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Abstract
This work presents a convolutional neural network for the prediction of next-day stock fluctuations using company-specific

news headlines. Experiments to evaluate model performance using various configurations of word embeddings and con-

volutional filter widths are reported. The total number of convolutional filters used is far fewer than is common, reducing

the dimensionality of the task without loss of accuracy. Furthermore, multiple hidden layers with decreasing dimen-

sionality are employed. A classification accuracy of 61.7% is achieved using pre-learned embeddings, that are fine-tuned

during training to represent the specific context of this task. Multiple filter widths are also implemented to detect different

length phrases that are key for classification. Trading simulations are conducted using the presented classification results.

Initial investments are more than tripled over an 838-day testing period using the optimal classification configuration and a

simple trading strategy. Two novel methods are presented to reduce the risk of the trading simulations. Adjustment of the

sigmoid class threshold and re-labelling headlines using multiple classes form the basis of these methods. A combination of

these approaches is found to be more than double the Average Trade Profit achieved during baseline simulations.

Keywords CNN � Stock market � Headlines � Trading strategies

Mathematics Subject Classification 68T05 � 91B28 � 68T50

1 Introduction

Despite suggestions that the stock market is not pre-

dictable [1], many investors and researchers seek methods

that can provide market fluctuation predictions to aid

investment strategy. Advances in machine learning (ML)

and natural language processing (NLP) have led to a shift

in focus from technical to fundamental analysis. This new

approach uses data such as news articles and historical

stock prices and is based upon the efficient market

hypothesis which states that an asset price reflects all

available information [2]. Advances in predictive models

have also led to more complex trading strategies. Most

research regarding trading strategies and ML is focused on

technical analysis [3, 4]. From an ML perspective, financial

markets are nonlinear and noisy systems, therefore, stan-

dard techniques to see through the noise can be applied, see

[5] for a comparison of common techniques. Some

researchers consider news and other fundamental data as

part of their strategy [6], however, the development of

trading strategies based solely on fundamental data is rare

throughout the relevant literature.

Macroeconomic factors that drive wider market trends

are believed to have a far greater influence on price trends

for a given stock than specific headlines. Various studies

have been conducted to analyse the relationship between

macroeconomic variables and stock price trends. For

example, [7] demonstrated a high correlation between gold

price, exchange rate and stock prices for the Indian market.

Similarly, [8] analyses the relationship between changes in

Federal Reserve policy (e.g. Interest rates) and subsequent

trends in the stock market, finding a strong trend across

multiple sectors including Utilities and Financial.

Generalized autoregressive conditional heteroskedastic-

ity (GARCH) has proven a popular statistical method for
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evaluating market volatility [9] and is still widely used.

Poon and Granger [10] summarise volatility modelling

approaches that can be classified into two groups; historical

volatility models and volatility implied from options.

Works such as [11] and [12] find that GARCH and implied

volatility models have individual strengths and tend to be

influenced by separate factors, and ultimately a combina-

tion of both approaches can produce better results. This

observation is in line with recent advances in volatility

modelling that involve the use of hybrid models such as in

[13] where various technical indicators are considered.

However, all of the aforementioned approaches tend to

focus on technical analysis without consideration of other

factors such as news or Social Media.

Early research shows no relation between headlines and

stock volatility [14], however, the development of more

advanced predictive models and availability of larger

datasets has led to more accurate market trend predictions

based on headlines. Although complete news articles [15]

or social media content [16, 17] are used in some works,

the use of headlines has become the most common in this

area of research due to the belief that they contain less

noise than other sources of textual data [18]. This does not

mean that other textual data sources are redundant; for

instance, [19] shows how external sources such as Social

Media can influence markets in multiple ways. Similarly,

[20] shows how Social Media can have an indirect influ-

ence on the stock market by influencing consumer investor

behaviour. Headlines are commonly sourced from major

financial news outlets such as The Wall Street Journal [21].

A wide range of prediction targets are considered

throughout the relevant literature, including major indices

such as the S&P 500 [22] and collections of individual

companies [17]. The time span of market fluctuations

analysed is also varied. For example, Mittermayer [23]

focuses on intra-day predictions, whereas long-term trends

are briefly considered in the work of Ding [24]. Methods

such as support vector machines [22] and complex decision

trees [17] remain popular for predictive tasks of this nature.

These commonly use a Bag of Words (BoW) feature rep-

resentation approach, where words are represented inde-

pendently without consideration of word order or context.

Variations of this method include N-gram BoW, where

phrases of length N are extracted as features as opposed to

single words, and Term Frequency-Inverse Document

Frequency (TF-IDF), which introduces the consideration of

a word’s frequency within a sentence and across the entire

collection. However, these representations typically lead to

sparsity issues when applied to a large corpus [25]. Prob-

abilistic approaches such as the Naive Bayes method can

also be applied to tasks of this nature [26].

The development of artificial neural networks (ANNs)

has provided new classification and feature

representation methods for text-based tasks. An ANN is

a collection of nodes known as neurons that are inter-

connected in layers. Originally proposed by Rosenblatt

[27], the architecture is based on the transmission of

signals and firing of biological neurons in a nervous

system. Variations in the basic ANN architecture have

been made to produce types of neural network with

additional mathematical features suited to different

tasks, see for example [28–30]. More recently, other

aspects of ANNs gained popularity in the literature.

Among them, there is the topic of self-organising ANNs

[31, 32] which studies methods for ANNs to design

themselves. A particularly popular type of ANN nowa-

days is convolutional neural networks (CNNs) com-

monly used for image recognition. CNNs utilise a

convolutional layer to detect patterns in input data that

can be used for accurate classification or prediction. For

example, in image detection, these patterns may repre-

sent edges and shapes of a specific object depicted by its

pixel values. More recently, CNNs have gained popu-

larity in text-based tasks demonstrating state-of-the-art

performance in multiple NLP tasks, including sentence

classification [33] and sentence modelling [34]. Some

applications of CNNs to market prediction exist in the

literature, both for major indices [24] and discrete price

prediction [35].

This work presents a CNN for predicting next-day

stock price fluctuations of three major technology com-

panies using headlines relating to each company. Next-

day returns are used due to the inability to access the

large amounts of historical intra-day stock price data

required for intra-day fluctuation prediction. However,

the effect of news headlines has been found to resonate

during the next-day period [24]. Experiments are con-

ducted to identify an optimal model configuration for

trend classification in terms of the word embedding and

convolutional layer states. Using class predictions from

these experiments, trading simulations are presented

based on day-averaged predictions for each asset.

Finally, modifications to both the baseline trading

strategy and labelling of headlines are made with the

intention of reducing risk present in simulated trading.

The novelty and contribution of our work are primarily

twofold: (1) We succeed in trained a shallow network with

good overall performances, making our network easier and

faster to train. This was also possible by employing multi-

filters and an embedding layer able to extract more relevant

information for the task. (2) More sophisticated strategies

for trading based on multi-class to exceed the limitations of

traditional binary-class strategy and threshold to incorpo-

rate in the strategies the confidence of the network in the

class selection.
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2 Model

As discussed, an ANN consists of interconnected layers of

neurons. A neuron is a mathematical operator that receives

one or more inputs and performs a weighted sum to gen-

erate its output. This output is often passed through an

activation function that is chosen depending on both the

positioning of the neuron in the network and the task that

the network is applied to [36]. Activation functions are

used to introduce nonlinearity to the network, allowing for

more complex mappings between inputs and outputs in the

network. The network learns by optimising each neuron’s

weightings to reduce the overall loss present in the system.

In this work, a convolutional neural network (CNN) is

implemented to carry out both binary and multi-class

classification tasks. The overall structure of the network is

comparable to those found in text-based CNN tasks

throughout the relevant literature [37, 33] but with modi-

fications to reduce dimensionality whilst retaining accurate

classification. Figure 1 shows a general schematic of the

network, outlining the constituent layers.

2.1 Preprocessing

Raw headlines are cleaned using a tokenization algorithm

that converts text to lower case, separates each sentence

into its constituent words whilst removing stop-words and

punctuation (‘and’, ‘or’, ‘:’, etc.) [38]. The remaining

words in the collection of tokenized sentences are selected

as features u and form a vocabulary V. The selection of uni-

gram features (i.e. single words) is adequate here, as

phrases are evaluated using specific filter widths in the

network’s convolutional layer. Ordinal encoding is applied

to the tokenized sentence to give vectors fi1; i2; . . .; ing
where ik is an unique integer index corresponding to fea-

ture uk 2 V . Here, n 2 ½1;m� is the length of each indi-

vidual tokenized sentence. To simplify the implementation

of the model, post-padding is applied to each vector to

achieve uniform dimensionality across the set of encoded

vectors. Dummy features, represented by a 0, are appended

to each vector to achieve a set of m-dimensional vectors

where m is the length of the longest tokenized sentence.

For each vector fi1; i2; . . .; ing, m� n zeroes are appended

to the vector. Post-padding preserves word order by only

adding dummy features to the end of each vector. The

result of preprocessing is a set of encoded feature vectors

ipad 2 Rm that are input to the network.

2.2 Embedding

Word embeddings are utilised to represent each feature u in

a p-dimensional vector space, where p � dimðVÞ to reduce
the dimensionality of the problem. These representations

aim to represent the semantic and syntactic context of

features and the relation between similar features. Words

that are interchangeable within a certain context or that

often appear within close proximity of each other in a

sentence are represented by similar vectors in the p-di-

mensional space and are therefore interpreted similarly by

the rest of the network. Capturing context and semantics is

not possible with representations such as Bag of Words or

TF-IDF where features are represented with no relation to

Fig. 1 General model schematic where letter labelling corresponds to

subsections in Sect. 2. Preprocessing that precedes (A) is not included

in the schematic. Note the embedding sentence representation X is

portrayed as a matrix here with dimensions h� p for ease of

presentation, however, in the implemented model, X 2 Rhp is a

1-dimensional vector
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each other. In this work, both randomly initialised and pre-

learned embeddings are tested. When using randomly ini-

tiated embeddings, each p-dimensional vector is initiated

with random values and is tuned during the network’s

training epochs to form a vector representative of the fea-

ture’s context in the training collection, and how it relates

to other features. The random values that are used for

initiation can be selected from a range of common statis-

tical distributions. A selection of methods including ran-

dom-normal and random-uniform is briefly tested during

the implementation of the model. Pre-learned embeddings

have been tuned on large collections of unlabelled textual

data. Many well-defined collections of pre-learned

embeddings formed from training on a variety of sources

are available. The pre-learned embeddings used in this

work are trained on a collection of 10 billion words in a

Google News dataset [39]. The embeddings are formed

using the word2vec method developed by Mikolov [40].

Two configurations of these pre-learned embeddings are

tested in this work; static and non-static modes, as in the

work of Kim [33]. In the static configuration, pre-learned

embeddings are unaltered from their original state. How-

ever, in the non-static configuration, the network’s

embedding layer fine-tunes pre-learned vectors to better

suit the use of a feature within the specific task. If a feature

does not have a pre-learned vector representation in the

word2vec collection, it is randomly initiated. Furthermore,

the embedding representation of the dummy feature added

during post-padding is initiated as a zero vector and

remains constant throughout training for all of the config-

urations discussed. Each integer ik maps to a unique

embedding xk 2 Rp representing feature uk 2 V . Hence, for

each encoded padded feature vector ipad, the embedding

layer returns the feature vector X 2 Rmp formed by the

concatenation of embeddings x1; x2; . . .; xm.

2.3 Convolution

In the context of textual analysis, a convolutional layer

contains a number of filters that are trained to detect similar

or contrasting context and sentiment in groups of adjacent

words. Feature maps representing the nature of these

phrases comprise of dot-product results from each sliding

filter. This method can detect semantically similar phrases

due to feature relations expressed using word embeddings.

The close proximity of vector representations for features

in semantically similar phrases results in the calculation of

similar dot-product results. Filter width h dictates the

length of phrases that are to be evaluated. For example, a

width h ¼ 2 produces feature maps based on bi-grams

represented in X. Consider a filter q 2 Rhp sliding over a

sentence represented by X. The first feature map element

c1, which represents the first phrase of h-adjacent words in

X, is given by

c1 ¼ gðq � X1;hp þ b1Þ ð1Þ

where b1 is a trainable scalar bias term and g is an acti-

vation function. The notation X1;hp is used to represent the

elements of X from position 1 to hp inclusive. Rectified

linear unit activation (relu) is used in this work and is

defined as:

gðxÞ ¼ xþ ¼ maxð0; xÞ ð2Þ

Each filter produces a feature map c 2 Rm�h�1 with ele-

ments representative of each phrase in X. A single stride is

implemented in this layer such that the filter slides by a

single word to produce the next term in the corresponding

feature map. This ensures every possible adjacent phrase of

length h in the headline is considered. Using a single stride,

a general expression for the kth element in a feature map ck
can be formed:

ck ¼ maxð0; q � Xððk�1Þpþ1Þ;khp þ bkÞ ð3Þ

Using d unique filters results in d corresponding feature

maps. Fewer filters are used in this work than is typical to

reduce the dimensionality of the task and hence improve

efficiency despite the presence of additional hidden layers.

This work explores the effect of varying the filter width h

and the potential benefits of using sets of filters with dif-

ferent widths within a single layer. Using multiple filter

widths in this layer aims to detect word patterns of different

length in the original headline. Each filter is tuned during

training to achieve feature maps that best represent the

context of phrases and their relative importance for clas-

sification. The result of the convolutional layer is a col-

lection of d feature maps that represent groups of h-

adjacent features in X.

2.4 Max-pooling

A max-pooling layer is used to down-sample each of the

feature maps produced by the convolutional layer. Using a

pool-size and stride given by w, each maximum value from

groups of w adjacent elements in a feature map is sampled.

During training, filters in the convolutional layer are tuned

so that feature map elements corresponding to phrases that

are highly relevant for the classification of X are large.

Therefore, sampling the maximum of a group of feature

elements reduces the size of the problem whilst retaining

representations of phrases that are vital for classification.

Consider a pool size and stride w ¼ 2, the pooled feature

map cpool 2 R
1
wðm�h�1Þ corresponding to the original feature

map c is given by:
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cpool ¼ fmaxðc1; c2Þ; . . .;maxðcm�h�2; cm�h�1Þg ð4Þ

The remaining pooled feature maps are concatenated to

form an input vector z 2 R
d
wðm�h�1Þ for the hidden layers of

the network. It is common for a max-over time method to

be used in networks with a large number of filters d, where

a single maximum element in each feature map is sampled

[37].

2.5 Fully connected hidden layers

Two fully connected hidden layers are utilised in this work.

The use of more than one fully connected layer is not

common and aims to improve the transmission of rela-

tionships detected by convolution through the latter layers

of the network. The activation of a given neuron zk based

on the previous layer of l neurons zprev 2 Rl is given by

zk ¼ zprev � wk þ bk ð5Þ

where wk 2 Rl is a trainable weights vector and bk is a

trainable scalar bias term, both of which correspond to

neuron zk. Relu activation is applied to zk as shown by

Eq. 2. The weights wk are adjusted during training using

the formula:

Dwk ¼ �g
oJðwÞ
owk

; ð6Þ

where g is the learning rate and JðwÞ is the discrepancy,

loss or error between the predicted class and the ground

truth, both terms are discussed in Sect. 2.6. The term
oJðwÞ
owk

can be understood as the sensitivity of the error on the

change in value of the weight wk. If the value of JðwÞ is

strongly dependent on the value of wk, the term
oJðwÞ
owk

is

bigger in magnitude, as well as Dwk. Also, the bias terms

bk are updated with a similar formula:

Dbk ¼ �g
oJðwÞ
obk

: ð7Þ

In the case of the bias terms, the term
oJðwÞ
obk

is not dependent

on the input coming from the previous layer. More details

on the backpropagation process can be found in [41].

Dropout is utilised in each hidden layer to reduce over-

fitting and the time required to train the network. Over-

fitting occurs when a model fits the training set too closely

and hence is unable to make accurate predictions based on

new, unseen data. This can arise due to the high-dimen-

sional nature of text-based tasks, often referred to as the

Curse of Dimensionality [42]. Hence, a proportion of

neurons at each layer is made inactive according to the

specified dropout rate to reduce training dimensionality.

Each trained weights vector w is scaled during testing to

account for the probability of a neuron’s exclusion due to

drop-out.

2.6 Output node

For binary classification tasks undertaken in this work, a

single output node is used with sigmoid activation. The

sigmoid function returns values between 0 and 1 which can

be interpreted as the probability rðzÞ that an input headline

belongs to class 1 and is defined as

rðzÞ ¼ 1

1þ e�z
ð8Þ

where z is the output neuron’s activation as given by Eq. 5.

In this work, class 1 corresponds to a next-day asset price

increase, whereas class 0 represents a price decrease or

continuation. Class 1 membership is allocated using a

threshold rðzÞ� 0:5. Development of a reduced risk trad-

ing strategy in this work alters this threshold to create a

stricter margin. Multi-class classification is also undertaken

in this work as part of trading strategy development. In

these experiments, the output layer of the network contains

three neurons where class probability is determined by

softmax activation

SðzkÞ ¼
zk

P3

k¼1

ezk
ð9Þ

where SðzkÞ is the probability of membership to the class

corresponding to neuron zk. The three classes used corre-

spond to ‘buy’, ‘inconsequential’ and ‘avoid’ trading

instructions and are discussed further in Sect. 6.

2.7 Training

For binary classification tasks, a binary cross-entropy loss

function is used. Loss provides a measure of how accu-

rately the network classifies the training data using the

current set of weight functions. The loss (or cost) JðwÞ of
the current weight functions w (including bias terms) is

expressed as

JðwÞ ¼ �
X

k

yðkÞlog
�
rðzðkÞÞ

�
þ
�
1� yðkÞ

�
log

�
1� rðzðkÞÞ

�

ð10Þ

where yðkÞ is the correct class label for each of the k training
samples. A categorical cross-entropy loss function is used

in multi-class tasks and is similar in nature to the binary

cross-entropy function discussed. Labelling is based on the

next-day stock price change of each asset and is described

in depth in Sect. 3. Weights are updated based on batches

of training data through gradient-descent and backpropa-

gation. This method updates weights and bias terms to

Neural Computing and Applications (2021) 33:17353–17367 17357

123



converge towards a global cost minimum JminðwÞ, see

Sect. 2.4 for the formulas used to update the weights in the

fully connected layer. Similar formulas are used also to

update the values in the filters of the CNN layers. Each

trainable word embedding and convolutional filter is also

tuned to better represent features and phrases using gradi-

ent descent. The global minimum represents the state in

which the model is fit to the training data with the least

possible error. This implies that this minimum also repre-

sents a collection of embeddings that best represent context

and semantics and a set of convolutional filters that are best

at detecting word patterns vital for classification. The speed

at which the model’s weights approach this global mini-

mum is determined by its learning rate g. If the learning

rate is too large, the model risks overshooting the global

minimum, however, it must be large enough to converge at

a suitable rate. In all simulations, the learning rate g is set

to 0.001. The model is trained using the Adaptive Moment

Estimation method (ADAM) [43]. ADAM is a stochastic

gradient descendent method which differs from a ‘‘pure’’

gradient descendent by the fact that the gradient is not

computed considering all the available dataset but just a

randomly chosen small sample called a batch. Using the

entire dataset may be more accurate but computationally

impracticable. A disadvantage of randomly choosing a

sample is that the gradient is varying a lot depending on

what data are in the sample making the overall computa-

tion of the gradient a very noisy procedure. To mitigate

this, ADAM uses running averages of both the gradients

and the second moments of the gradients. The two running

averages are controlled by the exponential decay rates b1
and b2 with values 0.9 and 0.999, respectively, in all

simulations. The number of epochs used during training

varies depending on the set-up and they are all reported in

Sect. 5.

2.8 Network architectures

In this work, we used three variations of a CNN classifier

composed of one or more CNN layers and two dense

layers. In Tables 1, 2 and 3, the structures of the three

networks are described. All networks are structured as a

stack of layers where the output from the embedding layer

is going into at the bottom of the stack and the classifica-

tion is coming out from the top of the stack. The values of

parameters used in the networks are reported. For some of

them, the reported value is varying meaning that the values

of such parameters are not fixed and discussed in Sects. 5

and 6. In all networks, the overall number of CNN filters is

36, grouped in just one layer in the single-width network or

three CNN layers as in the multi-width and the multi-class

network. The optimisation of the single-width and the

multi-width networks is discussed in Sect. 5, whilst the

optimisation of the multi-class network is discussed in

Sect. 6.2.

3 Dataset

This work uses two datasets from a single source to extract

useful data. The first is a collection of dated headlines

relating to various publicly traded from January 2007 to

December 2016. Historical market data for these compa-

nies are provided in the second dataset. This market data

are used to label headlines according to price change and

does not contribute to any input variables for the model. It

is only company-specific headlines that are used to predict

market movements. From the original datasets, data relat-

ing to three technology companies, Amazon, Apple, and

Microsoft, are used in this work [44]. This is due to the

abundance of headlines relating to these companies, and

hence, they form a mock portfolio used in later trading

Table 1 Strucuture of the single-width network

Layer Parameters

Dense Size = 1, activation = sigmoid, dropout = 0.3

Dense Size = 100, activation = relu, dropout = 0.3

Max-pooling Pool size = 2, stride = 2

Convolution Filters = 36, kernel size = varying, activation = relu

Table 2 Strucuture of the multi-width network

Layer Parameters

Dense Size = 1, activation = sigmoid, dropout = 0.3

Dense Size = 100, activation = relu, dropout=0.3

Max-pooling Pool size = 2, stride = 2

Convolution Filters = 12, kernel size = varying, activation = relu

Convolution Filters = 12, kernel size = varying, activation = relu

Convolution Filters = 12, kernel size = varying, activation = relu

Table 3 Strucuture of the multi-class network

Layer Parameters

Dense Size = 3, activation = softmax, dropout = 0.3

Dense Size = 100, activation = relu, dropout = 0.3

Max-pooling Pool size = 2, stride=2

Convolution Filters = 12, kernel size = varying, activation = relu

Convolution Filters = 12, kernel size = varying, activation = relu

Convolution Filters = 12, kernel size = varying, activation = relu
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strategy development. Along with the headline itself, the

asset that the headline relates to and the date and time of its

first creation are extracted from the first dataset. A rele-

vance score is provided for each headline in the dataset

where a relevance of 1 indicates the presence of the asset

name in the headline. Only headlines containing the rele-

vant asset name are used in this work; hence, headlines

with a relevance of 1 are extracted.

For binary classification tasks, each headline is labelled

depending on the change in the next-day stock price of the

relevant asset. If the asset price at market close of the next

trading day is greater than the price at market open, a

positive return would be made on a single-day investment

and hence the headline is labelled as class 1. If the asset

price is unchanged or decreases over the next-day close-

open period, the headline is labelled as class 0. Using next-

day returns has two clear benefits for evaluating model

performance and its practical use. Firstly, using next-day

returns allows for equal treatment of intra-hours and out-

of-hours news, whereas same-day returns would require

substantial consideration of the time of release. Secondly,

all headlines relating to an asset throughout the course of a

single day can be evaluated by the model individually and

subsequent next-day trading decisions can be made based

on the collection of predictions for the entire day. This is

explored further in the development of a trading strategy in

this work.

It is not suitable to randomly split the data into training

and testing sets in this context due to the fact that headlines

from different sources describing the same event could

appear in both sets, therefore, creating unwanted bias.

Testing data are instead compiled of half-hourly unique

headlines. The nature of the original dataset means head-

lines from different sources describing the same event

appear within a very small time window. Hence, if there is

only a single headline for an asset in a half-hour period, it

can be concluded that the event it describes is unique to

that headline. These time-unique headlines are therefore

selected for use as testing data to avoid overlapping topics

in both the training and testing sets. Only testing headlines

on days where each asset has at least one half-hourly

unique headline are selected. This ensures that the testing

date range for each asset is identical and allows for a fair

comparison of trading performance across the portfolio.

Selecting testing data across the full range of dates in the

collection aims to negate the effects of general market

movements. For example, if testing data were restricted to

2016, returns would be affected by global events in that

year and skew the results of the various experiments

undertaken in this work. Furthermore, the high-frequency

nature of trades simulated in this work ensures that long-

term market trends are not important. Hence, the date range

from which headlines are taken is not an important factor

when analysing the simulation results presented. There are

many cases in the relevant literature of tasks similar to

those undertaken in this work that simply use a random

cross-validation testing split. Although these works

demonstrate high accuracies, this is mainly due to a large

number of overlapping topics in training and testing cre-

ating bias.

4 Experimental procedure

For experiments undertaken in this work, pre-learned

word2vec embeddings of dimension p ¼ 300 are used, with

d ¼ 36 total filters used in the convolutional layer. For

configurations of the model that use filters with multiple

widths, the total number of filters remains at 36. Specifi-

cally, three different widths are implemented with 12 filters

each. A pool size and stride of w ¼ 2 are implemented in

the max-pooling layer. The number of training samples is

43060, and the number of testing samples is 7395 spanning

838 unique days. Gradients are updated based on training

batches of size 32. The number of epochs and dropout rate

varies depending on the model configuration and is opti-

mised using a grid search [45].

The first collection of experiments undertaken aim to

identify an optimal configuration for the CNN presented.

This involves identifying an optimal filter width h for the

convolutional layer, comparing the effectiveness of a

multiple filter width model with that of a single filter width

model and studying the effect of using randomly initiated

word embeddings and pre-learned embeddings. The result

of this experiment will be a configuration of the discussed

model and associated class probabilities which are used for

the development of risk-minimising trading strategies. Two

metrics are used to evaluate the classification performance

of each model configuration; accuracy and F1-score. Model

accuracy can be expressed generally as the ratio of the

number of correct class predictions to the total number of

predictions. F1-score is used to account for both the pre-

cision and recall of each configuration. Using a single

metric to account for both of these measures allows for

easier identification of an optimal configuration. Accuracy

is quoted due to its common presence in the relevant lit-

erature for classification tasks. Precision and recall are

defined as

PRE ¼ TP

FPþ TP
REC ¼ TP

FNþ TP
ð11Þ

where TP is the number of true positive predictions, FP the

number of false positive predictions and FN the number of

false negative predictions. Further interpretation of preci-

sion is discussed in Sect. 6 where it forms the basis for a

common metric used to evaluate day-averaged predictions
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as opposed to those based on individual headlines. The

corresponding F1-score is defined as:

F1 ¼ 2� PRE� REC

PREþ REC
ð12Þ

5 Optimum model configuration

For results discussed in this section, the following terms are

used to refer to different configurations of the CNN outlined

in Sect. 2. Firstly, single-width is used to denote a configu-

ration that uses a single filter width h in the convolutional

layer, whereas multi-width denotes a model that uses three

different values of h. Word embedding methods are descri-

bed as self-learnt for randomly initiated vectors, and static or

non-static for non-trainable and trainable pre-learned

embeddings, respectively. For example, a configuration

labelled as single-width self-learnt describes a model using

randomly initiated word embeddings with a single filter

width in its convolutional layer. Tables 4 and 5 show the

classification results, optimal filter width(s) h and number of

training epochs for single-width and multi-width imple-

mentations, respectively. Although the stated accuracies are

lower than in other NLP tasks such as sentence classification

[33], it is important to consider the nature of the task. Unlike

other classification tasks, predicting stock price movements

is heavily dependant on factors beyond the textual content of

the headline such as general market movements and trader

behaviour. It is common for a headline to have a positive

sentiment towards a particular asset but for the price of the

asset to decrease. Factors such as increased leverage and

information possessed by traders that are not readily avail-

able can cause these results. However, the results obtained in

this work are significantly better than random guessing

(50%) and therefore it can be stated that the various imple-

mentations of themodel are able to predict short-termmarket

trends solely based on news headlines.

5.1 Effect of Filter Width

Table 4 provides the optimum filter width h for each single-

width implementation of the model used in this work.

Using a grid search over widths h 2 ½2; 9�; the effect of this
parameter on classification accuracy and F1-score is

established. Figures 2 and 3 show the variation in the rel-

evant performance metrics with filter width h for single-

width implementations of the model. As seen in Table 4,

the optimum single width is similar for each word

embedding state. The best classification results are pro-

duced by evaluating tri-gram or quad-gram phrases in the

convolutional layer. These results can be explained by

considering phrases within a headline that depict its sen-

timent. Phrases with a noun-verb-adverb structure tend to

summarise the tone of a headline in its entirety. For

example, the phrase ‘‘shares fall sharply’’ within a partic-

ular headline provides all the necessary information to

make an accurate prediction regarding next-day stock price

movement. Other information is commonly of little

importance and can be considered noise. Hence, each

model demonstrates an optimum filter width of 3 or 4

where these vital phrases can be represented in their

entirety.

Each word embedding state also demonstrates good

accuracy at some larger filter widths. This suggests that the

Table 4 Classification metrics, optimal filter width and number of

training epochs for single-width implementations

Self Static Non-static

Accuracy [%] 59.6 57.4 61.5

F1-score [%] 57.6 57.0 58.7

Filter width h 3 4 4

Epochs 5 7 7

Best results are highlighted in bold

Table 5 Classification metrics, optimal filter width and number of

training epochs for multi-width implementations

Self Static Non-static

Accuracy [%] 59.2 56.5 61.7

F1-score [%] 58.3 56.5 59.2

Filter widths h 4, 6, 8 3, 4, 5 3, 4, 7

Epochs 5 7 9

Best results are highlighted in bold

Fig. 2 Variation in accuracy with filter width h for each single-width
model configuration
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network is able to represent longer phrases that provide

relevant information for predicting price fluctuations. It

may be the case that combinations of the discussed three-

and four-word phrases that carry sentiment can be repre-

sented as a single feature map element. Using the results

obtained, each multi-width model implementation uses the

three best feature widths in terms of F1-score for each word

embedding state in the corresponding single-width model.

Selection is based on the F1-score due to the relevance of

precision and recall to latter trading simulations, where

false positives and negatives are considered.

Table 5 shows the classification results for each multi-

width implementation of the model. Although the non-

static multi-width model configuration produces the best

classification results for both metrics considered, the use of

multiple filter widths for static and self-learnt embeddings

results in worse classification performance than in the

equivalent single-width cases. In overall, the progression to

multiple filter widths produced no consistent benefit to

model performance across the word embedding states. This

result can be explained by the reduced number of filters d

used for each optimum filter width shown in Table 4. As

outlined in Sect. 4, the number of total filters in the con-

volutional layer is equal for both single-width and multi-

width implementations. For example, in the single-width

static configuration, there are 36 filters with width h ¼ 3;

however, in the equivalent multi-width configuration, there

are only 12 filters of this width. Therefore, despite the

ability to represent phrases of different lengths using

multiple filter widths, there are fewer filters available to

represent the key tri-gram or quad-gram phrases discussed

previously. Therefore, to observe significant improvements

in classification using multiple filter widths, it is expected

that the number of filters for each width would have to be

greater than or equal to the total number of filters used in

the single-width implementation. However, this increases

the dimensionality of the network and the time required for

training. Furthermore, the ability to detect the presence of

each phrase is dependant on the accurate tuning of each

filter through gradient-descent.

5.2 Word embeddings

Figure 4 shows a projection of a sample of pre-learnt

word2vec word embeddings on a two-dimensional space.

Each point corresponds to a word whose 300-dimensional

vector representation is part of the 30 most similar vectors

to the associated reference word shown in the figure le-

gend. In this work, vector similarity is calculated using

cosine similarity. The 300-dimensional embeddings are

projected onto a two-dimensional space using t-distributed

stochastic neighbour embedding (t-SNE) [46]. This method

models each high-dimensional vector as a two-dimensional

point such that similar high-dimensional vectors are mod-

elled as similar points in the low-dimensional space.

Hence, the similarity of high-dimensional word embed-

dings can be visualised. The clustering of points that rep-

resent vectors that are similar to a specific reference word

demonstrates the principle of word embeddings, where

terms used in a common context have similar positions in

the 300-dimensional word embedding space. These terms

are therefore interpreted similarly by convolutional filters.

Figure 4 also shows the formation of larger clusters con-

taining points corresponding to different reference words.

This identifies larger groups of terms that have a similar

context or that could appear in close proximity within a

sentence. For example, the overlap between clusters cor-

responding to ‘quarter’ and ‘results’ could arise from fre-

quent use of the phrase ‘third quarter results’. This

overlapping, therefore, demonstrates how the use of word

embeddings not only accounts for if terms are

Fig. 3 Variation in F1-score with filter width h for each single-width
model configuration

Fig. 4 Two-dimensional representation of the word embeddings of

the 30 most similar terms to each reference term shown in the legend.

Similarity between vectors is calculated by cosine similarity.

Mapping of 300-dimensional word embeddings to two dimensions

is achieved using t-SNE
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interchangeable within a certain context but also how fre-

quently terms appear in close proximity within a text. The

isolation of terms similar to ‘microsoft’ (e.g. ‘photoshop’)

is due to the specificity of these terms and the lack of any

contextual relationships to the other reference words shown

without fine-tuning.

For single-width and multi-width implementations of the

model, word embeddings in the non-static state lead to the

best classification accuracy and F1-score. Table 6 provides

the most similar term to the terms shown in Fig. 4 for the

static and non-static configurations following training. It

can be seen that in the non-static state, embeddings cor-

responding to words that can be used in a range of contexts

are tuned to better represent the context of investment news

and the stock-market. For example, the similarity between

‘quarter’ and ‘half’ in the static state is a general relation

that can be applied to many different contexts however the

similarity between ‘quarter’ and ‘q2’ in the non-static state

suggests a relationship based on a financial context. This

refinement in context allows for the model to predict

market trends based on headlines with greater accuracy.

Table 6 also shows how words typically used in a consis-

tent context (i.e. proper nouns) undergo little refinement.

This embedding refinement is demonstrated across the lit-

erature for sentence classification tasks where the target

variable is solely dependent on the textual data [33].

However, it is interesting to observe similar behaviour in

this work where the model is still able to refine represen-

tations based on context despite the target variable

depending on factors beyond the context of the headline

(e.g. overall market behaviour).

Various initiation methods for self-learnt embeddings

were tested. The best classification results were obtained

using a random normal initiation, where vectors are initi-

ated randomly with a normal distribution with mean and

standard deviation equal to those of the pre-learned

embeddings used in this work. The classification results

using self-learnt configurations are better than those of

static configurations for both single-width and multi-width

models. This result suggests that in the self-learnt config-

uration, the model is able to suitably learn a set of

embeddings that represent the context of the collection.

However, self-learnt embeddings often over-fit the context

of the training data and fail to represent similarities

between words that may be interchangeable in different

contexts. This is because self-learnt embeddings are

formed solely on the context of the training set and cannot

account for words that do not appear in training. Addi-

tionally, if the context in which a word is used in a testing,

headline is slightly different to that found in training, the

self-learnt embeddings misrepresent this due to the limited

word relationships that can be established from the small

training set. This results in less accurate classification than

non-static configurations where embeddings retain rela-

tions based on a variety of contexts from their initial states

despite fine-tuning. For example, ‘half’ remains the fifth

closest word to ‘quarter’ using non-static embeddings. A

much larger training set would be required for general

context relationships to be represented in self-learnt

embeddings. These observations, therefore, suggest that

non-static embeddings provide the best configuration not

only because of their ability to be fine-tuned to the task in

question but also because a more general context of words

is retained in the embeddings allowing for better applica-

tion to both unseen headlines and new tasks.

5.3 Overall optimal model

Based on the experimental results discussed in this section,

it can be concluded that the best configuration of the model

for predicting fluctuations in next-day stock prices is a

multi-width implementation using non-static word embed-

dings. A single-width implementation using non-static

embeddings would also be suitable for this task as the

advantage of using multiple filter widths instead of a single

width is not uniform across each word embedding state.

Self-learnt embeddings are not suitable for implementation

due to their tendency to over-fit the context of training

headlines and inability to represent words not present in

training. Hence, it is expected that the embeddings would

not be suitable for testing headlines relating to companies

from different sectors or textual data from a different

source (e.g. Twitter). Conversely, static embeddings are

unable to suitably represent the specific context of the task.

The maximum classification accuracy achieved is compa-

rable with those achieved by state-of-the-art methods [24],

however, the comparison of performance across works that

use different datasets is not conclusive. Results are heavily

dependant on the number and quality of headlines in the

dataset used, and since there is no standard dataset that is

used by the majority of works in this field, it is hard to

fairly compare performance. This is not the case in other

Table 6 Most similar terms based on cosine similarity of word

embeddings for both STATIC and NON-STATIC configuration of the

network’s convolutional layer

Term Most similar term

Static Non-static

‘results’ ‘findings’ ‘earnings’

‘price’ ‘premium’ ‘stock’

‘quarter’ ‘half’ ’q2’

‘microsoft’ ‘adobe’ ‘adobe’

‘government’ ‘administration’ ‘administration’
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fields such as image recognition, where baseline datasets

exist. The next section aims to develop a trading strategy

based on the multi-width non-static model implementation

to manage risk and prevent incorrect stock purchases.

6 Trading simulations

This section seeks to evaluate the performance of the dis-

cussed CNN model using a simple trading strategy. It is

first necessary to assess whether the optimal model con-

figuration in terms of individual headline classification

results in the best trading results. The baseline strategy

used in this section is as follows. For each unique day in

the testing set, the mean of the sigmoid outputs rðzÞ for

headlines relating to each individual asset is calculated.

This mean value rðzÞmean aims to represent a prediction

based on all the headlines relating to the associated asset

throughout the day. If rðzÞmean [ 0:5, shares in the relevant

asset are purchased on the next trading day at market

opening and sold at market close. Simulated returns can

therefore be calculated using the next-day close-open price

change of the asset. Using this strategy, a metric that

evaluates the trading performance of the model can be

formed based on precision. In this context, a true positive

(TP) indicates a prediction rðzÞmean [ 0:5 where the next-

day returns are positive, whereas a false positive (FP)

describes such a prediction where the next-day returns are

negative. Therefore, precision describes the proportion of

next-day investments made based on the model’s predic-

tions that lead to a positive return. This metric is commonly

referred to as the percent profitable (PP) metric in trading

applications. Another common metric used is average trade

profit (ATP) which evaluates the average return of exe-

cuted trades. The total percentage return based on the

described strategy across the entire date range present in

the testing set is also used to evaluate the performance of

the model.

Table 7 shows the trading performance of each of the

model configurations discussed in Sect. 5. The multi-width

non-static implementation of the model demonstrates the

best trading performance according to each of the metrics

used. Hence, it can be concluded that the optimal config-

uration for the classification of individual headlines also

provides the best trading performance for simulations

considered in this work.

Using these baseline results, two methods to reduce the

risk in the system are proposed. In the context of this work,

the risk is associated with how frequently the model’s

predictions result in a next-day investment leading to los-

ses, and the average loss incurred by these incorrect

investments. Hence, a system with reduced risk would

demonstrate higher PP and ATP metrics. It is expected that

lower returns will be made using these methods due to the

risk-return trade-off that exists in market trading [47]. The

methods discussed aim to provide strategies that can be

used during periods of greater market volatility, where

reduced risk is of greater priority than large returns. The

two methods proposed involve the adjustment of the buy

threshold associated with rðzÞmean, and modification of the

original classification task from binary to multi-class.

6.1 Buy threshold

In the baseline trading strategy discussed, the mean pre-

diction for headlines relating to a specific asset throughout

a single day is used to make trading decisions. The con-

straint rðzÞmean [ 0:5 is used as a baseline, where 0.5 can

be considered as a buy threshold. For each individual input

to the network, the closer the sigmoid output rðzÞ is to

unity, the greater the certainty in the headline’s member-

ship to class 1. Therefore, increasing the buy threshold

aims to select days where rðzÞmean represents greater cer-

tainty that the next-day returns will be positive. Simula-

tions are conducted across the entire testing date range for

rðzÞmean [ t, where t 2 ½0:5; 0:9� is the buy threshold used.

Table 7 Trading performance for each model configuration using the

baseline trading strategy

Returns [%] PP [%] ATP [%]

Single-width Self-learnt 238.8 57.4 0.195

Static 221.1 55.3 0.185

Non-static 272.8 58.5 0.226

Multi-width Self-learnt 293.5 58.0 0.245

Static 140.3 53.7 0.111

Non-static 317.8 60.9 0.284

Best results are highlighted in bold

Fig. 5 Variation in PP and ATP with buy threshold across the entire

date testing date range using a strategy developed from binary label

classification
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Figure 5 shows the variation in PP and ATP with buy

threshold. The highest percentage of profitable trades is

achieved using a buy threshold t ¼ 0:67 with an

improvement of 2.3% over the baseline strategy. Despite

this increase in PP, the overall returns using this method

are reduced. Although a higher ATP than baseline is

demonstrated at some buy thresholds, the stricter margin

results in fewer investments being made. For example,

using t ¼ 0:67, 38.1% fewer investments are made across

the testing period than in the baseline case. This result

demonstrates the risk-return trade-off discussed. It is

expected that the strictest buy thresholds would yield the

most improvement in PP and ATP, however, both metrics

demonstrate a decrease in these metrics for high values of t.

This result is due to the model making incorrect predictions

despite high values of rðzÞmean. For example, the largest

single-day loss from an investment is 11.3%, however, the

model predicts rðzÞmean ¼ 0:93 based on the previous day’s

headlines. The effect of these incorrect predictions with

high rðzÞmean, coupled with a significantly reduced number

of trades, leads to lower performance metrics than in the

baseline case at values of t[ 0:75. These results demon-

strate the shortcomings of making predictions based solely

on company headlines, as it is possible for the network to

make a positive prediction with high certainty based on a

collection of headlines but for a significant loss to be made.

This is due to market activity and trends that cannot be

depicted within a single headline. Therefore, to see con-

tinued risk reduction at higher buy thresholds, general

economic headlines or historical price trends must also be

considered by the model. Despite this, the reduced risk is

demonstrated across a range of moderate buy thresholds

using this method. The optimum value of t achieved here is

similar to that shown in the work of Ding et al. [24] who

consider a similar method. However, their method is only

applied to individual headline classification and does not

consider trading decisions based on headlines from an

entire day as presented in this work.

6.2 Modification to multi-class labelling

The second approach adopted to reduce risk involves the

alteration of the original classification task from binary to

multi-class. In the multi-class experiments conducted,

individual headlines belong to one of three classes; ‘avoid’,

‘inconsequential’ or ‘buy’. Headlines relating to an asset

whose stock price falls by more than 0.5% during the next-

day’s trading are labelled as ‘avoid’. If the next-day returns

of an asset are greater than 0.5%, then corresponding

headlines are labelled as ‘buy’. Headlines that fall between

these constraints are labelled as ‘inconsequential’. This

labelling system aims to encourage the model to identify

investment opportunities that are likely to provide a sig-

nificant return. The ‘inconsequential’ class contains some

investment opportunities with a positive return, however,

the risk associated with them is larger than the potential

reward. Whereas the mean of each sigmoid output on a

single day per asset was used to make trading decisions in

both the baseline and buy threshold experiments, a more

complex decision process is required here. Using the

softmax activation given in Eq. 9, three probabilities,

Sðz1Þ; Sðz2Þ and Sðz3Þ, are output by the network for each

headline, corresponding to the probability of membership

to each of the three classes. Here, classes 1, 2 and 3 cor-

respond to ‘avoid’, ‘inconsequential’ and ‘buy’, respec-

tively. The mean of each of these probabilities,

Sðz1Þmean; Sðz2Þmean; Sðz3Þmean is calculated for each asset

on each unique day in testing. The class corresponding to

the maximum of these mean probabilities is assigned to the

entire day for each asset. If the maximum mean probability

corresponds to the ‘buy’ class, then the asset is bought at

the next-day open and sold at close as before.

Using this initial multi-class strategy, performance

metrics of PP = 55.9% and ATP = 0.240% are achieved.

Hence, by altering the task to multi-class and using a

buying strategy as outlined, a greater risk is observed than

in the baseline multi-width non-static configuration. Hence,

it is necessary to implement a buy threshold for the multi-

class system. Instead of simply making a next-day invest-

ment if the maximum mean probability corresponds to the

‘buy’ class, implementation of a buy threshold also

requires the mean probability Sðz3Þmean to be greater than

some buy threshold t. Therefore, an investment is made if

and only if the following requirements are met:

max
k2½1;3�

ðSðzkÞmeanÞ ¼ Sðz3Þmean [ t ð13Þ

Figure 6 shows the variation in PP and ATP for the

multi-class system with the implementation of buy

Fig. 6 Variation in PP and ATP with buy threshold across the entire

date testing date range using a strategy developed from multi-class

labelling
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thresholds t 2 ½0:33; 0:9�. The addition of a strict buy

threshold results in a significant improvement in both

metrics considered. Minimum risk is achieved using a buy

threshold t ¼ 0:86 where although PP remains less than in

the baseline multi-width non-static configuration, ATP is

more than doubled. This suggests that although more

incorrect trades are being executed, the average loss of the

incorrect trades is reduced. The maximum single-day loss

incurred using this method is 7.6% compared to 11.3% in

the baseline and binary buy threshold strategies. Further-

more, the average return of correct buys is greater than in

the baseline case due to the restriction that returns must be

greater than 0.5% for ‘buy’ allocation in multi-class

labelling. The average return of correct buys using t ¼ 0:86

is 1.53% compared to 1.20% in the baseline case. In

summary, the implementation of a strict buy threshold with

multi-class labelling decreases trading risk by minimising

the average loss of incorrect next-day predictions, whilst

the restriction on percentage returns in the labelling of

individual headlines as ‘buy’ leads to the average profit of

correct investments being far greater.

7 Conclusion

In this work, a convolutional neural network is imple-

mented to predict next-day stock fluctuations for three

technology-based assets. Word embeddings in three states,

self-learnt, static and non-static, are considered, as well as

single-width and multi-width convolutional layers. Exper-

iments seeking to identify an optimal configuration in

terms of accuracy and F1-score showed the presence of a

filter width h ¼ 3 or h ¼ 4 as optimal. This result arises as

key phrases depicting the headline’s overall sentiment can

be evaluated in their entirety. Word embeddings in the non-

static state were found to be able to adapt to the specific

context of the task whilst retaining relationships based on

general context and hence provide the best classification

performance. A multi-width non-static implementation was

found to be the optimal configuration of the CNN archi-

tecture, leading to a testing accuracy of 61.7%. However,

the benefit of using multiple filter widths compared to a

single width was not compelling in the conducted

experiments.

A simple trading strategy using the mean sigmoid pre-

diction for headlines relating to each asset on each testing

day was implemented. The optimal model configuration for

classification was found to produce the best simulated

trading results in terms of returns and two common trading

performance metrics; PP and ATP. This configuration was

found to more than triple an initial investment over the

838-day testing period.

Two methods to reduce the perceived risk in invest-

ments made across the testing set were developed. The

implementation of a moderately strict buy threshold led to

some reduction in risk, however, further increase in this

threshold resulted in increased risk compared to the base-

line strategy. Alteration of the task to multi-class showed

no reduction in risk on its own, but the combination of this

with a strict buy threshold yielded an ATP more than

double that achieved using the baseline strategy. Both of

the discussed methods revealed downfalls of basing market

predictions solely on company headlines. Therefore, com-

bining methods presented in this work with predictions

based on the technical analysis of stock trends should be

considered in further research. Furthermore, headlines

describing the general state of the economy could be

considered in parallel to company-specific headlines.

General indicators such as gold price, bond yields and

moving averages of popular indices (S&P 500, Nasdaq)

should also be considered as additional features for the

model as these have been shown to strong correlation with

market trends.

The training of the discussed model on separate col-

lections of headlines grouped by business sector (oil and

gas, finance etc.) should be undertaken in further work to

form collections of embeddings and weights tuned to each

sector. Subsequent testing headlines can then be evaluated

using the set of weights and embeddings corresponding to

the sector of the asset in question. This method has the

ability to detect phrases based on the specific context of

each sector has been demonstrated for the technology

sector in this work. However, further work is needed to

validate if this is beneficial compared to training a single

collection of embeddings and weights for all sectors.
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