
1318 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 5, SEPTEMBER 2022

Blockchain-based Peer-to-Peer Energy
Trading Method

Myles J. Thompson, Hongjian Sun, Senior Member, IEEE, and Jing Jiang , Member, IEEE

Abstract—For grid-connected neighbors within communities,
blockchain-enabled peer-to-peer energy trading proves to be a
coherent approach to trade energy from locally produced and dis-
tributed renewable energy resources. Effective matching among
peers enables enhanced energy efficiency during energy trans-
actions, thereby improving the power quality and preferentially
increasing user welfare. The proposed algorithm builds upon
work to develop a system of scoring an energy transaction. It
employs a McAfee-priced double auction mechanism and assigns
the scores based on the preference of factors like price, locality,
and the type of energy generation, in addition to the quantity of
energy being traded. These transactions are pre-evaluated by the
said algorithm to determine the optimal transactional pathway.
As a result, the transaction that is finally executed is the one
holding the highest cumulative score. The proposed algorithm is
simulated over a range of scenarios and tends to boost the user
welfare percentile by an average of 75%. From an economic
perspective, the algorithm may be implemented in small to large
settlements while remaining stable. By reducing power loss, this
energy trading algorithm empowers consumers to save around
25% on their energy costs and offers prosumers a 50% increase
in revenue.

Index Terms—Peer-to-peer energy trading, smart grid,
blockchain, matching algorithm, renewable energy source.

NOMENCLATURE

All the values are scalar unless stated otherwise.
a, b, c Cost function parameters.
B Set of buyers.
Bk kth buyer.
C(·) Cost function.
Cd Distance charge.
DB,k, DS,k Distance preference of kth buyer or seller.
di,j Distance between ith and jth agents.
EB,k, ES,k Energy to buy/sell of kth buyer/seller.
EB, ES Total energy of set of agents.
EP (·) Energy function.
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N Degree of search for each level.
p Clearing price.
P Agent’s price preference.
S Set of sellers.
Sk kth seller.
U(·) Utility function.
WB,k, WS,k Welfare of kth buyer or seller.
α, ω Utility function parameters.
εB,k kth buyer’s energy generation preference.
εS,k kth seller’s energy generation type.
∧ Logical AND.

I. INTRODUCTION

W ITH the rise of decentralised energy production and
households producing evermore renewable energy [1],

the infrastructure throughout this paradigm is currently a key
research area. It is thus essential for a trading mechanism
to be developed which allows peers to trade energy. Peer-to-
peer (P2P) energy trading allows neighbours within commu-
nities and within small groups of communities to share their
renewable energy sources, combatting power quality issues,
improving the welfare of the local community, and decreasing
the demand for fossil fuel power. In the context of P2P, a peer
refers to a user of the system, whether consuming, generating
or prosuming (a concatenation of both).

A. Decentralisation of the Energy Utility: Blockchain

Blockchain-based P2P energy trading allows households to
trade energy with their neighbours without a central utility
company [2], [3], eliminating the vast levies placed by the
utility companies, and promoting both localization of trading
as well as localization of profits [4]. The benefits of decentral-
izing energy trading are not just limited to the localizing of
systems. It grants households the choice of purchasing their
electricity on the basis of personal preference, whether by
generation type or quality. Decentralization also allows relative
independence from the power grid: ensuring consistent power
quality, and maintaining power supply even in the event of a
major utility failure, e.g., due to extreme weather [5], [6].

The fundamental notion behind blockchain is the distributed
ledger. The information on the transaction is not stored cen-
trally, but distributed amongst all the users throughout the
system [7]. A system of consensus is then used to determine
the correct series of events. In combination with smart con-
tracts, first formulated during the development of Ethereum
in [8], blockchain is a model platform for deployment in local
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microgrids and increases resiliency through trust creation [9].
It is a decentralized system and functions in a trust-less or even
negative-trust environment [10]. Unlike Bitcoin, Ethereum is
not solely a platform, but its own Turing-complete coding
environment [11]. This computational universality aids devel-
opers in building applications and running them successfully,
directed at the automation of the energy trade. One exam-
ple of blockchain-based P2P energy trading is the Brooklyn
Microgrid [12], which exhibits desirable facets of the said
trade, such as decreasing prices and power quality issues, and
strengthening community spirit.

B. Current Trading Methods and Algorithms

The contemporary trading method adopts double auctions to
facilitate the energy trade: the bid and ask prices are submitted
to an auctioneer without being visible to the other partici-
pants. Subsequently, a clearing price is calculated as (most
commonly) the median value. After that, all the bids below
this price are eliminated, as are all the asks above this price.
This can either materialize into a continuous auction, as is the
case in [13] for example, or in most cases, a discrete one, as
in [14], [15], and [16]. Discrete markets are typically known to
be hour-ahead bids, implying that the bids are submitted based
upon the predictive energy and generation data set obtained
for the following hour, with the market open for a certain
period (e.g., 15 mins), after which the auctioneer finalizes the
biddings. This repeats hourly. The implementation of rapid
trading algorithms facilitates the functioning of the market
in an hour-ahead manner rather than day-ahead with more
accurate predictions of energy consumption and generation.
Thus, this pattern endows the users with better flexibility
of choice and probably reduces the energy wasted owing to
inaccurate predictions.

C. The Importance of Order Matching

Many authors have investigated both the structures of P2P
energy trading systems and the various pricing strategies.
However, the methods of trade matching have not been in-
vestigated sufficiently. To best explain the process of order
matching, we have used the following example:

Consider the minimal example of two sellers, S1 and S2,
who want to sell 50 kW·h and 100 kW·h, respectively. There
are three buyers, B1, B2, B3, and each wants to buy 50 kW·h
of energy, they form a set B. For now, the energy sold by the
set of sellers, S, is of consistent quality and type. Consider the
following three potential scenarios that emerge for the above
situation:

• Scenario 1: S1 and S2 have the same ask price, say
£2/kW·h. This situation implies that the 150 kW·h of
energy from S will be sold and distributed evenly amongst
B and they will each be charged £300/|B|.

• Scenario 2: S1 and S2 have different ask prices, say
£2/kW·h and £3/kW·h respectively. It indicates that the
same 150 kW·h of energy from S will be sold and
distributed evenly amongst B. However, the price paid
by each would now be £400/|B|, such that they receive
£100 and £300.

• Scenario 3: The ask prices from scenario 2 are carried
forward, however B1 prefers the energy sold by S1

because of geographical proximity. By selling all of the
energy from S1 to B1, it ensures the satisfaction of B1,
but enforces a higher buying price for B2 and B3. On the
other hand, the majority of B1’s energy can be purchased
from S1, leaving a small share of the lower price for B2

and B3—this increases the satisfaction of the other buyers
at the expense of B1.

By extending this example to multiple sellers with different
prices, and likewise complex buyers’ preferences, it can be
established that achieving a match that is considered ‘fair’
by the majority is not easy. Potential simple solutions in-
clude a first-come first-serve method, or manual selection by
each buyer [17]. If this scenario is applied to a commercial
microgrid operation, every trade will be overlooked by the
prosumers; however, the cumulative effect of the high bills
will be such that it ultimately overthrows the objective of
decentralization.

This paper proposes a system that reinforces decentralized
P2P energy trading and its benefits. The main contributions of
this paper are to:

• Propose a method of ranking potential renewable energy
transactions dependant on their respective preferences.

• Devise an algorithm matching renewable energy sellers
with the local buyers which is considered to be fair and
as per the parties’ preferences.

• Incentivize and stimulate the trading practice of renew-
able energy to multiply the value proposition of small-
scale generation, thus boosting the energy efficacy of the
associated industry.

The proposed system facilitates effective matching between
buyers and sellers and appears to be conducive for consumers,
prosumers, and communities.

II. FUNDAMENTALS AND RELEVANT WORK

Murkin [18] designed an algorithm in order to ‘score’ the
hypothetical transaction between a buyer and a seller for every
buyer and seller in that energy auction. Acquired from a
traditional rank-order listing, it considers the price preference,
energy type preference, and distance preference of both the
buyer and the seller. The scoring was as undermentioned, and
takes into account the price preference P , distance preference
D, energy generation type ε, distance charge Cd, distance d
between the two agents, and uses a function EP (·) to return
the energy type preference from ε. The subscripts B and S
represent the buyer and the seller, respectively. This can be
used for any combination of ith buyer and jth seller, giving
a value for their paring—the subscripts i and j have been
omitted for ease of reading.

score(B,S) = (PB − d · Cd)×
EP (εS), if (d ≤ DB) ∧ (d ≤ DS)
1
2

(
DS

d + EP (εS)
)
, if (d ≤ DB) ∧ (d > DS)

1
2

(
DB

d + EP (εS)
)
, if (d > DB) ∧ (d ≤ DS)

1
3

(
DB

d + DS

d + EP (εS,k)
)
, if (d > DB) ∧ (d > DS)

(1)
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where DB and DS represent the distance preference of the
buyer and the seller, respectively.

Murkin’s algorithm then completes the sale for the highest
scoring buyer and repeats yields minimal acknowledgment
for sellers. The evaluation of this algorithm it until there
are no more buyers or the satisfaction or welfare of the
agents. Furthermore, Murkin’s algorithm essentially appears
to be greedy and only focuses on optimizing the score of a
transaction, but not the interest of all the agents involved.

Consider the minimal example of a market with one seller,
S1, and eight buyers, B1:8, arranged so that B1 has the highest
score and B8 the lowest. S1 has 100 kW·h of energy to sell. In
total, the set of buyers, B, wishes to buy 200 kW·h of energy.
The distribution of energy values is as seen in Fig. 1, with the
proportion of the order that would be filled represented by the
filled circle.

B1 = 20

B2 = 80
S1 = 100

B1 = 20

B3:7 = 75

B8 = 25

Fig. 1. Potential distribution paths.

In this scenario, one of the two paths can be taken; either
way, 100 kW·h of energy will be sold, and the remainder
will be purchased from the leading utility providers. Using a
greedy algorithm, like Murkin’s, which solely considers the
score would take path 1 as B2 has a higher score than B3.
Instinctively, however, rewarding the needs of most buyers
using path 2 appears to be a better option.

Rahbari-Asr analogously evaluated this problem from an
economics perspective in [19]. He expressed the welfare of
both the buyer and the seller. The welfare of the kth buyer,
WB,k, is a function of the energy demand EB,k and the price
p, with U(·) as the utility function:

WB,k = U(EB,k)− pEB,k (2)

which is also defined in [20]. It should be non-decreasing and
saturate with higher power, while using selectable parameters
ω and α.

U(EB,k) =

{
ωEB,k − αE2

B,k EB,k ≤ ω/2α

ω2/4α EB,k ≥ ω/2α
(3)

For sellers, their welfare is the net profit for selling energy
ES:

WS,k = pES,k − C(ES,k) (4)

where the cost function, C(·), is defined from [21] as:

C(ES,k) = aE2
S,k + bES,k + c (5)

where cost function parameters a, b, and c are determinable
constants.

Rahbari-Asr optimized these functions, but he did not con-
sider the same parameters as in Murkin’s paper: energy type
or distance. Furthermore, there is no executable form of the

algorithm. Rahbari-Asr’s optimization does, however, yield a
Pareto optimal solution—a solution whereby no further change
would produce a better result for any single individual [22].
These definitions of welfare for the buyers and the sellers
establish a metric using which the proposed algorithm may
be analyzed.

III. ALGORITHM EVOLUTION

The algorithm proposed by Murkin matched transactions
by selecting the highest scoring buyer for each seller, and
repeating until there were no remaining possible transactions
or no energy left to be transacted. The algorithm uses a basic
median-clearing double auction. Matching is acheieved with a
greedy algorithm: each buyer is looped through, transacting
for its best seller, and proceeds further. To improve this,
when compared using the metric of welfare from Section II,
the pricing, scoring, and most saliently matching mechanisms
were altered.

A. Pricing Improvements

The relevant research work by Babaioff [23] serves as a
comparison of various pricing mechanisms for double auc-
tions. There are three plausible implementations cases in
energy trading: average pricing, identical to that used by
Murkin; McAfee pricing; and trade reduction (TR) pricing.
Even though other pricing mechanisms exist, they require the
auctioneer to be in deficit. The definitions of these potential
prices follow below, with the set of buyers, B, and sellers, S,
in their natural ordering with counter k.

Average pricing:

p = (PB,k + PS,k)/2 (6)

McAfee pricing:

p = (PB,k+1 + PS,k+1)/2 (7)

TR pricing:

pB = PS,k (8a)

pS = PB,k (8b)

All of these mechanisms are considered individually ratio-
nal, truthful, and have a balanced budget (weakly in the case
of TR) [23]. The performance of these three mechanisms was
evaluated in the evolution process of the algorithm.

B. Scoring Improvements

The scoring metric used for the proposed system reflects that
in [18]. This mechanism allows users to show preferences of
price, locality, and energy type of their preferred supplier. An
addition of scoring based upon the quantity of energy to be
sold was added. This allows users who want to buy or sell
more energy to be treated preferentially than those who bid
for smaller quantities [24]. The score used in the proposed
system thus takes the following form,

score(B,S) = min(EB, ES) + (PB − d · Cd)×
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EP (εS,k), if (d ≤ DB) ∧ (d ≤ DS)
1
2 (

DS

d + EP (εS,k)), if (d ≤ DB) ∧ (d > DS)
1
2 (

DB

d + EP (εS,k)), if (d > DB) ∧ (d ≤ DS)
1
3 (

DB

d + DS

d + EP (εS)), if (d > DB) ∧ (d > DS)

(9)

C. Matching Improvements

The matching algorithm was developed in two stages,
firstly to eliminate bias towards any specific seller or buyer,
and secondly to be ideally non-greedy and consider global
optimization.

Murkin’s algorithm has an inherent bias towards a certain
buyer or seller during matching. Considering its matching
method, the algorithm works sequentially through the sellers,
only transacting the highest buyer for that seller each time,
irrespective of the next highest score for that seller. The natural
progression for this algorithm, thus, is to transact at the highest
scoring sale globally, and update the scores for each iteration.
This algorithm is represented in Algorithm 1. Although a clear
improvement upon Murkin’s, matching is still done in a greedy
fashion: optimizing the score for each transaction, not globally.

Algorithm 1: Highest score
Data: Set of buyers, B, with total energy EB; set of

sellers, S, with total energy ES; set of scoring
parameters ∀ B ∧ S

Result: Set of transactions
Initialisation:

1 foreach B ∧ S do
2 Calculate the score from (9);
3 end

Matching loop:
4 while EB > 0 ∧ ES > 0 do
5 Transact for the highest score;
6 Recalculate scores from (9);
7 end

IV. PROPOSED ALGORITHM

The algorithm proposed in this paper seeks to tackle the
greed of the matching algorithms discussed in Section III.
The ideal algorithm would search through every possible
sequence of transactions, comparing the cumulative scores,
and executing the transaction path with the highest score. This
would demand the utilization of computational resources and
calculations that are far greater than what the devices are
typically accustomed to conducting in a commercial setup.
Although it would vary depending on the relative volume
of energy being bought and sold, in an example of 10
buyers and 8 sellers, with equal energy deficit and excess
respectively, there would be O(10 × 8!) potential transaction
paths. Implementing this situation to the commercially viable
case of a medium-sized UK town with average number of
UK renewable-generating households, would certainly lead to
more than a googol potential transactional paths. Evidently,
this is highly unfeasible.

The proposed solution is to pre-evaluate a limited number
of these potential transactional paths. The terminology used
subsequently refers to the concepts shown in Fig. 2. A level is
used to describe the set of transactions available to a buyer
accounting for any previous hypothetical transactions. The
algorithm finds the top N level-1 transactions and evaluates the
next best transaction in the hypothetical case of each level-1
transaction having taken place. We refer to this as a two-level
transactional mapping. The resulting actual transaction is the
level-1 sale associated with its highest cumulative score and
highest potential scoring level-2 transaction. This algorithm is
presented in Algorithm 2.

Level 1 Level 2

Sellers

Buyer

Fig. 2. Two-level transactional mapping where N is 4 and the number of
sellers is 8. The red sellers are the top N level-1 sales. The level-2 transactions
shown are the highest scoring transactions for each of the top N level-1
transactions. The algorithm selects the pathway with greatest combined level
1 and level 2 scores.

Algorithm 2: Proposed algorithm
Data: Set of buyers, B, with total energy EB; set of sellers,

S, with total energy ES; set of scoring parameters ∀
B ∧ S,

Result: Set of transactions
Initialisation: foreach B ∧ S do

1 Calculate the score from (9);
2 end

Matching loop:
3 while EB > 0 ∧ ES > 0 do
4 Find the top N potential transactions;
5 i← 1 ;
6 while i ≤N do
7 Recalculate scores given the ith level 1 transaction;
8 Find the highest scoring potential transaction;
9 i← i+ 1;

10 end
11 Transact for the path with the highest combined level-1

and level-2 scores;
12 end

This algorithm is capable of adjusting the flow of trans-
actions to accommodate for scenarios like that described in
the example in Section II. The natural progression of this is
to move a level deeper, forming a transactional mapping like
the one shown in Fig. 3, where the ideal case would search
through every level. Recalling the number of computations n,
for |B| buyers and |S| sellers varies as,

n = O(|B| · |S|!) (10)
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Level 1 Level 2 Level 3

Sellers

Buyer

Fig. 3. Three-level transactional mapping. The red level-1 sellers are the top
N sales. The red level-2 sales are the top potential sales given each red level-1
sales in turn (non-optimal level-2 sales are omitted for ease of reading). The
algorithm selects the pathway with the greatest cumulative score from levels
1 to 3.

Here, it intensifies the algorithm, indicating that it must
have a cut-off limit. This is most easily explored empirically
through simulation results. A three-level transactional map-
ping, however, would take the form shown in Algorithm 3.

Algorithm 3: Proposed algorithm (3 levels)
Data: Set of buyers, B, with total energy EB; set of

sellers, S, with total energy ES; set of scoring
parameters ∀ B ∧ S,

Result: Set of transactions
Initialisation:

1 foreach B ∧ S do
2 Calculate the score from (9);
3 end

Matching loop:
4 while EB > 0 ∧ ES > 0 do
5 Find the top N potential transactions;
6 i← 1 ;
7 while i ≤N do
8 Recalculate scores given the ith level 1

transaction;
9 Find the top N potential transactions;

10 j ← 1;
11 while j ≤N do
12 Recalculate scores given the jth level 2

transaction;
13 Find the highest scoring potential

transaction;
14 j ← j + 1;
15 end
16 i← i+ 1;
17 end
18 Transact for the path with the highest combined

levels 1–3 scores;
19 end

V. RESULTS AND DISCUSSION

For the results to remain comparable, a simulation to test
the proposed algorithm was set up in a similar fashion to

that of Murkin. Accounts were assigned randomly by the
‘mlfg6331 64’ random number generator, with location, price
and preferences listed in Table I. Cost and utility function
parameters are also listed.

TABLE I
SIMULATION PARAMETERS

Latitude [50.95687 52.438562]
Longitude [−2.386779 0.292914]
Eb [1 6] Pb [0 16]
Es [5 10] Ps [4 6]
D [5 10] Cd 0.2
a 0.005 ω 14
b 6 α 0.07
c 1

The energy function, EP (·), returns a value dependant on
the energy type and preference inputted as follows,

EP (Bi, Sj) = (εB,i − εS,j)
2 (11)

This function is populated with values from 1−5, for solar,
micro CHP, wind, hydro, and anaerobic digestion, respectively.
Distances are calculated ‘as the crow flies’, using the haversine
formula.

The simulation was run on Matlab for scenarios of 5%–
20% sellers (stepping by 5%), with 500 to 2000 agents
(stepping by 500). Each simulation was run 10 times, and
the output was averaged, thus reducing the volatile nature of
the random numbers and increasing the results’ reliability. For
all simulations, four primary data were extracted: the energy
bought from the macrogrid, number of transactions, clearing
price, and welfare as defined in (3) to (4). These serve to
demonstrate the performance, stability, and ‘fairness’ of the
algorithm. A well performing, stable and fair algorithm would
have low macrogrid purchase, stable results independent of the
number of agents, and high welfare.

A. Pricing Performance

To evaluate the performance of the three pricing strategies—
average, McAfee, and TR—the welfare and macrogrid pur-
chases were compared for each of them. These are plotted
in Fig. 4 by running a range of agents and proportion of
prosumers using Murkin’s algorithm. It is clear that despite
TR pricing yielding a higher welfare for each agent, this was
detrimental to the macrogrid purchase. It was concluded that
McAfee pricing offered a better balance between welfare and
macrogrid purchase, and additionally stability. The proposed
algorithm, thus allots prices according to the McAfee scheme.
The standard deviation of the price, across all simulations, was
approximately 0.1% of the mean value.

B. Relative Performance

The performance of the proposed algorithm demonstrates
a significant improvement as compared to the more basic
matching methods. Fig. 5 charts the averaged welfare and
macrogrid purchase of each agent across a range of scenarios.
These scenarios are driven by the quantities of agents and
percentage of prosumers, as stated at the beginning of this
section.
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Fig. 4. Comparison of three pricing regimes.

All the algorithms consistently match with all the mar-
ketable energy to buyers. This can be observed by the lack
of variation of average macro-grid purchase across the range
of algorithms. The random nature of the inputs causes slight
fluctuation. Most prominently, Fig. 5 demonstrates the con-
sistent increase in the welfare of each agent throughout the
algorithm’s evolution. The welfare of users using the proposed
algorithm is, on average, more than 75% higher than those
with Murkin’s algorithm.

Murkin
0

0.5

1

1.5

Q
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t

2

2.5

Algorithm 2 Proposed
(N=5)

Algorithm Version

Proposed
(N=20)

3-level

Average macrogrid purchase (kW·h)

Average welfare

Fig. 5. Evolution of the matching algorithm.

The proposed algorithm was tested with varying N , the
degree to which each level is searched. Across all data, little
variation was shown increasing N from 5 to 20. This resulted,
however, due to the detriment of computational time. An
approximately 2.5× increase in computational time was seen
on average moving from N = 5 to N = 20. As the number
of agents increases to the size of a large town with agents of

the order of greater than 106, increasing the degree N would
provide a greater benefit. Nonetheless, this steps out of the
commercial context of this study.

Notably, the 3-level algorithm performs with an increase
in welfare per agent. This is perhaps not surprising. The
magnitude of the increase, however, is large. It is likely that
the level 2 transactions evaluated by Algorithm 2 are, at least
somewhat, the other top N − 1 transactions in level 1. By
moving a level deeper, the algorithm considers transactions
that would not make it to the top N level 1 transactions, thus
it considers a more diverse range of transactional paths.

It is this reasoning that is also reflected in the stability of
Algorithm 3. Fig. 6 shows some performance data for Algo-
rithm 3. Noticeably, within each step of prosumers, the sim-
ulation outcome appears to be highly unstable; in particular,
the data obtained suffered massive variations between identical
simulations. The datapoints, although fluctuating, showed that
Algorithm 3 did always at least match, if not outperform,
Algorithm 2. This shows that, depending on the random agent
profiles inputted, the level 3 transactions are often, but not
always, distinct from the level 1 transactions. In total, however,
the instability of Algorithm 3 is too great compared to its
performance increase compared to Algorithm 2.

C. Scalability

The scalability of algorithms forms a vital aspect, especially
within the context of blockchain. One of the key areas of
research for blockchain currently is the scalability of the
technology. With traditional blockchain technologies (includ-
ing Ethereum), scaling its use to a commercial context can
require extremely high computing power and thus, counter-
productively, energy usage, and can lead to bottlenecking and
system failure [25]. In order to confirm the scalability of the
proposed algorithm, it was simulated in the context of a large
and a small population. The smaller population ranged from
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Fig. 7. Scalability of proposed algorithm for small, medium, and large scale use.

50 to 200 agents, and the large one ranged from 5000 to
20000 agents. These results can be seen in Fig. 7. Although
the small population exhibits some slight instability, in the
form of fluctuation within a proportion of prosumers, the
percentage change is within an acceptable range. Noticeably,
the algorithm remains stable on increasing the size to a large
population, identical to that of a large UK town [26].

D. Commercial Context

The context in which this algorithm is applicable com-
mercially is in the case of a blockchain-enabled P2P energy
trading system. The market structure can be seen in Fig. 8. In
phase one, prior to the market closure, half an hour before
energy is to be transferred, bids are placed in the system.

Market closure

① ② ③

Energy transfer Settlement

<− 30 mins −>

Fig. 8. Visualisation of market timings.

These would rely on both predictive energy usage data, and
predictive generation and weather data. Half an hour before
energy transfer, the market closes, and the system enters phase
two. Within this phase the relevant data are gathered, the
proposed algorithm is executed, and a list of trades to be
executed is outputted. The energy is transferred after half an
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hour of the market period, and transactions are registered onto
the blockchain. This is phase three, and it lasts up until the end
of that billing period. Considering the number of transactions
occurring in a day, bills should be issued monthly like a
conventional energy system.

The half an hour market time, although conventional, is
arbitrary. With improved weather prediction data and enhanced
consumption and generation prediction, this market window
may reduce further [27].

As a part of the scalability issue, a major weakness
of blockchain is the rate of transactions. The transaction
rate of Ethereum, for example, is approximately 10 trans-
actions/s [28]. For a set of 2000 agents, where 20% are
prosumers, the proposed algorithm returns almost 650 trans-
actions. For larger sets, this number is likely to cause the
blockchain’s transaction rate to be the limiting factor of the
market time. Platforms like Ethereum are developing tech-
niques to overcome these throughput restrictions. Sharding is a
proposed solution to this hurdle. Sharding divides the tasks of
the blockchain across multiple chunks, processed by multiple
nodes. This has the effect of partitioning the data and state
of the network, creating multiple, smaller blockchains which
can all communicate. This effectively reduces the amount of
computation performed by a single node, thereby reducing
time and increasing transaction rate. In the context of P2P
energy trading, this could alternatively be realized by reducing
the area across which the network runs, dividing towns into
multiple smaller networks.

For users of the system, they would certainly experience
some amount of change in the way they receive and pay for
their energy. The proposed algorithm, on average, provides a
two-thirds reduction in the amount of energy purchased from
the macrogrid. This translates to approximately a 25% reduc-
tion in bills for consumers, and a 50% increase in payments to
prosumers as compared to current UK Government FITs (feed-
in tariffs) using the data in Table I and the mean clearing price
from the algorithm tends to be approximately 10 p/kW·h [29].
By trading renewable energy for local usage, the major portion
of the energy may be utilized efficiently instead of being lost in
transmission. Furthermore, the moderated dependency of this
technology on the macrogrid enables the incentive of various
ecological benefits. If deployed alongside physical microgrids,
this type of contemporary technology may also very well
tackle the power quality issues and successfully reduce the
reliance on large centralized points of generation.

VI. CONCLUSION

This paper has proposed an algorithm for use in P2P energy
trading. It uses McAfee pricing for a double auction, whereby
users are scored depending on their preferences of price,
locality, and energy type and the quantity of energy they
wish to trade. The algorithm matches buyers and sellers, in
a non-greedy fashion, by pre-evaluating a limited number
of transactions and proceeding with the transaction offering
the highest score for the agents. It provides a greater than
1.75× average increase in user welfare compared to similar
greedy algorithms found in previous works. The proposed

algorithm allows consumers to save 25% on their energy bills
and helps prosumers obtain an additional 50% on the energy
they sell. Commercial usage of this algorithm reduces the net
carbon released by a state through more effective utilisation
of individuals’ generation capacity.

From a theoretical standpoint, this paper presents a complete
system by which P2P energy trading can be executed. Some
future research on this subject could focus on utilizing the
proposed pricing, scoring, and matching mechanisms in a
commercial setting. As discussed, the context of blockchain
trading often deals with low-computational resources; thus,
the exact implementation of the matching algorithm forms
the key to its commercial success. Future research could also
include a game-theoretical analysis of the matching algorithm.
Using clearing prices and pricing preferences instead of hard
boundaries, the nature of the algorithm could be exploited
by the participant agents for financial advantage. During the
commercial development, the algorithm could be altered to
make it unsusceptible to cyber-attacks. Likewise, the security
of the system is highly crucial, especially since large amounts
of data are likely to be transmitted wirelessly and the trading
information is entirely public.
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