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Determining the different conformational states of a protein and the transition paths between them is key
to fully understanding the relationship between biomolecular structure and function. This can be
accomplished by sampling protein conformational space with molecular simulation methodologies.
Despite advances in computing hardware and sampling techniques, simulations always yield a discretized
representation of this space, with transition states undersampled proportionally to their associated energy
barrier. We present a convolutional neural network that learns a continuous conformational space
representation from example structures, and loss functions that ensure intermediates between examples
are physically plausible. We show that this network, trained with simulations of distinct protein states, can
correctly predict a biologically relevant transition path, without any example on the path provided. We also
show we can transfer features learned from one protein to others, which results in superior performances,
and requires a surprisingly small number of training examples.
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I. INTRODUCTION

The shape of a protein determines its capacity of interact-
ing, under given environmental conditions, with specific
binding partners as different as ions, DNA, lipids, drugs, or
other proteins. These tightly controlled interactions are key
for life as we know it. Proteins should however not be
considered as a single atomic arrangement, as their relation-
ship with the environment (e.g., temperature, pressure, pH,
binding to other molecules) results in specific conforma-
tional dynamics. These dynamics define a continuous con-
formational space, often conveniently subdivided into a
discrete set of low-energy states andhigher-energy transition
paths between them. A full understanding of the function of
any protein in an organism thus requires accurate knowledge
of its conformational space. Proteins are often composed of
thousands of atoms, that should in principle be associated
with an enormous amount of possible arrangements. While
onlya small energetically favorable fractionof these arrange-
ments is accessible [1], only a subset of these, those of lowest

energy, can be typically observed at atomic resolution by
experimental techniques. In order to obtain a larger amount
of conformational space samples, simulation techniques
such as molecular dynamics (MD) can be exploited.
These techniques iteratively generate new structures based
on an initial, known atomic arrangement and a physical
model of atomic interactions.However, biologically relevant
conformational changes can sometimes take place in the
timescale of milliseconds or higher (e.g., the full cycle of
GroEL chaperonin from its closed to open state takes ∼15 s
[2]) which are beyond the reach of conventional MD.
Deep neural networks are able to learn continuous

representations that capture the structure of a dataset. In
particular, generative models such as variational autoen-
coders [3], generative adversarial networks [4], or
Boltzmann generators [5] have been showing a remarkable
ability to synthesize complex and sparse datasets.
Generative neural networks create an internal model
recapitulating example data, a model that can then be
interrogated to generate new, plausible data samples. While
most generative models produce new samples from an
assumed prior distribution, recent architectures improve
interpolations through additional adversarial components
[6]. Many successful generative architectures utilize con-
volutional neural networks (CNNs) [7]. These are more
computationally efficient than regular neural networks and
have fewer parameters due to shared weights mimicking
local connectivity in the visual cortex of the brain. Though
a surfeit of applications of CNNs are in the fields of image,
video, audio, and speech recognition [7], variants have also
been applied to bioinformatics ranging from gene
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expression regulation [8–10] and anomaly classification
[11–13] to prediction of protein secondary structure [14,15]
and protein folds [16–19].
We present a 1D CNN architecture [Fig. 1(a)], directly

trainable with protein structures to build a model of their
underlying conformational space. To improve the gener-
alization capability of our network, we design a new loss
function that leverages on, as a prior, knowledge of
physical laws dictating atomic interactions. We enforce
this physics-based loss function on the manifold between
two protein conformations but outside of the known
sampled conformational space. Our architecture and train-
ing approach lead to several significant advantages over
conventional networks taking atomic coordinates [20] or
molecular features as input. First, being fully convolutional,
our architecture features a small number of parameters and
is therefore easy to train. Second, it can handle input
molecules with arbitrary numbers of atoms, enabling net-
work training with different molecules, either simultane-
ously or via transfer learning. Third, it does not make
assumptions on the distribution of data around observations
used for training. We show that these features can enable
the identification of biologically relevant intermediate
protein configurations along plausible transition paths
between known low-energy states.

II. RESULTS

MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate
ligase) [21] plays a key role in the peptidoglycan biosyn-
thesis of almost all bacterial species by catalyzing the
addition of D-glutamic acid to UDP-N-acetylmuramoyl-L-
alanine. The protein consists of three globular domains, one
of which undergoes a large-scale rearrangement (from open
to closed state) triggered by substrate binding to activate the
catalytic site. The open (PDB: 1E0D [22]) and closed
(PDB: 3UAG [23]) states, as well as a few intermediates
(PDB: 5A5E and 5A5F [24]), have been crystallized,
providing key experimental evidence about the possible
protein’s mode of action. MD simulations of the open and
closed states, and of the transition between them, have been
previously carried out [20], providing a useful dataset for
our network training and its performance evaluation. Such
extensive data and the importance of MurD as a potential
antibacterial drug target [25,26] make this protein a
particularly interesting test case for this study.
Here, we train our neural network with conformations of

MurD open and closed states generated by MD (training
set) and assess the network capacity of predicting a possible
transition path between the two. We assess the quality of
the predicted path in terms of its structural quality as well as
matching with the closed-to-open MD simulation and

(a)

(b)

FIG. 1. Neural network design. (a) The generative architecture is composed of an encoder f and a decoder d, and is trained with a
collection of protein conformations. The loss function couples a geometric term LMSE to ensure original and encoded-decoded structure
are similar, and physics-based terms Lpath to ensure that latent space interpolations zm between any pair of conformations produce
protein structures of low energy. (b) Protein atoms can be sorted in a list so that atoms that are adjacent in the list are also adjacent in the
Cartesian space. The convolutional neural network operates on this list, that can be of arbitrary size. (c) The first 1D convolution layer
learns 32× feature detectors, each with a kernel size of 4. The stride is set to 2; therefore the output sequence is half the input size for any
input length. Each subsequent layer further reduces the spatial length of the molecule, warping the input such that it becomes
progressively deeper and thicker (more ribbonlike) as well as more abstract.
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available intermediate crystal structures, not provided for
training. We then evaluate the capacity of our network
trained on MurD to adapt to other proteins in a transfer
learning scenario.

A. Force-field-based loss functions
improve network accuracy

We first assessed whether training the neural network
using information on the physical properties of proteins is
beneficial. To this end, we trained it with five different loss
functions featuring an increasing amount of physics-based
constraints (Fig. 2 herein and Fig. S1 in Supplemental
Material [27]). Each network was trained with conforma-
tions produced by the MD simulations of MurD closed and
open states. To track the network training progress, we
divided it into 200 parts termed epochs. At the end of every
epoch, each network was challenged to predict a transition
path by producing 20 intermediate structures corresponding
to evenly spaced points along the straight line connecting
the two states in the networks’ latent space. To assess the
quality of intermediate conformations throughout the train-
ing, we measured three different quantities: average dis-
tance of all bonds and angles from their expected
equilibrium value (as per the AMBER ff14SB force field
[28]), percentage of residues in favorable and outlier
Ramachandran plot regions (assessment of dihedral angles

distributions), and discrete optimized protein energy
(DOPE, an atomic distance-dependent statistical potential
commonly used to assess protein structures) score [29].
MurD structures generated by the network trainedwithout

any physics-based constraints (using just the mean square
error, DNNMSE) could only poorly reproduce expected bond
and angle equilibrium values. The average error of inter-
mediate structures generated at training completion was
equal to ∼22.9%� 2.3, with an average DOPE score of
−33017 (�1005). Notably, the interpolation quality
degraded the further the intermediate structure was from
examples within the training set (errors of up to 26.6% and
DOPE score reaching ∼ −27642). Regions of the protein
featuring the highest error were concentrated in loops and on
the mobile domain of the protein [Fig. 2(b), DNNMSE].
Coupling information on bonded (bonds, angles, dihe-

drals) and nonbonded (steric hindrance and electrostatics)
potentials with MSE in the loss function improved the
quality of the protein structures generated [Fig. 2(b),
DNNPhys]. In particular, the average DOPE score of
intermediate structures generated at training completion
was −34810 (�752), and the transition state conformations
showed a maximum of −31601, lower than what was
measured on DNNMSE. Overall, the residue-level DOPE
score of DNNPhys models was comparable with the profile
of MurD crystal structure (PDB: 3UAG; see Fig. S2 in

FIG. 2. Performance of the neural network trained with to minimize MSE alone or in conjunction with physical terms (labeled on the
left). At every epoch, each network was asked to generate 20 conformations interpolating from MurD closed to open state. (a) At each
epoch, we calculate the DOPE score of each conformation and report the mean values from the 10 repeats on the vertical axes with color
corresponding to the standard deviation. Physics-based loss functions lead to interpolations with better structural quality reflected by
lower DOPE scores. (b) The network-predicted protein conformations of open (left), intermediate (center), and closed (right) states at the
last epoch, shown in sausage representation with the thickness and color corresponding to the percentage error at the residue level.
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Supplemental Material [27]). The network showed an
increasingly better performance in the protein structural
quality with increasing number of physics-based terms
(Fig. S1 [27]). However, addition of the nonbonded
component showed only a statistically insignificant
improvement.
Evaluating Ramachandran distributions of amino acids

in our models further highlighted how using physics-based
restraints in DNNPhys allow producing models of higher
structural quality than DNNMSE (Fig. S3 [27]). Models
produced by DNNMSE featured 87.6%� 2.3 of residues
into Ramachandran favored regions and 4.3%� 1.3 out-
liers. Models produced by DNNPhys featured a higher
percentage of residues in favored regions (93.4%� 1.3)
and only 1.8%� 0.7 outliers, all located close to the
acceptable ranges.
To obtain a comprehensive view of the protein conforma-

tional space encoded in our neural networks, we calculated
the DOPE score of protein models generated by regularly
sampling the networks’ latent space (Fig. 3). The latent
space of the network trained solely with MSE featured two
distinct regions, associated with MurD open and closed
state, separated by a region of unacceptable quality (high
DOPE score). In the network trained with our physics-
based loss function, the whole conformational space
appears near convex, and all structures located between
the “closed” and “open” basins had a low DOPE score
(Fig. S5 of Supplemental Material [27]). This was possible
because the latter network is also trained to attempt
minimizing the energy of random midpoints between
training examples. Overall, training our 1D CNN with a

loss function featuring a combination of MSE, bonded and
nonbonded terms yielded interpolations of good structural
quality through conformations not represented within the
training set.

B. Neural network predicts a
possible state transition path

The switch of MurD between closed and open con-
formations involves the rigid-body rearrangement of one
domain (residues 299–437) with respect to the rest of the
protein (residues 1–298). We can readily characterize this
movement by tracking the position of the center of mass of
this domain with respect to its connection to the rest of the
protein and reporting it in spherical coordinates [Fig. 4(a)].
Describing the closed and open MurD MD simulations
according to this metric reveals that the conformations of
these two states are clearly distinct [two light green regions
in Fig. 4(b)]. The MD simulation of MurD switching from
closed to open state (hereon test set) follows an irregular
path: first, a concerted increase in elevation and azimuth
opens the domain, leading to conformations closely resem-
bling the crystal structure of the intermediates [root mean
square deviation (RMSD) of secondary structure elements
equal to 1.16 and 1.12 Å versus PDBs 5A5E and 5A5F,
respectively], then an increase in azimuth and radius leads
the domain to its final equilibrium position. This two-step
movement in the azimuth-elevation space is associated with
a straight line within the latent space described by our
network. As the neural network is trained to minimize the
energy of any midpoint between any two states, we
consider conformations generated by a straight line in

FIG. 3. Analysis of latent spaces of networks trained on conformations of MurD “open” and “closed” states. (a) The physics-based
loss function used to train our neural network correlates with the DOPE score, making it a reasonable estimator of protein structural
quality. (b) DOPE scores corresponding to the latent spaces of our neural network trained with two different loss functions. On the left,
the network is trained to only minimize mean square error (MSE) between input and output structure; on the right, the loss function
combines MSE and a physics-based loss function (DDN). Yellow regions indicate structures of poor quality, black points report on the
projection in the latent space of all training examples, including the generated midpoints zm used to train DDN. The transition path
predicted by the networks is projected as connected white dots onto their respective latent space. The latent space of the network based
solely on MSE features two basins associated with closed and open states, separated by a region of poor quality models. In the network
trained with both MSE and physics (DNNPhys), the two states are connected by acceptable protein models. Also see Fig. S4 comparing
the structures from the identified basins (Supplemental Material [27]).
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the latent space as an approximation of a possible transition
path. To illustrate that methods relying on purely geometric
interpolations would be unable to predict such transition
path, we generated an interpolation exploiting a principal
components analysis (PCA) of MurD conformations.
Conformations generated as regularly spaced linear combi-
nations of the two main eigenvectors trace a uniform
circular trajectory, far from what was observed in the test
set. Considering more than two eigenvectors also has no
significant improvement in the interpolations generated by
PCA (Fig. S6 [27]).
The transition path predicted by the neural network

trained solely based on MSE is less uniform, but yet only
poorly recapitulates the test set. The interpolation produced
by the network trained considering both MSE and physics-
based terms traces instead a path closely resembling the test

set. The additional physics-based terms in the loss function
not only helped in generating structures with correct bond
lengths, angles, and dihedrals, but also prevented an
interpolation that would have required the protein domains
to slightly compenetrate. Remarkably, one of the interpo-
lated conformations had a backbone RMSD of 1.28 Å from
the intermediate crystal structure (PDB: 5A5E), a quantity
comparable to that of the test set (Fig. S7 [27]).
Thus, our results show that in this application our 1D

CNN trained with a combination of MSE and physics-
based terms was capable of correctly identifying a possible
transition path between two distinct states.

C. Transfer learning improves convergence

Training a neural network on a small dataset can be
facilitated if the network is pretrained on a similar, larger

FIG. 4. State transition path prediction by the neural network. (a) Side view of MurD showing the transition of its mobile domain from
the closed to open state (with the time evolution marked as beads colored from yellow to violet). (b) The conformational change of
MurD can be described in terms of spherical coordinates between its three domains (see Methods). We report the opening angle of each
conformation in the training set (light green), test set (dark green), intermediate crystal structures (palatinate stars), as well as
interpolations generated by PCA (gray circles), purely geometry-based neural network (DNNMSE, gray triangles), and neural network
combining geometry and physics (DNNPhys, gray squares). The interpolation produced by DNNPhys best reproduces the path described
by the test set and transits in the vicinity of intermediate crystal structures. (c) Superimposition of intermediate MurD conformation
5A5E (in palatinate) and an intermediate conformation generated by the neural network (in white), with a RMSD of 1.3 Å.
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(a) (b)

FIG. 5. Transfer learning of our best network trained on MurD to four different proteins. (a) Side view of p24, TBE-sE, HSP, and SurA
showing example alternative conformations with transparency and the highly mobile domains of p24, TBE-sE, and SurA in color
(yellow and green). (b) Moving average (window of 3) mean (solid line) and standard deviation (shaded region) of the total loss (log
scale) comparing the performance of the pretrained network with its counterpart trained from scratch using a training dataset of size
1000 and 100, all using the same loss function featuring both MSE and physics-based terms.
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dataset, a process called transfer learning. The convolu-
tional nature of our network enables this training approach,
as its architecture (and thus the number of its parameters) is
independent of the number of atoms in the dataset under
study. To assess the transferability of our trained network,
we leveraged the MD simulations of four different proteins:
the HIV-1 capsid protein (monomeric p24, PDB: 1E6J
[30]), the tick-borne encephalitis virus envelope protein E
(TBE-sE, PDB: 1SVB [31]), the small heat shock protein
αB crystallin (HSP, PDB: 2WJ7 [32]), and the periplasmic
chaperone SurA (SurA, PDB: 1M5Y [33]). These proteins
differ from MurD in mass (24, 43, 10, and 45 kDa versus
47 kDa, respectively) as well as fold and dynamics
[Fig. 5(a)]. p24 consists of two rigid domains connected
by a flexible linker, TBE-sE is highly elongated and
features several long loop regions (e.g., residues 73–89
and 146–160), HSP is small and features only local
fluctuations, whereas SurA is a multidomain protein
featuring broad and highly complex dynamics.
We randomly sampled each simulation dataset to pro-

duce multiple training sets featuring 1000 and 100 repre-
sentative structures (see Sec. IV). For each resulting
training set, we then trained our neural network in two
different ways: from scratch and by initializing its param-
eters with those of the best network trained on the MurD
dataset using our physics-based loss function. Each neural
network was assessed according to its capacity of inter-
polating between the two most different conformations
(i.e., largest RMSD) in its training set.
In all the cases, the networks having transferred param-

eters featured a mean loss starting from smaller values, and
dropping faster. Networks trained with 1000 examples
featured only a marginally lower mean loss than those
trained with 100 examples [Fig. 5(b)]. Furthermore, trans-
fer learning yielded latent spaces with overall lower DOPE
scores. In all cases but SurA, negative DOPE scores were
observed in regions extending slightly beyond the front
defined by the training set (Fig. S8 [27]). SurAwas the only
protein featuring DOPE landscapes without low and well-
defined minima. As their associated loss functions were
larger than in all other cases and had not converged yet, we
trained four neural networks (initialized from scratch and
via transfer learning, trained with 100 and 1000 examples)
10 times longer. Their loss function and DOPE profiles
kept dropping, indicating that learning complex dynamics
requires longer training (Fig. S9 [27]).
To characterize the ability of our neural networks to

generate structures unseen during training, we examined
those exposed to examples of the protein p24. As demon-
strated by an available crystal structure (PDB: 3MGE), this
protein assembles into a circular homohexamer via a large-
scale rearrangement of its two globular domains. The
structure in the p24 unbound simulation most closely
resembling the bound state has a RMSD of 3.7 Å from
it. We asked each trained network to encode and decode the

bound state structure (unseen during training) and com-
pared the RMSD of the resulting generated model to
the input.
Neural networks trained with 100 examples performed

equivalently (RMSD equal to 8.23� 1.72 Å for those
trained from scratch, and 8.32� 1.65 Å for those pre-
trained). This poor performance indicates that training with
only 100 examples yields neural networks that, although
already capable of generating low-energy protein confor-
mations, have limited generalization capabilities. Using
1000 training examples led to substantially better results,
with pretrained networks outperforming those trained from
scratch (4.69� 0.15 Å the former, 5.22� 0.57 Å the
latter). Since these RMSDs are still higher than that of
the best available training example, we systematically
sampled the networks’ latent spaces. We found regions
where generated structures featured RMSDs from the
bound state marginally lower than any available example
(∼3.6 Å when training with 1000 examples). Remarkably,
these regions were located beyond the front of training
structures, meaning that most suitable bound state con-
formations could be found via local extrapolation
(Fig. S10 [27]).
Overall, these results demonstrate that our network can

be trained with proteins of arbitrary size, and indicate that
transfer learning enables faster training convergence, even
when training data are limited.

III. DISCUSSION AND CONCLUSION

Conformational dynamics are an intrinsic property of
any protein, their magnitude depending on the required
biological function. Several computational methods have
been designed to sample the protein conformational land-
scape and predict existing states. Methods leveraging MD
coupled with enhanced sampling methods, while helpful,
are still limited by the timescales at which the transitions
occur and the associated high demand for computational
power. We have designed and trained a generative neural
network with collections of protein conformations as a
means to predict plausible intermediates between any of
them. While here the network has been trained with
structures from MD simulations, any source of structural
information can in principle be used. Since as little as 100
structures were sufficient to produce physically correct
models with our trained network, this opens the door to
directly leveraging collections of experimentally deter-
mined atomic structures.
Generative networks [3,4,6] are effective when interpo-

lating between existing data but, unless additional infor-
mation is provided, their extrapolation capabilities are
typically insufficient to generate plausible molecular struc-
tures. The additional difficulty when training a neural
network with protein atomic coordinates is associated with
the very high number of degrees of freedom to be handled
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(often >1000 individual x, y, and z coordinates), making
the training process arduous. To overcome these limita-
tions, we have designed a 1D CNN architecture and
introduced physics-based terms in the loss function. The
convolutional architecture, already commonplace for image
and text processing as well as bioinformatics tasks, is
associated with a smaller number of trainable parameters
and is independent of the number of degrees of freedom
(and thus atoms) within the training set. Our physics-based
terms in the loss function directly constrain learning of
protein structures obeying essential force-field potentials.
To further facilitate the training process, we have intro-
duced a warping on the nonbonded potential terms (see
Methods), leading to better gradients encouraging conver-
gence in otherwise high Lipschitz constant conditions. To
test our network we have purposely designed a set of hard
tasks, by selecting the most different conformations from
protein simulations featuring different ranges of conforma-
tional changes, and asking the neural network to generate
suitable interpolations by leveraging only a two-dimen-
sional latent space, as well as a limited number of training
examples.
Challenged with the flexible protein MurD, our network

revealed a surprising transition path between two distinct
states, closed and open. Remarkably, conformations along
this pathwere both physically plausible and compatiblewith
an existing MD simulation featuring a closed-to-open
transition as well as with two crystal structures of MurD
locked in intermediate conformations. While the MSE term
in the loss function was key for the network to learn the
global protein shape, the addition of physics-based terms
was crucial to generating low-energy conformations, asso-
ciated with a low DOPE score. The bonded terms (bonds,
angles, dihedrals) helped fine-tuning local atomic arrange-
ments, whereas the nonbonded ones (electrostatics [34] and
Lennard-Jones [35]) were a significant player in identifying
a suitable transition path within the conformational space.
The structures produced by our new network resulted to be
both of lower energy and greater biological relevance than
those obtained by PCA-based interpolations or by a neural
network trained solely according to a MSE-based loss
function [Figs. 4(b) and 4(c)]. By analyzing the loss function
values within the two-dimensional latent space of our
physics-based neural network,weobserved a clearly defined
and near-convexminimum, despite the network having been
trained with distinct conformational states [Fig. 3(b)].
An attractive feature of our convolutional network is that

it can be trained with conformations of proteins of arbitrary
amino acid sequence. This also enables transfer learning,
whereby a pretrained network is repurposed to tackle a new
though related task, expected to lead to improved gener-
alization and faster network optimization. In this context,
we noted that different proteins still share common features
(e.g., typical bonds length and angles, as well as the same
sequence of atoms in the backbone), that should not be

relearned. We transferred the network trained on MurD to
four different proteins (HIV-1 capsomer protein p24, tick-
borne encephalitis virus envelope protein E, αB crystallin
small heat shock protein, and periplasmic chaperone SurA),
for which we provided only a limited number of training
examples (as low as 100). Remarkably, after few epochs the
total error associated with structures generated by the
pretrained network dropped lower than that of structures
produced by the network trained from scratch.
A detailed analysis of generated protein structures

indicated that our neural network may produce suboptimal
loop regions when these are highly flexible and the protein
movement is dominated by larger domain-level conforma-
tional changes. Thus, we expect our neural network to
perform best with folded proteins, with atoms featuring
correlated movements. The intermediate structures gener-
ated by our neural network will feature overall low energy
according to a subset of typical terms associated with
molecular structures, namely their bond, angles, dihedrals,
van der Waals interactions and electrostatic interactions.
Still, the energy of predicted intermediates will not be an
accurate estimation of energy barriers a conformational
change is associated with. Thus, while capable of local
extrapolation, the network should not be expected to
predict new, completely unseen states. Nevertheless,
knowledge of possible transition paths can provide guid-
ance for the definition of appropriate reaction coordinates
or collective variables in MD-based enhanced sampling
schemes. Furthermore, as the neural network effectively
transforms a discrete collection of protein conformations
into a “conformational continuum,” it can find applications
in flexible protein-protein docking scenarios where, under
the conformational selection paradigm, the ability of fine-
tuning protein conformations to maximize their compati-
bility with a binding partner is desirable [20].
In summary, we have designed a new architecture with

physics-based loss functions that significantly improve the
synthesis of protein atomic structures in different confor-
mational states. We have shown that biologically relevant
transition paths can be predicted when synthesized inter-
polations must respect physical laws. The estimated tran-
sition path retains a surprising resemblance to the ground
truth, and even more surprisingly this is achievable with
only a small number of training examples. Further, our
findings show that, through our fully convolutional archi-
tecture, we can transfer features learned from one protein to
another, indicating the possibility of simultaneously train-
ing with conformations of multiple proteins, toward a
network trained with the whole proteome.

IV. METHODS

A. Network architecture

Proteins are defined by their amino acid sequence, and
each sequence maps onto an ensemble of possible three-
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dimensional atomic arrangements (conformations). The
space of possible conformations associated with a specific
sequence may be extremely reduced for a protein taking a
single well-defined state, or broad for a flexible protein
capable of interconverting between multiple states. As the
proteome is vast and many proteins are resistant to most
forms of experimental interrogation, only a relatively small
subset of proteins have had at least one of their possible
conformations revealed at atomic resolution. Furthermore,
as the techniques characterizing molecular structures typ-
ically report on low-energy conformations, transition states
are undersampled proportionally to their associated energy
barrier.
From a machine-learning perspective, we can define the

entire proteome as a distribution pdðxÞ, where x ∈ R3×n is
a protein, and mdðxÞ a collection of conformations of a
specific protein experimentally (e.g., nuclear magnetic
resonance spectroscopy, x-ray crystallography) or compu-
tationally (e.g., Monte Carlo or MD simulations) deter-
mined. Here, vector x comprises of all the coordinates (R)
of a protein made of n atoms. We wish to learn a low
m-dimensional embedding f∶R3×n → Rm that maps pro-
teins onto the latent space, where sampling any point z ∈
Rm and taking the inverse f−1 yields a continuous space of
physically plausible molecular structures. However, as the
expected observations x ∼ pdðxÞ and x ∼mdðxÞ relax into
a subset of conformations [36], the behavior at the valley
regions on the manifold (maxima in the energy landscape)
is difficult to capture explicitly from the observations.
Let fðzjx; θÞ be an encoder function with parameters θ,

and dðx̂jz; θÞ be a decoder function that approximates the
inverse f−1 accordingly. The conventional approach is a
simple reconstructive autoencoder that minimizes the mean
squared error loss LMSE, where

LMSE ¼ Ex∼pdðxÞ½kdðfðxÞÞ − xk2�: ð1Þ

This follows the geometry and probability distribution from
which the dataset was collected and therefore fails to
generalize, especially at undersampled regions associated
with transition states.
Proteins undergo conformational changes following

lower-energy paths in their energy landscape, where
transition states are expected to be saddle points. The
protein’s expected energy, as determined by its atomic
interactions, can be expressed as a loss function such as
Ψðx; yÞ ¼ kx − yk2, defined as

LPhys ¼ Ex∼pdðxÞ½ΨðdðfðxÞÞÞ�; ð2Þ

where Ψ evaluates the energy of the decoded structure.
However, as with the naive autoencoder, this also fails to
generalize at regions far from conformations provided as
example. In principle, it is possible to enforce physics to be
respected in regions outside the known conformational

space, for example, with a Gaussian prior in the latent
encoding. However, this makes an assumption on the
distribution of the latent space.
Any midpoint along the geodesic (i.e., shortest path on

the learned manifold) between any two protein conforma-
tions ðx1;x2Þ ∼mdðxÞ will also be a protein of same
connectivity and composition. Assuming a degree of
convexity of the latent space, we can enforce our
physics-based loss function at random midpoints between
x1 and x2, sampled linearly from a uniform distribution:

Lpath ¼ Eðx1;x2Þ∼mdðxÞ;t∼U½ΨðdðzmÞÞ�; ð3Þ

where zm ¼ ð1 − tÞfðx1Þ þ tfðx2Þ are midpoints in the
latent space between two protein conformations. This
enables physical characteristics to be enforced on the
manifold between two points, but outside of the known
sampled conformational space.
We note that, in principle, this approach allows for the

training of a neural network with md simulations of
multiple proteins, whereby pairs (to interpolate between)
are picked from the same simulation.
Putting this together, we can assemble the final loss as a

weighted sum of the geometric term and the path term
(which itself is comprised of various individually weighted
physics terms):

L ¼ αLMSE þ βLpath: ð4Þ

B. Masked bonded loss

In molecular mechanics a functional abstraction, termed
a force field, is used to describe the potential energy VðxÞ
for a molecular system as a function of its atomic
coordinates. The exact functional form of a force field
can vary, but in their basic embodiment they can be
described as a sum of individual energy terms:

ΨðxÞ ¼ Vbonds þ Vangles þ Vdihedrals þ Vnonbonded: ð5Þ

We define our physics-based loss to be functionally
identical to the AMBER force field, thus compelling the
potential energy of intermediate structures to be minimized.
This would enforce physics to be respected at all points
along the geodesic between two protein conformations and
constrain the intermediates to follow a locally minimum
energy path. We have developed a PyTorch implementation
of the AMBER force field allowing us to both utilize
graphical processing unit (GPU) acceleration and enable
backpropagation through the physics loss.
In the AMBER force field, bonds are represented as a

harmonic potential about the equilibrium bond distance r0:

Vbonds ¼
X
bonds

kbðr − r0Þ2; ð6Þ
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where kb is force constant dependent on the specific type of
bonded atoms. Force constants and equilibrium distances
are taken directly from the AMBER ff14SB parameter sets.
Atoms in a protein structure file are listed residue by

residue, so the positions of atoms throughout the list are
spatially coherent, whereby atoms involved in a common
bond or angle are most likely adjacent in the list. We can
efficiently utilize GPUs by calculating rd such that
rdi ¼ kud

i k2 ¼ kxi − xiþdk2, then we can calculate the
bond potential with

Vbonds ¼
X
d

kbðrd − r0Þ2 ð7Þ

for all relevant d. We can mask any values in rd that do not
correspond to bonded atoms by setting the corresponding
element in kd

b to zero.
The AMBER force field represents angles similarly:

Vangles ¼
X
angles

kθðθ − θ0Þ2; ð8Þ

where θ is the angle between two bond vectors ud1 and ud2 .
We calculate the angle potential as

Vangles ¼
X
d1;d2

kθðθd1;d2 − θ0Þ2; ð9Þ

where

θd1;d2i ¼ arccos

�
ud1
i · sd2ud2

iþd1

kud1
i kkud2

i k

�
; ð10Þ

where for the angle between atom indices i, j, and k we can
determine d1 and d2 as j − i and j − k. The factor sd2 is 1 if
j < k or −1 if j > k.
Dihedral angles are represented in the AMBER force field

as

Vdihedrals ¼
X

dihedrals

Vn½1þ cosðnϕ − γÞ�; ð11Þ

where Vn, n, ϕ, and γ represent the barrier, periodicity,
torsion angle, and phase, respectively. We implement this as

Vdihedrals ¼
X
n

X
d1;d2;d3

Vn½1þ cosðnϕd1;d2;d3 − γÞ�; ð12Þ

where

ϕd1;d2;d3
i ¼ atan2ðu2 · ððu1 × u2Þ × ðu2 × u3ÞÞ;

ku2kððu1 × u2Þ · ðu2 × u3ÞÞÞ ð13Þ

ux ¼ sdxudx
i ð14Þ

The use of the atan2 function eliminates the possibility of a
division by zero, resulting in infinite gradients.

C. Warped nonbonded loss

The nonbonded potential Vnonbonded consists of a sum of
two terms, describing van der Waals and electrostatic
interactions. Vnonbonded is evaluated for any pair of atoms
not involved in a mutual bond, angle, or dihedral. Given r,
the distance between two atoms, the van der Waals
interactions are described as in the AMBER force field by
a 12-6 Lennard-Jones potential VLJ:

VLJ ¼
XN−1

i

XN
j¼iþ1

��
Aij

r12ij

�
−
�
Bij

r6ij

��
; ð15Þ

Aij ¼ ϵijR12
iJ and Bij ¼ 2ϵijR6

ij; ð16Þ

Rij ¼ 0.5ðRmin;i þ Rmin;jÞ; ð17Þ

ϵij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵii ⋅ ϵjj

p
; ð18Þ

where Rmin;x and ϵxx are the van der Waals radius and well
depth of the potential for an atom type x, as defined within
the AMBER parameter set. Equations (17) and (18) show the
Lorentz-Berthelot mixing rules used to obtain cross terms
between different i and j. Since side-chains atoms (except
Cβ) are not used in the network training, only the repulsive
term of the Lennard-Jones is applied. This is to avoid the
protein structure to pack excessively, filling the voids left
by missing side-chain atoms.
Thus, here we only retain the repulsive component of the

Lennard-Jones potential:

VLJ ¼
XN−1

i

XN
j¼iþ1

��
Aij

r12ij

��
: ð19Þ

Electrostatic interactions are described by a Coulombic
potential VC:

VC ¼
XN−1

i

XN
j¼iþi

�
ke

qiqj
ϵ0rij

�
; ð20Þ

where qx is the charge on atom x, ϵ is the dielectric con-
stant, and k is the Coulomb force constant. As
limr→0VnonbondedðrÞ ¼ ∞, the gradient descent becomes
unstable at short interatomic distances. Clamping r causes
the gradients to get stuck in the corners of the hypercube.
Therefore, we approximate the nonbonded potentials by
warping the input spacer0 ≈ rpiecewisewithanexponential.
This is achieved equivalently and efficiently with the expo-
nential linear unit (ELU) [37] intrinsic activation function for
some offset constant k, where
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r0 ¼ ELUðr − k; α ¼ 1Þ þ k; ð21Þ

such that the potentials now tend to high positive or negative
values, without significantly altering the profile of the
potential well (Fig. S11 in Supplemental Material [27]).
We choose k ¼ 1.9 for VLJ and k ¼ 0.4 for VC, giving large
positive or negative y intercepts for the expected upper and
lower bounds for Aij and qiqj accordingly.

D. Implementation

Atoms (points) of a molecular structure [such as in PDB
file, the standard representation for molecular 3D structure
data, Fig. 1(b)] can be sorted in a list so that covalently
connected atoms appear close to each other.
The 1D CNN architecture was implemented in PyTorch

with 12 layers (6 in the encoder and 6 in the decoder
components). The first layer has 3 input channels (for each
atom’s 3D coordinates) and 32 output channels, where
subsequent layers of depth t have b32 × 1.5tc input
channels with batch normalization and rectified linear unit
activations. Convolutions have size 4 kernels with strides of
2 and padding of 1, halving the spatial dimension each
layer. This means the molecule becomes like a progres-
sively thicker but shorter “ribbon” whose activations
correspond to more deep and abstract characteristics of
the molecule, Fig. 1(c). The latent space was fixed to two
dimensions using a 1D adaptive mean pooling layer to
handle arbitrary length input sequences.
We found that increasing the dimension of the latent

space, adding an adversarial discriminating component, or
adding residual layers led to only negligible generalization
improvements. The total number of parameters is 11 892
767 optimized using Adam [38] with a learning rate of 1e−4

and weight decay of 1e−5. We used a batch size of 5 for 200
epochs and 1000 optimization steps per epoch for the
training of MurD. Training the model takes ∼7 h on an
NVIDA TITAN Xp graphics card. A larger batch size
allows a higher utilization of the GPU, so for transfer
learning MurD was retrained with a batch of 16 for 200
epochs and 500 optimization steps per epoch and retrained
on the other structure sets at 100 optimization steps per
epoch. The decreased number of optimization steps has no
impact on training other than to increase the rate at which
the network performance was tested and decrease the total
allowed training time.
For the results given for MurD we repeated training of

the neural network 10 independent times with random
initial weights; all values reported (loss functions mean and
standard deviation, as well as the DOPE score of resulting
interpolated structures) are the average of these 10 repeats.
For transfer learning to the other structure sets, we repeated
training of the neural network 10 independent times, 5 with
random initial weights and 5 retaining the weights from
networks pretrained on MurD. The weights α and β in
Eq. (4) were controlled at each step to keep the magnitude

of LMSE 10 times greater than Lpath, thus putting an order of
magnitude greater emphasis on accurately reconstructing
known structures as generating low-energy intermediate
structures.

E. Datasets

MurD has been crystallized in its open (PDB: 1E0D
[22]) and closed (PDB: 3UAG [23]) states, as well as in
intermediates between the two (PDB: 5A5E and 5A5F [24]
with a backbone RMSD of secondary structure elements
equal to 1.12 Å between them). The difference between
these states comes from large-scale conformational change
of one of its three globular domains (residues 299–437)
caused by substrate binding. Conformations from MD
simulations of the closed and open states performed by
some of the authors [20] were used here as the training
dataset (4420 conformations in total comprising of 2507
and 1913 from closed and open simulations, respectively).
In order to evaluate the predictive performance of our
network in interpolating between the diverse conforma-
tional states, a third set of MD simulations was performed
with the ligand removed from the closed state (closed apo)
[20]. We performed two additional repeats of this simu-
lation using the same simulation protocol as Ref. [20]. This
produced a total of 1513 conformations representing a
transition from the closed-to-open state unseen in either the
closed- or open-state simulations.
To test the transfer learning capabilities of the neural

network, we selected simulations of p24 and TBE-sE from
Ref. [39], HSP from Ref. [20], and SurA from Ref. [40].
For each of these simulation datasets, we created five
training sets featuring 1000 conformations and five featur-
ing 100 conformations via random selection.
All our neural networks were trained on the C, Cα, N, O

(backbone), and Cβ (side-chain) atoms, as representatives
of protein structure. These are sufficient to describe the
global conformation (fold) of a protein and the orientation
of each side chain. The two extreme conformations in all
cases (MurD, p24, TBE-sE, HSP, and SurA) were selected
by calculating a RMSD (backbone) matrix considering all
the conformations of the training set and picking the pair
with the highest RMSD. In all cases, we asked the networks
to generate 20 conformations interpolating between these
extrema. The RMSD between these extreme conforma-
tions, an indicator of protein range of dynamics, was 10.2 Å
for MurD, 16.9 Å for p24, 4.9 Å for TBE-sE, 2.8 Å for
HSP, and 38.3 Å for SurA.

F. Percentage error calculation

We used the equilibrium values of bonds and angles from
the AMBER ff14SB force field [28] to estimate the percent-
age error in the corresponding bonded parameters modeled
by our network. The error over all the bonds and angles
present in a conformation was summed to obtain the
%TotalErr as a measure of accuracy of the network in
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generating physically plausible protein structures:
%TotalErr ¼ 100ðPbondsjr − r0j=r0 þ

P
anglesjθ − θ0j=θ0Þ.

Similarly, the per-residue errors were calculated as the sum
of errors associated with interactions involving any atom
within a residue.

G. Analysis of MurD opening angle

The opening angles (azimuth and elevation) of MurD
were calculated by aligning the protein along the stable
domain (residues 1–298), centering the resulting alignment
on the hinge between the mobile and stable domains (center
of mass of residues 230–298), and reporting the position of
the center of mass of the mobile domain (residues 299–437)
in spherical coordinates. A schematic representation of the
angles calculated is shown in Fig. 4(a).
Visual inspections of the protein structures and related

figures were done with VMD1.9.2 [41] and PyMol [42].
Graphs were plotted using matplotlib [43].

Our neural network is available, under GPLv3
license [44].
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