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Abstract
We present compact analytic formulae for all one-loop amplitudes represent-
ing the production of a Higgs boson in association with two jets, mediated
by a colour triplet scalar particle. Many of the integral coefficients present for
scalar mediators are identical to the case when a massive fermion circulates
in the loop, reflecting a close relationship between the two theories. The cal-
culation is used to study Higgs boson production in association with two jets
in a simplified supersymmetry (SUSY) scenario in which the dominant addi-
tional contributions arise from loops of top squarks. The results presented here
facilitate an indirect search for top squarks in this channel, by a precision mea-
surement of the corresponding cross section. However, we find that the potential
for improved discrimination between the Standard Model and SUSY cases sug-
gested by the pattern of results in the one- and two-jet samples is unlikely to be
realized due to the loss in statistical power compared to an inclusive analysis.
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1. Introduction

The main production channel of Higgs bosons at the Large Hadron Collider (LHC) is through
gluon–gluon fusion, i.e., gg → h. The leading-order process starts at one loop, mediated by
massive quark(s) of the Standard Model (SM). By marrying high-quality data from run 2 of
the LHC with precision theoretical calculations for this process [1, 2], one can extract ever
more exquisite determinations of the properties of the Higgs boson [3, 4].

As more data are collected, additional information can be obtained from analysing differen-
tial information beyond inclusive cross sections. One reason this is important is that additional
jet activity allows new kinematic regions to be examined that may be more sensitive probes
of Higgs properties. An example of this is that the nature of the Higgs coupling to particles
circulating in the loop can only be probed if the relevant energy scale is at least of the order of
the particle’s mass. For inclusive production the relevant energy scale is the Higgs mass and,
since mh < mt, one can describe this process using an effective field theory (EFT) in which the
loop of heavy top quarks is replaced by an effective Lagrangian,

Leff =
g2

s

48π2v
h GA

μνGA,μν , (1.1)

where gs is the strong coupling constant, v is the vacuum expectation value of the Higgs field,
Gμν is the QCD field strength, and h is the Higgs boson field. Indeed, the efficacy of this
approximation is the very reason that such high-precision calculations of this process can be
performed [1, 2]. In the presence of additional jet activity the relevant energy scale is no longer
mh but is instead the transverse momentum (pT) of the leading jet. Therefore, the Higgs + jet
process can become especially sensitive to the coupling of the Higgs boson to new mediator
particles of mass mX once pT > mX. An analysis of the cross section for this process, in this
kinematic regime, could thus provide the first signal of new physics (in the case of a deviation
from the SM prediction), or a stringent bound on the mass and coupling of any new mediator
particle. Although less sensitive than corresponding direct searches, such indirect probes of
the mediator particles are insensitive to any assumptions regarding the nature of their decay
chains and may therefore provide complementary information.

Massive colour triplet scalar particles that arise in beyond the Standard Model (BSM) sce-
narios are potential new mediators for couplings of gluons to the Higgs boson. Indeed, one of
the main goals of the LHC is to further explore the particles to which the Higgs boson cou-
ples, and having already discovered one fundamental scalar particle, it is natural to consider
whether further scalar degrees of freedom might exist. One such proposed scalar particle is the
top squark, a super partner of the SM top quark that appears in the Minimal Supersymmetric
Standard Model (MSSM). The effect of such loops of particles has been explored previously
[5–7], focussing on effects in either inclusive Higgs production or in the case of the Higgs
boson recoiling against a single jet. Most recently, reference [8] demonstrated that the one-jet
process offers, in principle, superior information to inclusive production over certain regions
of parameter space. For the top squark, current indirect limits from Higgs and electroweak data
[9, 10] are around mt̃ ∼ 300 GeV. As noted above, this limit is clearly much weaker than any
direct limit derived from a specific decay chain, which is currently around the 1 TeV scale (see,
for example, references [11, 12] for recent limits from CMS and ATLAS).

In this paper we will extend this analysis to the case in which a Higgs boson is produced
in association with two jets. To do so, we have performed a new calculation of the amplitudes
for the scattering of a Higgs boson with four partons, mediated by a loop of colored scalar
particles. Our results are expressed in the form of compact analytic expressions, exploiting a
close correspondence with their fermionic counterparts [13]. The resulting expressions may
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be evaluated numerically in a fast and stable manner, allowing for the construction of an effi-
cient Monte Carlo event generator. We first outline the generic scalar theory in which we shall
perform our calculation, as well as the specific MSSM case, in section 2. An overview of the
computation of the four-parton matrix elements entering the Higgs + 2 jet analysis is given in
section 3. The detailed results for one-loop integral coefficients for the case of a scalar loop
are described in appendix A. We move to phenomenology in section 4, first providing a recal-
culation and recap of results for the zero- and one-jet cases before presenting our new two-jet
analysis in section 5. Our conclusions are drawn in section 6. Finally, as an aid to performing an
independent implementation of the formulae presented here, appendix B provides numerical
results for the integral coefficients given in appendix A, and appendix C details the connection
between our amplitudes and those obtained in the EFT.

2. Setup

We first formulate a generic scalar theory involving a complex scalar φ which carries SU(3)
colour in the triplet representation. The Lagrangian involving φ thus reads

L = (Dμφ†
i )(Dμφi) − λφ†

i φih, Dμφi = ∂μφi + i
gs√

2
(t · Gμ)i jφ j, (2.1)

where Gμ
a denotes the gluon field, t a represents the standard SU(3) colour generators, normal-

ized such that tr(t atb) = δab, and gs is the strong coupling constant. The coupling of the Higgs
boson to the scalar field is denoted by the parameter λ.

2.1. Overview

In order to elucidate the differences and similarities between the cases of Higgs boson produc-
tion mediated by a fermion and a scalar loop, we first examine the amplitudes for inclusive
Higgs boson production via these two processes.

In the SM, where the particle in the loop is a quark of mass m, the amplitude for
g(p1)g(p2) → h takes the following form:

Hgg
2 = i

g2
s

16π2
δAB

(
m2

v

)[
gμν − pν1 pμ2

p1.p2

]

×
[
(2 m2

h − 8m2) C0(p1, p2; m) − 4
]
εμ(p1)εν(p2). (2.2)

The gluons have colour labels A and B, ε represents a polarization vector, and mh denotes the
mass of the Higgs boson. The integral over the loop momentum is encapsulated in the scalar
triangle function C0(p1, p2, m) defined later in equation (3.7). The corresponding result for a
loop containing a scalar particle of mass m is [14]

Agg
2 = i

g2
s

16π2
δAB

(
−λ

4

)[
gμν − pν1 pμ2

p1.p2

]

×
[
−8m2 C0(p1, p2; m) − 4

]
εμ(p1)εν(p2). (2.3)

Writing the amplitudes in this way highlights several similarities between them. When set-
ting (−λ/4) = m2/v the coefficient of the triangle integral proportional to m2 is identical, as
well as the purely rational term (−4). This illustrates a general correspondence between such
coefficients in the scalar and fermion theories [13].
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Figure 1. (in colour online) Functions F1/2 and F0, given in equations (2.5) and (2.6)
respectively, plotted as a function of their arguments. The dotted lines show their
asymptotes at large τ .

It is instructive to push this comparison further by extracting an overall factor as follows:

Hgg
2 = i

g2
s

16π2
δAB

[
1
2

(
gμν − pν1 pμ2

p1.p2

)] (
m2

h

v

)
εμ(p1)εν(p2) F1/2(τ ),

Agg
2 = i

g2
s

16π2
δAB

[
1
2

(
gμν − pν1 pμ2

p1.p2

)] (
λ

2
m2

h

m2

)
εμ(p1)εν(p2) F0(τ ), (2.4)

where the functions for the scalar and fermionic cases are given by

F0(τ ) = τ [1 − τ f (τ )] , (2.5)

F1/2(τ ) = −2τ [1 + (1 − τ ) f (τ )] , F1/2(τ ) = −2F0(τ ) − 2τ f (τ ), (2.6)

and τ = 4m2/m2
h. In these formulae we have introduced the triangle function f (τ ) =

−m2
h

2 C0(p1, p2; m), for which the explicit result is

f (τ ) = −1
4
θ(1 − τ )

[
ln

(
1 +

√
1 − τ

1 −
√

1 − τ

)
− iπ

]2

+ θ(τ − 1)
[
sin−1(1/

√
τ )
]2
. (2.7)

Figure 1 shows the behaviour of F0 and F1/2 as a function of τ . In the region τ > 1 the functions
are both real and negative, and quickly approach their asymptotic values of −1/3 (scalar) and
−4/3 (fermion). For the SM case τ � 1 and the value of this function is in the asymptotic
regime, motivating the use of the EFT shown in equation (1.1). From these asymptotic values
and the overall factors extracted in equations (2.5) and (2.6) it is clear that the two processes
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can be described by the same effective Lagrangian, in the limit of large intermediary mass,
when we have (λ/8) = m2/v.

2.2. Top squarks in the MSSM

Although the analytic results presented later in this paper are valid for a generic colour-triplet
scalar, and may be applicable more generally, in this paper we will focus on the top squark
sector of the MSSM, which contains two such scalars, t̃1 and t̃2. We will consider scenarios in
which the coupling of the lightest Higgs boson in the MSSM is modified, assuming that this cor-
responds to the particle already observed at the LHC. Each squark couples to the lightest Higgs
boson through a contribution to the Lagrangian of the form shown in equation (2.1), where we
now label the strength of the Higgs coupling to each scalar by λh̃t1̃t1 and λh̃t2̃t2 respectively.
Following reference [8], we parameterize this sector by

(mt̃1 , Δm , θ), Δm =
√

m2
t̃2
− m2

t̃1
, (2.8)

where, rather than using the two squark masses, we use the lightest top squark mass (mt̃1 ) and
a measure of the separation with the other state (Δm). The final parameter (θ) is the mixing
angle between the two scalar states, which takes values in the range [−π/2, π/2]. If the mass
of the MSSM pseudoscalar (A) is much larger than the weak scale (mA � mZ) we can work in
the decoupling limit [15], in which the Higgs–squark couplings take a very simple form:

λh t̃1̃t1 =
m2

t

v

(
α1 cos2 θ + α2 sin2 θ + 2 − (Δm)2

2m2
t

sin2 2θ

)
, (2.9)

λh t̃2̃t2 =
m2

t

v

(
α1 sin2 θ + α2 cos2 θ + 2 +

(Δm)2

2m2
t

sin2 2θ

)
. (2.10)

The coefficients α1 and α2 in these formulae are given by

α1 =
m2

Z

m2
t

cos 2 β

(
1 − 4

3
sin2 θW

)
, (2.11)

α2 =
4
3

m2
Z

m2
t

cos 2 β sin2 θW, (2.12)

where θW is the weak mixing angle. These formulae also contain the final MSSM parameter
that is necessary to specify our model, β, where tan β is the ratio of the vacuum expectation
value of the two Higgs bosons.

3. Calculation of Higgs + 2 jet process

We now provide the details of our calculation of the four-parton amplitudes that enter our
analysis of the Higgs + 2 jet process.

3.1. Amplitudes for a scalar loop

We begin with the Lagrangian given in equation (2.1) and break the amplitude for the pro-
duction of a Higgs boson and n gluons, mediated by a scalar loop, into colour-ordered
sub-amplitudes. Following the notation of reference [13], we have

Agggg
n ({pi, hi, ci}) = i

gn
s

16π2

(
−λ

4

) ∑
{1,2,...,n}′

tr (tc1 tc2 . . . tcn )A{ci}
n (1h1 , 2h2 , . . . nhn ; h), (3.1)
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where the sum with the prime,
∑

{1,2,...,n}′ , is over all (n − 1)! non-cyclic permutations of
1, 2, . . . , n, λ is the Higgs-scalar–scalar coupling and the t matrices are the SU(3) matrices
in the fundamental representation normalized such that

tr(tatb) = δab. (3.2)

m is the mass of the scalar circulating in the loop. It is sufficient to calculate one permutation
in this sum, with the other colour sub-amplitudes related by Bose symmetry and obtained by
exchange. The explicit result for the four-gluon case is

Agggg
4 ({pi, hi, ci}) = i

g4
s

16π2

(
−λ

4

){[
tr (tc1 tc2 tc3 tc4 )

+ tr (tc1 tc4 tc3 tc2 )
]

A1234
4 (1h1 , 2h2 , 3h3 , 4h4 ; h)

+
[
tr (tc1 tc3 tc4 tc2 ) + tr (tc1 tc2 tc4 tc3 )

]
× A1342

4 (1h1 , 2h2 , 3h3, 4h4 ; h) +
[
tr (tc1 tc4 tc2 tc3 )

+ tr (tc1 tc3 tc2 tc4 )
]

A1423
4 (1h1 , 2h2 , 3h3 , 4h4 ; h)

}
. (3.3)

We also need the amplitude for the production of a Higgs boson, an antiquark, a quark and
two gluons. It can be similarly decomposed into colour-ordered amplitudes as follows.

Aq̄qgg
4 ({pi, hi, ci, ji}) = i

g4
s

16π2

(
−λ

4

)[
(tc3 tc4 ) j2 j1A34

4 (1h1 , 2−h1, 3h3 , 4h4 ; h)

+ (tc4 tc3 ) j2 j1A43
4 (1h1 , 2−h1 , 3h3 , 4h4; h)

]
. (3.4)

The colour structure δc3 c4 δ j2 j1/N is also present in individual diagrams but makes no net
contribution to the one-loop amplitude. Here we will give results for the colour-ordered ampli-
tude A34

4 since it is straightforward to obtain A43
4 from this through the parity operation (complex

conjugation) and permutation of momentum labels.
The four-quark amplitude takes the form

A4q
4 ({pi, hi, ji}) = i

g4
s

16π2

(
−λ

4

)
(tc1 ) j2 j1 (tc1 ) j4 j3 A4q

4 (1h1
q̄ , 2−h1

q , 3h3
q̄′ , 4−h3

q′ ), (3.5)

where the helicities of the quarks are fixed by those of the antiquarks.
All colour subamplitudes are then decomposed in terms of scalar integrals. For instance, for

the Higgs + 4 gluon case we have

A1234
4 (1h1 , 2h2 , 3h3 , 4h4 ; h) =

μ̄4−n

rΓ

1
iπn/2

∫
dn 

Num()∏
idi()

=
∑
i, j,k

d̃i× j×k(1
h1 , 2h2 , 3h3 , 4h4) D0(pi, pj, pk; m)

+
∑

i, j

c̃i× j(1h1 , 2h2 , 3h3 , 4h4) C0(pi, pj; m) (3.6)

+
∑

i

b̃i(1h1 , 2h2 , 3h3 , 4h4) B0(pi; m) + r̃(1h1 , 2h2 , 3h3 , 4h4).

6
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r̃ are the rational terms and the sums in the above equations scan over groupings of external
gluons. The scalar bubble (B0), triangle (C0) and box (D0) integrals are defined by

B0(p1; m) =
μ̄4−n

rΓ

1
iπn/2

∫
dn

1
D()D(1)

,

C0(p1, p2; m) =
1

iπ2

∫
d4

1
D()D(1)D(12)

,

D0(p1, p2, p3; m) =
1

iπ2

∫
d4

1
D()D(1)D(12)D(123)

,

E0(p1, p2, p3, p4; m) =
1

iπ2

∫
d4

1
D()D(1)D(12)D(123)D(1234)

, (3.7)

where the denominators are defined as

D() = 2 − m2 + iε, (3.8)

and the propagator momenta are

1 = + p1 = + q1,

12 = + p1 + p2 = + q2,

123 = + p1 + p2 + p3 = + q3,

1234 = + p1 + p2 + p3 + p4 = + q4. (3.9)

Finally, rΓ = 1/Γ(1 − ε) + O(ε3) and μ̄ is an arbitrary mass scale.
As explained in reference [13], we have chosen to work in a basis without pentagon inte-

grals. Nevertheless, we are left with some vestiges of their presence through pentagon-to-box
reduction coefficients, C(i)

1×2×3×4. These can be written as

C(1)
1×2×3×4 = −1

2
s23 s34 [2 s12 s24 + s13 s24 + s34 s12 − s23 s14]

16 |S1×2×3×4|
,

C(2)
1×2×3×4 = −1

2
s34 [s1234 s23 (s123 − 2s12)+ s123 (s34 (s123 − s23)+ s12 (s234+ s23) − s234 s123)]

16 |S1×2×3×4|
,

C(3)
1×2×3×4 = −1

2
[s14 s23 − (s12 + s13) (s24 + s34)] [s34 s12 + s23 s14 − s13 s24]

16 |S1×2×3×4|
,

C(4)
1×2×3×4 = −1

2
s12 [s1234 s23 (s234 − 2s34)+ s234 (s12 (s234 − s23)+ s34 (s123+ s23) − s234 s123)]

16 |S1×2×3×4|
,

C(5)
1×2×3×4 = −1

2
s12 s23 [2 s34 s13 + s13 s24 + s34 s12 − s23 s14]

16 |S1×2×3×4|
. (3.10)

The denominator factor |S1×2×3×4| is the determinant of the matrix [S1×2×3×4]i j = [m2 −
1
2 (qi−1 − q j−1)2], where qi is the offset momentum; see equation (3.9). It is given by

16 |S1×2×3×4| = s12 s23 s34 (s14 s23 − (s12 + s13) (s24 + s34)) + m2 G,

G = (s12 s34 − s13 s24 − s14 s23)2 − 4 s13 s14 s23 s24. (3.11)

7
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We use unitarity techniques to isolate the contributions of boxes [16], triangles [17] and bub-
bles [18–20]. Pentagon contributions to box coefficients are isolated by applying generalized
unitarity cuts on five propagators in d = (4 − 2ε) dimensions, with subsequent modification as
necessary to remove unphysical singularities and improve numerical stability [13]. The coeffi-
cients of each integral are subsequently simplified using the techniques of momentum twistors
[21–24] and high precision floating-point arithmetic [25]. We exploit previous results obtained
in the calculation of the same processes mediated by a fermion loop [13], noting that for our
normalization the coefficients of bubble integrals, some triangle integrals, and the rational part
are identical. The results of our analytic calculation of the amplitudes are presented in full in
appendix A.

3.2. Squared matrix elements for fermion and scalar loops

With the scalar-mediated amplitude calculations in hand, we can now describe the calculation
of the matrix elements relevant for the MSSM scenario described in section 2.2. For simplicity
and practicality we will include only a top-quark loop in the SM calculation, although the
inclusion of a bottom-quark loop is straightforward. We can write the subamplitude for an
n-parton process mediated by the top quarks t̃1 and t̃2 as,

Mx
n =

(
m2

t

v

)
Hx

n (mt) −
(
λh̃t1̃t1

4

)
Ax

n(mt̃1 ) −
(
λh̃t2̃t2

4

)
Ax

n(mt̃2 ). (3.12)

Note that we have taken care to label the mass dependence of the individual fermion and scalar
subamplitudes, and this formula applies to any of the subamplitudes, e.g. x = 1234 (gggg),
x = 34 (q̄qgg) or x = 4q (q̄qq̄q). Expressions for all the relevant fermion-mediated subampli-
tudes Hx

n are given in reference [13].
We can now form the squared matrix elements used in our calculation. For the four-gluon

case we can square the amplitude for a fixed helicity configuration and sum over colours to
find

∑
colours

|Mgggg
4 |2 =

(
g4

s

16π2

)2

(N2 − 1)
{

2N2
(∣∣M1234

4

∣∣2 + ∣∣M1342
4

∣∣2 + ∣∣M1423
4

∣∣2)

− 4
(N2 − 3)

N2

∣∣M1234
4 + M1342

4 + M1423
4

∣∣2} , (3.13)

where N is the dimensionality of the SU(N ) colour group, i.e. N = 3, and the labels for the
helicity configuration (as explicitly shown in equation (3.3)) have been suppressed.

Squaring the q̄qgg amplitude and summing over colour yields,

∑
|
q̄qgg
M

4
|2 =

(
g4

s

16π2

)2

(N2 − 1)

[
N
(
|M34

4 |2 + |M43
4 |2
)
− 1

N
|M34

4 + M43
4 |2
]

, (3.14)

where the labelling of the helicity configuration shown in equation (3.4) has again been
suppressed.

Squaring and summing the four-quark amplitude over colours gives

∑
|

4q

M
4

(h1, h3)|2 =

(
g4

s

16π2

)2

(N2 − 1) |M 4q
4 (h1, h3)|2, (3.15)

8
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when the quark lines have different flavours. For the case of identical quarks the sum over
colours gives

∑
|

4q

M
4
|2 =

(
g4

s

16π2

)2

(N2 − 1)
(
|M 4q

4 (h1, h3)|2 + |M4q′
4 (h1, h3)|2

+
δh1h3

N

(
M 4q

4 (h1, h3)M4q′
4 (h1, h3)∗ + M 4q

4 (h1, h3)∗M4q′
4 (h1, h3)

))
, (3.16)

where, as indicated, the term on the second line only contributes for quarks of the same
helicity and we have introduced

M4q′
4 (h1, h3) = M 4q

4 (1h1
q̄ , 4−h1

q , 3h3
q̄ , 2−h3

q ). (3.17)

4. Recap of inclusive and one-jet results

In this section we briefly review results for the inclusive and one-jet cases, focussing on
understanding the pattern of results observed in the existing literature.

For all the results presented in this paper we consider the LHC operating at
√

s = 14 TeV
and employ the MMHT NLO set [26]. In addition, we use a choice of renormalization and
factorization scales appropriate for the study of Higgs + multijet events,

μf = μr =
H′

T

2
=

1
2

(√
m2

h + p2
T,h +

∑
i

|pT,i|
)

, (4.1)

where the sum runs over any jets (equivalently, in our case, partons) present. The mass of the
top quark is mt = 173.3 GeV.

4.1. Inclusive cross section

From equation (2.4) we can abbreviate the form of the SM and simplified supersymmetry
(SUSY) contributions to the amplitude for inclusive Higgs production as

MSM = Hgg
2 = C F1/2(4m2

t /m2
h),

MSUSY = Agg
2 (̃t1) +Agg

2 (̃t2)

= C

[(
v

2m2
t̃1

)
λh̃t1̃t1F0(4m2

t̃1
/m2

h) +

(
v

2m2
t̃2

)
λh̃t2̃t2F0(4m2

t̃2
/m2

h)

]
, (4.2)

where C is a common overall factor that is unimportant for the following argument but which
can be identified by comparison with equation (2.4). Since we are interested in measuring
deviations from the SM result, it is useful to analyse the regions of SUSY parameter space
in which these are expected to be small and therefore hard to probe. In order to simplify the
argument we will make the simplifying assumption that we can always work in the EFT, i.e.
that mt, mt̃1 , mt̃2 � mh, so that F0 and F1/2 can be replaced by their asymptotic values. This
will be broadly true for the range of parameters in which we are interested but we note that,
regardless, the features we elucidate here arise even when this no longer holds. Performing this
replacement, we arrive at the simple result:

MSM = −4C
3

, (4.3)

9
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MSUSY = −C
3

[(
v

2m2
t̃1

)
λh̃t1̃t1 +

(
v

2m2
t̃2

)
λh̃t2̃t2

]
. (4.4)

Since we are working in the limit in which the EFT is valid we can also drop the terms pro-
portional to α1 and α2 (since they are suppressed by m2

Z/m2
t ). In this case we have the further

simplification of the SUSY amplitude:

MSUSY = −C
6

[(
m2

t

m2
t̃1

)(
2 − (Δm)2

2m2
t

sin2 2θ

)
+

(
m2

t

m2
t̃2

)(
2 +

(Δm)2

2m2
t

sin2 2θ

)
(4.5)

= −C
3

[
m2

t

m2
t̃1

+
m2

t

m2
t̃2

− 1
4

sin2 2θ
(Δm)4

m2
t̃1

m2
t̃2

]
, (4.6)

cf equation (2.15) of reference [8].
The form of these amplitudes allows us to anticipate the situations when the SUSY contri-

bution is very small. Due to the mixing allowed in the top-quark sector, this can occur when
the SUSY amplitude itself vanishes. It is instructive to rewrite equation (4.6) as

MSUSY =
C

12m2
t̃1

m2
t̃2

[
sin2 2θ(Δm)4 − 4m2

t (Δm)2 − 8m2
t m2

t̃1

]
, (4.7)

so that the dependence on mt̃2 in the numerator has been eliminated. From this it is clear for
which values of mt̃1 , Δm and θ the amplitude vanishes, so that the SUSY result is very close
to the SM one. Solving for MSUSY = 0 we find this occurs when (θ > 0)

Δm = mt ×
√

2 ×

√√√√1 +
√

1 + 2 sin2 2θm2
t̃1
/m2

t

sin2 2θ
. (4.8)

The coincidence of the SM and SUSY cross sections discussed above arises from a vanish-
ing of the SUSY amplitude. In addition, there can be a further coincidence when the effect of
interference between the SUSY and SM contributions cancels the contribution from the SUSY
amplitude squared. In other words, we must have an alternative solution when(

MSM +MSUSY
)2 −

(
MSM

)2
= 0

=⇒ MSUSY + 2MSM = 0. (4.9)

Using the results in equations (4.3) and (4.6), we have

MSUSY + 2MSM = −C
3

[
m2

t

m2
t̃1

+
m2

t

m2
t̃2

− 1
4

sin2 2θ
(Δm)4

m2
t̃1

m2
t̃2

+ 8

]
. (4.10)

Manipulating as above, we find that this vanishes when

sin2 2θ(Δm)4 − 4(m2
t + 8m2

t̃1
)(Δm)2 − 8m2

t̃1
(m2

t + 4m2
t̃1

) = 0. (4.11)

This equation has no solutions for small Δm. On the other hand, for large Δm the SUSY and
SM cross sections are identical when

Δm ≈ 2

√
m2

t + 8m2
t̃1

sin 2θ
. (4.12)
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Figure 2. (in colour online) Deviation of the inclusive Higgs cross section from the SM
case, measured by δ defined in equation (4.13). The left panel shows δ as a function of
mt̃1 and Δm with top squarks mixing in a maximal fashion (θ = π

4 ). In the right panel δ
is shown as a function of θ and Δm, mt̃1 = 400 GeV. In both panels tanβ = 10.

Again, this solution relies on the existence of a non-zero mixing (θ > 0) between the squarks.
We now turn to a numerical study, measuring the deviation between the SUSY and SM

cases by the quantity δ defined as [8]

δ =

∣∣∣∣σSM − σSUSY

σSM

∣∣∣∣ . (4.13)

As discussed above, the case of non-zero mixing is most interesting; in the absence of any
mixing the SUSY contribution is simply additive. For this reason we focus on the case
of maximal mixing (θ = π/4) to illustrate the pattern of behaviour. Results for the case
tanβ = 10, and as a function of the parameters mt̃1 and Δm, are shown in figure 2 (left). This
figure demonstrates the regions of vanishing δ anticipated above. First, the vanishing of the
SUSY amplitude occurs, in the maximal-mixing case, for values of Δm given by

Δm ≈ mt

√
2
(

1 +
√

2 mt̃1/mt

)
. (4.14)

This corresponds to the dark blue stripe across the middle of the plot in figure 2 (left), already
observed in reference [8]. The cancellation at the level of the cross section, i.e. as expected
from equation (4.12), corresponds to the lighter blue line in the upper-left corner of the plot.
In the region shown, mt̃1 ≈ mt, it is approximately given by Δm ≈ 6mt̃1 .

Note that, although we have used asymptotic results for the amplitudes to derive the presence
and locations of the features above, these are clearly sufficient to capture the dominant effects.
At smaller values of mt̃1 , and to some extent Δm, the precise contours of vanishing δ vary
slightly but are still present.

Although the maximal-mixing case is of highest interest here, as an indication of the effect
of a smaller amount of mixing, figure 2 (right) shows similar contours as a function of θ and
Δm, for fixed mt̃1 = 400 GeV. Again the region of vanishing δ that is clearly visible in the
figure is easily understood from equation (4.8).
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Figure 3. (in colour online) Lowest-order predictions for H + 1 jet in the SM model,
computed in the EFT (dashed) and in the full theory (solid).

4.2. One-jet cross section

The case when the Higgs boson is produced in association with a jet has also been discussed
extensively in the literature [6–8]. As explained in reference [8], the pattern of deviations from
the SM is very similar to the inclusive case for low-pT jets, but begins to differ as the jet (or
equivalently, Higgs boson) is produced at large transverse momentum. A simple way to under-
stand this behaviour is in terms of the ability of the jet to resolve the loop of coloured particles,
which is demonstrated for the SM case in figure 3. To compute the cross sections shown in
this figure we have defined jets according to a minimum pT, also satisfying the requirement
|y(jet)| < 2.4. As discussed earlier, the calculations in the full theory and in the EFT only begin
to differ around pT ∼ 200 GeV, i.e. when the jet is sufficiently energetic to resolve the top-quark
loop. The same applies, of course, for the SUSY amplitude, except that the appropriate scales
are now set by mt̃1 and Δm. In the low-pT region both the SM and SUSY contributions to the
amplitude can be computed in the effective theory and thus the pattern of deviations from the
SM must be very similar to the inclusive case. Indeed, since the equality of the SM and SUSY
cross sections is tied to the structure of the SUSY amplitude, the pT of the jet should be of
order mt̃1 in order to probe the dependence on the SUSY parameters more effectively.

This argument has been discussed in great detail in reference [8], from which we reproduce
one set of results in order to illustrate this point. Figure 4 shows the dependence of δ on mt̃

and Δm for the one-jet process, for two choices of minimum jet (Higgs) pT. For the case of a
low jet pT cut, at 30 GeV (figure 4, left panel), the deviations from the SM case are essentially
identical to the zero-jet case (cf figure 2, left). For a much higher cut, at 600 GeV, the jet is able
to resolve at least the top quark loop and also the top squark, for values of mt̃1 up to a similar
scale. This breaks the similarity with the zero-jet case, leading to larger deviations from the
SM. This is most visible in the contours of constant δ, which are now more constraining for
the one-jet case. This confirms the results presented in reference [8].
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Figure 4. (in colour online) Deviation of the Higgs + 1 jet cross section from the SM
case, measured by δ defined in equation (4.13), as a function of mt̃1

and Δm. Top squarks
mix in a maximal fashion (θ = π

4 ) and tanβ = 10. Results are shown for two choices of
jet pT: 30 GeV (left) and 600 GeV (right).

The region where the lightest top squark is degenerate with the top quark, mt̃1 ≈ mt, has
received considerable interest due to the difficulty of directly detecting a signal from such
a model (see, for instance, reference [27] and references therein). Although in general this
scenario results in large corrections to the Higgs boson rate, the blue lines in figure 2 (left)
indicate the two regions where deviations are small and an indirect search via the inclusive
Higgs cross section is similarly insensitive. However, applying a sufficiently high cut on the
transverse momentum of the Higgs boson modifies both of these regions (figure 4, right) and
such scenarios could be excluded by comparing the zero- and one-jet rates.

5. Results for the two-jet process

For the two-jet case we must supplement the jet pT and rapidity threshold with a proper jet
clustering algorithm. For this we choose the anti-kT algorithm with a jet resolution parameter
R = 0.5.

As we have already discussed, differences between the pattern of cross-section deviations
are intimately connected to the breakdown of the EFT approach to describing these processes.
We therefore first examine this for the two-jet case in the SM, with the results shown in
figure 5. As the jet pT cut is increased, the difference between the EFT and the full theory
is not as pronounced in the two-jet case as in the one-jet process (comparing blue curves in
figure 5 with figure 3). As explained in reference [28], which explored the limitations of the
EFT by studying Higgs + 1, 2 and 3 jet processes, this is because the breakdown of the EFT
is controlled by the pT of the single hardest particle in the process. Requiring two very hard
jets only serves to decrease the rate without providing an additional probe of the loop-induced
Higgs coupling. Therefore, in order to drive the EFT breakdown more efficiently, and thus
observe a different pattern of dependence on the SUSY parameters, we should employ a cut
that requires a single hard particle. Therefore, we choose to cluster jets with the usual cut,
pT(jet) > 30 GeV, and then make a cut on the pT of the Higgs boson. In this case the difference
between the full theory and the EFT is very similar in the one- and two-jet cases (comparing
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Figure 5. (in colour online) Rates for H + 2 jet production in the SM, as a function
of a minimum pT, computed in the full theory and EFT. Jets are either subject to this
minimum pT themselves (lower curves) or are only required to satisfy a 30 GeV cut and
the minimum pT cut is applied to the Higgs boson pT (upper curves).

red curves in figure 5 with figure 3). We now use this same cut to explore the breakdown of the
EFT for the case of a scalar particle in the loop, with results shown in figure 6. For this study we
consider only the effect of a single scalar particle in the loop and no top quark, with the ampli-
tudes for the scalar-mediated EFT implemented according to the discussion in appendix C. For
a direct comparison with the fermion case, we show results for mscalar = mt = 173.3 GeV, and
also for a much higher mass, mscalar = 600 GeV. As expected, for each case the breakdown of
the EFT occurs for pT(H, min) ∼ mscalar

4.
As illustrated in figure 1, for the inclusive process, the behaviour of the fermionic and scalar

amplitudes in the vicinity of the two-particle threshold differs. However, for the two-jet case,
any such difference is not reflected at the level of the cross section, as shown in figure 7.
Although the effective theory appears to work a little better for high pT(min) in the scalar case,
overall the two curves are very similar. In the limit of small pT(min), the result in the full theory
is actually larger than the one computed in the EFT in both cases. This is expected from the
inclusive calculation, which these results should resemble as pT(min) → 0, where the ratios
can be computed from equations (2.5) and (2.6) (cf also figure 1):

σfull(gg → H)/σEFT(gg → H)|fermion =
[
F1/2(4m2

t /m2
h)/(−4/3)

]2
= 1.065,

4 Our choice of mscalar = 600 GeV is controlled by this fact. To investigate the effect of a heavy top squark at the LHC,
we are limited to pT ranges where one can accumulate sufficient statistics (see equation (5.2) below). The method in
this paper has the advantage of being branching-ratio independent but, at the LHC, will not be able to investigate the
mscalar ≈ 1 TeV region probed by less inclusive methods [11, 12].
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Figure 6. (in colour online) Rates for H + 2 jet production through a scalar loop, as a
function of a minimum pT applied to the Higgs boson, computed in the full theory and
EFT. The scalar mediator mass is either 173.3 GeV (upper curves) or 600 GeV (lower
curves).

Figure 7. (in colour online) Ratio of the cross section in the full theory to that in the
effective theory, for H + 2 jet production through a fermion (solid) and scalar (dashed)
loop, as a function of a minimum pT applied to the Higgs boson. The mass of the mediator
is set to 173.3 GeV in both cases.
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Figure 8. (in colour online) Cross section for H + 2 jet production through a fermion
(solid) and scalar (dashed) loop, as a function of the mediator mass m, after application
of a cut pT(H ) > 300 GeV. The EFT result is shown as a horizontal dotted line.

σfull(gg → H)/σEFT(gg → H)|scalar =
[
F0(4m2

t /m2
h)/(−1/3)

]2
= 1.157. (5.1)

Although the two curves in figure 7 never reach these values, due to the presence of the addi-
tional jets, they do reflect this underlying difference in the quality of the EFT. It should be
stressed that, of course, in the limit of large mediator mass the effects of the loop can be
described perfectly by the EFT. This is illustrated in figure 8, which shows the cross section
for pT(H ) > 300 GeV in the full theory, for both a fermion and a scalar mediator, as a function
of the mediator mass, compared with the result in the EFT.

To examine the sensitivity of the two-jet process to the SUSY parameters, we again focus
on the maximal-mixing case. We first assess the dependence on the minimum Higgs pT cut
that is applied, for the case of mt̃1 = 600 GeV. The results are shown in figure 9. Note that
we have covered a range of pT that we expect to be accessible at the LHC—the cross section
above 800 GeV is less than 0.5 fb, so around 1500 such Higgs events in the full HL–LHC
dataset, 3ab−1. As indicated in the figure, the deviations are bigger in the two-jet case than
for the inclusive cross section. However, the results are almost identical to the one-jet case;
cf figure 2 of reference [8]. This is further reflected in the expected deviations from the SM
shown in figure 10—a different pattern from the zero-jet process, but almost identical to the
one-jet results shown in figure 4.

5.1. Discussion

In evaluating the discriminating power in the zero-, one- and two-jet cases above, we have
focussed only on the deviations between the rates in the SM and SUSY cases. However, in
order to observe such a difference, one must also take into account the number of events that
could actually be produced in each case. Reading off the cross sections from figures 3 and 5 for
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Figure 9. (in colour online) Two-jet calculation of δ (solid lines), as a function of the
cut on the Higgs boson pT, for the parameters mt̃1

= 600 GeV, θ = π
4 and tanβ = 10.

The corresponding inclusive results are shown as dotted lines on the left of the figure.

Figure 10. (in colour online) Deviation of the Higgs + 2 jet cross section from the SM
case, measured by δ defined in equation (4.13), as a function of mt̃1 and Δm. Top squarks
mix in a maximal fashion (θ = π

4 ) and tanβ = 10. Results are shown in the cases of no
additional cut (left) and pT(H ) > 600 GeV (right).

pT(jet) > 30 GeV, and using the (similarly leading-order) result for the inclusive cross section,
we have

σ(gg → H) = 18 910 fb,

σ(gg → H + 1 jet) = 7640 fb ,
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σ(gg → H + 2 jets) = 2230 fb ,

σ(gg → H + 1 jet) = 2 fb (pT(H) > 600 GeV),

σ(gg → H + 2 jets) = 2 fb (pT(H) > 600 GeV). (5.2)

Since the number of expected events with a highly boosted Higgs boson is so small, for both the
one- and two-jet cases, it appears unlikely that the extra discriminating power could ever come
into play. Even accounting for the fact that it may be possible to identify the H → bb̄ decay of
the Higgs boson in the boosted case—essentially impossible for the bulk of Higgs boson events
that occur at low pT—the expected event sample would be at least two orders of magnitude
smaller than any of the non-boosted ones. In such a case the improved discrimination between
the SM and SUSY scenarios would never overcome the loss in statistical power. We note that
this is not improved when considering an approximate inclusion of higher-order effects by
rescaling these results by corrections computed in the EFT. The values of the K-factors in the
EFT, defined by K = σNLO/σLO, are:

K(gg → H) = 1.91,

K(gg → H + 1 jet) = 1.78 ,

K(gg → H + 2 jets) = 1.72 ,

K(gg → H + 1 jet, pT(H) > 600 GeV) = 1.85,

K(gg → H + 2 jets, pT(H) > 600 GeV) = 1.42. (5.3)

Since the corrections become somewhat smaller as the jet multiplicity increases, in fact the
expectation is that the statistical power becomes slightly poorer for the two-jet case compared
to estimates based on the LO predictions shown in equation (5.2).

Of course, in making this argument we have neglected the role of systematic uncertainties.
On the experimental side, the boosted configuration of the Higgs boson means that its decay
products are more energetic and thus may be measured with smaller uncertainties. On the other
hand, the precision of the SM theoretical prediction with which the data must be compared is
much reduced, going from current percent-level uncertainties in an expansion up to N3LO at
the inclusive level [1, 2] to 10% level uncertainties from NNLO in the boosted case [29–33].
While it is clear that Higgs+multijet events offer a different handle on signals of new physics, a
proper accounting of both statistical and systematic uncertainties is essential to fully understand
their value.

6. Conclusions

In this paper we have provided an analytic calculation of all amplitudes representing the scat-
tering of a Higgs boson and four partons, mediated by a loop of colour-triplet scalar particles.5

By combining this with a previous calculation of the corresponding amplitudes in which the
mediator particle is a fermion [13] we are able to describe modifications to the SM production
of a Higgs boson in association with two jets in theories containing such scalar extensions.
As an example we have analysed the specific case of the MSSM, which contains two relevant
scalar particles, t̃1 and t̃2. Sensitivity to this scenario has previously been considered extensively

5 A computer-readable form of all the integral coefficients presented in appendix A—which, together with the results
in reference [13], is sufficient to reproduce these amplitudes—is provided at https://mcfm.fnal.gov/scalarcoeffs.tar.gz.
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in the literature, for both inclusive production and the case of Higgs production in association
with one jet. Our study is the first time such an analysis has been performed for the case of two
jets.

The results of our calculation show that, although a two-jet analysis offers improved sen-
sitivity compared to an inclusive analysis, it does not provide an additional benefit over the
one-jet case. This can be understood by noting that, in order to probe the nature of the loop
process most effectively, the two-jet analysis should demand only a single hard particle: either
a jet or the Higgs boson itself. In either case the cross section is dominated by configurations in
which the Higgs boson recoils against a single hard jet, with the second jet relatively soft. Such
configurations are therefore one-jet-like, with the emission of the second jet well described by
the QCD properties of soft and collinear factorization. Moreover, the loss in statistical power
that ensues from selecting a sample of events in such a configuration cannot overcome the rel-
atively small improvement in sensitivity. The same conclusion applies to studies of the one-jet
rate at high transverse momentum.

Finally, we note that if a deviation from the SM prediction were observed in a sample of
events containing Higgs bosons produced at high transverse momentum, it would be essential
to have precision theoretical predictions for such configurations in a variety of BSM scenarios.
The amplitudes presented in this paper are an ingredient in a next-to-leading order calculation
of the Higgs + jet process in theories containing colour-triplet scalars.
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Appendix A. Four-parton integral coefficients for a scalar loop

In this section we provide expressions for all the box, triangle and bubble coefficients that can
be treated as a minimal independent set for Higgs plus four-parton helicity amplitudes mediated
by a massive scalar. For a complete description of the spinor notation, we refer the reader to
[13]. Additional coefficients that can be obtained by momenta permutations and/or helicity
flips are tabulated appropriately. As already noted, some of the coefficients are identical to the
case when the circulating particle is a massive fermion [13]. Specifically, these are:

• The entire rational contribution, r̃.
• Bubble coefficients, b̃i.
• A subset of triangle coefficients, c̃i, where i labels all triangles where none of the external

legs corresponds to the momentum of the Higgs boson.
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• The m2-dependent term in all triangle coefficients, c̃(2)
i (where, in general, we expand

c̃i = c̃(0)
i + c̃(2)

i m2).

Expressions for such coefficients are not given here explicitly. Instead we refer to the
equation numbers in reference [13] where they have already been reported. When the expres-
sions for the whole coefficient coincide, these references are appended (inside brackets) in
subsequent tables. For the partial coefficients, c̃(2)

i , these references are included in the text.
As an aid to implementing these formulae in a numerical code, in appendix B we provide

values for all of the coefficients provided here, when evaluated at a specific phase space point.
We also give the numerical values of the finite parts of the full amplitudes, obtained by com-
bining these coefficients with an evaluation of all loop integrals according to equation (3.6)
(and its generalization to all partonic channels).

An additional check of the results presented here is that, in the limit of large mediator mass,
all the amplitudes should match onto limiting forms obtained by an explicit calculation in the
EFT. This equivalence is spelled out explicitly in appendix C.

A.1. Coefficients for A1234
4 (g+, g+, g+, g+; h)

For the case with four gluons of positive helicity, the complete result can easily be written in a
form that includes a term proportional to the pentagon scalar integral (E0):

A4(h; 1+
g , 2+

g , 3+
g , 4+

g ) =

[{
4 m2

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

×
[
− tr+{1 2 3 4}m2E0(p1, p2, p3, p4; m)

]

+
1
2

((s12 + s13)(s24 + s34) − s14s23)D0(p1, p23, p4; m)

+
1
2

s12s23D0(p1, p2, p3; m) + (s12 + s13 + s14)C0(p1, p234; m)

+ 2
s12 + s13 + s14

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

}

+

{
3 cyclic permutations

}]
. (A.1)

However, for consistency with the rest of our results and ease of implementation in a numerical
code, we prefer to present this result in terms of only box, triangle and bubble coefficients. The
box coefficients then take a very simple form when written in terms of the effective pentagon
coefficient (obtained by calculating the pentagon coefficient in d dimensions and taking the
μ2 → 0 limit),

ẽ1×2×3×4(1+, 2+, 3+, 4+) = −4 m4 tr+{1 2 3 4}
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 = −4 m4 [1 2] [3 4]

〈1 2〉 〈3 4〉 . (A.2)

The minimal set of integral coefficients needed to reconstruct the amplitude for this
approach is given in the first and third columns of table 1.

A.1.1. d̃1×2×34.

d̃1×2×34 = C(4)
1×2×3×4 ẽ{1+×2+×3+×4+}. (A.3)
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Table 1. Minimal set of integral coefficients for A1234
4 (g+, g+, g+, g+; h).

Coefficient Related coefficients Coefficient Related coefficients

d̃1×2×34 d̃2×3×41, d̃3×4×12, d̃4×1×23,
c̃1×234 c̃2×341, c̃3×412, c̃4×123d̃1×4×32, d̃2×1×43, d̃3×2×14, d̃4×3×21

d̃1×23×4 d̃2×34×1, d̃3×41×2, d̃4×12×3

d̃1×2×3 d̃2×3×4, d̃3×4×1, d̃4×1×2

A.1.2. d̃1×23×4.

d̃1×23×4(1+, 2+, 3+, 4+) = C(3)
1×2×3×4 ẽ{1+×2+×3+×4+} +

2 m2

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
× [(s12 + s13) (s24 + s34) − s14 s23].

(A.4)

A.1.3. d̃1×2×3.

d̃1×2×3 = C(1)
4×1×2×3 ẽ{4+×1+×2+×3+} + C(5)

1×2×3×4 ẽ{1+×2+×3+×4+}

+
2 m2

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 s12 s23.
(A.5)

A.1.4. c̃(0)
1×234, c̃(2)

1×234.

c̃(0)
1×234(1+, 2+, 3+, 4+) = 0. (A.6)

We have c̃(2)
1×234(1+, 2+, 3+, 4+) = c(2)

1×234(1+, 2+, 3+, 4+) where the fermionic coefficient is
given in equation (4.10) of reference [13].

A.2. Coefficients for A1234
4 (g+, g+, g+, g−; h)

The effective pentagon coefficients [13] used to define the box coefficients below are

ẽ{1+×2+×3+×4−} = −4 m4 [2 3] 〈4|(2 + 3)|1
]

〈2 3〉 〈1|(2 + 3)|4
] , (A.7)

ẽ{4−×1+×2+×3+} = ẽ{1+×2+×3+×4−}{1 ↔ 3}, (A.8)

ẽ{2+×3+×4−×1+} = −4 m4 [2 3]2 〈3 4〉 〈2|(3 + 4)|1
]

〈2 3〉2 [3 4] 〈1|(3 + 4)|2
] , (A.9)

ẽ{3+×4−×1+×2+} = ẽ{2+×3+×4−×1+}{1 ↔ 3}. (A.10)

The minimal set of integral coefficients needed to reconstruct the amplitude for this
approach is given in the first and third columns of table 2.
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Table 2. Minimal set of integral coefficients for A1234
4 (g+, g+, g+, g−; h). The equation

numbers in brackets give the places in reference [13] where the coefficients are reported.
These coefficients are the same in the scalar-mediated and fermion-mediated theories.

Coefficient Related coefficients Coefficient Related coefficients

d̃1×2×34 d̃3×2×14 c̃3×4 (5.19) c̃4×1

d̃1×4×32 d̃3×4×12 c̃2×34 (5.20) c̃2×14

d̃2×1×43 d̃2×3×41 c̃1×43 (5.21) c̃3×41

d̃4×3×21 d̃4×1×23 c̃4×123

d̃2×34×1 d̃3×41×2 c̃1×234 c̃3×412

d̃1×23×4 d̃4×12×3 c̃2×341

d̃2×3×4 d̃4×1×2 c̃12×34 c̃23×41

d̃1×2×3 b̃34 (5.30) b̃14

d̃3×4×1 b̃234 (5.31) b̃412, b̃341

b̃1234 (5.32)

A.2.1. d̃1×2×34.

d̃1×2×34(1+, 2+, 3+, 4−) = C(4)
1×2×3×4 ẽ{1+×2+×3+×4−}

− 2 m2 [1 2]
〈1 2〉

[
〈2 4〉2 〈4|(2 + 3)|1

]
〈2 3〉 〈3 4〉 〈2|(3 + 4)|1

]

+
[2 3] 〈1|(2 + 4)|3

]2
[3 4] 〈1|(3 + 4)|2

]
〈1|(2 + 3)|4

]
]
.

(A.11)

A.2.2. d̃1×4×32.

d̃1×4×32(1+, 2+, 3+, 4−) = C(2)
2×3×4×1 ẽ{2+×3+×4−×1+}

+ 2 m2 [2 3] s14s2
234

〈2 3〉2 [3 4] 〈1|(3 + 4)|2
]
〈1|(2 + 3)|4

] . (A.12)

A.2.3. d̃2×1×43.

d̃2×1×43(1+, 2+, 3+, 4−) = C(2)
3×4×1×2 ẽ{3+×4−×1+×2+}

+ 2 m2 [1 2]
〈1 2〉

[
[1 3]2 〈2|(1 + 4)|3

]
[1 4] [3 4] 〈2|(3 + 4)|1

]
+

〈1 4〉 〈4|(1 + 3)|2
]2

〈3 4〉 〈1|(3 + 4)|2
]
〈3|(1 + 4)|2

]
]
.

(A.13)

A.2.4. d̃4×3×21.

d̃4×3×21(1+, 2+, 3+, 4−) = C(2)
1×2×3×4 ẽ{1+×2+×3+×4−}

+ 2 m2 s34 s2
123

〈1 2〉 〈2 3〉 〈1|(2 + 3)|4
]
〈3|(1 + 2)|4

] . (A.14)
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A.2.5. d̃1×23×4.

d̃1×23×4(1+, 2+, 3+, 4−) = C(3)
1×2×3×4 ẽ{1+×2+×3+×4−}. (A.15)

A.2.6. d̃2×34×1.

d̃2×34×1(1+, 2+, 3+, 4−) = C(3)
2×3×4×1 ẽ{2+×3+×4−×1+}

+
2 〈2 4〉

〈1 2〉 〈2 3〉

[ 〈1 4〉 〈2 4〉 〈1|(3 + 4)|2
]
〈2|(3 + 4)|1

]
〈1 2〉2 〈3 4〉

−m2

(
3
〈1 4〉 〈2 4〉 [1 2]

〈1 2〉 〈3 4〉 + 2
[1 3] [2 3]

[3 4]
+

〈2 4〉 [1 4] [2 3]
〈2 3〉 [3 4]

)]
.

(A.16)

A.2.7. d̃2×3×4.

d̃2×3×4(1+, 2+, 3+, 4−) = C(1)
1×2×3×4 ẽ{1+×2+×3+×4−}

+ C(5)
2×3×4×1 ẽ{2+×3+×4−×1+}

+ 2 m2 s234 〈3 4〉 [2 3]2

〈2 3〉 〈1|(3 + 4)|2
]
〈1|(2 + 3)|4

] .
(A.17)

A.2.8. d̃1×2×3.

d̃1×2×3(1+, 2+, 3+, 4−) = C(5)
1×2×3×4 ẽ{1+×2+×3+×4−}

+ C(1)
4×1×2×3 ẽ{4−×1+×2+×3+}

+ 2 m2 s123 [1 2] [2 3]
〈3|(1 + 2)|4

]
〈1|(2 + 3)|4

] .
(A.18)

A.2.9. d̃3×4×1.

d̃3×4×1(1+, 2+, 3+, 4−) = C(1)
2×3×4×1 ẽ{2+×3+×4−×1+} + C(5)

3×4×1×2 ẽ{3+×4−×1+×2+}

− 2m2 1
〈1 3〉

[
[2 3] 〈3 4〉2 s14

〈2 3〉2 〈1|(3 + 4)|2
] + [1 2] 〈1 4〉2 s34

〈1 2〉2 〈3|(1 + 4)|2
]
]

+
〈1 4〉 〈3 4〉

〈1 2〉 〈1 3〉2 〈2 3〉
[
2 s14 s34 + 6 m2 s13

]
.

(A.19)
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A.2.10. c̃(0)
4×123, c̃(2)

4×123.

c̃(0)
4×123(1+, 2+, 3+, 4−) = 0. (A.20)

We have c̃(2)
4×123(1+, 2+, 3+, 4−) = c(2)

4×123(1+, 2+, 3+, 4−), where the fermionic coefficient is
given in equation (5.23) of reference [13].

A.2.11. c̃(0)
1×234, c̃(2)

1×234.

c̃(0)
1×234(1+, 2+, 3+, 4−) = 2(s12 + s13 + s14)

〈1 4〉 〈2 4〉2

〈1 2〉3 〈2 3〉 〈3 4〉
. (A.21)

Moreover,we have c̃(2)
1×234(1+, 2+, 3+, 4−) = c(2)

1×234(1+, 2+, 3+, 4−), where the fermionic coef-
ficient is given in equation (5.25) of reference [13].

A.2.12. c̃(0)
2×341, c̃(2)

2×341.

c̃(0)
2×341(1+, 2+, 3+, 4−) = 2(s12 + s23 + s24) 〈2 4〉2 〈1 4〉2 〈2 3〉2 + 〈1 2〉2 〈3 4〉2

〈1 2〉3 〈2 3〉3 〈1 4〉 〈3 4〉
. (A.22)

Furthermore, c̃(2)
2×341(1+, 2+, 3+, 4−) = c(2)

2×341(1+, 2+, 3+, 4−), where the fermionic coefficient
is given in equation (5.27) of reference [13].

A.2.13. c̃(0)
12×34, c̃(2)

12×34.

c̃(0)
12×34(1+, 2+, 3+, 4−) = 0. (A.23)

In addition, c̃(2)
12×34(1+, 2+, 3+, 4−) = c(2)

12×34(1+, 2+, 3+, 4−), where the fermionic coefficient
is given in equation (5.29) of reference [13].

A.3. Coefficients for A1234
4 (g+, g−, g+, g−; h)

The effective pentagon coefficients for this helicity combination are

ẽ{1+×2−×3+×4−} = −4m4 〈1 2〉 [3 4] 〈4|(2 + 3)|1
]2

[1 2] 〈3 4〉 〈1|(2 + 3)|4
]2 , (A.24)

ẽ{3+×4−×1+×2−} = ẽ{1+×2−×3+×4−} {1 ↔ 3, 2 ↔ 4} , (A.25)

ẽ{4−×1+×2−×3+} = ẽ{1+×2−×3+×4−} {1 → 4, 2 → 1, 3 → 2, 4 → 3, 〈〉 ↔ []} , (A.26)

ẽ{2−×3+×4−×1+} = ẽ{1+×2−×3+×4−} {1 → 2, 2 → 3, 3 → 4, 4 → 1, 〈〉 ↔ []} . (A.27)

The minimal set of coefficients that needs to be calculated is given in table 3.
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Table 3. Minimal set of integral coefficients for A1234
4 (g+, g−, g+, g−; h). The equation

numbers in brackets give the places in reference [13] where the coefficients are reported.
These coefficients are the same in the scalar-mediated and fermion-mediated theories.

Coefficient Related coefficients Coefficient Related coefficients

d̃4×3×21 d̃2×1×43, d̃3×2×14, d̃1×4×32, c̃3×4 (6.9) c̃4×1, c̃2×3, c̃1×2

d̃1×2×34, d̃2×3×41, c̃2×34 (6.10) c̃3×41, c̃4×12, c̃1×23

d̃3×4×12, d̃4×1×23 c̃1×43, c̃2×14, c̃3×21, c̃4×32

d̃1×23×4 d̃2×34×1, d̃3×41×2, d̃4×12×3 c̃12×34 c̃23×41

d̃1×2×3 d̃2×3×4, d̃3×4×1, d̃4×1×2 c̃1×234 c̃2×341, c̃3×412, c̃4×123

b̃34 (6.17) b̃12, b̃23, b̃41

b̃234 (6.18) b̃341, b̃412, b̃123

b̃1234(6.19)

A.3.1. d̃4×3×21.

d̃4×3×21(1+, 2−, 3+, 4−) = ẽ{1+×2−×3+×4−} C(2)
1×2×3×4

− 2 〈2|(1 + 3)|4
]

〈1|(2 + 3)|4
]
〈3|(1 + 2)|4

]
[
〈2 3〉 〈2|(1 + 3)|4

]
s34s2

123

〈1 2〉 〈3|(1 + 2)|4
]2

+ m2

(
2

[1 3] 〈4|(2 + 3)|1
]

[1 2]
+

[2 3] 〈2|(1 + 3)|4
]
〈4|(2 + 3)|1

]
[1 2] 〈1|(2 + 3)|4

]
+ 3

〈2 3〉 〈2|(1 + 3)|4
]
〈4|(1 + 2)|3

]
〈1 2〉 〈3|(1 + 2)|4

] )]
.

(A.28)
A.3.2. d̃1×23×4.

d̃1×23×4(1+, 2−, 3+, 4−) = ẽ{1+×2−×3+×4−} C(3)
1×2×3×4

− 2 m2 〈4|(2 + 3)|1
]

〈1|(2 + 3)|4
]
[

〈1 2〉 〈2 4〉2

〈1 4〉 〈2 3〉 〈3 4〉 +
[1 3]2 [3 4]

[1 2] [1 4] [2 3]

]
.

(A.29)
A.3.3. d̃1×2×3.

d̃1×2×3(1+, 2−, 3+, 4−) = C(5)
1×2×3×4 ẽ{1+×2−×3+×4−} + C(1)

4×1×2×3 ẽ{4−×1+×2−×3+}

+
〈1 2〉 〈2 3〉

〈1|(2 + 3)|4
]
〈3|(1 + 2)|4

] [−2
s12s23s123

〈1 3〉2 + 2m2

(
2

[1 3] s123

〈1 3〉

− [1 3]2 +
[1 2] [2 3] 〈2 4〉2

〈1 4〉 〈3 4〉 − [2 3] 〈2|(1 + 3)|4
]
〈4|(2 + 3)|1

]
〈3 4〉 〈1|(2 + 3)|4

]
+

[1 2] 〈2|(1 + 3)|4
]
〈4|(1 + 2)|3

]
〈1 4〉 〈3|(1 + 2)|4

] )]
.

(A.30)

25



J. Phys. G: Nucl. Part. Phys. 48 (2021) 085006 L Budge et al

Table 4. Minimal set of integral coefficients for A1234
4 (g+, g+, g−, g−; h). The equation

numbers in brackets give the places in reference [13] where the coefficients are reported.
These coefficients are the same in the scalar-mediated and fermion-mediated theories.

Coefficient Related coefficients Coefficient Related coefficients

d̃1×2×34 d̃2×1×43, d̃3×4×12, d̃4×3×21 c̃2×3 (7.10) c̃4×1

d̃1×4×32 d̃3×2×14, d̃4×1×23, d̃2×3×41 c̃1×23 (7.11) c̃2×14, c̃3×41, c̃4×32

d̃2×34×1 d̃4×12×3 c̃1×234 c̃2×341, c̃3×412, c̃4×123

d̃1×23×4 d̃3×41×2 c̃23×41

d̃1×2×3 d̃3×4×1, d̃4×1×2, d̃2×3×4 b̃23 (7.17) b̃41

b̃234 (7.18) b̃341, b̃412, b̃123

b̃1234 (7.19)

A.3.4. c̃(0)
12×34, c̃(2)

12×34. In this case the scalar coefficient c̃(0)
12×34(1+, 2−, 3+, 4−) has been

given previously, in equation (6.13) of reference [13]. Moreover, c̃(2)
12×34(1+, 2−, 3+, 4−) =

c(2)
12×34(1+, 2−, 3+, 4−), where the fermionic coefficient is given in equation (6.12) of reference

[13].

A.3.5. c̃(0)
1×234, c̃(2)

1×234.

c̃(0)
1×234(1+, 2−, 3+, 4−) = −2(s12 + s13 + s14)

s234 〈1|(2 + 4)|3
]2

[2 3] [3 4] 〈1|(2 + 3)|4
]3 〈1|(3 + 4)|2

]3
×
(

[2 3]2 〈1|(2 + 3)|4
]2

+ [3 4]2 〈1|(3 + 4)|2
]2)

.

(A.31)

In addition, we have c̃(2)
1×234(1+, 2−, 3+, 4−) = c(2)

1×234(1+, 2−, 3+, 4−), where the fermionic
coefficient is given in equation (6.16) of reference [13].

A.4. Coefficients for A1234
4 (g+, g+, g−, g−; h)

The effective pentagon coefficients are given by

ẽ{1+×2+×3−×4−} = −4 m4 [1 2] 〈3 4〉
〈1 2〉 [3 4]

, (A.32)

ẽ{2+×3−×4−×1+} = −4 m4 [2 3] 〈3 4〉2 [4 1]
〈2 3〉 [3 4]2 〈4 1〉

, (A.33)

ẽ{2+×3−×4−×1+} = −4 m4 [2 3] 〈3 4〉2 [4 1]
〈2 3〉 [3 4]2 〈4 1〉

, (A.34)

ẽ{4−×1+×2+×3−} = ẽ{2+×3−×4−×1+}{2 ↔ 4, 1 ↔ 3, 〈 〉 ↔ [ ]}. (A.35)

The minimal set of coefficients that needs to be calculated is given in table 4.

A.4.1. d̃1×2×34.

d̃1×2×34(1+, 2+, 3−, 4−) = C(4)
1×2×3×4 ẽ{1+×2+×3−×4−}. (A.36)
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A.4.2. d̃1×4×32.

d̃1×4×32(1+, 2+, 3−, 4−) = C(2)
2×3×4×1 ẽ{2+×3−×4−×1+}

− 2
[2 4]2

〈1|(2 + 3)|4
]

[3 4]

{
s14 s2

234 〈1|(3 + 4)|2
]

[2 3] 〈1|(2 + 3)|4
]2

+m2

[
3
〈1|(3 + 4)|2

]
〈4|(2 + 3)|1

]
[2 3] 〈1|(2 + 3)|4

]
+

[1 4] 〈3 4〉 s234

〈2 3〉 [2 4] [3 4]
+

〈3 4〉 〈3|(2 + 4)|1
]

〈2 3〉 [2 4]

]}
.

(A.37)

A.4.3. d̃2×34×1.

d̃2×34×1(1+, 2+, 3−, 4−) = C(3)
2×3×4×1 ẽ{2+×3−×4−×1+}

− 2 m2 〈3 4〉 〈1|(3 + 4)|2
]
〈2|(3 + 4)|1

]
〈1 2〉 〈1 4〉 〈2 3〉 [3 4]2 .

(A.38)

A.4.4. d̃1×23×4.

d̃1×23×4(1+, 2+, 3−, 4−) = C(3)
1×2×3×4 ẽ{1+×2+×3−×4−} + 2 m2 〈4|(2 + 3)|1

]
〈1 2〉 [3 4] 〈1|(2 + 3)|4

]
×
[

s12[2 4]2

[1 4] [2 3]
+

s34〈1 3〉2

〈2 3〉 〈1 4〉

]
.

(A.39)

A.4.5. d̃1×2×3.

d̃1×2×3(1+, 2+, 3−, 4−) = C(5)
1×2×3×4 ẽ{1+×2+×3−×4−} + C(1)

4×1×2×3 ẽ{4−×1+×2+×3−}

− 2 m2 [1 2]2 〈2 3〉
〈1 2〉 [1 4] [3 4]

.

(A.40)

A.4.6. c̃(0)
23×41, c̃(2)

23×41.

c̃(0)
23×41(1+, 2+, 3−, 4−) = −c̃(0)

12×34(2+, 3−, 1+, 4−)

−
{

2Δ3(1, 4, 2, 3)

[
(s13 − s24)

〈2|(1 + 4)|3
]
〈1|(2 + 3)|4

]]2

+ 4
〈3|(1 + 4)|2

]
〈4|(2 + 3)|1

]
〈2|(1 + 4)|3

]
〈1|(2 + 3)|4

]} .

(A.41)
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Table 5. Minimal set of integral coefficients for A34
4 (1+

q̄ , 2−q , 3+
g , 4+

g ), A34
4 (1+

q̄ , 2−q , 3−g ,
4+

g ) and A34
4 (1+

q̄ , 2−q , 3+
g , 4−g ) together with the related coefficients that can be obtained

from the base set. The equation numbers in brackets give the places in reference
[13] where the coefficients are reported. These coefficients are the same in the scalar-
mediated and fermion-mediated theories.

1+
q̄ , 2−q , 3+

g , 4+
g 1+

q̄ , 2−q , 3−g , 4+
g 1+

q̄ , 2−q , 3+
g , 4−g

Coefficient Related coefficient Coefficient Related coefficient Coefficient

d̃3×21×4 d̃3×4×12 d̃3×21×4 d̃3×4×12 c̃4×123

d̃4×3×21 d̃4×3×21 b̃123 (10.4)
c̃3×21 (8.4) c̃4×12 c̃3×4 (9.3)
c̃12×34 c̃3×21 (9.4) c̃4×12

c̃4×123 c̃12×34

c̃3×412 c̃4×123 c̃3×412

b̃12 (8.11) b̃34 (9.9)
b̃123 (8.12) b̃12 (9.10)
b̃412 (8.13) b̃123 (9.11) b̃412

b̃1234 (8.14) b̃1234 (9.12)

Moreover, c̃(2)
23×41(1+, 2+, 3−, 4−) = c(2)

23×41(1+, 2+, 3−, 4−), where the fermionic coefficient is
given in equation (7.14) of reference [13].

A.4.7. c̃(0)
1×234, c̃(2)

1×234.

c̃(0)
1×234(1+, 2+, 3−, 4−) = −2 (s12 + s13 + s14) s234

〈1|(3 + 4)|2
]

[2 4]2

〈1|(2 + 3)|4
]3

[2 3] [3 4]
. (A.42)

Furthermore, c̃(2)
1×234(1+, 2+, 3−, 4−) = c(2)

1×234(1+, 2+, 3−, 4−), where the fermionic coefficient
is given in equation (7.16) of reference [13].

A.5. Coefficients for A34
4 (q̄+, q−, g+, g+; h)

The coefficients that must be computed for this amplitude are shown in the left-hand column
of table 5.

A.5.1. d̃3×21×4.

d̃3×21×4(1+
q̄ , 2−

q , 3+
g , 4+

g ) = −2
〈2 4〉 〈2 3〉
〈1 2〉 〈3 4〉3 [(s13 + s23) (s14 + s24) − s12 s34]

+ 2 m2

[
[1 3] [1 4]
[1 2] 〈3 4〉 + 3

〈2 3〉 〈2 4〉 [3 4]

〈1 2〉 〈3 4〉2

]
.

(A.43)

A.5.2. d̃4×3×21.

d̃4×3×21(1+
q̄ , 2−

q , 3+
g , 4+

g ) = 2 m2 [3 4]
〈3 4〉

[ 〈2 3〉 〈2|(1 + 3)|4
]

〈1 2〉 〈3|(1 + 2)|4
] − [1 3] 〈4|(2 + 3)|1

]
[1 2] 〈4|(1 + 2)|3

]] . (A.44)
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A.5.3. c̃(0)
12×34, c̃(2)

12×34.

c̃(0)
12×34(1+

q̄ , 2−
q , 3+

g , 4+
g ) = 0. (A.45)

The coefficient c̃(2)
12×34(1+

q̄ , 2−
q , 3+

g , 4+
g ) is identical to c(2)

12×34(1+
q̄ , 2−

q , 3+
g , 4+

g ) given in equation
(8.6) of reference [13].

A.5.4. c̃(0)
4×123, c̃(2)

4×123.

c̃(0)
4×123(1+

q̄ , 2−
q , 3+

g , 4+
g ) = −2 (s14 + s24 + s34)

[
〈2 3〉 〈2 4〉
〈1 2〉 〈3 4〉3

]
. (A.46)

The coefficient c̃(2)
4×123(1+

q̄ , 2−
q , 3+

g , 4+
g ) is identical to c(2)

4×123(1+
q̄ , 2−

q , 3+
g , 4+

g ) given in equation
(8.8) of reference [13].

A.5.5. c̃(0)
3×412, c̃(2)

3×412.

c̃(0)
3×412(1+

q̄ , 2−
q , 3+

g , 4+
g ) = −2 (s13 + s23 + s34)

[
〈2 3〉 〈2 4〉
〈1 2〉 〈3 4〉3

]
. (A.47)

The coefficient c̃(2)
3×412(1+

q̄ , 2−
q , 3+

g , 4+
g ) is identical to c(2)

3×412(1+
q̄ , 2−

q , 3+
g , 4+

g ) given in equation
(8.10) of reference [13].

A.6. Coefficients for A34
4 (q̄+, q−, g−, g+; h)

The coefficients that must be computed for this amplitude are shown in the middle column of
table 5.

A.6.1. d̃3×21×4.

d̃3×21×4(1+
q̄ , 2−

q , 3−
g , 4+

g ) = 2 m2 〈3|(1 + 2)|4
]

〈4|(1 + 2)|3
] [ 〈2 3〉 〈2 4〉

〈1 2〉 〈3 4〉 −
[1 3] [1 4]
[1 2] [3 4]

]
. (A.48)

A.6.2. d̃4×3×21.

d̃4×3×21(1+
q̄ , 2−

q , 3−
g , 4+

g ) =
−2

〈4|(1 + 2)|3
]
{

[1 3] 〈4|(2 + 3)|1
]

s34 s2
123

[1 2] 〈4|(1 + 2)|3
]2

+ m2

[
3 [1 3] 〈3|(1 + 2)|4

]
〈4|(2 + 3)|1

]
[1 2] 〈4|(1 + 2)|3

]
+

〈2 3〉 〈2|(1 + 3)|4
]

〈1 2〉

]}
.

(A.49)
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A.6.3. c̃(0)
12×34, c̃(2)

12×34.

c̃(0)
12×34(1+

q̄ , 2−
q , 3−

g , 4+
g )

= 8 (s124 − s123) (s12 + s34 + 2 s13 + 2 s23)
〈2 4〉 [1 3] 〈3|(1 + 2)|4

]
〈4|(1 + 2)|3

]2
Δ3(1, 2, 3, 4)

+
(
(9 s13 − 7 s23 − s14 − s24 + 4 s34) 〈2 4〉 [1 4]

− (9 s14 − 7 s24 − s13 − s23 + 4 s34) 〈2 3〉 [1 3]
)
× 1

〈4|(1 + 2)|3
]2

+ 12
s1234 ((s13 + s23)2 − (s14 + s24)2) 〈2|(3 + 4)|1

]
〈3|(1 + 2)|4

]
〈4|(1 + 2)|3

]
Δ3(1, 2, 3, 4)2

+ 4
(
{3 (s12 + s34) + 4 (s13 + s23 + s14)} [1 3] 〈2 3〉

− {3 (s12 + s34) + 4 (s13 + s24 + s14)} [1 4] 〈2 4〉
)
× 〈3|(1 + 2)|4

]
〈4|(1 + 2)|3

]
Δ3(1, 2, 3, 4)

− 24
[1 3] 〈2 4〉 〈3|(1 + 2)|4

]2
〈4|(1 + 2)|3

]
Δ3(1, 2, 3, 4)

− 8
[1 4] 〈2 3〉 〈3|(1 + 2)|4

]
Δ3(1, 2, 3, 4)

+ 8
[1 4] 〈2 3〉

〈4|(1 + 2)|3
]

+

{
2 〈2 4〉2 [3 4] (s14 + s24)2

〈1 2〉 〈4|(1 + 2)|3
]3 +

[1 3] 〈2 4〉 (s14 + s24) (4 s124 − 2 s34)

〈4|(1 + 2)|3
]3

+
2 〈2 3〉 〈2 4〉 [3 4] (s14 + s24)

〈1 2〉 〈4|(1 + 2)|3
]2 − 〈2 3〉 [1 3] (s14 + s24 − s13 − s23)

〈4|(1 + 2)|3
]2

}

− {1 ↔ 2, 3 ↔ 4, 〈 〉 ↔ [ ]} .
(A.50)

The coefficient c̃(2)
12×34(1+

q̄ , 2−
q , 3−

g , 4+
g ) is identical to c(2)

12×34(1+
q̄ , 2−

q , 3−
g , 4+

g ) given in equation
(9.6) of reference [13].

A.6.4. c̃(0)
4×123, c̃(2)

4×123.

c̃(0)
4×123(1+

q̄ , 2−
q , 3−

g , 4+
g ) = −2 (s14 + s24 + s34) [1 3] 〈4|(2 + 3)|1

]
s123

[1 2] 〈4|(1 + 2)|3
]3 . (A.51)

The coefficient c̃(2)
4×123(1+

q̄ , 2−
q , 3−

g , 4+
g ) is identical to c(2)

4×123(1+
q̄ , 2−

q , 3−
g , 4+

g ) given in equation
(9.8) of reference [13].

A.7. Coefficients for A34
4 (q̄+, q−, g+, g−; h)

The coefficients for this amplitude that cannot be obtained from those for H34
4 (q̄+, q−, g−, g+)

by performing the following operation: 1 ↔ 2, 〈〉 ↔ [] are listed in the right-most column of
table 5. The explicit form of c̃4×123 is given here, whereas b123 remains unaltered as compared
to the fermion case.
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A.7.1. c̃(0)
4×123, c̃(2)

4×123.

c̃(0)
4×123(1+

q̄ , 2−
q , 3+

g , 4−
g ) =

2 〈2|(1 + 3)|4
]

s123

〈1 2〉 〈3|(1 + 2)|4
]2
{
〈2 4〉 − 〈3 4〉 〈2|(1 + 3)|4

]
〈3|(1 + 2)|4

]} . (A.52)

The coefficient c̃(2)
4×123(1+

q̄ , 2−
q , 3+

g , 4−
g ) is identical to c(2)

4×123(1+
q̄ , 2−

q , 3+
g , 4−

g ) given in equation
(10.3) of reference [13].

A.8. Amplitude for 0 → q̄qq̄qh

This calculation proceeds in a similar way to the calculation for a loop of fermions detailed
in reference [34]. The amplitude can be obtained by considering the tensor current for the
scalar-mediated process 0 → ggh, with two off-shell gluons (with momenta k1 and k2),

T μ1μ2 (k1, k2) = −iδc1c2
g2

s

8π2

(
−λ

4

) [
F̃T(k1, k2) Tμ1μ2

T + F̃L(k1, k2) Tμ1μ2
L

]
. (A.53)

The two tensor structures appearing here are

Tμ1μ2
T = k1 · k2 gμ1μ2 − kμ2

1 kμ1
2 , (A.54)

Tμ1μ2
L = k2

1k2
2 gμ1μ2 − k2

1 kμ1
2 kμ2

2 − k2
2 kμ1

1 kμ2
1 + k1 · k2 kμ1

1 kμ2
2 , (A.55)

and the form factors are given by

F̃T(k1, k2) = − 1
Δ(k1, k2)

{
k2

12 (B0(k1; m) + B0(k2; m) − 2B0(k12; m))

− 2 k1 · k12 k2 · k12 C0(k1, k2; m)

+ (k2
1 − k2

2) (B0(k1; m) − B0(k2; m))
}
− k1 · k2 F̃L(k1, k2), (A.56)

F̃L(k1, k2) = − 1
Δ(k1, k2)

{[
2 − 3k2

1 k2 · k12

Δ(k1, k2)

]
(B0(k1; m) − B0(k12; m))

+

[
2 − 3k2

2 k1 · k12

Δ(k1, k2)

]
(B0(k2; m) − B0(k12; m))

−
[

4m2 + k2
1 + k2

2 + k2
12 − 3

k2
1 k2

2 k2
12

Δ(k1, k2)

]
C0(k1, k2; m) − 2

}
, (A.57)

where k12 = k1 + k2 and Δ(k1, k2) = k2
1 k2

2 − (k1 · k2)2. As expected, the rational and bubble
coefficients are identical to the case for a fermion loop. By contracting equation (A.55) with
currents for the quark–antiquark lines, we then arrive at the result for the amplitude. All helicity
combinations can be obtained from permutations of the single expression

A4q
4 (1+

q̄ , 2−
q , 3+

q̄′ , 4−
q′; h) =

[ 〈2|(3 + 4)|1
]
〈4|(1 + 2)|3

]
+ 〈2 4〉 [1 3] (2 p12.p34)

s12 s34

]

× F̃T(p12, p34) + 2 〈2 4〉 [1 3] F̃L(p12, p34).

(A.58)
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Table 6. Numerical values of coefficients of the ggggh process not already reported in
reference [13] at kinematic point (B.1).

Helicities Coefficient Real Part Imaginary Part Absolute Value

++++ d̃1×2×34 −0.984 061 3828 −0.514 432 3508 1.110 413 1883
d̃1×23×4 −3.354 895 7407 −4.843 220 6981 5.891 698 5803
d̃1×2×3 −6.744 591 0748 −15.466 394 2318 16.873 021 6411
c̃1×234 −10.636 876 2164 −31.682 984 0771 33.420 870 9592

+++– d̃1×2×34 23.445 129 5603 18.599 644 1921 29.926 925 4046
d̃1×4×32 20.507 168 8388 27.445 139 3815 34.260 467 7355
d̃2×1×43 −4.900 993 6782 42.122 517 6136 42.406 676 7047
d̃2×34×1 −44.384 546 3184 −38.333 996 4812 58.647 107 6705
d̃4×3×21 −7.120 381 1993 0.688 621 6537 7.153 602 4635
d̃1×23×4 −1.800 583 5535 1.535 112 9014 2.366 151 4646
d̃2×3×4 0.820 615 5641 1.473 521 0192 1.686 616 1680
d̃1×2×3 −19.239 784 7846 −1.476 292 5832 19.296 340 5429
d̃3×4×1 −0.331 678 8675 1.611 469 2592 1.645 248 9309
c̃4×123 −11.061 653 8761 −1.791 633 9105 11.205 808 2504
c̃1×234 18.964 670 2722 24.451 016 7733 30.943 673 6633
c̃2×341 −8.993 451 4290 11.193 435 5822 14.358 801 0899
c̃12×34 −3.746 138 9306 21.049 348 3972 21.380 098 8032

+–+– d̃4×3×21 −6.936 823 5764 −13.422 076 9362 15.108 662 1053
d̃1×23×4 −5.400 516 1311 3.828 193 9917 6.619 716 2870
d̃1×2×3 −21.099 780 3781 −62.360 830 8275 65.833 684 0341
c̃12×34 −39.740 334 0718 22.210 411 3517 45.525 778 6814
c̃1×234 3.968 212 5956 13.481 379 1531 14.053 266 3489

++–– d̃1×2×34 −0.026 753 0609 −1.110 090 8623 1.110 413 1883
d̃1×4×32 22.651 897 0482 −458.124 839 8611 458.684 507 4097
d̃2×34×1 64.231 654 8189 −59.023 356 2841 87.232 230 6708
d̃1×23×4 −5.745 078 5528 3.288 573 5727 6.619 716 2870
d̃1×2×3 −10.895 434 6530 −12.883 647 1165 16.873 021 6411
c̃23×41 1075.318 606 8541 747.629 089 1424 1309.679 106 1854
c̃1×234 36.885 622 0760 −309.117 237 7677 311.310 160 1314

Appendix B. Numerical value of coefficients at a given phase-space point

Tables 6 and 7 contain numerical results for the integral coefficients for the ggggh and q̄qggh
amplitudes, respectively, at the phase-space point (p = (E, px, py, pz)):

p1 = (−15κ,−10κ,+11κ,+2κ),

p2 = (−9κ,+8κ,+1κ,−4κ),

p3 = (−21κ,+4κ,−13κ,+16κ),

p4 = (−7κ,+2κ,−6κ,+3κ),

ph = (+52κ,−4κ,+7κ,−17κ),

(B.1)

with κ = 1/
√

94 and ph = −p1 − p2 − p3 − p4. This fixes s1234 = 25, mh = 5 and we further
choose m = 1.5.
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Table 7. Numerical values of coefficients of the q̄qggh process that differ from reference
[13] at kinematic point (B.1).

Helicities Coefficient Real Part Imaginary Part Absolute Value

+–++ d3×21×4 370.433 539 2027 1300.470 465 9852 1352.199 852 0434
d4×3×21 0.922 007 9194 −4.007 760 9078 4.112 450 1332
c12×34 −13.767 289 9406 −4.387 153 9915 14.449 408 0313
c4×123 25.101 460 9317 92.881 358 4055 96.213 461 0133
c3×412 67.153 204 4289 252.146 232 6711 260.935 385 7094

+––+ d3×21×4 20.896 007 3185 19.965 647 8672 28.901 041 7911
d4×3×21 −0.426 797 1904 −3.814 930 2668 3.838 730 1002
c12×34 −9.098 735 3955 −7.631 435 1405 11.875 427 9123
c4×123 1.945 068 6855 1.931 499 4054 2.741 164 3775

+–+– c4×123 5.205 078 5566 1.186 433 7667 5.338 582 9453

Due to the correspondence of results between the scalar and fermionic loop cases, many
of these values have already been reported in reference [13]. Tables 6 and 7 therefore contain
only the coefficients that differ from the fermionic case.

After including the integrals and rational terms, the values of the colour-ordered subampli-
tudes are

A1234(1+, 2+, 3+, 4+; h) = −26.505 233 03 − 3.722 078 577 i,

|A1234(1+, 2+, 3+, 4+; h)| = 26.765 299 30,

A1234(1+, 2+, 3+, 4−; h) = 10.005 500 42 + 10.391 302 52 i,

|A1234(1+, 2+, 3+, 4−; h)| = 14.425 297 46,

A1234(1+, 2−, 3+, 4−; h) = 2.105 330 472 − 3.500 785 469 i,

|A1234(1+, 2−, 3+, 4−; h)| = 4.085 084 491,

A1234(1+, 2+, 3−, 4−; h) = −0.788 758 613 + 0.151525 137 i,

|A1234(1+, 2+, 3−, 4−; h)| = 0.803 181 185. (B.2)

A34(1+, 2−, 3+, 4+; h) = −3.151 452 974 + 5.766 222 683 i,

|A34(1+, 2−, 3+, 4+; h)| = 6.571 223 621,

A34(1+, 2−, 3−, 4+; h) = 1.375 544 184 + 1.088 612 645 i,

|A34(1+, 2−, 3−, 4+; h)| = 1.754 194 771,

A34(1+, 2−, 3+, 4−; h) = 3.032 201 250 − 1.275 260 855 i,

|A34(1+, 2−, 3+, 4−; h)| = 3.289 458 111. (B.3)

A4q(1+, 2−, 3+, 4−; h) = 1.583 011 630 − 1.072 246 795 i,

|A4q(1+, 2−, 3+, 4−; h)| = 1.911 972 544. (B.4)
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Appendix C. Large mass limit

Using equation (2.2) and the large mass expansion for the scalar triangle integral,

C0(p1, p2; m) →− 1
2 m2

− s
24m4

+ O

(
1

m6

)
, s = m2

h = 2p1 · p2, (C.1)

we can extract the effective interaction for the fermionic theory:

Lhgg = −1
4

CfG
μν
a Gμν a h, Cf = − g2

s

12π2 v
, (C.2)

valid when m2
h  m2. From equation (2.3) the corresponding effective Lagrangian for the

scalar loop is

Lhgg = −1
4

CsG
μν
a Gμν a h, Cs =

g2
s

24π2m2

(
−λ

4

)
. (C.3)

From these equations we see that(
m2

v

)
Cs(−λ

4

)
Cf

= −1
2
. (C.4)

So, in our canonical normalization in which the coupling factors shown on the left-hand side
of equation (C.4) are extracted, the amplitudes for the fermion- and scalar-mediated cases are
related in the large-mass (EFT) limit by a factor of −1/2. In other words,

m2A(. . . ; h) →−1
2

m2H(. . . ; h), (C.5)

where the asymptotic forms for the fermion-mediated amplitudes m2H(. . . ; h) are given in
appendix B of reference [13].
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