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Abstract—Blockchain-enabled peer-to-peer energy trading
provides a method for neighbours and communities to trade
energy generated from local and distributed renewable energy
sources. Effective matching can facilitate greater energy efficiency
during transmission, increases user welfare through preference
and improves power quality. The proposed algorithm builds upon
work to develop a system of scoring an energy transaction.
It uses a McAfee-priced double auction, and scores based
upon preference of price, locality, and energy generation type,
alongside the quantity of energy being traded. The algorithm
pre-evaluates transactions to determine the optimal transactional
pathway. The transaction carried out is that leading to the
greatest cumulative score. Simulated over a range of scenarios,
the proposed algorithm provides an average increase in user
welfare of 75%. Commercially, the algorithm may be deployed
in small to large settlements whilst remaining stable. By reducing
power loss, the algorithm allows consumers to save 25% on their
cost of energy, whilst providing a 50% increase in the revenue
earned by prosumers.

Index Terms—Peer-to-peer energy trading, smart grid,
blockchain, matching algorithm, renewable energy source.

NOMENCLATURE

All values are scalar unless otherwise stated.
a, b, c Cost function parameters.
B Set of buyers.
Bk kth buyer.
C(·) Cost function.
Cd Distance charge.
DB,k, DS,k Distance preference of kth buyer or seller.
di,j Distance between ith and jth agents.
EB,k, ES,k Energy to buy/sell of kth buyer/seller.
EB, ES Total energy of set of agents.
EP (·) Energy function.
N Degree of search for each level.
p Clearing price.
P Agent’s price preference.
S Set of sellers.
Sk kth seller.
U(·) Utility function.
WB,k, WS,k Welfare of kth buyer or seller.
α, ω Utility function parameters.

M. J. Thompson and H. Sun are with the Department of
Engineering, Durham University, Durham, UK, DH1 3LE, e-mail:
hongjian.sun@durham.ac.uk.

J. Jiang is with the Department of Mathematics, Physics and Electrical
Engineering, Northumbria University, Newcastle upon Tyne, UK, NE1 8ST,
e-mail: jing.jiang@northumbria.ac.uk

This work was supported by the European UnionâĂŹs Horizon 2020
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εB,k kth buyer’s energy generation preference.
εS,k kth seller’s energy generation type.
∧ Logical and.

I. INTRODUCTION

W ITH the rise of decentralised energy production and
households producing evermore renewable energy [1],

the infrastructure throughout this paradigm is currently a key
research area. It is thus essential for a trading mechanism
to be developed which allows peers to trade energy. Peer-to-
peer (P2P) energy trading allows neighbours within commu-
nities and within small groups of communities to share their
renewable energy sources, combatting power quality issues,
improving the welfare of the local community, and decreasing
the demand for fossil fuel power. A peer, in the context of
P2P, is a user of the system, whether consuming, generating,
or prosuming (a concatenation of both).

A. Decentralisation of the energy utility: Blockchain

Blockchain-based P2P energy trading allows households to
trade energy with their neighbours without a central utility
company [2] [3]. This eliminates the vast levies placed by
the utility companies, and encourages both locality of trading
but also locality of profits [4]. The benefits of decentralising
energy trading are not limited to locality, however. It allows
households the choice of purchasing their electricity on the
basis of personal preference, whether that is generation type
or quality. Decentralisation also allows relative independence
from the power grid: ensuring consistent power quality, and
maintaining supply in the event of a major utility failure, e.g.,
due to extreme weather [5] [6].

The fundamental notion underlying blockchain is the dis-
tributed ledger. The information on the transaction taking
place is not stored centrally, but distributed amongst all users
throughout the system [7]. A system of consensus is then used
to agree upon the correct series of events. In combination with
smart contracts, first realised in the development of Ethereum
in [8], blockchain is a model platform for deployment in local
microgrids and increases resiliency through trust creation [9].
It is decentralised and works in a trust-less or even negative-
trust environment [10]. Unlike Bitcoin, Ethereum is not solely
a platform, but its own Turing-complete coding environment
[11]. This allows developers to build applications and run
them ideal for automating the trading of energy. One example
of blockchain-based P2P energy trading is in the Brooklyn
Microgrid [12], where decreasing prices and power quality
issues, and increasing community spirit are demonstrated.
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B. Current trading methods and algorithms

The state of the art is to use double auctions to facilitate
the trade of energy: bid and ask prices are submitted to an
auctioneer without being visible to others and a clearing price
is calculated as (most commonly) the median value. From this,
all bids below this price are eliminated, as are all asks above
this price. This can take form as either a continuous auction, as
is the case in [13] for example, but most commonly discrete,
as in [14], [15] and [16]. Discrete markets are commonly hour-
ahead, meaning that bids are submitted based upon predictive
energy and generation data for the following hour, with the
market open for a period (e.g. 15 mins), after which the
auctioneer finalises. This repeats hourly. The use of rapid
trading algorithms facilitates the market to operate hour-ahead
over day-ahead with more accurate predictions of energy
usage and generation. This allows users greater flexibility of
choice, but furthermore likely reduces energy wasted through
inaccurate predictions.

C. The importance of order matching

Many authors have investigated both the structures of P2P
energy trading systems and the various pricing strategies. The
methods by which trades are matched, however, have not been
sufficiently investigated. To best explain the process of order
matching, an example will follow.

Consider the minimal example of two sellers, S1 and S2,
who wish to sell 50 kWh and 100 kWh, respectively. There
are three buyers, B1, B2, B3, who each wish to buy 50 kWh
of energy, they form a set B. For now, the energy sold by the
set of sellers, S, is of consistent quality and type. Consider the
following three potential scenarios which emerge:

• Scenario 1: S1 and S2 have the same ask price, say 2
£/kWh. This situation implies that the 150 kWh of energy
from S will be sold and distributed evenly amongst B and
they will each be charged £300/|B|.

• Scenario 2: S1 and S2 have different ask prices, say
2£/kWh and 3£/kWh respectively. It means the same 150
kWh of energy from S will be sold and distributed evenly
amongst B. The price paid by each, however, must now
be £400/|B| such that S1 receives £100, and S2 £300.

• Scenario 3: The ask prices from scenario 2 carry forward,
however B1 prefers the energy sold by S1 because of
geographical proximity. By selling all of the energy from
S1 to B1 that ensures the satisfaction of B1, but enforces
a higher buying price for B2 and B3. Alternatively,
the majority of B1’s energy can be purchased from S1,
leaving a small share of the lower price for B2 and B3-
this increases the satisfaction of the other buyers at the
expense of B1.

By extending this example to multiple sellers with different
prices, and likewise complex buyers’ preferences, that achiev-
ing a matching that is considered ‘fair’ by the majority is not
trivial. Potential trivial solutions include a first-come first-serve
method, or manual selection by each buyer [17]. Transferring
this scenario to a commercial microgrid operation, each single
trade will go unnoticed by the prosumers; the cumulative

effect, however, of increased bills will be, and ultimately
defeats the objective of decentralisation.

This paper proposes a system underpinning the decen-
tralised P2P energy trading and its benefits. The main con-
tributions of this paper are to:

• Propose a method of ranking potential renewable energy
transactions dependant on their respective preferences.

• Propose an algorithm matching renewable energy sellers
to local buyers which is considered to be fair and is based
upon the preference of both parties.

• Incentivise the trading of renewable energy to increase
the value proposition of small-scale generation and to
increase the energy efficiency of the energy industry.

The proposed system enables effective matching between
buyers and sellers, and is demonstrated to have benefits for
consumers, prosumers, and communities.

II. FUNDAMENTALS AND RELEVANT WORK

Murkin [18] designed an algorithm in order to ‘score’
the hypothetical transaction between a buyer and a seller
for every buyer and seller in that energy auction. Based
upon a traditional rank-order listing, it considers the price
preference, energy type preference, and distance preference
of both the buyer and seller. The scoring was as follows, and
takes into account the price preference P , distance preference
D, energy generation type ε, distance charge Cd, distance d
between the two agents, and uses a function EP (·) to return
the energy type preference from ε. The subscripts B and S
represent buyer and seller respectively. This can be used for
any combination of ith buyer and jth seller, giving a value for
their paring- the subscripts i and j have been omitted for ease
of reading.

score(B,S) = (PB − d · Cd)×
EP (εS), if (d ≤ DB) ∧ (d ≤ DS)
1/2(DS/d + EP (εS)), if (d ≤ DB) ∧ (d > DS)
1/2(DB/d + EP (εS)), if (d > DB) ∧ (d ≤ DS)
1/3(DB/d + DS/d + EP (εS,k)), if (d > DB) ∧ (d > DS)

(1)

where DB and DS represent the distance preference of buyer
and seller, respectively.

Murkin’s algorithm then completes the sale for the highest
scoring buyer and repeats until there are either no more buyers,
or no more sellers. The evaluation of this algorithm gave
little acknowledgement to the satisfaction or welfare of the
agents. Furthermore, Murkin’s algorithm may be described as
fundamentally greedy and looks to maximise the score of a
transaction, not the welfare of all the agents.

Consider the minimal example of a market with one seller,
S1, and eight buyers, B1:8, arranged such that B1 has the
highest score and B8 the lowest. S1 has 100kWh of energy to
sell. In total, the set of buyers, B, wishes to buy 200kWh of
energy. The distribution of energy values is seen in Fig. 1, with
the proportion of the order that would be filled represented by
the filled circle.
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B1 = 20

B2 = 80
S1 = 100

B1 = 20

B3:7 = 75

B8 = 25

Fig. 1: Potential distribution paths

In this scenario, one of the two paths can be taken; either
way, 100kWh of energy will be sold, and the remainder bought
from the main utility providers. Using a greedy algorithm, like
Murkin’s, which solely appraises the score would take path
1 as B2 has a higher score than B3. Instinctively however,
satisfying the needs of the majority of buyers using path 2
appears to be better.

Rahbari-Asr similarly analyses the problem from an eco-
nomics standpoint in [19]. He defines the welfare of both the
buyer and seller. The welfare of the kth buyer, WB,k, is a
function of the energy demand EB,k and the price p, with
U(·) as the utility function:

WB,k = U(EB,k)− pEB,k. (2)

which is also defined in [20]. It should be non-decreasing and
saturate with higher power, and uses selectable parameters ω
and α.

U(EB,k) =

{
ωEB,k − αE2

B,k EB,k ≤ ω/2α
ω2/4α EB,k ≥ ω/2α.

(3)

For sellers, their welfare is net profit for selling energy ES :

WS,k = pES,k − C(ES,k). (4)

where the cost function, C(·), is defined from [21] as:

C(ES,k) = aE2
S,k + bES,k + c, (5)

where cost function parameters a, b, and c are determinable
constants.

Rahbari-Asr performs an optimisation of these functions,
however does not take into account the same parameters
as in Murkin’s paper: energy type or distance. Furthermore,
there is no implementable form of algorithm. Rahbari-Asr’s
optimisation does, however, yield a Pareto optimal solution- a
solution whereby no further change would yield a better result
for any one individual [22]. These definitions of welfare for
buyers and sellers provide a metric by which the proposed
algorithm may be evaluated.

III. ALGORITHM EVOLUTION

The algorithm proposed by Murkin matched transactions by
selecting the highest scoring buyer for each seller, and repeat-
ing until either there are no remaining possible transactions,
or there is no energy left to be transacted. The algorithm
uses a basic median-clearing double auction. Matching is
acheieved with a greedy algorithm: each buyer is looped
through, transacting for its best seller and moving on. To

improve this, when compared using the metric of welfare from
Section II, the pricing, scoring, and most saliently matching
mechanisms were altered.

A. Pricing Improvements

The work of Babaioff, [23], serves as a comparison of
various pricing mechanisms for double auctions. There are
three plausible cases for use in energy trading: average pricing,
like that used by Murkin; McAfee pricing; or trade reduction
(TR) pricing. Other pricing mechanisms exist, however require
that the auctioneer is in deficit. The definitions of these
potential prices follow, with the set of buyers, B, and sellers,
S, in their natural ordering with counter k.
Average pricing:

p = (PB,k + PS,k)/2 (6)

McAfee pricing:

p = (PB,k+1 + PS,k+1)/2 (7)

TR pricing:
pB = PS,k (8a)

pS = PB,k. (8b)

All of these mechanisms are considered individually ratio-
nal, truthful, and have a balanced budget (weakly in the case
of TR) [23]. The performance of these three mechanisms was
evaluated in the evolution process of the algorithm.

B. Scoring Improvements

The scoring metric used for the proposed system reflects
that in [18]. This mechanism allows users to show preferences
of price, locality, and energy type of their preferred supplier.
An addition of scoring based upon the quantity of energy to
be sold was added. This allows for users wishing to either
buy or sell more energy to be treated preferentially to those
only bidding for small quantities [24]. The score used in the
proposed system thus takes the following form,

score(B,S) = min(EB , ES) + (PB − d · Cd)×
EP (εS,k), if (d ≤ DB) ∧ (d ≤ DS)
1/2(DS/d + EP (εS,k)), if (d ≤ DB) ∧ (d > DS)
1/2(DB/d + EP (εS,k)), if (d > DB) ∧ (d ≤ DS)
1/3(DB/d + DS/d + EP (εS)), if (d > DB) ∧ (d > DS).

(9)

C. Matching Improvements

The matching algorithm was developed in two stages,
firstly to eliminate bias towards any specific seller or buyer,
and secondly to be ideally non-greedy and consider global
optimisation.

Murkin’s algorithm has an inherent bias towards a certain
buyer or seller during matching. Considering its matching
method, the algorithm works sequentially through the sellers,
only transacting the highest buyer for that seller each time,
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Algorithm 1: Highest score
Data: Set of buyers, B, with total energy EB; set of sellers, S,

with total energy ES; set of scoring parameters ∀ B ∧ S
Result: Set of transactions

Initialisation:
1 foreach B ∧ S do
2 Calculate the score from (9);
3 end

Matching loop:
4 while EB > 0 ∧ ES > 0 do
5 Transact for the highest score;
6 Recalculate scores from (9);
7 end

irrespective of the next highest score for that seller. The natural
progression for this algorithm, thus, is to transact for the
highest scoring sale globally, and update the scores for each
iteration. This algorithm is represented in Alg. 1. Although a
clear improvement upon Murkin’s, matching is still done in a
greedy fashion: optimising the score for each transaction, not
globally.

IV. PROPOSED ALGORITHM

The algorithm which this paper proposes seeks to combat
the greediness of the matching algorithms discussed in Section
III. The ideal algorithm would search through every possible
sequence of transactions, comparing the cumulative scores,
and executing the transaction path with the greatest score.
This would require computational resources of magnitude far
greater than the devices which would be carrying out these
calculations in a commercial setup. Although it would vary
depending on the relative volume of energy being bought
and sold, in an example of 10 buyers and 8 sellers, with
equal energy deficit and excess respectively, there would be
O(10 × 8!) potential transaction paths. Scaling this to the
commercially viable case of a medium-sized UK town with
the UK average number of renewable-generating households,
this would result in more than a googol potential transactional
paths. Evidently this is unfeasible.

Fig. 2: Two-level transactional mapping where N is 4 and the
number of sellers is 8. The red sellers are the top N level-1
sales. The level-2 transactions shown are the highest scoring
transactions had each of the top N level-1 transactions. The
algorithm selects the pathway with greatest combined level 1
and level 2 scores.

Algorithm 2: Proposed algorithm
Data: Set of buyers, B, with total energy EB; set of sellers, S,

with total energy ES; set of scoring parameters ∀ B ∧ S,
Result: Set of transactions

Initialisation:
1 foreach B ∧ S do
2 Calculate the score from (9);
3 end

Matching loop:
4 while EB > 0 ∧ ES > 0 do
5 Find the top N potential transactions;
6 i← 1 ;
7 while i ≤N do
8 Recalculate scores given the ith level 1 transaction;
9 Find the highest scoring potential transaction;

10 i← i+ 1;
11 end
12 Transact for the path with the highest combined level-1 and

level-2 scores;
13 end

The proposed solution is to pre-evaluate a limited number
of these potential transactional paths. The terminology used
subsequently refers to the concepts shown in Fig. 2. A level is
used to describe the set of transactions available to a buyer
accounting for any previous hypothetical transactions. The
algorithm finds the top N level-1 transactions and evaluates the
next best transaction in the hypothetical case of each level-1
transaction having taken place. We refer to this as a two-level
transactional mapping. The resulting actual transaction is the
level-1 sale associated with the highest cumulative score of
it and its highest potential scoring level-2 transaction. This
algorithm is presented in Alg. 2.

This algorithm is capable of adjusting the flow of trans-
actions to accommodate for scenarios like that described in
the example in Section II. The natural progression of this is
to move a level deeper, forming a transactional mapping like
that in Fig. 3, where the ideal case would search through every
level. Recalling the number of computations n, for |B| buyers
and |S| sellers varies as,

n = O(|B| · |S|!), (10)

deepening the algorithm, must have a cut-off limit. This is
most easily explored empirically through simulation results.
A three-level transactional mapping, however, would take the
form shown in Alg. 3.

V. RESULTS AND DISCUSSION

In order for results to remain comparable, a simulation to
test the proposed algorithm was set up in a similar fashion
to that of Murkin. Accounts were assigned randomly by the
‘mlfg6331_64’ random number generator, with location, price
and preferences listed in Table I. Cost and utility function
parameters are also listed.

The energy function, EP (·), returns a value dependant on
the energy type and preference inputted as follows,

EP (Bi, Sj) = (εB,i − εS,j)2. (11)
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Fig. 3: Three-level transactional mapping. The red level-1
sellers are the top N sales. The red level-2 sales are the top
potential sales given each red level-1 sales in turn (non-optimal
level-2 sales are omitted for ease of reading). The algorithm
selects the pathway with the greatest cumulative score from
levels 1 to 3.

Algorithm 3: Proposed algorithm (3 levels)
Data: Set of buyers, B, with total energy EB; set of sellers, S,

with total energy ES; set of scoring parameters ∀ B ∧ S,
Result: Set of transactions

Initialisation:
1 foreach B ∧ S do
2 Calculate the score from (9);
3 end

Matching loop:
4 while EB > 0 ∧ ES > 0 do
5 Find the top N potential transactions;
6 i← 1 ;
7 while i ≤N do
8 Recalculate scores given the ith level 1 transaction;
9 Find the top N potential transactions;

10 j ← 1;
11 while j ≤N do
12 Recalculate scores given the jth level 2 transaction;
13 Find the highest scoring potential transaction;
14 j ← j + 1;
15 end
16 i← i+ 1;
17 end
18 Transact for the path with the highest combined levels 1-3

scores;
19 end

This function is populated with values from 1 − 5, for solar,
micro CHP, wind, hydro, and anaerobic digestion, respectively.
Distances are calculated ‘as the crow flies’, using the haversine
formula.

TABLE I: Simulation parameters

Latitude [50.95687 52.438562]
Longitude [-2.386779 0.292914]
Eb [1 6] Pb [0 16]
Es [5 10] Ps [4 6]
D [5 10] Cd 0.2
a 0.005 ω 14
b 6 α 0.07
c 1

The simulation was run within MATLAB for scenarios of

5%-20% sellers (stepping by 5%), with 500 to 2 000 agents
(stepping by 500). Each was run 10 times, and the output
averaged- this reduced the erratic nature of the random num-
bers, increasing the results’ reliability. For all simulations,
four primary data were extracted: the energy bought from
the macrogrid, number of transactions, clearing price, and
welfare as defined in (2) to (5). These serve to demonstrate
the performance, stability, and ‘fairness’ of the algorithm. A
well performing, stable and fair algorithm would have low
macrogrid purchase, stable results independent of the number
of agents, and high welfare respectively.

A. Pricing Performance

To evaluate the performance of the three pricing strategies-
average, McAfee, and TR- the welfare and macrogrid pur-
chases were compared for each. These are plotted in Fig. 4
with a range of number of agents and proportion of prosumers
running using Murkin’s algorithm. It is clear that despite TR
pricing yielding a higher welfare for each agent, this was
detrimental to the macrogrid purchase. It was concluded that
McAfee pricing offered a better balance between welfare and
macrogrid purchase, and additionally stability. The proposed
algorithm, thus, prices using the McAfee regime. The standard
deviation of the price, across all simulations, was approxi-
mately 0.1% of the mean value.

B. Relative performance

The performance of the proposed algorithm has been shown
to be a great improvement upon more basic matching methods.
Fig. 5 charts the averaged welfare and macrogrid purchase
of each agent across a range of scenarios. These scenarios
are stepped quantities of agents and percentage prosumers as
stated at the beginning of this section.

All algorithms consistently match all saleable energy to
buyers. This can be seen by the lack of variation of average
macrogrid purchase across the range of algorithms. The little
fluctuation is from the random nature of the inputs. Most
saliently, Fig. 5 shows the consistent increase in the welfare of
each agent throughout the algorithm’s evolution. The welfare
of users using the proposed algorithm is, on average, more
than 75% higher than those with Murkin’s algorithm.

The proposed algorithm was tested with varying N , the
degree to which each level is searched. Across all data,
little variation was shown increasing N from 5 to 20. This
came, however, at the detriment of computational time. An
approximately 2.5× increase in computational time was seen
on average moving from N = 5 to N = 20. As the number
of agents increases to the size of a large town with agents of
the order of greater than 106, increasing the degree N would
provide a greater benefit. This does, however, move out of the
commercial context of this report.

Notably, the 3-level algorithm performs with an increase
in welfare per agent. This is perhaps not surprising. The
magnitude of the increase, however, is large. It is likely that the
level 2 transactions evaluated by Alg. 2 are, at least somewhat,
the other top N −1 transactions in level 1. By moving a level
deeper, the algorithm considers transactions which wouldn’t
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(a) Welfare per agent (b) Macrogrid purchase per agent

Fig. 4: Comparison of three pricing regimes

Fig. 5: Evolution of the matching algorithm

appear in the top N level 1 transactions, thus it considers a
more diverse range of transactional paths.

It is this reasoning that is also reflected in the stability
of Alg. 3. Fig. 6 shows some performance data for Alg. 3.
Notably, within each step of prosumers the simulation outcome
is highly unstable, most saliently the data shown varied greatly
between identical simulations. The datapoints, although fluc-
tuating, showed that Alg. 3 did always at least match, if not
outperform, Alg. 2. This shows that, depending on the random
agent profiles inputted, the level 3 transactions are often, but
not always, distinct from the level 1 transactions. In total,
however, the instability of Alg. 3 is too great compared to
its performance increase compared to Alg. 2.

C. Scalability

Scalability of algorithms is important, especially within the
context of blockchain. One of the key areas of research for
blockchain currently is the scalability of the technology. With
traditional blockchain technologies (including Ethereum), scal-
ing its use to a commercial context can require extremely
high computing power and thus, counter-productively, energy
usage, and can lead to bottlenecking and system failure [25].
In order to confirm the scalability of the proposed algorithm,
it was simulated in the context of a large and small population.
The smaller population ranging in size from 50 to 200 agents,
and the large, from 5 000 to 20 000 agents. These results can
be seen in Fig. 7. Although the small population showed some
slight instability, in the form of fluctuation within a proportion
of prosumers, the percentage change is within an acceptable
range. Saliently, when increasing the population to the size of
a large population, similar to that of large UK town [26], the
algorithm remains stable.

D. Commercial Context

The context in which this algorithm would sit commercially
is that of a blockchain-enabled P2P energy trading system.
The market structure can be seen in Fig. 8. In phase one,
prior to the market closure, half an hour before energy is to be
transferred, bids are placed to the system. These would rely on
both predictive energy usage data, and predictive generation
and weather data. Half an hour before energy transfer, the
market closes, and phase two is entered. Within this phase the
relevant data are gathered, the proposed algorithm is executed,
and a list of trades to be executed is outputted. After the half
hour market period, the energy is transferred, and transactions
logged on the blockchain. This is phase three, and this lasts
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Fig. 6: Instability of 3-level algorithm

(a) Welfare per agent (b) Energy purchased from macrogrid per agent

Fig. 7: Scalability of proposed algorithm for small, medium, and large scale use

up until the end of that billing period. Considering the number
of transactions occurring a day, bills should be issued monthly
like a conventional energy system.

The half-hour market time, although conventional, is ar-
bitrary. As weather prediction data is improving, and addi-
tionally consumption and generation prediction, this market
window can reduce [27].

As part of the scalability issue, a major weakness of
blockchain is the rate of transactions. The transaction rate
of Ethereum, for example, is approximately 10transactions/s
[28]. For a set of 2 000 agents, where 20% are prosumers, the
proposed algorithm returns almost 650 transactions. For larger
sets, this number is likely to cause the blockchain’s transaction

rate to be the limiting factor of the market time. Platforms
like Ethereum are developing techniques to overcome these
throughput restrictions. Sharding is a proposed solution to this.
Sharding divides the tasks of the blockchain across multiple
chunks, processed by multiple nodes. This has the effect
of partitioning the data and state of the network, creating
multiple, smaller blockchains which can all communicate. This
effectively reduces the amount of computation that any one
node has to do, reducing time and increasing transaction rate.
In the context of P2P energy trading, this could alternatively
be realised as reducing the area over which the network is run-
dividing towns into multiple, smaller networks.

For users of the system, little would obviously change in the
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Fig. 8: Visualisation of market timings

way they receive and pay for their energy. The proposed algo-
rithm, does, on average, provide a two-thirds reduction in the
amount of energy purchased from the macrogrid. This trans-
lates to approximately a 25% reduction in bills for consumers,
and a 50% increase in payments to prosumers as compared to
current UK Government FITs (feed-in tariffs) using the data
in Table I and the mean clearing price from the algorithm
approximately 10 p/kWh [29]. By trading renewable energy
for local usage, the majority may actually be used, instead
of being lost in transmission. Furthermore, this technology’s
reduced dependency on the macrogrid allows for ecological
benefits. If deployed alongside physical microgrids, this type
of technology can also more effectively combat power quality
issues and reliance on large centralised points of generation.

VI. CONCLUSIONS

This paper has proposed an algorithm for use in P2P energy
trading. It uses McAfee pricing for a double auction, whereby
users are scored depending on their preferences of price,
locality, and energy type and the quantity of energy they
wish to trade. The algorithm matches buyers and sellers, in
a non-greedy fashion, by pre-evaluating a limited number of
transactions and proceeding with the transaction offering the
highest score for the agents. It has been shown to provide a
greater than 1.75× average increase in user welfare compared
to similar greedy algorithms found in literature. The proposed
algorithm allows consumers to save 25% on energy bills, and
prosumers make a further 50% on the energy they sell. Com-
mercial usage of this algorithm reduces the net carbon released
by a state through more effective utilisation of individuals’
generation capacity.

This paper presents a complete system by which P2P energy
trading can be carried out from a theoretical standpoint. Future
work could focus on using the proposed pricing, scoring,
and matching mechanisms in a commercial setting. As dis-
cussed, the context of blockchain trading is often with low-
computational resources, thus the exact implementation of the
matching algorithm in particular is key to its commercial
success. Future research work could include a game theoretic
evaluation of the matching algorithm. Using clearing prices
and pricing preferences instead of hard boundaries, it is
possible that the nature of the algorithm could be exploited
by agents for financial advantage. During commercial devel-
opment, the algorithm could be adjusted such that it is not
vulnerable to cyber attacks. Likewise, security of the system
is important, especially considering large amounts of data will
likely be transmitted wirelessly.
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