃ βt

D̃β
t

| G∗t )).

(2.54)
This is the “factorisation” stage mentioned in the proof outline.

To conclude, the definition of Et and the first moment argument, again using
(2.48), gives that

1EtEQβ,∗(L
β
t (x∗)|G∗t ) ≤

√
2

π(t− ht)
E(F (R1)) almost surely, (2.55)

while a slightly more in-depth argument gives that

√
tEQβ,∗(1Et

F̃ βt

D̃β
t

) ≤
√
tEQβ,∗(

F βt

Dβ
t (A)

) + o(1) (2.56)

(this is where the fact that F̃ βt ≤ D̃β
t on Et is used, although it is hidden at

this level of exposition). Putting these together, since
√

(t/t+ ht) = 1 + o(1)
as t→∞, provides (2.52) and thus completes the proof. 2
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(IV) Comparison arguments

Recall that in [73], the authors prove that in the Seneta–Heyde normali-
sation, convergence for one approximation to the field implies convergence in
other comparable approximations. More precisely, they show the following.

Theorem 2.9 ([73]). Suppose that (Xn, X̃n; n ≥ 0) are two sequences of cen-
tred Gaussian fields on D ⊂ Rd compact, with covariance kernels (Kn, K̃n; n ≥
0) such that

(x, y) 7→
√
E(Xn(x)−Xn(y))2 and (x, y) 7→

√
E(X̃n(x)− X̃n(y))2 (2.57)

are α-Hölder continuous for some α > 0. Suppose further that

sup
x,y∈D

|Kn(x, y)− K̃n(x, y)| <∞ ∀n ≥ 1

and

lim
n→∞

sup
|x−y|>δ

|Kn(x, y)− K̃n(x, y)| = 0 ∀δ > 0.

Finally, assume that (ρn; n ≥ 0) is a sequence of non-negative Radon reference
measures, and that µ̃n(dx) := exp(X̃n(x)− 1

2E(X̃n(x)2))ρn(dx) converges in dis-
tribution to an a.s. non-atomic random measure µ̃ on D as n→∞. Then µn(dx)
(defined analogously) converges in distribution to the same random measure µ̃.

There are also conditions provided [73, Theorem 4.4] for the analogous result
to hold with convergence in distribution replaced by convergence in probability.

Note the freedom in allowing the reference measures ρn to depend on n
here. This is what makes the theorem applicable to approximations of Gaussian
multiplicative chaos in the Seneta–Heyde normalisation. For example, one can
let Xn, X̃n be γc times some convolution approximations to a log-correlated field
at level εn, and set ρn(dx) :=

√
log(1/εn) dx.

See [73, Section 5] for proofs that the conditions of this theorem are satisfied
when comparing:

• different convolution approximations of general log-correlated fields (Corol-
lary 5.2);

• convolution approximations vs. ?-scale cut-off approximations of ?-scale
invariant fields (Lemma 5.6);

• convolution approximations vs. circle averages of the planar Gaussian free
field (Lemma 5.7).
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Proof Sketch proof (of Theorem 2.9 ). The first step is a fairly classical argu-
ment (using Kahane’s inequalities) to show that tightness of the sequence of
measures (µ̃n; n ≥ 1) implies tightness of (µn; n ≥ 1). Thus, (µn; n ≥ 1) has
subsequential limits in the space of measures, and it is only necessary to prove
that any such limit µ must be equal to µ̃. For this, it suffices to prove that for
any non-negative continuous function f on D and any non-negative, bounded,
continuous concave function ϕ, that

E(ϕ(

∫
f(x)µ(dx))) = E(ϕ(

∫
f(x)µ̃(dx)). (2.58)

The idea is to use Kahane’s concavity inequality (just take F = −F in Theo-
rem 2.2), to verify that the above equation is satisfied with both ≤ and ≥ in
place of =.

To show the ≤ version (the other case following from the symmetric argu-
ment) suppose for ease of notation that µn → µ as n → ∞. The idea is to
define an auxiliary field Y , continuous and independent of (Xn; n ≥ 1), so that
Xn + Y has covariance dominating the covariance of X̃n pointwise for all large
enough n, but also so that Y is very close to being totally decorrelated. The
first of these properties means that

E(ϕ(

∫
f(x) eY (x)− 1

2E(Y (x)2) µ(dx))) ≤ E(ϕ(

∫
f(x)µ̃(dx))) (2.59)

by Kahane, and the second means that the left-hand side of (2.59) very close
to the left-hand side (2.58).

More precisely, Lemma 3.5 in [73] shows that one can construct a sequence
of fields (Yε; ε > 0) so that (2.59) holds with Y ↔ Yε for every ε, and so that

E(|
∫
D

eYε(x)−
1
2E(Yε(x)

2) λ(dx)− λ(D)|2) . ε2λ(D)2 +

∫∫
|x−y|<2ε

λ(dx)λ(dy)

(2.60)
for any positive measure λ on D. Note that the right-hand side is small as
long as λ isn’t atomic. In particular since µ must be a.s. non-atomic (this is
Lemma 3.3 in [73], which is again proved using Kahane’s inequality), (2.60) can
be applied with λ = µ to deduce that∫

f(x) eYε(x)−
1
2E(Yε(x)

2) µ(dx)→
∫
f(x)µ(dx) (2.61)

almost surely as ε → 0 (this last step uses a Borel–Cantelli argument). Com-
bining with (2.59) yields the conclusion. 2

The next comparison argument to appear after this was in [91], whose main
theorem is:
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Theorem 2.10 ([91]). For ?-scale invariant fields and the planar Gaussian free
field, convergence for convolution approximations in the Seneta–Heyde normal-
isation implies convergence in the derivative normalisation.

The proof of this theorem goes along similar lines to the proof of Theo-
rem 2.7 above, though dealing with quite different technicalities (that will not
be discussed here).

Finally, the theorem that pulls everything together to reach the conclusion
of Theorem 2.5 is the following, much more general result from [75].

Theorem 2.11 ([75]). LetX1,X2 be two centred Gaussian fields, almost surely
lying in Hα

loc(D) for some α > 0 and some domain D ⊂ Rd. Let C1, C2 be the
covariance kernels of X1, X2, and assume that C1, C2 ∈ L1

loc(D ×D) while for
some ε > 0, C1 − C2 ∈ Hd+ε

loc (D ×D). Then for any subdomain D′ compactly
contained in D, it is possible to construct (X ′1, X

′
2, G) on a common probabil-

ity space, such that G is a.s. Hölder continuous on D′, X ′1, X
′
2 have the same

marginal laws as X1, X2, and

X ′1 = X ′2 +G almost surely on D′. (2.62)

The proof of this theorem is beyond the scope of this survey. But, as men-
tioned previously, the result is the ability to decompose any log-correlated field
X as in (2.1), as a sum of a ?-scale invariant field and an independent Hölder
continuous Gaussian field. Since Theorem 2.5 is known for ?-scale invariant
fields, this finally (with a little work) implies the general result.

Unsurprisingly this is just one application of the decomposition theorem:
see [75] for a much broader discussion.

2.6. Properties of critical measures

This section provides a brief survey, without proofs, of some important prop-
erties of critical Gaussian multiplicative chaos. Unless stated otherwise, µ′ will
be the critical chaos measure for a general log-correlated field as in (2.1).

Theorem 2.12 (Moments, [51]). For any A non-empty, bounded and open,
µ′(A) has finite moments of every order q ∈ (−∞, 1). It does not have moments
of order 1. Moreover, for any q < 1 there exists a constant Cq (that may depend
on KX) such that for any A ⊂ D open and bounded

C−1q r2dq−dq
2

≤ E[µ′(rA)q] ≤ Cqr2dq−dq
2

for all r small enough. (2.63)

For ?-scale invariant fields, the fact that µ′(A) cannot have a finite moment
of order 1 was already observed in the previous section (see the discussion about
convergence in the derivative normalisation). The existence of moments with
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order < 1 and the multifractal spectrum statement are given in [51, Corollaries
6 and 7]. The general result follows by Kahane’s inequality: Theorem 2.2. Note
that the exponent 2dq−dq2 in (2.63) is the limit of the corresponding subcritical
exponent, which is (d + γ2/2)q − γ2q2/2 for γ <

√
2d, [97]. See also [51] for a

proof of the KPZ-relation satisfied by critical chaos (at least for ?-scale invariant
fields or the planar Gaussian free field).

Theorem 2.13 (Tail behaviour, [108]). For any open set A ⊂ D such that
Leb(∂A) = 0, and any non-negative continuous function g on A

P(

∫
g(x)µ′(dx) > t) =

∫
A
g(v) dv
√
πd t

+ o(t−1) as t→∞ (2.64)

This theorem is due to Mo-Dick Wong [108], who also proved a universality
result for the tails of subcritical multiplicative chaos [109], building on the beau-
tiful paper [95] of Rhodes and Vargas. The author comments in [108, Appendix
D] about the technical assumption on A ⊂ D (that is equivalent to A being
Jordan measurable).

There is one case where an explicit law is known for the critical chaos mea-
sure, which is the case of the GFF on the unit circle: see (2.3). As mentioned
previously, if X is (1/

√
2) times this GFF, then X is a one-dimensional log-

correlated Gaussian field as in (2.1), and one can therefore define its chaos
measure µ′X .3 As part of a remarkable paper by Remy, the following is shown.

Theorem 2.14 (An explicit law, [92]). ln(
√

2µ′X([0, 2π])) has a standard
Gumbel law. Equivalently, the density of

√
2µ′X([0, 2π]) is given by

f(y) = y−2 e−y
−1

1y≥0. (2.65)

In fact, the main result of [92] is an explicit expression, the Fyodorov–
Bouchaud formula [57], for the law of subcritical GMC masses using techniques
from conformal field theory. The proof of the above theorem is based on the
fact that µ′X can be expressed as a limit of subcritical measures (see the next
section). Theorem 2.14 also turns out to be particularly relevant in the context
of some extreme value statistics: see Section 4.1.

Finally, let us mention what is known concerning the modulus of continuity
of the critical measure. This is a topic that is not yet fully understood, but
results do exist in the case of the GFF on the unit circle. This field is a little
easier to analyse than in the general setting, due to the exact scaling property
of the covariance kernel (2.3).

For this particular field at least, the modulus of continuity is another place
where a distinct contrast with the subcritical regime appears. Namely, it is

3Note there is a different convention used in [92]: (µ′X , µ
γ
X) here correspond to

(
√

2Y ′, Y
√
2γ) from [92].
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known that the subcritical measures (γ <
√

2) are almost surely Hölder con-
tinuous, in the sense that there exist deterministic constants a1(γ), a2(γ) such
that with probability one

C−1|I|a1 ≤ µγ(I) ≤ C|I|a2

for all intervals I and some random but a.s. finite C, [17]. When γ = γc =
√

2,
however, this is known not to be the case. It is shown in [20] that instead, for
any a < 1/2:

P(∃C <∞ s.t. µ′(I) ≤ C(log(1 + |I|−1))−a for all intervals I) = 1. (2.66)

This is not shown to be optimal in [20], but one may expect that it is, due to
the analogous result proved for multiplicative cascades in [19]. On the other
hand, [20] shows that for any α > 1/3, on a set of points x with full µ′-measure,
it holds that

µ′(In(x)) ≥ exp(−c
√
n(log n+ α log log n)) eventually, (2.67)

where In(x) is the dyadic interval of size 2−n containing x. One consequence of
this is that µ′ gives full mass to a set of Hausdorff dimension 0.

Remark 2.15. Another property one may wonder about, is whether the knowl-
edge of the critical chaos measure is enough to reconstruct the log-correlated
field X itself. Indeed, this is known to be the case (at least when X is a Gaus-
sian free field), for any subcritical measure: [24]. The author believes that this
is still true for the critical measure, and should follow from similar arguments.
However such a result does not seem to exist in the literature to date.

Remark 2.16. In the subcritical regime, there is also an elegant, intrinsic def-
inition of GMC measures due to Shamov, [103]. Roughly speaking, one can
characterise the subcritical measures just by specifying how they behave when
the field X is shifted by certain functions. It is natural to wonder whether such
a characterisation also exists for critical chaos.

There may well be something meaningful to say in this direction, but there
are several difficulties that arise. Firstly, the set-up of Shamov’s result must
be modified in some way, since it relies on the chaos measures living in L1.
Furthermore, the behaviour of the field around a “measure-typical” point is
really very nice in the subcritical case, due to the Cameron–Martin–Girsanov
theorem for Gaussian processes. This plays a crucial role in [103], and in the
critical case things are much less straightforward: recall Section 2.4. These
issues should not be insummountable, but to the best of the author’s knowledge
nothing has been proven so far.
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3. Limits from the subcritical regime

The main result of this section is Theorem 3.1 below; saying that critical
Gaussian multiplicative chaos measures can be constructed as “derivatives” of
subcritical measures. This is not too hard to believe, given that the critical
measures are obtained by taking derivatives of approximations to subcritical
measures, and then letting the approximations converge. The problem therefore
becomes one of exchanging limits: derivative and approximation.

It turns out however that such an exchange of limits cannot be justified.
Namely, there is a factor of 2 appearing on the right-hand side of (3.1) below.
Roughly speaking, the reason for this is that for γ < 2 there are (almost sym-
metric) contributions to µγ , coming from points x such that Xt(x) stays slightly
above, and slightly below, γt. Let us denote these by µγ+ and µγ− respectively.
On the other hand, as discussed in the previous section, contributions to µ′ can
only come from points x such that Xt(x) stays below γct. As such it is actually
the derivative of µγ− (not µγ) in γ that has the law of µ′. Somewhat surprisingly,
the derivative of µγ+ has the law of µ′ as well; this is what results in the final
factor 2. For more detailed discussion of this point, the reader is referred to [82]
in the setting of the branching random walk, and [14] in the setting of chaos for
the planar GFF.

Theorem 3.1. Suppose that X is a Gaussian log-correlated field with covari-
ance as in (2.1). Then when restricted to any K ⊂ D compact,

lim
γ↑γc

µγ

γc − γ
→ 2µ′ (3.1)

in probability (in the same sense as in Theorem 2.5).

This result was conjectured in [50], and an analogous version proven for
the branching random walk in [82]. However, it was not proven in the Gaussian
multiplicative chaos setting until [14,15], in which the underlying field is assumed
to be a planar Gaussian free field (or a GFF on the unit circle). The papers [14,
15] make use of the special “local set” approximation to the free field described
in (2.10) to transfer the result of [82] to the GFF. From here, Theorem 2.11 can
be used to carry it over to general log-correlated fields in 2-dimensions. This
final step was carried out in [75, Theorem 5.5].

In d-dimensions, there seems to be no general result in the literature so far.
However, the same comparison strategy can be used as long as Theorem 3.1 is
shown for a good enough d-dimensional reference field. This is exactly what
will be carried out here. Namely, the idea behind the proof of Theorem 3.1
is to show the analogous result for ?-scale invariant fields, and then use the
decomposition result Theorem 2.11 to draw the general conclusion.
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Proposition 3.2. Suppose that X is a ?-scale invariant field as in (2.4). Then
the conclusion of Theorem 3.1 holds.

Proof of Theorem 3.1 given Theorem 3.2. By Theorem 2.11 we can write X =
S + R on K, where S is a ?-scale invariant field as in Theorem 3.2 and R is
a Gaussian field with a.s. locally Hölder continuous realisations. Let µγS for

γ <
√

2d = γc be the subcritical chaoses associated to S and µ′S be the critical
chaos associated to S as in Theorem 2.5. Then by Theorem 3.2 it holds that

µγS
γc − γ

→ 2µ′S as γ ↑ γc (3.2)

in probability in the weak* sense (as measures restricted to K). Furthermore,
suppose that µγX are the subcritical chaoses associated to X, constructed using
some convolution approximation (Xε; ε > 0) to X say. Then by the continuity
of R:

µγX(dx) = eγR(x)−(γ2/2)E(R(x)2) e−(γ
2/2) limε→0 E(Xε(x)2−Rε(x)2−Sε(x)2) µγS(dx)

=: fγ(x)µγS(dx)

and

µ′X(dx) = eγcR(x)−(γ2
c/2)E(R(x)2) e−(γ

2
c/2) limε→0 E(Xε(x)2−Rε(x)2−Sε(x)2) µ′S(dx)

=: fγc(x)µ′S(dx), (3.3)

where fγ(x)→ fγc(dx) in probability (for the topology of continuous functions
on K) as γ ↑ γc (see [75, §5]). Thus, combining (3.2) and (3.3), the result
follows from [75, Lemma 5.2 (iii)]. This lemma is the natural statement that
if fn → f in probability (as continuous functions on a compact set K) and
µn → µ in probability (in the weak* sense for measures on a compact set K)
then fnµn → fµ in probability in the weak* sense as measures on K. 2

3.1. Uniform moment bounds in γ

This section includes some technical moment bounds that are required for
the proof of Theorem 3.2. The strategy is similar to that used in [14], although
the details are somewhat different.

Lemma 3.3. Let pγ := 1 + γc−γ
γc
∈ (1, 2), and suppose that X is a ?-scale

invariant field as in (2.4), with µγ its associated subcritical chaos measure.
Then for γ ≥ 1 there exists a constant C not depending on γ, such that

E
(
(

∫
B(0,1)

|y|−γ
2

µγ(dy))pγ−1
)
≤ C. (3.4)



Critical GMC: a review 587

Proof. Recall that the covariance kernel of X is of the form

K(x, y) =

∫ ∞
1

k(u(x− y))

u
du (3.5)

with k ∈ C1(Rd) rotationally symmetric and supported inside B(0, 1), such
that k(0) = 1 and (x, y) 7→ k(x− y) is a covariance on Rd. Let us assume that
x · ∇k(x) ≤ 0 on B(0, 1): this is no loss of generality since the inequality must
hold in B(0, a) for some a > 0, and the result in (3.4) is clearly true if the
integral is restricted to B(0, 1) \B(0, a).

Recall also the ?-scale cut-off approximations (Xt; t ≥ 0). Then [50, Lemma
16] says that for s ≥ − log(|y|), Xs(y) can be decomposed as

−
∫ − log |y|

0

gu(y)Xu(0) du+ Zy + (Xs(y)−X− log |y|(y)) (3.6)

where −gu is non-negative with −
∫ − log |y|
0

gu = k(y) ≤ 1, Zy is a centred Gaus-
sian, independent of (Xu(0); u ≥ 0) with variance bounded by some constant
C independently of y, and (Xs(y) − X− log |y|(y)) is a standard linear Brown-
ian motion independent of Zy and (Xu(0); u ≥ 0). This gives mathematical
content to the heuristic that the Brownian motions Xs(0) and Xs(y) are “the
same” until time − log |y|, and after that, evolve independently.

Since pγ−1 ∈ (0, 1), it holds by (conditional) Jensen’s inequality that writing
G = σ((Xu(0);u ≥ 0))

E((

∫
B(0,1)

|y|−γ
2

µγ(dy))pγ−1 | G)

≤ E(

∫
B(0,1)

|y|−γ
2

µγ(dy) | G)pγ−1

. (

∫
B(0,1)

|y|−γ
2/2 e−γ

∫− log |y|
0 gu(y)Xu(0) du dy)pγ−1

≤ eγ(pγ−1) supu∈[0,− log |y|]Xu(0)(

∫
B(0,1)

|y|−γ
2/2 dy)pγ−1 (3.7)

with the implied constant in the second line not depending on γ. The second
line has also used the fact that exp(−(γ2/2) var(X− log |y|(y))) = |y|−γ2/2.

To bound the expectation of (3.7), for each n ≥ 0, set rn := 2−n(pγ−1)
−2

and
An := {y ∈ B(0, 1) : |y| ∈ (rn+1, rn]}. Then by sub-additivity of the function
x 7→ xpγ−1, the expectation of (3.7) is less than

∑
n

r
(d−γ2/2)(pγ−1)
n

(d− γ2

2 )pγ−1
E(e

γ(pγ−1)(supu≤log(r
−1
n+1

)
Xu(0))

), (3.8)
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where since (Xu(0);u ≥ 0) is a standard Brownian motion, the expectation in
the above is less than a constant times

r
γ2

2 (pγ−1)2
n+1 = r

γ2

2 (pγ−1)2
n 2−

γ2

2 (pγ−1)−2(pγ−1)2 = r
γ2

2 (pγ−1)2
n 2−

γ2

2 . (3.9)

Finally, observing that

(d− γ2 +
γ3

2
√

2d
) =
√

2d(pγ − 1)(

√
2d+ γ

2
− γ2

2
√

2d
) ≥
√

2d(pγ − 1)
γ

2
, (3.10)

and that (d − γ2

2 )pγ−1 is uniformly bounded in γ, it follows that the left-hand
side of (3.4) is bounded by an absolute constant (not depending on γ) times∑

n

r
(pγ−1)(d−γ2/2+ γ3

2
√

2d
)

n =
1

1− 2
−(pγ−1)−2(d−γ2/2+ γ3

2
√

2d
)
≤ 1

1− 2−
√
2d γ2

,

(3.11)
which is indeed uniformly bounded for γ ≥ 1. 2

Corollary 3.4. Take the same set-up as Theorem 3.3. Then there exists a
constant C, independent of γ ∈ [1,

√
2d), such that for any non-negative f on

[0, 1]d:

E
(
(

∫
[0,1]d

f(x)µγ(dx))pγ
)
≤ C

∫
[0,1]d

f(x)pγ dx. (3.12)

Proof. First, by Jensen’s inequality the left-hand side of (3.12) is less than or
equal to

E(µγ([0, 1]d)pγ
∫
[0,1]d

f(x)pγ
µγ(dx)

µγ([0, 1]d
) = EQ∗(f(x∗)pγµγ([0, 1]d)pγ−1) (3.13)

where Q∗ is as defined in Section 2.3.1. Recall that under Q∗ and conditionally
on x∗, the field keeps the same covariance structure as under P but has mean
given by γKX(x, x∗) at x ∈ Rd. By conditioning on x∗ (whose marginal law is
just given by Lebesgue measure on [0, 1]d), and by Theorem 3.3 together with
translation invariance of the field, the result follows. 2

3.2. Proof of Theorem 3.2

The proof of this proposition follows closely the outline of [14, 82], but in a
continuum setting: making use of the decorrelation properties of the field and
the ?-equation (2.8).

Proof of Theorem 3.2. Without loss of generality, let us show that

µγ([0, 1]d)√
2d− γ

→ 2µ′([0, 1]d) in probability as γ ↑
√

2d. (3.14)
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Writing
√
t = C/(γc − γ), the strategy is to prove that

lim
C→∞

lim
γ↑γc

P(|µ
γ
t ([0, 1]d)

γc − γ
− 2µ′([0, 1]d| > ε) = 0 and (3.15)

lim sup
C→∞

lim sup
γ↑γc

P(|µ
γ
t ([0, 1]d)− µγ([0, 1]d)

γc − γ
| > ε) = 0 for any ε > 0, (3.16)

which clearly implies the result.
To see (3.15), the idea is to make use of Theorem 2.7, writing the left-hand

side of (3.15) as

µ′t([0, 1]d)× e−C
2/2

C
×

√
t

µ′t([0, 1]d)

∫
eγcXt−(γ

2
c/2)t e

C(
−Xt+γct√

t
)

(3.17)

in a form reminiscent of (2.41). Applying Theorem 2.7 to the function x 7→
exp(Cx), it then follows that the above converges to

µ′([0, 1]d)× e−C
2/2

C
×
√

2

π
E(eCR1) (3.18)

in probability as γ ↑ γc (and hence t→∞). In fact, a small extra argument is
required here since the function x 7→ exp(Cx) is not bounded, but one can first
truncate the function and then take a limit as the truncation lifts (exactly as
in [14]; the details are omitted). Since

E(eCR1) ∼
√

2πC eC
2/2, (3.19)

as C → ∞ (in the sense that the ratio of the two sides goes to 1), (3.18)
converges to 2µ′([0, 1]d) as C →∞, and (3.15) has been shown.

(3.16) is a little trickier, and makes use of some slightly delicate moment
analysis: this is where Theorem 3.4 comes into play. First observe that it is
possible, for every t ≥ 0, to cover the set [0, 1]d with a finite number N(d) of
collections of boxes (Bit)1≤i≤N(d), where each set Bit consists of edt boxes with
side lengths e−t, that are all at distance greater than e−t from one another.
Note that N(d) does not depend on t.

Then it is clear that

|µ
γ
t ([0, 1]d)− µγ([0, 1]d)

γc − γ
| ≤

N(d)∑
i=1

|µ
γ
t (Bit)− µγ(Bit)

γc − γ
|. (3.20)

Let Ft be the σ-algebra generated by (Xs(x);x ∈ [0, 1]d, s ∈ [0, t]). It is enough
to show that

lim sup
C→∞

lim sup
γ↑γc

P(

N(d)∑
i=1

E(|µγt (Bit)− µγ(Bit)|pγ | Ft)
(γc − γ)pγ

> δ) = 0 (3.21)
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for any δ, where pγ = 1 + γc−γ
γc

. Indeed, for a general random variable X,
σ-algebra F and p > 1

P(|X| > ε) ≤ P(E(|X|p|F) > εpη))+P({|X| > ε}∩{E(|X|p|F) > εpη}), (3.22)

where the second probability above is less than η by Markov’s inequality, and η
can be taken arbitrarily small. Note that pγ < (γc/γ)2 and so by [97, Proposition
3.5] (or just Theorem 3.4), the pγth moments of µγ are finite.

Next write, for fixed i:

|µγt (Bit)− µγ(Bit)| =
∣∣∣ ∑
B∈Bit

(∫
B

eγXt(x)−(γ
2/2)t µγ,t(dx)−

∫
B

eγXt(x)−(γ
2/2)t dx

)∣∣∣.
The key point is that, given Ft, the terms

(

∫
B

eγXt(x)−(γ
2/2)t µγ,t(dx)−

∫
B

eγXt(x)−(γ
2/2)t dx)

for each B ∈ Bit are conditionally independent, and have conditional mean 0.
Since pγ ∈ (1, 2) this allows for an application of the (conditional) von Bahr–
Esseen theorem [18] to obtain that

E(
∣∣µγt (Bit)− µγ(Bit)|pγ | Ft)

(γc − γ)pγ

≤ (
2

γc − γ
)pγ

∑
B∈Bit

E(|
∫
B

eγXt(x)−(γ
2/2)t e−dt µγ,t(dx)

−
∫
B

eγXt(x)−(γ
2/2)t dx

∣∣pγ | Ft)
≤ (

2

γc − γ
)pγ

∑
B∈Bit

(
E(|
∫
B

eγXt(x)−(γ
2/2)t e−dt µγ,t(dx)|pγ | Ft)

+ |
∫
B

eγXt(x)−(γ
2/2)t dx|pγ

)
. (3.23)

Now by Jensen’s inequality, it is possible to bound

|
∫
B

eγXt(x)−(γ
2/2)t dx|pγ ≤ |B|pγ−1

∫
B

eγpγXt(x)−
γ2pγ

2 t dx

≤
∫
B

eγpγXt(x)−(
γ2pγ

2 +d(pγ−1))t dx,

and exactly the same bound holds for E(|
∫
B

eγXt(x)−(γ
2/2)t e−dt µγ,t(dx)|pγ |Ft)

by Theorem 3.4 and the scaling property (2.4) of µγ,t. So, putting this together,
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it follows that the left-hand side of (3.23) is less than or equal to

(
2

γc − γ
)pγ

∑
B∈Bit

∫
B

eγpγXt(x)−
γ2pγ

2 +d(pγ−1))t dx

= 2 (
2

γc − γ
)pγ−1

γc − γpγ
γc − γ

e(
γ2pγ

2

2 − γ
2pγ
2 −d(pγ−1))t

γc − γpγ

×
∫
[0,1]d

e(γpγ)Xt(x)−(γ
2pγ

2/2)t dx. (3.24)

Finally, observe that

e(
γ2pγ

2

2 − γ
2pγ
2 −d(pγ−1))t = e

−C2

2 ( γc+γ2 − γ
2

γ2c
) → e−

C2

2 as t→∞, (3.25)

while (2/(γc − γ))pγ−1 → 1 and (γc − γpγ)/(γc − γ) → 1 as t → ∞. Since
γpγ ↑ γc as γ ↑ γc it also holds by (3.18) that

1

γc − γpγ

∫
[0,1]d

eγpγXt(x)−
γ2pγ

2

2 t dx→ µ′([0, 1])d e−C̃
2/2 C̃

√
2

π
E(eC̃R1) (3.26)

in probability as γ ↑ γc, where C̃ is such that C/(γc− γ) = C̃/(γc− γpγ). Since
the right-hand side of the above tends to 2µ′([0, 1]d) < ∞ as C and (therefore
C̃) tends to infinity, combining this with (3.25) and a union bound provides
(3.21). 2

4. Applications

4.1. Studying extrema

One of the areas in which critical chaos measures turn out to play a dis-
tinguished role, is in the study of extreme values of log-correlated fields. It is
believed that the behaviour of these extrema should be somewhat universal,
not only within the world of Gaussian log-correlated fields, but extending to
log-correlated models in random matrix theory and even probabilistic number
theory. This section is intended to give a flavour of what is known and expected
to be true, but is in no way comprehensive, and the author has little claim to
expertise in this area so the discussion will be kept at a high level. For a more
thorough exposition of this topic the reader is referred to [10]; see also [32, §2].

4.1.1. Maxima of Gaussian log-correlated fields

It has been known since the work of Bramson [38] that the position of the
minimal (or maximal) particle in a branching Brownian motion has a limiting



592 E. Powell

speed
√

2, that its median has a (negative) logarithmic second order correction,
and that the difference between the minimal position and its median converges
in distribution to a random shift of a Gumbel distribution [77]. The same result
is known for the minimal position in a general branching random walk, due to
Aı̈dékon and building on earlier work of many authors; see [6] and the references
therein. Moreover, the random shift of the limiting Gumbel distribution is given
by the limit of the “derivative martingale” for the branching random walk. That
is, the branching random walk analogue of the critical chaos measure.

As ever, a similar phenomenon is expected to be seen for log-correlated Gaus-
sian fields. In fact there has already been cause to consider extreme values of
the field in this article, recall (2.21), but this was a only a preliminary estimate.

Let us begin with a tightness result. The general version stated here is
due to [5], but it builds on earlier work that should also be highlighted. In
particular, the works [35,40,45,48] on the discrete Gaussian free field, and [65]
in the continuum.

Theorem 4.1 ([5]). Suppose that (Yε; ε > 0) are centred Gaussian fields on
[0, 1]d for each ε, such that for some CY <∞: cov(Yε(x)Yε(y))−log(ε∨‖x−y‖) ≤
CY for all x, y, ε; and E[(Yε(x)− Yε(y))2] ≤ CY ε

−1‖x− y‖ for all ‖x− y‖ < ε.
Then, setting

mε :=
√

2d log(1/ε)− 3/2√
2d

log log(1/ε), (4.1)

the family (supx∈[0,1]d Yε(x))−mε is tight in ε.

Given this, the natural question to ask is whether the limit of supYε−mε exists
in law as ε → ∞. Motivated by the above discussion one may also wonder
if there is a universal feature, related to a Gumbel distribution and critical
Gaussian multiplicative chaos, in the limit.

To the best of the authors knowledge this question is yet to be completely
resolved. But there has been considerable progress:

• In [81], Madaule proves that for ?-scale cut-off approximations to ?-scale
invariant log-correlated Gaussian fields,

sup
x∈[0,1]d

(Xt(x)−
√

2dt+
3

2
√

2d
log(t))→ Gd (4.2)

in law as t → ∞, where Gd is a Gumbel distribution convolved with
µ′([0, 1]d) and µ′ is the critical measure constructed in Theorem 2.5. More
precisely, there exists a constant C∗, such that for all z ∈ R:

lim
t→∞

P( sup
x∈[0,1]d

(Xt(x)−
√

2dt+
3

2
√

2d
log(t)) ≤ −z)

= E(exp(−C∗ e
√
2dz µ′([0, 1]d))). (4.3)
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• The analogous result has been shown by Bramson, Ding and Zeitouni [39]
and Biskup and Louidor [32] for discrete approximations (i.e., on a lattice)
to the planar Gaussian free field. Again the critical measure for the free
field appears as the random shift of the limiting Gumbel distribution [34].
In fact, the papers [32, 34] describe not only the maximum of the field,
but the extremal process associated to its local maxima, unveiling an even
stronger connection with critical GMC.

To explain this, take a domain D ⊂ C, and for every N a discrete Gaussian
free field hN defined on a lattice versionDN ofND (see [32] for the detailed
definition of DN ). More precisely, hN is the centred Gaussian field on DN

with probability density at (hN (v))v proportional to

exp(−1

2

∑
v∈DN

(∇hN (v))2) (4.4)

for each N , where ∇ is the discrete gradient on Z2 and hN (v) is set to 0
outside of DN by convention.

Then Biskup and Louidor prove that the rescaled positions and recentred
values of the local maxima of hN converge, as N →∞, to a Poisson point
process with intensity given by

ZD(dx)⊗ e−
√
2πh dh, (4.5)

where ZD is the critical chaos measure for a (continuum) GFF on D. The
identification of ZD turns out to be highly non-trivial matter, and was
actually completed in [34] using a characterisation theorem.

From this it follows, in particular, that for any A ⊂ D and z ∈ R:

P(N−1 arg max
DN

hN ∈ A; max
x∈DN

hN (x)−mN ≤ −z)

→ E
(ZD(A)

ZD(D)
exp(− 1√

2π
e
√
2πz ZD(D))

)
as N →∞, where mN :=

√
8/π logN −

√
3/(2π) log logN ; cf. (4.3). Let

us also remark that in [33], the authors prove a further convergence result
for the full extremal process of the discrete GFF (i.e., not restricted to
local maxima) which allows them to prove a local limit theorem for the
position and value of the GFF maximum.

• Ding, Roy and Zeitouni [49] were also able to build on the techniques
of [39], and extend the result for the planar GFF to much more general
sequences of log-correlated Gaussian fields on large lattices (equivalently,
fine lattice approximations to a bounded set). The reader is referred to [49]
for the exact assumptions made, but let us note that in some natural
circumstances they require significant work to verify.
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• For example, this is the case when considering the four-dimensional mem-
brane model [101]: a Gaussian model for a random height function defined
on a subset A of Z4. The exact definition is closely related to that of the
planar discrete GFF, having probability density at (hv)v∈A proportional
to exp(− 1

2

∑
v∈A |∆hv|2) rather than (4.4) (see [101] for details). In [101],

it is proven that the recentred maximum of this function converges to
a randomly shifted Gumbel distribution, by showing that the conditions
of [49] are satisfied. This requires a substantial and delicate analysis of
the Green’s function for the bi-Laplacian on Z4.

• As far as the author understands, a completely general result concerning
the convergence of recentred maxima, say for fields as in Theorem 4.1, is
not currently known.

As hinted at previously, understanding the law of critical Gaussian multi-
plicative chaos measures may not only help to understand the extreme values
of log-correlated Gaussian fields. Namely, there are other non-Gaussian fields
that are expected to be governed by similar behaviour.

In the coming subsections, a few different families of such fields will be
discussed. Let us emphasise again that each of these topics constitutes a rich
and substantial area of research in its own right. Thus, what follows represents
just a snapshot of progress, and will focus only on the results that are most
closely linked with critical Gaussian multiplicative chaos.

4.1.2. Ginzburg–Landau model

As an initial example, one family of approximately log-correlated fields (that
are actually known to converge to continuum Gaussian free fields under certain
conditions [84,87]) are gradient models with convex interactions or “Ginzburg-
Landau” fields. These are natural generalisations of the discrete planar GFF,
where the density exp(− 1

2

∑
|∇h|2) for the free field is replaced by

exp(−1

2
V (∇h)) ; V (x) = v(x1) + v(x2) (4.6)

for some v : R→ R symmetric and convex.
Given the close connection with the planar Gaussian free field, it is natural

to ask if the maxima of these Ginzburg–Landau fields display similar charac-
teristics. Substantial progress on this was recently made in [110], building on
the previous work [23]. Under the assumption that v ∈ C2 has bounded elliptic
contrast (v′′ ∈ [c, C] for some 0 < c < C <∞), [110] proves that after recentring
around its mean, the maximum of the field in [−N,N ]2 ∩ Z2 is tight along a
deterministic subsequence. In light of the discussion in the previous subsection,
it is reasonable to believe that the recentred maximum should actually converge,
and that its limit will be a shifted Gumbel distribution. However, this seems to
remain open.
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4.1.3. Random matrices

Let us turn next to random matrix theory, a topic whose connection to
Gaussian fields and GMC has been widely studied and utilised in recent years.
The relationship between the two comes about when looking at the characteristic
polynomials of large random matrices sampled from natural ensembles. More
concretely, it is expected and in some settings proved - see for example [60, 67,
96] - that the logarithms of these characteristic polynomials will behave like
Gaussian log-correlated fields as the matrix size goes to ∞.

Building on this idea, it should therefore be the case that normalised powers
of such characteristic polynomials converge to Gaussian multiplicative chaos
measures. This has now been shown rigorously in several settings when the
power corresponds to a subcritical chaos measure [28,43,78–80,89,106]. Recently
in the case of the circular β-ensemble, convergence (of a closely related quantity)
to a critical chaos measure has been shown, [42]. The proof of this actually
goes via a subcritical version, making use of Theorem 3.1 for the GFF on the
circle. Similar results are naturally expected to hold for a large class of matrix
ensembles, as in the subcritical setting, but this seems to be the only result to
date.

More generally, it is believed that the extreme values of log characteristic
polynomials for large random matrices should display the same behaviour as
extrema of Gaussian log-correlated fields. For example, Fyodorov, Hiary and
Keating famously conjectured [58] that if XN is the characteristic polynomial
of a Haar-distributed N ×N random unitary matrix, then

sup
|z|=1

log |XN (z)| − (logN − 3

4
log logN) (4.7)

will converge to a limiting law as N →∞, which is the average of two indepen-
dent Gumbel variables. This should be compared with (4.2) and Theorem 2.14:
recall that the latter describes the law of the mass of a critical GMC measure in
terms of a Gumbel distribution. This conjecture has not been proven to date,
but the sequence has been shown to be tight and significant progress on bounds
has been achieved, [41,90]. Let us also mention the works [43,79] that use GMC
techniques to identify the leading order of the maximum for the characteristic
polynomials of Hermitian matrices and the Ginibre ensemble respectively.

4.1.4. Riemann-zeta function

In a somewhat different direction, it turns out that the Riemann-zeta func-
tion ζ, recentred at a random point on the critical line, can be connected with
Gaussian multiplicative chaos. More precisely, one can consider a uniform ran-
dom variable ω ∈ [1, 2], and study what

log ζ(1/2 + iωT + ix) (4.8)
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looks like as x ranges over an interval of some size and T → ∞. The broad
principle, see [58, 59] for some heuristics, is that (at least the real part of)
this can be compared with a Gaussian log-correlated field in the limit. One
motivation for such a study is the major open problem in number theory of
understanding the growth and global maxima of ζ on the critical line. This will
not be touched upon here, but interested readers are referred to [13, §1.1] for a
summary, and the references therein for more details.

As far as mathematical results concerning (4.8) go, Selberg’s classical theo-
rem [102] guarantees that log |ζ(1/2 + iωT )|/

√
log log T converges to a centred

Gaussian random variable as T → ∞. Since then, many precise correlation
results have been proven. For example:

• [68] showed the independence of values of log |ζ(1/2+iy)| at points y that
are sufficiently far apart;

• [36] showed joint convergence to a correlated Gaussian vector, of the
values at points that are sufficiently close;

• [13] showed the existence of a freezing transition for the moments, over
both macroscopic and mesoscopic intervals, as predicted by [59]. More
precisely, they showed that for θ > −1 and any ε > 0,∫ (log T )θ

−(log T )θ
|ζ(

1

2
+ iωT + ix)|β ∈ [(log T )fθ(β)−ε, (log T )fθ(β)+ε] (4.9)

with probability 1− o(1)

as T → ∞, where fθ(β) changes from being quadratic to linear at β = 2
when θ ≤ 0, and at β = 2

√
1 + θ for θ ∈ (0, 3]. See [13, Theorem 1.1] for

the explicit description of fθ(β). Note that when θ = 0 (considering an
interval of fixed size), if Re log ζ(1/2 + iωT + ix) is comparable to a log
correlated Gaussian field, then this freezing transition corresponds to the
phase transition for Gaussian multiplicative chaos (Section 2.3).

From a slightly different perspective, Saksman and Webb [99,100] considered

the truncation ζN (s) =
∏N
k=1(1 − p−sk )−1 of the Riemann-zeta function, and

were able to show (among other things) that ζN (1/2 + iωT + ix) converges to
a limiting generalised function ζN,rand(1/2 + ix) as T → ∞. They concretely
connected this to Gaussian multiplicative chaos by proving that the random
measures

|ζN,rand(1/2 + ix)|β

E(|ζN,rand(1/2 + ix)|β)
dx and

√
log logN

|ζN,rand(1/2 + ix)|2

E(|ζN,rand(1/2 + ix)|2)
dx (4.10)
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converge to subcritical and critical GMC measures (respectively) on [0, 1] as
N →∞. On the other hand, while they conjecture that in fact

(log T )−
1
4β

2

|ζ(1/2+ix+iωT )|βdx for β < 2, and
√

log log T |ζ(1/2+ix+iωT )|2
(4.11)

converge to the same measures as T →∞, cf. (4.9), this still remains open.
Finally, there is the question of the extreme values of (4.8). An analogous

conjecture of Fyodorov, Hiary and Keating in this case (cf. (4.7)), is that

sup
x∈[−1,1]

log |ζ(1/2 + iωT + ix)| − (log log T − 3

4
log log log T ) (4.12)

should converge to a limiting distribution as T → ∞. This also remains open,
but recent progress has been made by [11,12,61,88]: there now exist both lower
and upper bounds with high probability (to first and second order respectively)
for the supremum in (4.12). This is further extended in [13] to intervals x ∈
[−(log T )θ, (log T )θ] of different lengths (θ > −1). The reader is referred to the
cited articles for precise statements.

4.1.5. Local time of planar random walks and Brownian motion

Other models with related extreme value statistics arise by considering local
times of planar random walks and Brownian motion. Due to the isomorphism
theorems of Dynkin and Ray–Knight [55, 56], which relate these local times to
squares of discrete Gaussian free fields, it is reasonable to expect a relationship
between the “thick points” of these objects. To summarise:

• Thick points of a planar random walk are those places that the walk visits
unusually often, and are thus encoded by atypically large local times.
The sets of such points (with thickness parametrised appropriately) have
been the subject of extensive investigation over the years. In particular,
the sizes of these sets have now been described precisely in the works
[22,46,72,98].

• As discussed in Section 2 of this article, the thick points of log-correlated
Gaussian fields (see e.g., (2.20)) are intimately linked with the associated
Gaussian multiplicative chaos measures. More precisely, the measure with
parameter γ will give full mass to the set of γ-thick points, including at
γ = γc: the largest value of γ for which thick points actually exist.

• By analogy with the GMC case, it is therefore natural to try and construct
measures that are supported on sets of thick points for planar Brownian
motion, with good reason to believe that these should describe the distri-
bution of random walk thick points in an appropriate scaling limit. Such
a measure was first constructed via a regularisation procedure in [21], for
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any “thickness parameter” a less than 1/2. Later, simultaneously in [7,69],
the construction was extended to the full “subcritical” range a ∈ (0, 2).
These articles are concerned with the accumulated local time for Brown-
ian motion run until it leaves a given planar domain D, and although the
regularisations of local time differ slightly between them, they eventually
produce the same measures. These measures are sometimes referred to as
“Brownian chaos measures”.

• Following the construction, it was shown by Jego [70] that point processes
of planar random walk thick points do indeed converge weakly to these
measures after suitable rescaling.

In this framework, a = 2 corresponds to the critical parameter, at or above
which the “usual” approximation procedure yields a trivial measure in the limit.
Although the case a = 2 was not considered initially, critical Brownian multi-
plicative chaos has now been defined by Jego, [71]. It is constructed in [71]
using both the Seneta–Heyde and “derivative” normalisation schemes (cf. The-
orem 2.5) as well as via a limit from the subcritical regime (cf. Theorem 3.1).
To avoid confusion with the Gaussian case, let us denote this measure by ν′.

Of course from here, one would like to know if the “thickest” points of
planar random walks display the same behaviour as the extrema of Gaussian
log-correlated fields. With the critical measure ν′ defined, Jego was able to
formulate a specific conjecture for this in [71]. Namely, if lNx is the total local
time at x, for a simple random walk on Z2 started from the origin and stopped
when leaving [−N,N ]2 ∩ Z2, then the conjecture is that for all z ∈ R

P( sup
x∈Z2

√
lNx − (

2√
π

logN − 1√
π

log logN) ≤ −z)→ E(exp(−c1ν′([−1, 1]2) ec2z))

(4.13)
as N → ∞, for some positive constants c1, c2. Again this would say that the
limiting law of the recentred maximum is a Gumbel law shifted by a critical
chaos measure.

Let us conclude this subsection by mentioning that there is already a growing
body of work on very closely related questions. For example, [2] proved the
analogous result to (4.13) in the setting of simple random walks on symmetric
trees, while [44, 47] have recently shown the same for cover times of random
walks on binary trees. In a slightly different direction, [1, 3, 4] considered local
times of random walks when they are run up to a time proportional to the the
cover time of the graph. In [1] this is the 2d-torus, while in [3, 4] it is a lattice
approximation to a planar domain with all boundary vertices identified and
re-entry through the boundary allowed (see [3, 4] for details). In these works,
among other things, thick points for the local time are shown to be distributed
according to subcritical GFF chaos measures. In addition, the local structure
of the local time field near these thick points is identified.
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4.2. Conformal welding

One final topic where a surprisingly nice picture in connection with Gaussian
multiplicative chaos emerges, is that of random conformal weldings. The story is
quite involved and different in flavour to the rest of this survey, but nonetheless
deserves a mention.

The classical (deterministic) conformal welding problem is the question of
embedding a pair of discs, glued along their boundaries according to some home-
omorphism ϕ, into the two-dimensional sphere S2. When this is possible, it
produces a welding curve η ∈ S2, which separates the images of the two discs
under the embedding. There is a rich theory of complex analysis surrounding
this question, addressing when such weldings exist, and studying the interplay
between curve and homeomorphism. For an introduction to the topic that is
particularly well-suited to probabilists, see [17].

One natural choice of homeomorphism, the case of isometric welding, is
given by identifying two measures on the disc boundaries according to length
with respect to some fixed reference points. Of course, one can also consider
the problem with random boundary measures, and this is where Gaussian mul-
tiplicative chaos comes in.

When the boundary measures are irregular (random or not, but for example
when they are GMC measures) it is really quite hard to determine whether or
not the conformal welding problem admits a solution. And even harder to say
anything about the welding curve, [31]. However, there is a remarkable result
due to Scott Sheffield [105], which describes exactly what happens when the
boundary measures are taken to be two independent copies of subcritical chaos
for (a variant of) the GFF on the unit circle. A constructive approach in this
specific set-up yields both existence of the conformal welding, and classification
of the welding curve as a Schramm–Loewner evolution (SLEκ) with parameter
κ = γ2 < 4.

On the other hand, the theorem does not extend to the case of critical
chaos, which happens to correspond to a special “transition point” κ = 4 for
the SLE parameter. This is the point below which SLEκ is a simple curve, and
above which SLEκ has double points at all scales. It was only as a result of
Theorem 3.1 that [64] were able to extend Sheffield’s result to the critical case.
In turn, this brings about another potential application of critical chaos: can it
be used to say anything about the behaviour of SLE4? The regularity of SLE4

actually remains somewhat mysterious, meaning that such an application would
certainly be interesting (although far from straightforward).

To the best knowledge of the author, there are not any results concerning
existence of conformal weldings for more general chaos measures on the circle.
However, the beautiful paper [17] did consider a problem closely related to that
of [105] from a much more analytic perspective, and it may well be that their
strategies can be adapted to work in a broader context.
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