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Abstract
The application of temperature gradient interaction chromatography (TGIC) as an advanced technique for the characterisa-
tion of polymers is discussed, in comparison to other liquid chromatography techniques and in particular the ubiquitous size 
exclusion chromatography. Specifically, the use of reversed-phase TGIC for the interrogation of complex branched polymers 
and normal-phase TGIC for characterisation of high-molar mass end-functionalised polymers is highlighted.
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Introduction to Interaction Chromatography 
of Polymers

Temperature Gradient Interaction Chromatography (TGIC) 
is an Interaction Chromatography (IC) technique for the 
characterisation of polymers in which separation is domi-
nated by enthalpic interactions between the analyte and sta-
tionary phase. Other chromatographic techniques used for 
the characterisation of polymers include gradient polymer 
elution chromatography (GPEC), barrier and size exclusion 
chromatography (SEC) gradient methods and liquid chroma-
tography at the critical conditions (LCCC) in traditional pre-
cipitation–redissolution mode. Details of these techniques 
have been reviewed elsewhere [1–3].

The earliest examples of IC characterisation of polymers 
were performed in the late 1960s by thin-layer chromatogra-
phy [4, 5] and 10 years later by column liquid chromatogra-
phy [6, 7]. In these early attempts, the successful separation 
of homopolymers of differing molar mass and copolymers 
with varying chemical composition was achieved. IC meth-
odologies are a useful complement to the almost ubiquitous 
size exclusion chromatography (SEC) and may overcome 
the intrinsic limitation of the entropy-controlled methods, 
whereby (in SEC) separation is dependent upon polymer 
size in solution, i.e. the solvodynamic volume in a given sol-
vent and temperature [8–10]. Other methods for size-based 

separation are hydrodynamic chromatography (HDC) [11] 
and flow field-flow fractionation (FlFFF) [12]. In SEC the 
polymers, dissolved in a good solvent should not interact 
with/adsorb to the column packing materials, and the distri-
bution equilibrium is solely regulated by the entropic exclu-
sion of polymer chains from pores in the packing beads, 
according to their size. In SEC mode, smaller chains will 
elute later due to longer retention in the pores, while larger 
chains elute earlier and all analytes are eluted before the 
injection solvent peak [13]. The most significant limita-
tion of SEC is that polymers with the same hydrodynamic 
volume can sometimes have a different molar mass, due to 
differences in molecular architecture or different chemical 
composition. In such cases, SEC is incapable of separating 
polymers with similar hydrodynamic volume but different 
chemical or architectural characteristics.

In contrast to SEC, IC exploits the enthalpic interac-
tion of analytes with the surface of the column packing 
materials, and the equilibrium of the analytes between the 
mobile and the stationary phases is dependent not only 
on molar mass but also on the chemical and structural 
composition of the polymers. The eluents in IC are com-
monly weakly polar, to promote an appropriate interac-
tion with the stationary phase [13]. In IC elution mode 
the polymers will elute after the injection solvent peak, 
and the interaction energy with the stationary phase is 
expected to be proportional to molar mass [14]. Therefore, 
the retention of a polymer increases exponentially with 
molar mass. Under specific conditions (solvent strength 
and temperature) the so-called critical adsorption point 
(CAP) for a particular homopolymer can be found [14] 
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where the entropic (exclusion—SEC mode) and enthalpic 
(interaction—IC mode) effects cancel each other out and 
all samples of the homopolymer will elute in correspond-
ence to the total void volume, irrespective of molar mass. 
The LC method utilizing this phenomenon is called liquid 
chromatography at the critical condition (LCCC) [1]. The 
three possible elution modes are illustrated in Fig. 1. It is 
possible to switch between IC and SEC separation modes, 
passing through the CAP, with the same stationary phase 
by changing either the solvent strength/polarity or column 
temperature. In TGIC, the optimal composition is fixed 
near the CAP condition, and the column temperature is 
tuned to change the separation mode from IC to SEC [13]. 
In a typical TGIC experiment, the temperature is raised to 
gradually increase polymer desorption and promote elu-
tion, given that adsorption of polymer is generally an exo-
thermic process [1]. However, it should be noted that in a 
few rare cases polymer–eluent–column systems have been 
reported with an inverse temperature dependence [15–17].

TGIC and Its Applications

The earliest reports of TGIC by Chang et al. describe 
the successful and enhanced (compared to SEC) sepa-
ration of linear homopolymers according to their molar 
mass [18–22]. However, the real potential of TGIC is in 
exploiting the enthalpic nature of the interaction between 
polymer samples and the stationary phase, to enable sepa-
ration according to architecture (chain branching), tactic-
ity, chemical composition and functionalisation. In com-
mon with many other IC techniques, TGIC can be carried 
out under reversed-phase (RP) and normal-phase (NP) 
conditions.

Reversed‑Phase TGIC

In reversed-phase (RP) conditions, the stationary phase 
is non-polar, e.g. C18 modified silica, while the mobile 
phase is more polar than the stationary phase. RP-TGIC 
resolves polymer samples based on molar mass instead of 
hydrodynamic volume, which is particularly useful for the 
analysis of branched polymers where variation in struc-
ture may result in a significant difference in molar mass, 
but almost no difference in hydrodynamic volume. In such 
cases, SEC analysis is incapable of detecting dispersity in 
architecture or molar mass. In the past decade, the advent 
of RP-TGIC has been crucial in underpinning the devel-
opment of models to describe the correlation of polymer 
architecture and polymer rheology. The presence of even 
small quantities of defects and by-products can have sig-
nificant implications when relating the polymer structure 
to experimental rheology whereby discrepancies make the 
validation and subsequent modification of theoretical mod-
els impossible [23].

RP-TGIC has been used to investigate the structural 
dispersity for a variety of branched architectures includ-
ing star-branched polymers [24–28], mikto-arm star block 
copolymers [25, 29], H-shaped polymers [30, 31], comb-
branched polymers [32, 33], dendritically branched poly-
mers [34] and hyperbranched polymers [35]. The power of 
this technique is illustrated in Fig. 2 which shows the SEC 
(Fig. 2a) and RP-TGIC (Fig. 2b) analysis of a polybuta-
diene G1 DendriMac [36]. Such complex, hierarchically 
branched polymers have been critical in structure–property 
correlation studies. It is clear that SEC analysis is indi-
cating a well-defined, narrow dispersity product—analy-
sis gave a dispersity of 1.04. However, RP-TGIC analy-
sis revealed the presence of a low molar mass species at 
lower retention volume (the order of elution is reversed in 
TGIC compared to SEC) which was subsequently shown 
to be the G1 DendriMac with one outer arm missing and 
this defect was found to comprise nearly 14% by mass of 
the product. RP-TGIC is much less universal than SEC in 
so much that each polymer analysed requires chromato-
graphic conditions (eluent, temperature and temperature 
gradient) to be optimised, which can be time-consuming. 
However, as illustrated, RP-TGIC has proved to be cru-
cial in the accurate characterisation of complex branched 
polymers.

Normal Phase (NP) TGIC

On the other hand exploits a polar stationary phase, 
commonly bare silica or diol bonded silica, and a less 
polar mobile phase. Until recently there were very few 

Fig. 1   Polymer molar mass (M) versus retention volume in three 
chromatographic separation modes: size exclusions chromatography 
(SEC), liquid chromatography at critical condition (LCCC) and inter-
action chromatography (IC). Reprinted from ref [13] with permission 
from Wiley
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examples in the literature of the application of this tech-
nique, beyond demonstrating that NP-TGIC can also be 
used for the analysis of molar mass distributions. However, 
more recently, the significant potential of NP-TGIC for the 
analysis of end-functionalised polymers has been demon-
strated and it is particularly well-suited for the analysis of 
end-functionalised polymers of high molar mass, for which 
the accuracy of more common techniques, such as MALDI 
and NMR, is inherently less reliable. It is worth noting 
that the presence of chain-end functionality, in most cases, 
has no impact on the hydrodynamic volume of a polymer 
chain, and therefore SEC is of no use in this context. Thus, 
NP-TGIC has been used for both the identification and the 
quantification of chain-end functionality. This was first 
demonstrated in 2001 by Chang et al. who used NP-TGIC 
for the analysis of hydroxyl chain-end-functionalised poly-
styrene homopolymers of two different molar masses (11 
and 105 kg mol−1). Chang managed to successfully resolve 
in a single run the polystyrene samples, both in terms of 
molar mass and chain end functionality, separating the 
unfunctionalised chains from the functionalised ones [37] 
(Fig. 3).

The NP-TGIC separation of homopolymers with dif-
ferent functional groups has been successfully achieved 
by our group [38, 39], showing that it is possible to fol-
low chain end functional group transformations and to 
obtain successful separation of chains with a molar mass 
of up to 200,000 g mol−1 which differ only by the pres-
ence of a single primary alcohol functionality at the chain-
end [39]. At such molar masses, any attempt to identify 
the presence of, or to attempt to quantify the extent of 

end-functionalization by NMR or MALDI-ToF MS would 
be an act of futility.

Additional Applications of TGIC

Although (in the opinion of these authors) the greatest 
impact of TGIC has been in the characterisation of com-
plex branched polymers by RP-TGIC and the analysis of 
high-molar mass end-functionalised polymers by NP-TGIC, 
TGIC has been used for the characterisation of polymers in 
a number of other specific cases. Thus, TGIC has been used 
to characterise a variety of block copolymers [40–42] and 
for the separation of polymers according to tacticity, where 

Fig. 2   Chromatograms of polybutadiene G1 DendriMac obtained by size exclusion chromatography (a) and reversed-phase temperature gradient 
interaction chromatography (b) [34]

Fig. 3   NP-TGIC separation of polystyrene samples with different 
end groups (hydrogen terminated vs hydroxyl terminated). Reprinted 
from ref [37] with permission from Elsevier
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samples of isotactic, heterotactic and syndiotactic poly(ethyl 
methacrylate) of similar molar mass were resolved accord-
ing to stereoregularity [43]. Moreover, in some cases, the 
characterisation and resolution of complex branched pol-
ymers has been enhanced by taking advantage of an H/D 
isotope effect. Thus, it has been shown that reversed-phase 
interaction chromatography is sensitive to this isotope 
effect and deuterated polymers are less strongly retained 
than their non-deuterated analogue. This phenomenon has 
been exploited in the RP-TGIC characterisation of H-shaped 
polymers with a deuterated cross-bar and hydrogenous arms 
[30] and in a 2D LC experiment (NP-TGIC/RP-LC) for the 
characterisation of comb-branched polymers with a hydrog-
enous backbone and deuterated arms [33]. Finally, Cong 
and co-workers developed a high-temperature TGIC (HT-
TGIC) methodology enabling the high-resolution separa-
tion of poly(ethylene–octene) copolymers according to their 
comonomer distribution and chemical composition [44].

Limitations and Opportunities

TGIC offers significant advantages over SEC in offering 
the possibility to separate polymers on the basis of molar 
mass (RP-TGIC) and/or chemical composition/functional-
ity. Thus, TGIC has been shown to be a particularly power-
ful technique for the characterisation of complex branched 
polymers, in identifying the presence of and quantifying the 
amount of defect structures. NP-TGIC is capable of char-
acterising high-molar mass end-functionalised polymers, 
in some cases resolving polymers of identical molar mass 
on the basis of a single functional group, even in polymers 
with a molar mass of up to 200,000 g mol−1, when alterna-
tive techniques such as NMR and MALDI-ToF MS offer no 
insight. It has been also shown that TGIC gives lower band-
broadening compared to SEC, when used for molar mass 
separation, thus providing for higher resolution [21]. In con-
trast to other advanced liquid chromatography methods, the 
isocratic elution in TGIC limits the background signal drift 
encountered in solvent gradient elution methods, enabling 
the use of differential detection methods (e.g. UV, light scat-
tering and viscometry), with appropriate temperature control 
at the detectors.

However, TGIC is not without its limitations. The appli-
cation of a temperature gradient can lead to significant base-
line drift in a differential refraction index detector—such 
detectors being extremely sensitive to changes in tempera-
ture. Moreover, a temperature gradient cannot vary the sol-
vent strength of the eluent as much as a variation in solvent 
composition, for which infinite combinations are possible, 
either using binary or ternary solvent mixtures. Therefore 
TGIC is suitable for the analysis of polymer systems that 
need a fine control instead of a large change of the solvent 

strength [1]. Furthermore, possibly the most limiting char-
acteristic of TGIC, and the one that has inhibited the wide 
uptake of TGIC, is the fact that it is not a ‘universal method’ 
like SEC, where many different polymers can be character-
ised using a common solvent such as THF. In the case of 
TGIC, it is necessary to tune the chromatographic conditions 
(solvent, flow rate, temperature, temperature gradient and in 
some cases the nature of the column) for each type of poly-
mer. The development of suitable conditions for a polymer 
or copolymer which has not previously been subjected to 
TGIC can be a very time-consuming process.

Despite these limitations, RP-TGIC has played a funda-
mental role in understanding the impact of chain-branching 
on the rheology of polymers, with significant implications 
for industrial-scale processing of commodity polymers, 
and NP-TGIC has the potential to be of huge value in the 
characterisation of end-functionalised polybutadiene and 
solution styrene–butadiene rubbers which are increas-
ingly used in tyre rubber formulations. Such polymers are 
manufactured on a huge scale and frequently have a molar 
mass > 300,000 g mol−1. Attempts to characterise the extent 
of end-capping in such cases, by other techniques, are practi-
cally impossible.
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