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1 Introduction

Implementation in dominant strategies can be seen as the holy grail of mech-

anism design. By awarding each agent with a strategy that is optimal no

matter what the other agents do, dominant-strategy mechanisms induce

straightforward decision problems. This is desirable for a number of rea-

sons. For example, it reduces the costs of belief formation, mitigates the

vulnerability to cognitive errors and prevents the exploitation of less sophis-

ticated agents. The downside of dominant-strategy mechanisms is that they

are often severely restricted, which can diminish social welfare. In this pa-

per, we provide a sharp characterization of these restrictions for the case of

bilateral bargaining over multidimensional issues.

In our model, a seller (female) and a buyer (male) can trade discrete

units of multiple goods. Monetary transfers between the two agents are

possible, and their utility functions are quasilinear in money. Both have

private information about their preferences: the seller about the shape of

her strictly increasing and convex cost function, and the buyer about the

shape of his strictly increasing and concave value function. A (direct, deter-

ministic) mechanism asks both agents to report their preferences and then

specifies the bundle to be traded, the payment to be made by the buyer

and the payment to be received by the seller. Our interest is to character-

ize the mechanisms that satisfy (dominant-strategy) incentive compatibility

and (ex-post) individual rationality. That is, each agent should have a domi-

nant strategy and, when both of them follow their dominant strategies, they

should be at least as well off as in the status quo.

A natural additional requirement is (ex-post) budget balance, which re-

quires the agents’ payments to coincide. Our first main result (Corollary 1)

shows that there is a unique type of mechanism that satisfies our ex-post no-

tions of incentive compatibility, individual rationality and budget balance:

A third party exogenously specifies a baseline bundle and its price. The two

agents are only allowed to trade certain multiples of the baseline bundle.

Both announce their optimal quantities and then trade the smaller of the

two (at the exogenous price per bundle).

Budget balance is unnecessarily demanding if the third party can ab-

sorb a budget surplus or cover a budget deficit. It is well known that if

the third party has deep enough pockets, the efficient amount of trade can
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be implemented in dominant strategies by means of the Vickrey-Clarke-

Groves (VCG) mechanism. However, the VCG mechanism is vulnerable to

collusion: by coordinating their reports, the two agents can abuse the third

party’s generosity and extract additional subsidies. It is therefore of interest

to replace budget balance by (ex-post) collusion-proofness, which eliminates

joint deviations that make at least one agent better off without making the

other agent worse off. In addition, we impose a no-free-lunch condition on

the buyer, which says that he should not receive any good for free. Its pur-

pose is to rule out unappealing mechanisms in which the seller is a dictator

and the buyer’s individual-rationality constraint holds trivially.

Our second main result (Corollary 2) characterizes all mechanisms that

satisfy incentive compatibility, individual rationality, collusion-proofness and

no free lunch. These mechanisms are generalizations of the posted-price

mechanisms described above. As before, the third party exogenously spec-

ifies a set of tradable bundles and their prices. Both agents then announce

their optimum bundles and trade the smaller of the two. There are two

main differences compared to the budget-balanced case: First, the tradable

bundles need not be proportional to each other. But they must be totally

ordered, that is, for any two bundles in the mechanism’s range, one of them

contains a larger quantity of all goods than the other. Second, the seller’s

and the buyer’s prices need neither coincide nor be linear in quantity. But

they must be strictly increasing and satisfy a particular form of concavity

(convexity) for the seller (buyer). Their shape guarantees that both agents

have quasiconcave utility over bundles.

Under both budget balance and collusion-proofness, prices must be ex-

ogenous. The reason is that both conditions restrict the extent to which

an agent’s report can affect the other agent’s payment. These restrictions

turn out to be so strong that they prevent any endogenous price formation.

On a technical level, both budget balance and collusion-proofness imply a

property called non-bossiness. In our setting, non-bossiness says that an

agent’s report can change the other agent’s payment for a given bundle only

if their own payment changes as well. We use this connection to provide a

unified proof of both results (Theorem).

More precisely, incentive compatibility and non-bossiness together imply

that the agents cannot affect the price at which a bundle is traded. Incen-

tive compatibility then further restricts which bundles are tradable, how
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these bundles are priced and how the agents’ preferences over bundles are

aggregated. The most challenging step of our analysis is to prove that the

mechanism’s range is monotonic. That is, the tradable bundles are totally

ordered, and larger bundles have larger prices. This feature does not follow

from incentive compatibility alone. For example, in a mechanism where the

seller is a dictator, the buyer’s prices could be arbitrary. Our proof uncov-

ers a technical condition sufficient for monotonicity: each agent must have a

type that never trades. These no-trade types equip the agents with a form of

veto power against “unambiguously bad” (i.e. non-monotonic) prices. The

existence of no-trade types is implied by individual rationality together with

either budget balance or collusion-proofness and no free lunch.

The difficulty of proving the monotonicity of the mechanism’s range is

in marked contrast to existing studies and due to the fact that our model

features a multidimensional set of alternatives and quasilinear utility. Both

aspects are natural in many economic environments but have so far only been

analyzed separately. In the next section, we discuss the related literature in

detail.

2 Related Literature

Two strands of the economic literature study dominant-strategy implemen-

tation in models with monetary transfers. The first one is associated with

mechanism design: there is usually a single indivisible good, and the agents’

preferences are quasilinear in money. The second strand is closer to so-

cial choice theory: there are often multiple units or goods, and the agents’

preferences are classical (that is, continuous, strictly monotonic and strictly

convex). We bring these two strands together by considering a model with

multidimensional alternatives and quasilinear preferences.

Among the papers that adopt the mechanism design perspective, Hagerty

and Rogerson’s (1987) is closest to ours. In their model, a seller and a buyer

with quasilinear preferences trade a single indivisible good. Hagerty and

Rogerson show that every dominant-strategy incentive-compatible, ex-post

individually rational and ex-post budget-balanced mechanism is a posted-

price mechanism: a third party announces an exogenous price for the good,

and trade occurs if and only if both agents approve. This is a special case

of our Corollary 1. In the closely related problem of providing an indivisi-
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ble public good, similar characterizations have been obtained by Bierbrauer

and Hellwig (2016), Kuzmics and Steg (2017) and Drexl and Kleiner (2018).

Even allowing for stochastic mechanisms does not upset the equivalence to

(randomized) posted prices, as shown by Hagerty and Rogerson (1987) and

Andreyanov et al. (2018).

All of these papers feature a single indivisible good and thus one-dimen-

sional private information. In such models, it is standard to reformulate the

incentive compatibility constraints via the envelope theorem (e.g. Milgrom

and Segal, 2002). While this method can be extended to a multidimensional

setting, the involved integrability conditions are technically complex (e.g.

Jehiel et al., 1999; Manelli and Vincent, 2007). Instead, we obtain a more

tractable characterization of incentive-compatible mechanisms by resorting

to a version of the taxation principle (e.g. Rochet, 1985): the final allocation

must be each agent’s optimum among a menu offered by the other agent.

Much of our analysis revolves around the structure of these menus.

This approach has precursors in the literature on social choice theory,

which relates our analysis to the second strand of papers mentioned above.

Particularly close is Barberà and Jackson (1995). In a two-person exchange

economy with classical preferences, they provide a version of our Corollary 1.

Their finding does not imply ours because they work on a larger preference

domain. A critical feature of their proof is a specific transformation of util-

ity functions which they call “simultaneous concavification” (p. 70). This

transformation is not available on the quasilinear preference domain that

we study. In consequence, it becomes much harder to show that the mecha-

nism’s range is monotonic (our Lemma 4). Furthermore, our analysis differs

from Barberà and Jackson’s in that we do not rely on budget balance. By

employing the weaker condition of non-bossiness, we are able to identify a

larger set of mechanisms.

Variants of posted-price mechanisms also arise in economies with one

divisible public good and one divisible private good, where they are of-

ten referred to as “cost-sharing schemes”. Notable examples are Moulin

(1994) and Serizawa (1996, 1999). Like Barberà and Jackson (1995), their

arguments exploit the scope of the classical preference domain. The sole

exception is Serizawa’s (1999) Proposition 1, which is also valid for quasi-

linear utility functions. It says that the agents equally share the cost of

the public good. Since the cost is assumed to be increasing in the level of
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the public good, it follows that each agent’s contribution is also increasing.

Serizawa’s proof hinges on the requirement that the mechanism be budget

balanced and symmetric. We impose neither restriction, and the analogous

monotonicity result turns out to be the technically most challenging step of

our analysis (Lemma 4). An added complication is that we allow not only

for multiple units but also for multiple goods.

Zhou (1991) studies a model with multiple divisible pure public goods.

He shows that the range of any strategy-proof and non-dictatorial mecha-

nism is one-dimensional. This feature also arises in our Corollary 1. Both

findings are related because, under budget balance, bilateral trade can be

transformed into a model with multiple public goods and no private good.

Despite this similarity, Zhou’s (1991) and our analyses are logically indepen-

dent. Our model involves asymmetric agents, a different preference domain

and—in the general case without budget balance—a private good (money).

Finally, multidimensional alternatives and quasilinear utility have been

combined in a few other papers. Bierbrauer and Winkelmann (2020) study

the provision of multiple binary public goods. Schummer (2000), Miyagawa

(2001) and Svensson and Larsson (2002) consider the assignment of heteroge-

neous objects to agents who consume no more than one object. Miyagawa’s

(2001) contribution is particularly notable because he essentially extends

Hagerty and Rogerson (1987)’s posted-price result to more than two agents.

The main difficulty is to prove that the payment an agent makes or receives

for a given object is exogenous—which is relatively easy with two agents.

Conversely, the main difficulty in our model is to establish a monotonicity

result on the price functions—which is trivial when each agent gets a sin-

gle good. The combination of more than two agents and multidimensional

demands is a challenging direction for future research.1

3 Model

There are two agents: a seller (s, female) and a buyer (b, male). They can

trade discrete units of ḡ ∈ {1, 2, . . . } different goods. The set of goods is

denoted by Ḡ ≡ {1, . . . , ḡ}. A bundle q ≡ (qg)g∈Ḡ specifies, for each good

g ∈ Ḡ, the quantity qg ∈ N that the buyer acquires from the seller.2 We

1Barberà and Jackson (1995) provide results on the classical preference domain.
2We adopt the following conventions: N ≡ {0, 1, . . . }, R+ ≡ [0,∞) and R++ ≡ (0,∞).
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compare bundles (and any other vectors) according to the product order.

That is, for all q, q̂ ∈ Nḡ, we write q ≤ q̂ if qg ≤ q̂g for all g ∈ Ḡ. Moreover,

q < q̂ if q ≤ q̂ and q 6= q̂. Let Q̄ ⊆ Nḡ denote the set of feasible bundles,

meaning those that the seller could possibly give to the buyer. We make

two assumptions on Q̄. First, no trade is feasible, that is, 0 ∈ Q̄, where

0 denotes a ḡ-dimensional vector of zeros. Second, at least one agent is

capacity constrained, that is, Q̄ is bounded (and thus finite).3

An allocation (q, ts, tb) specifies the bundle q ∈ Q̄ that is traded, the

monetary transfer ts ∈ R that the seller receives and the monetary transfer

tb ∈ R that the buyer makes. When considering one of the two agents only,

we will occasionally use the term “allocation” also to refer to (q, ts) or (q, tb).

Utility functions are quasilinear in money. Hence, the payoff that the seller

derives from allocation (q, ts, tb) is given by ts − c(q), where c(q) represents

her monetary cost of delivering bundle q. Analogously, the buyer’s payoff

is given by v(q)− tb, where v(q) represents his monetary value of obtaining

bundle q. The set of admissible cost functions for the seller is denoted by

C and consists of all c : Q̄ → R+ that satisfy c(0) = 0 and are strictly

increasing and convex. Analogously, the set of admissible value functions

for the buyer is denoted by V and consists of all v : Q̄ → R+ that satisfy

v(0) = 0 and are strictly increasing and concave.4

All of the above is common knowledge except for the realizations of c ∈ C
and v ∈ V , which are the private information of the seller and the buyer,

respectively. We refer to c and v as “types”, and to (c, v) as a “type profile”.

4 Definitions

This section defines mechanisms and their properties. Our objective is to

characterize the set of deterministic mechanisms whose induced game has

an equilibrium in which each agent plays a dominant pure strategy.5 By

3The assumption that Q̄ is bounded is convenient but not essential. In Section 8.1,
we explain how our analysis can be extended to any Q̄ ⊆ Nḡ with 0 ∈ Q̄.

4A function c : Q̄ → R+ is strictly increasing if c(q) < c(q̂) for all q, q̂ ∈ Q̄ with
q < q̂. It is convex if for all q̂ ∈ Q̄, there exists γ̂ ∈ Rḡ such that for all q ∈ Q̄,
c(q) − c(q̂) ≥ γ̂ · (q − q̂). It is concave if −c is convex. Our definition of convexity is
equivalent to convex-extensibility (Boyd & Vandenberghe, 2004, pp. 337–339). For other
notions of convexity on discrete domains, see Murota (2016).

5We refer to a strategy as “dominant” if it is a best response to every action that the
other agent can take. This is slightly different from the game-theoretic concept of “weak
dominance”; see Börgers (2015, Chapter 4.1) for a brief discussion.

7



the revelation principle, there is no loss in restricting attention to direct

mechanisms in which both agents find it optimal to truthfully report their

types.

Definition 1. A (direct) mechanism is a function triple (ϕ, τs, τb) : C ×
V → Q̄× R2.

Definition 2. A mechanism (ϕ, τs, τb) is (dominant-strategy) incentive

compatible if for all (c, v), (ĉ, v̂) ∈ C × V ,

τs(c, v)− c
(
ϕ(c, v)

)
≥ τs(ĉ, v)− c

(
ϕ(ĉ, v)

)
, ICs

v
(
ϕ(c, v)

)
− τb(c, v) ≥ v

(
ϕ(c, v̂)

)
− τb(c, v̂). ICb

Incentive compatibility says that no agent benefits from misreporting their

type individually. Likewise, collusion-proofness deters coordinated devia-

tions. That is, if an individual or joint misreport increases the utility of one

agent, then it must decrease the utility of the other agent.6

Definition 3. A mechanism (ϕ, τs, τb) is (ex-post) collusion-proof if for

all (c, v), (ĉ, v̂) ∈ C × V , τs(c, v)− c
(
ϕ(c, v)

)
v
(
ϕ(c, v)

)
− τb(c, v)

 ≮
 τs(ĉ, v̂)− c

(
ϕ(ĉ, v̂)

)
v
(
ϕ(ĉ, v̂)

)
− τb(ĉ, v̂)

.
Individual rationality requires the mechanism to make each agent at least

as well off as the status quo (i.e. the allocation (0, 0, 0)).

Definition 4. A mechanism (ϕ, τs, τb) is (ex-post) individually rational

if for all (c, v) ∈ C × V ,

τs(c, v)− c
(
ϕ(c, v)

)
≥ 0, IRs

v
(
ϕ(c, v)

)
− τb(c, v) ≥ 0. IRb

Budget balance says that the seller receives exactly as much money as the

buyer pays.

6None of our results changes if we weaken the definition of collusion-proofness by con-
sidering only coordinated deviations that are themselves immune to individual deviations
(“double-crossing”). Formally, we can relax Definition 3 by imposing the non-inequality
only on (c, v), (ĉ, v̂) ∈ C × V such that τs(c, v̂) − c(ϕ(c, v̂)) = τs(ĉ, v̂) − c(ϕ(ĉ, v̂)) and
v(ϕ(ĉ, v)) − τb(ĉ, v) = v(ϕ(ĉ, v̂)) − τb(ĉ, v̂). Similar notions of collusion-proofness have
been used by Serizawa (2006) and Bierbrauer and Hellwig (2016).
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Definition 5. A mechanism (ϕ, τs, τb) is (ex-post) budget balanced if for

all (c, v) ∈ C × V , τs(c, v) = τb(c, v).

In the absence of budget balance, the buyer’s individual rationality con-

straint can trivially be satisfied by giving him the goods at no charge. Such

“free lunch”, however, is undesirable in most settings and ruled out by the

following property.

Definition 6. A mechanism (ϕ, τs, τb) satsfies no free lunch (for the buyer)

if for all (c, v) ∈ C × V , ϕ(c, v) > 0 implies that τb(c, v) > 0.

No free lunch is a natural condition. It is satisfied by the VCG mechanism

and many other bilateral-trading mechanisms commonly found in the lit-

erature. Furthermore, our analysis can be adjusted in obvious ways when

no free lunch is replaced by the requirement that the mechanism not run

an ex-post budget deficit. No deficit requires that for all (c, v) ∈ C × V ,

τb(c, v) ≥ τs(c, v). Combined with the seller’s individual-rationality con-

straint, no deficit implies no free lunch.7 For this reason, our main result

invoking no free lunch (Corollary 2) also holds under no deficit. We prefer

no free lunch since it is less restrictive than no deficit.

We conclude this section with two technical conditions that are closely

related to the properties above. We are going to use them to provide a

unified proof of our two main results. First, non-bossiness requires that no

agent can change the other agent’s allocation without affecting their own.

Definition 7. A mechanism (ϕ, τs, τb) is non-bossy if for all (c, v), (ĉ, v̂) ∈
C × V ,[

ϕ(c, v) = ϕ(ĉ, v) and τs(c, v) = τs(ĉ, v)
]

=⇒ τb(c, v) = τb(ĉ, v), NBs[
ϕ(c, v) = ϕ(c, v̂) and τb(c, v) = τb(c, v̂)

]
=⇒ τs(c, v) = τs(c, v̂). NBb

Second, a mechanism has no-trade types if each agent can unilaterally pre-

vent trade (by reporting a specific type).

Definition 8. A mechanism (ϕ, τs, τb) has no-trade types if there exists

(c0, v0) ∈ C × V such that for all (c, v) ∈ C × V , ϕ(c0, v) = ϕ(c, v0) = 0.

7To see this, consider any (c, v) ∈ C × V such that ϕ(c, v) > 0. No deficit, IRs and
ϕ(c, v) > 0 imply that τb(c, v) ≥ τs(c, v) ≥ c(ϕ(c, v)) > 0. Thus, no free lunch holds.
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5 Generalized Posted-Price Mechanisms

This section defines the focal mechanisms of our analysis. We call them “gen-

eralized posted-price mechanisms” because they exogenously fix the prices

at which bundles are traded. The possible outcomes of a generalized posted-

price mechanism are described by a “trade schedule”, which specifies a set of

tradable bundles Q ⊆ Q̄ and two price functions ps, pb : Q→ R. Q contains

all bundles that the two agents can trade. It must include the zero vector

and be totally ordered. For each bundle in Q, ps and pb determine a unique

price for the seller and the buyer, respectively. These price functions must

be strictly increasing and satisfy a particular form of concavity (convexity)

for the seller (buyer).

Definition 9. A trade schedule (Q, ps, pb) specifies three exogenous ob-

jects:

(i) a set of tradable bundles Q ≡ {q0, q1, . . . , qn} ⊆ Q̄, n ∈ N, such

that q0 = 0 and q0 < q1 < · · · < qn,

(ii) a price function for the seller ps : Q→ R which is strictly increas-

ing and such that for all k ∈ {1, . . . , n− 1} and γ ∈ Rḡ++,

ps(qk)− ps(qk−1)

γ · (qk − qk−1)
≥ ps(qk+1)− ps(qk)

γ · (qk+1 − qk)
, (1)

(iii) a price function for the buyer pb : Q→ R which is strictly increas-

ing and such that for all k ∈ {1, . . . , n− 1} and γ ∈ Rḡ++,

pb(qk)− pb(qk−1)

γ · (qk − qk−1)
≤ pb(qk+1)− pb(qk)

γ · (qk+1 − qk)
. (2)

Every generalized posted-price mechanism is based on a trade schedule.8

Since the prices are exogenously fixed, it only remains to determine which

bundle the seller and the buyer trade. To this end, we now introduce nota-

tion that will be used extensively throughout the paper. Consider any trade

schedule (Q, ps, pb) and type profile (c, v) ∈ C × V . Note that when bundle

8It can be shown that (1) and (2) are equivalent to the following conditions: for all
k ∈ {1, . . . , n−1} and g ∈ Ḡ, (ggk+1−g

g
k)[ps(qk)−ps(qk−1)] ≥ (ggk−g

g
k−1)[ps(qk+1)−ps(qk)]

and (ggk+1−g
g
k)[pb(qk)−pb(qk−1)] ≤ (ggk−g

g
k−1)[pb(qk+1)−pb(qk)]. While these inequalities

are more “explicit”, they are less convenient to work with than (1) and (2).
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q ∈ Q is traded, the seller receives payoff ps(q)− c(q). For any two bundles

q, q̂ ∈ Q, we write q <c q̂ if ps(q)−c(q) ≥ ps(q̂)−c(q̂), q �c q̂ if the inequality

is strict, and q ∼c q̂ if it is an equality. Analogously, for the buyer, we write

q <v q̂ if v(q) − pb(q) ≥ v(q̂) − pb(q̂), q �v q̂ if the inequality is strict, and

q ∼v q̂ if it is an equality. The agents’ optimal bundles in Q are defined by

Opts(c) ≡ {q ∈ Q : ∀q̂ ∈ Q, q <c q̂},
Optb(v) ≡ {q ∈ Q : ∀q̂ ∈ Q, q <v q̂}.

Opts(c) and Optb(v) may have multiple elements. Denote their respective

minimum and maximum by

¯
qs(c) ≡ min{Opts(c)}, q̄s(c) ≡ max{Opts(c)},

¯
qb(v) ≡ min{Optb(v)}, q̄b(v) ≡ max{Optb(v)}.

We now make an important observation: For any trade schedule (Q, ps, pb),

the particular shape of the price functions ensures that both agents have

single-plateaued preferences over the bundles in Q.9

Lemma 1. Consider any trade schedule (Q, ps, pb).

(i) For all c ∈ C, q0 ≺c · · · ≺c
¯
qs(c) ∼c · · · ∼c q̄s(c) �c · · · �c qn.

(ii) For all v ∈ V , q0 ≺v · · · ≺v
¯
qb(v) ∼v · · · ∼v q̄b(v) �v · · · �v qn.

The formal proof of Lemma 1 is in Appendix A.1. The intuition is simple:

The seller’s payoff function on Q is given by ps − c. By assumption, −c
is a concave function (on Q̄, and thus also on Q). The particular form

of concavity that (1) imposes on ps guarantees that its sum with −c is

quasiconcave on Q. In other words, the seller’s preferences over Q are single-

plateaued. An analogous argument applies to the buyer.

We are now in a position to complete the definition of a generalized

posted-price mechanism with trade schedule (Q, ps, pb). The bundle that the

seller and the buyer trade can be generally determined as follows: Each agent

announces one of their optimal bundles in Q, and the mechanism selects the

smaller of the two. That is, ϕ(c, v) = min{qs(c), qb(v)} for some qs(c) ∈
9Our analysis does not exploit the full scope of single-plateauedness. It is irrelevant

that preferences are decreasing to the right of the plateau. For a similar observation, see
Berga and Serizawa (2000, Example 3, p. 49).
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Opts(c) and qb(v) ∈ Optb(v). There is one possible exception to this rule: if

there exists a smaller bundle q ∈ Q that both agents value exactly as much

as min{qs(c), qb(v)}, then q can also be chosen. Note that, since the agents’

preferences are single-plateaued, q must lie between max{
¯
qs(c),

¯
qb(v)} and

min{qs(c), qb(v)}. This is formalized by the following definition.

Definition 10. A mechanism (ϕ, τs, τb) is a generalized posted-price

mechanism if there exists a trade schedule (Q, ps, pb) as well as two func-

tions qs : C → Q and qb : V → Q such that the following conditions hold for

all (c, v) ∈ C × V : qs(c) ∈ Opts(c), qb(v) ∈ Optb(v),

ϕ(c, v) ∈
{
q ∈ Q : min

{
min

{
qs(c), qb(v)

}
,max

{
¯
qs(c),

¯
qb(v)

}}
≤ q ≤ min

{
qs(c), qb(v)

}}
,

(3)

τs(c, v) = ps(ϕ(c, v)) and τb(c, v) = pb(ϕ(c, v)).

6 Results

The following result constitutes the technical backbone of our analysis.

Theorem. A mechanism satisfies incentive compatibility, non-bossiness and

no-trade types if and only if it is a generalized posted-price mechanism.

The “only if” is the challenging direction of the Theorem and will be proved

in the next section. The “if” statement, on the other hand, is rather straight-

forward: Consider any generalized posted-price mechanism. First, it is

non-bossy because every bundle in the mechanism’s range (the set Q) is

associated with an exogenous price for each agent. Second, no-trade types

exist because the zero bundle is the unique optimum in Q for a seller with

very large costs and a buyer with very low values. Neither type will ever

trade, given that the agent with the smaller optimum determines the out-

come. Third, incentive compatibility is clearly satisfied for the agent with

the smaller optimum because they get their first choice. The other agent can

only reduce the bundle through misreporting. But this moves the bundle

further away from their optimum and, since preferences are single-plateaued

(Lemma 1), reduces their utility. Hence, no agent has a profitable deviation.

We formalize this proof in Appendix A.2.
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Non-bossiness and the existence of no-trade types do not have much nor-

mative appeal.10 However, both are implied by conjunctions of the desider-

ata from the previous section. This allows us to derive two meaningful

corollaries of the Theorem. The first one invokes individual rationality and

budget balance. Budget balance implies non-bossiness, while individual ra-

tionality guarantees no-trade types. Moreover, a generalized posted-price

mechanism satisfies budget balance if and only if the seller’s and the buyer’s

price functions coincide, that is, p ≡ ps = pb. Individual rationality excludes

lump-sum payments to or from the agents, that is, p(0) = 0. Combined with

(1) and (2), it follows that the mechanism’s range is linear: it consists of a

“baseline allocation” (q1, p(q1)) and multiples thereof. The intuition is that

only a linear price function can satisfy both the concavity property of (1)

and the convexity property of (2). This discussion is summarized by the

following result, whose formal proof is in Appendix A.3.

Corollary 1. A mechanism satisfies incentive compatibility, individual ra-

tionality and budget balance if and only if it is a generalized posted-price

mechanism such that

(i) p ≡ ps = pb,

(ii) p(0) = 0,

(iii) for all k ∈ {2, . . . , n}, there exists µk ∈ (1,∞) such that (qk, p(qk)) =

µk(q1, p(q1)).11

Our second corollary builds on the fact that non-bossiness is not only im-

plied by budget balance but also by collusion-proofness. Without budget

balance, however, individual rationality alone does not ensure the existence

of the buyer’s no-trade type. The reason is that the buyer trivially gets

non-negative utility if he is never charged a positive payment. Hence, a dic-

tatorial mechanism in which the agents trade the seller’s optimum among an

exogenous set of bundles can be incentive compatible, individually rational

and collusion-proof but is not of the generalized posted-price form.12 No

free lunch rules out such mechanisms. It effectively gives bite to the buyer’s

10The normative content of non-bossiness (or, rather, its lack thereof) is extensively
discussed by Thomson (2016).

11Since q2 < · · · < qn, it must be that µ2 < · · · < µn.
12If the seller has multiple optima, the best one for the buyer must be selected. Oth-

erwise, collusion-proofness is violated.
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individual rationality constraint, thus equipping him with a no-trade type.

This allows us to apply Theorem and establish the following result, whose

formal proof is in Appendix A.3.

Corollary 2. A mechanism satisfies incentive compatibility, individual ra-

tionality, no free lunch13 and collusion-proofness if and only if it is a gen-

eralized posted-price mechanism such that

(i) ps(0) ≥ 0 ≥ pb(0),

(ii) ∀q ∈ Q \ {0}, pb(q) > 0,

(iii) ∀(c, v) ∈ C × V , qs(c) = q̄s(c) and qb(v) = q̄b(v).

Condition (i) is due to individual rationality, (ii) to no free lunch, and (iii)

to collusion-proofness. The first two should be clear. To understand the

third, note that a generalized posted-price mechanism is not necessarily

collusion-proof because it may select an “inefficiently low” bundle when

an agent has multiple optima. For example, suppose that Q = {0, 1, 2},
Opts(c) = {0, 1} and Optb(v) = {1}. If qs(c) = 0, then ϕ(c, v) = 0. But any

ĉ with Opts(ĉ) = {1} results in ϕ(ĉ, v) = 1. This misreport leaves the seller

indifferent and makes the buyer better off. To prevent such joint deviations,

collusion-proofness requires the traded bundle to be “as large as possible”.

7 Proof of the Theorem: “only if”

In this section, we prove the “only if” part of the Theorem. We focus on

the underlying intuition and relegate the more technical steps to Appen-

dices A.4 to A.8. In a series of lemmas, we use incentive compatibility (IC),

non-bossiness (NB) and no-trade types (NTT) to successively derive all el-

ements of a generalized posted-price mechanism. For brevity, the relevant

properties will be indicated in parentheses in the lemma heading. For ex-

ample, “Lemma 2 (IC+NB)” means that Lemma 2 holds under incentive

compatibility and non-bossiness.

13Corollary 2 holds almost unchanged if no free lunch is replaced by no deficit, which
requires that for all (c, v) ∈ C × V , τb(c, v) ≥ τs(c, v). The only modification is to replace
(ii) by the following condition: ∀q ∈ Q, pb(q) ≥ ps(q).
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7.1 From Allocations to Bundles

Fix a mechanism (ϕ, τs, τb) and define its range of bundles by

Q ≡
{
q ∈ Q̄ : ∃(c, v) ∈ C × V s.t. ϕ(c, v) = q

}
.

We are slightly abusing notation here because Q has already been defined as

the set of tradable bundles in the trade schedule of a generalized posted-price

mechanism (Definition 9). Both objects will eventually coincide.

Our first lemma captures the sole—yet crucial—role of non-bossiness in

our analysis. Together with incentive compatibility, non-bossiness implies

that transfers are completely pinned down by quantities.

Lemma 2 (IC+NB). For both i ∈ {s, b}, there exists a price function

pi : Q→ R such that τi(c, v) = pi(ϕ(c, v)) for all (c, v) ∈ C × V .

Proof. Consider any (c1, v1), (c2, v2) ∈ C × V such that q̂ ≡ ϕ(c1, v1) =

ϕ(c2, v2). We only show that τs(c1, v1) = τs(c2, v2); the argument for the

buyer is analogous. In Appendix A.4, we construct a type ĉ ∈ C whose

preference for bundle q̂ (relative to the other bundles in Q) is stronger than

both c1’s and c2’s preferences. Thus, by ICs, ϕ(ĉ, v1) = ϕ(ĉ, v2) = q̂. ICb

then implies that τb(ĉ, v1) = τb(ĉ, v2). Hence, by NBb, τs(ĉ, v1) = τs(ĉ, v2).

Finally, since ϕ(c1, v1) = ϕ(ĉ, v1) and ϕ(ĉ, v2) = ϕ(c2, v2), ICs requires

that τs(c1, v1) = τs(ĉ, v1) and τs(ĉ, v2) = τs(c2, v2), respectively. Therefore,

τs(c1, v1) = τs(c2, v2).

Lemma 2 allows us to express the agents’ preferences over allocations in

terms of bundles only. For this purpose, we will use the preference notation

introduced in Section 5: For any type profile (c, v) ∈ C × V and bundles

q, q̂ ∈ Q, we write q <c q̂ if ps(q) − c(q) ≥ ps(q̂) − c(q̂), and q <v q̂ if

v(q)− pb(q) ≥ v(q̂)− pb(q̂). The asymmetric part of <c (<v) is represented

by �c (�v), and the symmetric part by ∼c (∼v). Moreover, we slightly

abuse notation and denote the agents’ optimal bundles in an arbitrary set

Q̂ ⊆ Q by

Opts(c, Q̂) ≡ {q ∈ Q̂ : ∀q̂ ∈ Q̂, q <c q̂},
Optb(v, Q̂) ≡ {q ∈ Q̂ : ∀q̂ ∈ Q̂, q <v q̂}.

As in Section 5, we abbreviate the agents’ optima in the mechanism’s range
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by Opts(c) ≡ Opts(c,Q) and Optb(v) ≡ Optb(v,Q). Finally, each agent’s

report determines a set of bundles available to the other agent. These con-

ditional ranges, or option sets, are denoted by

Qb(c) ≡ {q ∈ Q : ∃v ∈ V s.t. ϕ(c, v) = q},
Qs(v) ≡ {q ∈ Q : ∃c ∈ C s.t. ϕ(c, v) = q}.

Based on the new notation, our next result provides a non-bossy version of

the “taxation principle”: the bundle chosen by the mechanism must be each

agent’s optimum among the options offered by the other agent.

Lemma 3 (IC+NB). For all (c, v) ∈ C × V ,

ϕ(c, v) ∈ Opts
(
c,Qs(v)

)
∩Optb

(
v,Qb(c)

)
.

Proof. Consider any (c, v) ∈ C × V . ICs requires that ϕ(c, v) <c ϕ(ĉ, v)

for all ĉ ∈ C. By definition, this is equivalent to ϕ(c, v) ∈ Opts(c,Qs(v)).

Analogously, ϕ(c, v) ∈ Optb(v,Qb(c)) .

7.2 Monotonicity

We now turn to the technically most challenging step of our analysis. For ev-

ery incentive-compatible and non-bossy mechanism with no-trade types, the

following result establishes monotonicity conditions on the tradable bundles

and their associated prices.

Lemma 4 (IC+NB+NTT). There exists a labeling of bundles {q0, . . . , qn} =

Q, n ∈ N, such that q0 = 0 and for all k ∈ {1, . . . , n},

(i) qk−1 < qk,

(ii) ps(qk−1) < ps(qk),

(iii) pb(qk−1) < pb(qk).

Moreover, for all k ∈ {0, . . . , n},

(iv) ∃ck ∈ C s.t. Qb(ck) = {q0, . . . , qk} and q0 ≺ck · · · ≺ck qk,

(v) ∃vk ∈ V s.t. Qs(vk) = {q0, . . . , qk} and q0 ≺vk · · · ≺vk qk.
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To explain the intuition behind Lemma 4, suppose first that there is a single

good (i.e. ḡ = 1). Specifically, let Q = {0, . . . , n}. Bundles are totally

ordered in this case, so (i) holds trivially. Parts (ii) and (iii) assert that

the price functions are strictly increasing. If an agent’s price function is not

strictly increasing, then the mechanism’s range contains two unanimously

ranked allocations. For example, contrary to (ii), suppose that ps(0) ≥ ps(q)
for some q ∈ {1, . . . , n}. All seller types then prefer (0, ps(0)) to (q, ps(q))

because the former involves a lower cost and a weakly higher payment than

the latter. To guarantee incentive compatibility, a seller type who provides

(q, ps(q)) must not have a misreport that yields (0, ps(0)) instead. This can

be achieved, for example, by letting the buyer be a dictator, so that the

seller cannot influence which bundle is traded. The role of the no-trade

type is to rule out such dictatorial mechanisms by giving veto power to the

seller. More precisely, a no-trade seller type c0 always provides zero units,

that is, Qb(c0) = {0}. Hence, whenever ϕ(c, v) = q, seller type c can achieve

ϕ(c0, v) = 0 by reporting c0. To discourage such misreports, we must have

that ps(0) < ps(q) for all q ∈ {1, . . . , n}. The argument for the buyer is

similar, although it is now the no-trade type who would misreport if he were

charged a higher price for zero units than for some positive quantity.

The logic above can be applied inductively to prove that ps and pb are

strictly increasing. Consider again the seller. It can be shown that, if

ps(0) < ps(q) for all q ∈ {1, . . . , n}, there exists a seller type c1 who always

provides at most one unit, that is, Qb(c1) = {0, 1}. The role of c1 is similar

to that of the no-trade type in the previous paragraph. By reporting c1,

the seller can restrict the buyer’s option set to prevent trading more than

one unit if the price does not exceed ps(1). To discourage this misreport, it

must be that ps(1) < ps(q) for all q ∈ {2, . . . , n}. Next, we can prove that

Qb(c2) = {0, 1, 2} for some c2, and so on. Parts (ii) and (iv) of Lemma 4 are

thus interrelated. In the buyer’s case, there is a similar connection between

(iii) and (v).

The arguments above still work when there is more than one good. In

this case, Lemma 4(i) additionally requires the tradable bundles to be totally

ordered. That is, for any two bundles in the mechanism’s range, one of them

must contain weakly more quantity of all goods (and strictly more quantity

of at least one good) than the other. To illustrate why, suppose that ḡ = 2

and Q = {(0, 0), (0, 1), (1, 0)}. Consider a buyer type who prefers (1, 0) to
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(0, 1) to (0, 0). The set of bundles that he offers to the seller must include

(1, 0) and (0, 0)—the former because it is his optimum in Q, and the latter

because the no-trade seller type accepts nothing else. The issue is that the

buyer does not have a dominant strategy with respect to (0, 1). If he offers

(0, 1), then a seller type who prefers (0, 1) to (1, 0) to (0, 0) will choose

(0, 1) instead of (1, 0), which is bad for the buyer. But if he does not offer

(0, 1), then a seller type who prefers (0, 1) to (0, 0) to (1, 0) will choose (0, 0)

instead of (0, 1), which is also bad for the buyer. This example illustrates

the essence of why there cannot be “unordered” bundles: they broaden the

set of preferences an agent can express, ruining incentive compatibility for

the other agent. The formal proof in Appendix A.5 follows this logic. The

technical challenge is to prove that the types used in the example actually

exist.

7.3 Option Sets

Parts (iv) and (v) of Lemma 4 describe the options offered by specific types

of the seller and the buyer, respectively. Generalizing these statements, our

next lemma shows that each type offers all bundles up to one of their optima,

and none above.

Lemma 5 (IC+NB+NTT). There exist functions qs : C → Q and qb : V →
Q such that, for all (c, v) ∈ C × V ,

(i) qs(c) ∈ Opts(c) and Qb(c) = {q0, . . . , qs(c)},

(ii) qb(v) ∈ Optb(v) and Qs(v) = {q0, . . . , qb(v)}.

To understand the intuition behind Lemma 5, consider the seller and suppose

for simplicity that she has a unique optimal bundle in Q. If she offers a

bundle above her optimum, a buyer type with sufficiently large marginal

values will choose it. But he would pick the seller’s optimum if she did

not offer any larger bundle—and she can do this by deviating to one of the

types from Lemma 4(iv). Hence, the largest bundle that the seller offers

is her optimum. In addition, she would like to offer no bundles below her

optimum because the buyer would then be forced to choose it. However,

this would introduce profitable deviations for the types from Lemma 4(iv)

with the same optimum. To prevent such misreports, the seller must offer

some bundles below her optimum. Our proof in Appendix A.6 generalizes
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this idea to show that she must in fact offer all smaller bundles—just like

the types from Lemma 4(iv).

7.4 Price Functions

Our next result establishes the last missing piece of a trade schedule (Defini-

tion 9): the seller’s and the buyer’s price functions must satisfy a particular

form of concavity and convexity, respectively.

Lemma 6 (IC+NB+NTT). For all k ∈ {1, . . . , n− 1} and γ ∈ Rḡ++,

(i)
ps(qk)− ps(qk−1)

γ · (qk − qk−1)
≥ ps(qk+1)− ps(qk)

γ · (qk+1 − qk)
,

(ii)
pb(qk)− pb(qk−1)

γ · (qk − qk−1)
≤ pb(qk+1)− pb(qk)

γ · (qk+1 − qk)
.

Recall from Lemma 1 that any trade schedule induces single-plateaued pref-

erences. This feature is critical for generalized posted-price mechanisms

to be incentive compatible. The intuition behind Lemma 6 is that the

converse is also true: if (i) or (ii) are violated, there exists a type whose

preferences are not single-plateaued, which in turn breaks incentive com-

patibility. To see this more clearly, suppose that (i) does not hold. Then

we can find a seller type c ∈ C such that for some k ∈ {1, . . . , n − 1},
Opts(c) = {qk+1} and qk−1 �c qk. By Lemma 5(i), Opts(c) = {qk+1} implies

that Qb(c) = {q0, . . . , qk+1}. Moreover, by Lemma 4(v), there exists a buyer

type vk ∈ V such that Qs(vk) = {q0, . . . , qk} and q0 ≺vk · · · ≺vk qk. Note

that Opts(c,Qs(vk)) ⊆ {q0, . . . , qk−1} and Optb(vk, Qb(c)) ⊆ {qk, qk+1}.
Lemma 3 thus yields that ϕ(c, v) ∈ ∅, which is impossible. The formal

proof is in Appendix A.7.

7.5 Quantity Rule

Lemmas 2, 4 and 6 imply that every incentive-compatible and non-bossy

mechanism with no-trade types is based on a trade schedule. Hence, Lemma 1

applies: the agents’ preferences over bundles must be single-plateaued. We

now use this observation to derive the quantity rule of a generalized posted-

price mechanism. This is the final step in the proof of the “only if” part of

the Theorem.
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Lemma 7 (IC+NB+NTT). For all (c, v) ∈ C × V ,

ϕ(c, v) ∈
{
q ∈ Q : min

{
min

{
qs(c), qb(v)

}
,max

{
¯
qs(c),

¯
qb(v)

}}
≤ q ≤ min

{
qs(c), qb(v)

}}
.

(3)

Lemma 7 is easy to prove when each agent has a unique optimum, that

is, Opts(c) = {qs(c)} and Optb(v) = {qb(v)}. In this case, (3) boils down

to ϕ(c, v) = min{qs(c), qb(v)}, so the agents trade the smaller of their two

optima. To understand why, note that the seller offers all bundles up to her

optimum (Lemma 5), and the buyer then chooses his preferred bundle from

this set (Lemma 3), or vice versa. Thus, ϕ(c, v) ∈ Optb
(
v, {q0, . . . , qs(c)}

)
. If

qb(v) ≤ qs(c), the buyer’s optimum is available, which implies that ϕ(c, v) =

qb(v). On the other hand, if qs(c) < qb(v), the buyer can only choose from

bundles below his optimum. By Lemma 1, his utility is strictly increasing

on this set. Hence, he picks the bundle closest to his optimum, which means

that ϕ(c, v) = qs(c). In both cases, ϕ(c, v) = min{qs(c), qb(v)}. The general

proof, which allows for multiple optima, is in Appendix A.8.

8 Extensions

Before concluding the paper, we briefly discuss two extensions of our model.

The first extension lifts the assumption that the feasible set is finite. The sec-

ond extension considers the restriction to additively separable preferences.

8.1 Infinite set of feasible bundles

A technically convenient feature of our model is that the set of feasible

bundles, Q̄, is finite. This assumption can be decomposed into two parts:

bounded and discrete. Let us discuss them in turn.

Requiring the feasible set to be bounded is common in the literature

(e.g. Barberà and Jackson, 1995; Serizawa, 1999). Although we make heavy

use of this assumption, our analysis extends to any Q̄ ⊆ Nḡ with 0 ∈ Q̄.

Some modifications are needed to accommodate the possibility that Q̄ is

unbounded. We now explain the two most noteworthy changes.14

14A detailed account of how the analysis changes is available upon request.
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First, the definition of the buyer’s no-trade type must be adjusted as

follows: for all q̄ ∈ Nḡ, there exists v̄0 ∈ V such that for all c ∈ C, ϕ(c, v̄0) ∈
{0} ∪ {q ∈ Nḡ : q � q̄}. In words, v̄0 is a no-trade type relative to set {q ∈
Nḡ : q ≤ q̄}, so he may receive bundles outside that set. This modification

weakens Definition 8 if, and only if, Q̄ does not have an upper bound. Its

purpose is to ensure that our two Corollaries can still be derived from the

Theorem.15 As it turns out, the proof of the Theorem itself mostly goes

through. Only small adjustments need to be made, for example in the

construction of certain types.

Second, the definition of a trade schedule must be amended by the fol-

lowing joint condition on (Q, ps, pb): if #Q = ∞, then limk→∞[ps(qk+1) −
ps(qk)]/[γ ·(qk+1−qk)] = 0 for all γ ∈ Rḡ++, or limk→∞[pb(qk+1)−pb(qk)]/[γ ·
(qk+1 − qk)] = ∞ for all γ ∈ Rḡ++. This condition is necessary and suf-

ficient for at least one agent to have an optimum bundle in Q, that is,

Opts(c) ∪ Optb(v) 6= ∅ for all (c, v) ∈ C × V . Otherwise, both agents want

to trade infinitely much—which is impossible. A particular implication is

that generalized posted-price mechanisms that satisfy budget balance must

have a finite range.

Compared to the assumption of boundedness, the discreteness of Q̄ plays

a more substantive role in our analysis. We do not believe that our re-

sults will change fundamentally when Q̄ is an arbitrary subset of the ḡ-

dimensional non-negative reals. However, the formal proof of this conjecture

seems daunting and thus a worthwhile endeavor for future research.

8.2 Additively separable preferences

Our model assumes that the agents’ preferences over bundles can be rep-

resented by any strictly increasing and convex/concave function that takes

the value 0 at the origin. We now show that our results do not fully extend

to the sub-domain of additively separable preferences.16

Consider the following counterexample: There are two binary goods.

The set of feasible bundles is Q̄ = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let C+ denote

the set of additively separable cost functions c : Q̄ → R+. That is, c ∈ C+

15The issue is with Lemma A.1(iv). Its proof fails if Q̄ is unbounded and we maintain
the original definition of the buyer’s no-trade type, but it goes through under our modified
definition.

16We are grateful to an anonymous referee for this observation. The following discussion
greatly benefited from their comments.
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if and only if there exist c1, c2 ∈ R++ such that for all q ≡ (q1, q2) ∈ Q̄,

c(q) = c1q1 + c2q2. Analogously, v ∈ V + if and only if there exist v1, v2 ∈
R++ such that for all q ∈ Q̄, v(q) = v1q1 + v2q2. Let p ≡ (p1, p2) ∈ R2

++

be an exogenous vector of prices, one for each good. Consider a mechanism

(ϕ+, τ+
s , τ

+
b ) in which good g ∈ {1, 2} is traded, at price pg, if and only if

both agents weakly benefit from trade. That is, for all (c, v) ∈ C+ × V +,

ϕ+(c, v) = (1{cg ≤ pg ≤ vg})g∈{1,2} and τ+
s (c, v) = τ+

b (c, v) = p · ϕ+(c, v).

It is easy to verify that (ϕ+, τ+
s , τ

+
b ) is incentive compatible, individually

rational and budget balanced. However, (ϕ+, τ+
s , τ

+
b ) is not a generalized

posted-price mechanism because the range of bundles, Q̄, is not totally or-

dered. Therefore, Corollary 1 fails when preferences are additively separable.

Corollary 2 and the Theorem can be similarly disproved.17

Nonetheless, some of our results seem to carry over to the additively

separable preference domain. Mechanism (ϕ+, τ+
s , τ

+
b ) can be interpreted as

a further generalization of generalized posted-price mechanisms. It is still

based on a trade schedule (Q, ps, pb). The main novelty is that the set of

tradable bundles, Q, is not totally ordered—but it is a lattice. As a conse-

quence, the two agents trade the meet, rather than the minimum, of their

optimal bundles. Note that their preferences over bundles are multidimen-

sional single-plateaued (in the sense of Barberà et al., 1993). We conjecture

that these properties generalize. The main challenge in validating this con-

jecture is to precisely describe the permissible shapes of Q and then prove

an analogue of Lemma 4. We consider this an intriguing open problem.

9 Conclusion

We have studied multidimensional bargaining between two agents with pri-

vate information about their preferences. Our results show that ex-post no-

tions of incentive compatibility, individual rationality and collusion-proofness

(or budget balance) can only be satisfied by “generalized posted-price mech-

anisms”. These mechanisms permit the agents to trade only bundles that

are totally ordered. Every tradable bundle is associated with an exogenous

pair of prices, one for each agent. The shape of these price functions is such

17Mechanism (ϕ+, τ+
s , τ

+
b ) is not incentive compatible on C × V because this domain

allows for complementarities. Specifically, an agent may want to trade good 2 only if good
1 is also traded. This agent does not have a dominant strategy: their optimal response
depends on whether the other agent wants to trade good 1 or not.
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that each agent’s utility over bundles is quasiconcave. Both agents then an-

nounce one of their optimal bundles and generally trade the smaller of the

two. By combining multidimensional private information and quasilinear

preferences, our characterizations extend findings in both mechanism design

and social choice theory, which have rarely been connected.

Generalized posted-price mechanisms are easy to implement in practice

because they request minimal information from the agents. All they have

to report is their optimal bundles. This is in stark contrast to the VCG

mechanism, which requires the seller and the buyer to reveal their entire

cost and value functions, respectively. Generalized posted-price mechanisms

are also easy to understand. In fact, their outcomes can be implemented

in obviously dominant strategies (Li, 2017).18 Simply consider a sequential

procedure in which bargaining proceeds bundle by bundle until at least one

of the agents is not willing to go further.

Generalized posted-posted price mechanisms have two main drawbacks.

The first one is the requirement that bundles be totally ordered. As we

explained in the previous section, this limitation disappears if the agents’

preferences are additively separable. Exploring smaller preference domains

in more detail is an important direction for future research. Another problem

of generalized posted-price mechanisms is that they do not allow the prices

to adjust to the agents’ preferences. A natural question is whether this price

exogeneity can be overcome by weaker notions of strategic robustness. In

our model, interim implementation on all type spaces is not more permis-

sive than dominant-strategy implementation (Bergemann & Morris, 2005).

But other notions of robustness are. Examples include implementation in

weakly undominated strategies (Börgers & Smith, 2012; Yamashita, 2015)

and strategic simplicity (Börgers & Li, 2019). In this literature, bilateral

trade is a popular application. Our results may thus prove valuable in pro-

viding the dominant-strategy benchmark against which alternative concepts

of robustness can be evaluated.

18A strategy is obviously dominant if the worst possible outcome under this strategy is
at least as good as the best possible outcome under any deviation (measured at the first
information set where the two strategies differ).
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A Appendix

A.1 Proof of Lemma 1

We only prove (i); (ii) is analogous. Consider any c ∈ C and k ∈ {1, . . . , n−
1}. Since c is strictly increasing and convex, it has a subgradient γk ∈ Rḡ++

at qk. Thus,

c(qk+1)− c(qk) ≥ γk · (qk+1 − qk),
c(qk)− c(qk−1) ≤ γk · (qk − qk−1).

Combined with (1), it follows that

ps(qk)− ps(qk−1)

c(qk)− c(qk−1)
≥ ps(qk+1)− ps(qk)

c(qk+1)− c(qk)
. (A.1)

Define ql ≡
¯
qs(c), so ql−1 ≺c ql. This is equivalent to

ps(ql)−ps(ql−1)
c(ql)−c(ql−1) > 1. From

(A.1), it follows that
ps(qk)−ps(qk−1)
c(qk)−c(qk−1) > 1 for all k ∈ {1, . . . , l}. Equivalently,

q0 ≺c · · · ≺c ql. Defining qm ≡ q̄s(c), an analogous argument shows that

qm �c · · · �c qn. Finally, qm−1 4c qm and (A.1) imply that ql 4c · · · 4c qm.

Since also ql ∼c qm, it follows that ql ∼c · · · ∼c qm.

A.2 Proof of the Theorem: “if”

Consider any generalized posted-price mechanism.

It is non-bossy because for all q ∈ Q and (c, v) ∈ C×V with ϕ(c, v) = q,

we have that τs(c, v) = ps(q) and τb(c, v) = pb(q).

The seller has a no-trade type because for any c0 ∈ C with c0(q) >

ps(q) − ps(0) for all q ∈ Q \ {0}, Opts(c0) = {0} and thus ϕ(c0, v) = 0 for

all v ∈ V . Analogously, any v0 ∈ V such that v0(q) < pb(q) − pb(0) for all

q ∈ Q \ {0} is a no-trade type for the buyer.

Finally, we verify incentive compatibility for the seller; the argument for

the buyer is analogous. Consider any (c, v) ∈ C × V . There are two cases.

First, suppose that
¯
qs(c) ≤ qb(v). Since

¯
qs(c) ≤ qs(c) by definition, it

follows that
¯
qs(c) ≤ min{qs(c), qb(v)}. Hence,

min
{

min
{
qs(c), qb(v)

}
,max

{
¯
qs(c),

¯
qb(v)

}}
≥min

{
min

{
qs(c), qb(v)

}
,
¯
qs(c)

}
=

¯
qs(c).
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Moreover, min{qs(c), qb(v)} ≤ qs(c) ≤ q̄s(c). Thus, by (3),
¯
qs(c) ≤ ϕ(c, v) ≤

q̄s(c). Recall from Lemma 1(i) that
¯
qs(c) ∼c · · · ∼c q̄s(c), so ϕ(c, v) ∈

Opts(c). Since type c gets her global optimum in Q, she does not have a

profitable deviation.

Second, suppose that qb(v) <
¯
qs(c). Since

¯
qs(c) ≤ qs(c) and

¯
qb(v) ≤ qb(v)

by definition, it follows that qb(v) < qs(c) and
¯
qb(v) <

¯
qs(c). Hence,

min
{

min
{
qs(c), qb(v)

}
,max

{
¯
qs(c),

¯
qb(v)

}}
= min

{
qb(v),

¯
qs(c)

}
= qb(v).

Thus, by (3), ϕ(c, v) = qb(v). Moreover, for all ĉ ∈ C, ϕ(ĉ, v) ≤ qb(v).

By Lemma 1(i), qb(v) <
¯
qs(c) implies that q0 ≺c · · · ≺c qb(v). Hence,

ϕ(ĉ, v) 4c ϕ(c, v) for all ĉ ∈ C.

A.3 Proof of Corollaries 1 and 2

Corollaries 1 and 2 are derived from the Theorem. The key observation is

that non-bossiness and no-trade types are guaranteed under (i) incentive

compatibility, individual rationality and budget balance, or (ii) incentive

compatibility, individual rationality, no free lunch and collusion-proofness.

Both statements are implied by the following result.

Lemma A.1.

(i) Budget balance implies non-bossiness.

(ii) Collusion-proofness implies non-bossiness.

(iii) Individual rationality and budget balance imply no free lunch.

(iv) Incentive compatibility, non-bossiness, individual rationality and no

free lunch imply no-trade types.

Proof. Consider an arbitrary mechanism (ϕ, τs, τb). (i) is obvious.

To prove (ii), suppose the seller is bossy at (c, v) ∈ C × V . That

is, there exists ĉ ∈ C such that ϕ(ĉ, v) = ϕ(c, v), τs(ĉ, v) = τs(c, v) and

τb(ĉ, v) 6= τb(c, v). If τb(ĉ, v) < τb(c, v), collusion-proofness is violated at

(c, v). If τb(ĉ, v) > τb(c, v), collusion-proofness is violated at (ĉ, v). Hence,

by contraposition, collusion-proofness implies non-bossiness.

25



To prove (iii), suppose (ϕ, τs, τb) is budget balanced and individually

rational (for the seller). Thus, for all (c, v) ∈ C × V such that ϕ(c, v) > 0,

τb(c, v) = τs(c, v) ≥ c(ϕ(c, v)) > 0, which establishes no free lunch.

To prove (iv), suppose (ϕ, τs, τb) satisfies incentive compatibility, non-

bossiness, individual rationality and no free lunch. Incentive compatibility

and non-bossiness imply that for both i ∈ {s, b}, there exists pi : Q̄ → R
such that τi(c, v) = pi(ϕ(c, v)) for all (c, v) ∈ C × V . (This is shown in

Lemma 2, Section 7.1, as part of the “only if” statement of the Theorem.)

Let c0 ∈ C be such that c0(q) > ps(q) for all q > 0. IRs then requires that

ϕ(c0, v) = 0 for all v ∈ V , so c0 is a no-trade seller type. Moreover, no free

lunch is equivalent to pb(q) > 0 for all q > 0. Hence, there exists v0 ∈ V
such that v0(q) < pb(q) for all q > 0. By IRb, ϕ(c, v0) = 0 for all c ∈ C, so

v0 is a no-trade buyer type.

The next lemma captures the additional shape that individual rationality,

budget balance, no free lunch and collusion-proofness impose on generalized

posted-price mechanisms.

Lemma A.2. A generalized posted-price mechanism satisfies

(i) individual rationality if and only if ps(0) ≥ 0 ≥ pb(0),

(ii) budget balance if and only if p ≡ ps = pb and for all k ∈ {2, . . . , n},
there exists µk ∈ (1,∞) such that qk = µkq1 and p(qk) − p(0) =

µk[p(q1)− p(0)].

(iii) no free lunch if and only if for all q ∈ Q \ {0}, pb(q) > 0,

(iv) collusion-proofness if and only if qs(c) = q̄s(c) and qb(v) = q̄b(v) for

all (c, v) ∈ C × V .

Proof. Consider any generalized posted-price mechanism.

First, we prove (i). In particular, we show that IRs holds if and only

if ps(0) ≥ 0. Analogously, IRb holds if and only if pb(0) ≤ 0. By the

Theorem, there exists a no-trade seller type c0 ∈ C. Thus, ϕ(c0, ·) = 0. If

ps(0) < 0, IRs is violated for c0. Conversely, suppose that ps(0) ≥ 0. By

the Theorem, ICs holds. Hence, for all (c, v) ∈ C×V , τs(c, v)− c(ϕ(c, v)) ≥
τs(c0, v)− c(ϕ(c0, v)) = ps(0) ≥ 0. Thus, IRs holds.

Second, we prove (ii). Clearly, budget balance holds if and only if p ≡
ps = pb. We now show that this equation, combined with (1) and (2), implies
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the additional conditions stated in (ii). These conditions are vacuously true

if n ∈ {0, 1}, so let n ∈ {2, 3, . . . }. From (1) and (2), it follows that for all

k ∈ {1, . . . , n− 1} and γ ∈ Rḡ++,

p(qk+1)− p(qk)
p(qk)− p(qk−1)

=
γ · (qk+1 − qk)
γ · (qk − qk−1)

.

Since q0 = 0, we get that for all k ∈ {0, . . . , n− 1},

p(qk+1)− p(qk) =
p(q1)− p(0)

γ · q1

[
γ · (qk+1 − qk)

]
.

Hence, for all l ∈ {2, . . . , n},

p(ql)− p(0) =
l−1∑
k=0

[
p(qk+1)− p(qk)

]
=
p(q1)− p(0)

γ · q1

l−1∑
k=0

γ · (qk+1 − qk) (A.2)

=
γ · ql
γ · q1

[
p(q1)− p(0)

]
.

Define µl ∈ (1,∞) via p(ql)− p(0) = µl
[
p(q1)− p(0)

]
. By (A.2), µl is such

that for all γ ∈ Rḡ++,

γ · (ql − µlq1) = 0. (A.3)

We now show that ql = µlq1. To the contrary, suppose there exists g ∈ Ḡ
such that qgl 6= µlq

g
1 . For all ε > 0, define γε ∈ Rḡ++ by γgε = 1 and γhε = ε

for all h ∈ Ḡ \ {g}. For sufficiently small ε > 0,

γε · (ql − µlq1) = qgl − µlq
g
1 + ε

∑
h6=g

(
qhl − µlqh1

)
≈ qgl − µlq

g
1 6= 0,

which contradicts (A.3). In conclusion, ql = µlq1 and p(ql) − p(0) =

µl
[
p(q1)− p(0)

]
for all l ∈ {2, . . . , n}.

Third, (iii) is obvious.

Fourth, we prove (iv). Starting with the “if” part, consider any (c, v) ∈
C×V and suppose that qs(c) = q̄s(c) and qb(v) = q̄b(v). We distinguish two

cases. First, suppose that max
{
¯
qs(c),

¯
qb(v)

}
≤ min

{
q̄s(c), q̄b(v)

}
. By (3),

ϕ(c, v) ∈
{
q ∈ Q : max

{
¯
qs(c),

¯
qb(v)

}
≤ q ≤ min

{
q̄s(c), q̄b(v)

}}
.
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From Lemma 1, it follows that ϕ(c, v) ∈ Opts(c) ∩ Optb(v), so there is

no jointly profitable deviation. Second, suppose that min
{
q̄s(c), q̄b(v)

}
<

max
{
¯
qs(c),

¯
qb(v)

}
. By (3), ϕ(c, v) = min

{
q̄s(c), q̄b(v)

}
. Note that q̄s(c) 6=

q̄b(v). Without loss of generality, suppose that q̄s(c) < q̄b(v). Then ϕ(c, v) =

q̄s(c) <
¯
qb(v), so the traded bundle is optimal for the seller but below the

buyer’s smallest optimum. Since the buyer’s utility over bundles is single-

plateaued (Lemma 1), he may benefit from a joint misreport (ĉ, v̂) ∈ C × V
only if ϕ(ĉ, v̂) > ϕ(c, v). But given that ϕ(c, v) = q̄s(c), the seller is worse

off at (ĉ, v̂). Hence, collusion-proofness holds.

Conversely, suppose that qs(c) < q̄s(c) for some c ∈ C; the argument for

the buyer is analogous. Let v ∈ V be such that Optb(v) = {q̄s(c)}. By (3),

ϕ(c, v) = qs(c) /∈ Optb(v). But if the seller reports ĉ ∈ C such that Opts(ĉ) =

{q̄s(c)}, then ϕ(ĉ, v) = q̄s(c) ∈ Optb(v).19 Such a misreport makes the buyer

better off, while leaving the seller indifferent. Hence, collusion-proofness is

violated.

Corollaries 1 and 2 follow from Lemma A.1, Lemma A.2 and the Theorem.

A.4 Proof of Lemma 2

Consider any (c1, v1), (c2, v2) ∈ C × V such that q̂ ≡ ϕ(c1, v1) = ϕ(c2, v2).

ICs requires that for both j ∈ {1, 2} and all c ∈ C,

cj
(
ϕ(cj , vj)

)
− cj

(
ϕ(c, vj)

)
≤ τs(cj , vj)− τs(c, vj). (A.4)

Define ĉ ∈ C by ĉ(q) ≡ ∑g∈Ḡ[εqg + 1
ε max{qg − q̂g, 0}] for all q ∈ Q̄. If

ε > 0 is sufficiently small, then ĉ(q̂) − ĉ(q) < minj∈{1,2}{cj(q̂) − cj(q)} for

all q 6= q̂. From (A.4), it follows that for both j ∈ {1, 2} and all c ∈ C such

that ϕ(c, vj) 6= ϕ(cj , vj),

ĉ
(
ϕ(cj , vj)

)
− ĉ
(
ϕ(c, vj)

)
< τs(cj , vj)− τs(c, vj).

Hence, by ICs for type ĉ, ϕ(ĉ, vj) = ϕ(cj , vj) for both j ∈ {1, 2}. The rest

of the proof is in the main text.

19The types v ∈ V and ĉ ∈ C can be constructed as follows: for all q ∈ Q̄, v(q) ≡∑
g∈Ḡ[εqg + (1/ε) min{qg, q̄gs (c)}] and ĉ(q) ≡

∑
g∈Ḡ[εqg + (1/ε) max{qg − q̄gs (c), 0}], where

ε > 0 is sufficiently small.
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A.5 Proof of Lemma 4

Define n ≡ #Q − 1. Lemma 4 is equivalent to the following claim: there

exists a labeling of bundles {q0, . . . , qn} = Q such that q0 = 0 and for all

k ∈ {0, . . . , n},

(a) qk < q for all q ∈ Q \ {q0, . . . , qk},

(b) if k 6= 0, then ps(qk−1) < ps(q) for all q ∈ Q \ {q0, . . . , qk−1},

(c) if k 6= 0, then pb(qk−1) < pb(q) for all q ∈ Q \ {q0, . . . , qk−1},

(d) ∃ck ∈ C s.t. Qb(ck) = {q0, . . . , qk} and q0 ≺ck · · · ≺ck qk,

(e) ∃vk ∈ V s.t. Qs(vk) = {q0, . . . , qk} and q0 ≺vk · · · ≺vk qk.

The proof is by induction.

Base case (k = 0). Define q0 ≡ 0. (a), (b) and (c) hold trivially. (d)

and (e) follow from NTT.

Induction step. Consider any l ∈ {0, . . . , n − 1}. Suppose that (a) to

(e) hold for all k ∈ {0, . . . , l}. In a series of claims, we show that there exists

ql+1 ∈ Q \ {q0, . . . , ql} such that (a) to (e) also hold for k = l + 1. Our first

claim can be regarded as a preliminary version of condition (d) for k = l+1.

Claim A.1. For all q̂ ∈ Q \ {q0, . . . , ql}, there exists ĉ ∈ C such that

(i) q0 ≺ĉ · · · ≺ĉ ql and if ps(ql) < ps(q̂), then ql ≺ĉ q̂,

(ii) for all q � q̂, q0 �ĉ q,

(iii) Opts(ĉ, Qs(v̂)) = {q̂} for all v̂ ∈ V such that q̂ ∈ Qs(v̂),

(iv) {q0, . . . , ql, q̂} ⊆ Qb(ĉ) and for all q � q̂, q /∈ Qb(ĉ).

Proof. Consider any q̂ ∈ Q \ {q0, . . . , ql}. Define ĉ ∈ C as follows: for all

q ∈ Q̄,

ĉ(q) ≡
∑
g∈Ḡ

[
εqg +

1

ε
max{qg − q̂g, 0}

]
.

The arguments below hold for sufficiently small ε > 0. For all q, q′ ∈ Q, we

write ĉ(q)� ĉ(q′) if limε↓0[ĉ(q)− ĉ(q′)] =∞, and ĉ(q) ≈ ĉ(q′) if limε↓0[ĉ(q)−
ĉ(q′)] = 0. Similar notation will be used throughout the proof of Lemma 4.

Proof of (i). Consider any k ∈ {1, . . . , l}. By (a), qk−1 < qk < q̂.

From the definition of ĉ, it follows that ĉ(qk−1) ≈ ĉ(qk). Moreover, by (b),
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ps(qk−1) < ps(qk). Hence, qk−1 ≺ĉ qk. Analogously, if ps(ql) < ps(q̂), then

ql ≺ĉ q̂.
Proof of (ii). For all q � q̂, ĉ(q)� ĉ(q0) and thus q0 �ĉ q.
Proof of (iii). Consider any v̂ ∈ V such that q̂ ∈ Qs(v̂). For all q ∈

Qs(v̂) \ {q̂}, we show that q ≺ĉ q̂. This is obvious if q � q̂ because then

ĉ(q) � ĉ(q̂). Suppose now that q < q̂, so ĉ(q) < ĉ(q̂). If ps(q) ≥ ps(q̂),

then q �c q̂ and thus q̂ /∈ Opts(c,Qs(v̂)) for all c ∈ C. From Lemma 3, it

follows that q̂ /∈ Qs(v̂), a contradiction. Hence, ps(q) < ps(q̂). Since also

ĉ(q) ≈ ĉ(q̂), q ≺ĉ q̂.
Proof of (iv). There are three steps. First, consider any k ∈ {0, . . . , l}.

By (e), there exists vk ∈ V such that Qs(vk) = {q0, . . . , qk}. From (i),

it follows that Opts(ĉ, Qs(vk)) = {qk}. Hence, by Lemma 3, qk ∈ Qb(ĉ).

Second, consider any v̂ ∈ V such that q̂ ∈ Qs(v̂). By (iii), Opts(ĉ, Qs(v̂)) =

{q̂} and thus q̂ ∈ Qb(ĉ). Third, by contradiction, suppose there exists q ∈
Qb(ĉ) such that q � q̂. Then ϕ(ĉ, v) = q for some v ∈ V . By (d), there

exists c0 ∈ C such that Qb(c0) = {q0} and thus ϕ(c0, v) = q0. Since (ii)

states that q0 �ĉ q, ICs is violated for ĉ.

Drawing on Claim A.1, our next two results establish (b) and (c) for k = l+1.

Claim A.2. For all q̂ ∈ Q \ {q0, . . . , ql}, ps(ql) < ps(q̂).

Proof. By contradiction, suppose that ps(ql) ≥ ps(q̂) for some q̂ ∈ Q \
{q0, . . . , ql}. By (a), ql < q̂. For all c ∈ C, it follows that c(ql) < c(q̂) and

thus ql �c q̂. Let cl ∈ C and ĉ ∈ C be as in (d) and Claim A.1, respectively.

Define v ∈ V by v(q) ≡ (1/ε)
∑

g∈Ḡ q
g for all q ∈ Q̄. For sufficiently small

ε > 0, we have that ϕ(cl, v) = ql and ϕ(ĉ, v) = q̂. Since ql �ĉ q̂, ICs is

violated for ĉ.

Claim A.3. For all q̂ ∈ Q \ {q0, . . . , ql}, pb(ql) < pb(q̂).

Proof. By contradiction, suppose that pb(ql) ≥ pb(q̂) for some q̂ ∈ Q \
{q0, . . . , ql}. Consider any v̂ ∈ V such that q̂ ∈ Qs(v̂). Let ĉ ∈ C be as in

Claim A.1. Claim A.1(iii) implies that ϕ(ĉ, v̂) = q̂. Moreover, by (e), there

exists vl ∈ V such that Qs(vl) = {q0, . . . , ql}. From Claim A.1(i), it follows

that Opt(ĉ, Qs(vl)) = {ql} and thus ϕ(ĉ, vl) = ql. Finally, by (a), ql < q̂ and

thus vl(ql) < vl(q̂). Since also pb(ql) ≥ pb(q̂), we have that ql ≺vl q̂. Hence,

ICb is violated for for vl.
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In the remainder of the proof, the following definition is crucial: let bundle

ql+1 ∈ Q\{q0, . . . , ql} be such that for all q ∈ Q\{q0, . . . , ql}, either pb(q) >

pb(ql+1) or [pb(q) = pb(ql+1) and q ≯ ql+1]. In words, among all bundles in

Q \ {q0, . . . , ql}, ql+1 entails the lowest payment for the buyer. If there are

multiple such bundles, none of them is larger than ql+1.

Our next claim establishes (e) for k = l + 1.

Claim A.4. There exists vl+1 ∈ V such that Qs(vl+1) = {q0, . . . , ql+1} and

q0 ≺vl+1
· · · ≺vl+1

ql+1.

Proof. Type vl+1 ∈ V is defined as follows: for all q ∈ Q̄,

vl+1(q) ≡
∑
g∈Ḡ

[
εqg +

1

ε
min{qg, qgl }+

pb(ql+1)− pb(ql)∑
h∈Ḡ(qhl+1 − qhl )

min{qg, qgl+1}
]
,

where ε > 0 is sufficiently small. Figure A.1 provides an illustration for

ḡ = 2. Note that vl+1 ∈ V .

q1

q2

0

ql+1

ql

ε

+ π
+(1/ε)

ε

ε

+ π

ε+ π + (1/ε) ε+ π ε

Figure A.1: [Proof of Claim A.4] Illustration of the isovalue curves of type
vl+1 for ḡ = 2. The expressions along the axes refer to the two elements of
the unique subgradient of vl+1 in the interior of the nine shaded rectangles.
For example, the unique subgradient in the top-left rectangle is given by the
vector (ε+ π + (1/ε), ε), where π ≡ [pb(ql+1)− pb(ql)]/

∑
h∈Ḡ(qhl+1 − qhl ).

The proof has two main parts. First, we show that vl+1 satisfies the
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following three conditions:

q0 ≺vl+1
· · · ≺vl+1

ql, (A.5)

ql ≺vl+1
ql+1, (A.6)

ql �vl+1
q̂ for all q̂ ∈ Q \ {q0, . . . , ql+1}. (A.7)

Based on (A.5) to (A.7), the second part of the proof then shows that

Qs(vl+1) = {q0, . . . , ql+1}.
Proof of (A.5). Consider any k ∈ {1, . . . , l}. From (a), we know that

qk−1 < qk ≤ ql. Thus, by definition of vl+1, vl+1(qk−1) � vl+1(qk), which

implies that qk−1 ≺vl+1
qk.

Proof of (A.6). By definition of vl+1 and (a),

[
vl+1(ql+1)− pb(ql+1)

]
−
[
vl+1(ql)− pb(ql)

]
= ε

∑
g∈Ḡ

(qgl+1 − q
g
l ) > 0.

Proof of (A.7). Consider any q̂ ∈ Q \ {q0, . . . , ql+1}. We are going to

prove that limε↓0{[vl+1(ql+1) − pb(ql+1)] − [vl+1(q̂) − pb(q̂)]} > 0. Since we

know from the proof of (A.6) that limε↓0{[vl+1(ql+1)−pb(ql+1)]− [vl+1(ql)−
pb(ql)]} = 0, it follows that ql �vl+1

q̂.

By (a), q̂ > ql. We distinguish two cases. First, if q̂ > ql+1, then

[
vl+1(ql+1)− pb(ql+1)

]
−
[
vl+1(q̂)− pb(q̂)

] ε↓0−−→ pb(q̂)− pb(ql+1) > 0,

where the inequality follows from the definition of ql+1. Second, if q̂ � ql+1,

then

[
vl+1(ql+1)− pb(ql+1)

]
−
[
vl+1(q̂)− pb(q̂)

]
ε↓0−−→

[
pb(q̂)− pb(ql+1)

]︸ ︷︷ ︸
≥0

+
[
pb(ql+1)− pb(ql)

]︸ ︷︷ ︸
>0

∑
g∈Ḡ max{qgl+1 − q̂g, 0}∑

h∈Ḡ(qhl+1 − qhl )︸ ︷︷ ︸
>0

> 0,

where the weak inequality follows from the definition of ql+1, the first strict

inequality from Claim A.3, and the second strict inequality from q̂ � ql+1

and (a). This concludes the proof of (A.5) to (A.7).

The proof of Qs(vl+1) = {q0, . . . , ql+1} has three parts.

First, consider any k ∈ {0, . . . , l}. By (d), there exists ck ∈ C such that

Qb(ck) = {q0, . . . , qk}. (A.5) implies that Optb(vl+1, Qb(ck)) = {qk} and
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thus qk ∈ Qs(vl+1).

Second, consider any c ∈ C such that ql+1 ∈ Qb(c). From (A.5) to (A.7),

it follows that Optb(vl+1, Qb(c)) = {ql+1} and thus ql+1 ∈ Qs(vl+1).

Third, by contradiction, suppose that q̂ ∈ Qs(vl+1) for some q̂ ∈ Q \
{q0, . . . , ql+1}. Consider type ĉ ∈ C from Claim A.1. By Claim A.1(iii),

Opts(ĉ, Qs(vl+1)) = {q̂} and thus ϕ(ĉ, vl+1) = q̂. Moreover, by (e), there

exists vl ∈ V such that Qs(vl) = {q0, . . . , ql}. From Claim A.1(i), it follows

that Opts(ĉ, Qs(vl)) = {ql} and thus ϕ(ĉ, vl) = ql. This violates ICb because,

by (A.7), ql �vl+1
q̂. Therefore, q̂ /∈ Qs(vl+1) for all q̂ ∈ Q\{q0, . . . , ql+1}.

Next, we show that Q does not contain a bundle “in between” ql and ql+1.

Claim A.5. For all q ∈ Q \ {q0, . . . , ql+1}, q � ql+1.

Proof. By contradiction, suppose there exists q̂ ∈ Q \ {q0, . . . , ql+1} such

that q̂ < ql+1. Note that, by (a), q̂ > ql. Without loss of generality, assume

that for all q ∈ Q \ {q0, . . . , ql+1} such that q < ql+1, either ps(q) < ps(q̂) or

[ps(q) = ps(q̂) and q ≮ q̂]. In words, among all bundles in between ql and

ql+1, q̂ entails the largest payment for the seller. If there are multiple such

bundles, none of them is smaller than q̂.

Define c ∈ C as follows: for all q ∈ Q̄,

c(q) ≡
∑
g∈Ḡ

[
εqg +

(∑
f∈Ḡ

εq̂f +
max{ps(ql+1)− ps(q̂), 0}∑

h∈Ḡ(qhl+1 − q̂h)

)
max{qg − q̂g, 0}

+
1

ε
max{qg − qgl+1, 0}

]
.

We are going to show below that for sufficiently small ε > 0,

q0 ≺c · · · ≺c ql ≺c ql+1, (A.8)

q̂ �c q for all q ∈ Q \ {q̂}. (A.9)

(A.8) and (A.9) lead to a contradiction: By Claim A.4, there exists vl+1 ∈ V
such that Qs(vl+1) = {q0, . . . , ql+1}. (A.8) implies that Opts(c,Qs(vl+1)) =

{ql+1} and thus ϕ(c, vl+1) = ql+1. Moreover, consider any v̂ ∈ V such that

q̂ ∈ Qs(v̂). By (A.9), Opts(c,Qs(v̂)) = {q̂} and thus ϕ(c, v̂) = q̂. However,

q̂ ≺v̂ ql+1 because v(q̂) < v(ql+1) and pb(q̂) ≥ pb(ql+1). Hence, ICb is violated

for type v̂.
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Proof of (A.8). For all k ∈ {1, . . . , l}, ps(qk−1) < ps(qk) and c(qk−1) ≈
c(qk), so qk−1 ≺c qk. Moreover, ql ≺c ql+1 because

[
ps(ql+1)− c(ql+1)

]
−
[
ps(ql)− c(ql)

]
= min

{
ps(ql+1), ps(q̂)

}
− ps(ql)︸ ︷︷ ︸

>0

− ε
∑
g∈Ḡ

[
qgl+1 − q

g
l + (qgl+1 − q̂g)

∑
f∈Ḡ

q̂f
]

︸ ︷︷ ︸
≈0

> 0.

Proof of (A.9). First, if q < q̂, then ps(q) < ps(q̂) and c(q) ≈ c(q̂).

Second, if q � ql+1, then c(q) � c(q̂). Third, if q̂ � q < ql+1, then ps(q) ≤
ps(q̂) and c(q) >

∑
f∈Ḡ εq̂

f = c(q̂). In all three cases, q ≺c q̂. Finally,

ql+1 ≺c q̂ because

[
ps(q̂)− c(q̂)

]
−
[
ps(ql+1)− c(ql+1)

]
= ε
(

1 +
∑
f∈Ḡ

q̂f
)∑
g∈Ḡ

(qgl+1 − q̂g)︸ ︷︷ ︸
>0

+ max
{
ps(q̂)− ps(ql+1), 0

}︸ ︷︷ ︸
≥0

> 0.

Claims A.1, A.2 and A.5 (with q̂ = ql+1) ensure the existence of cl+1 ∈
C such that Qb(cl+1) = {q0, . . . , ql+1} and q0 ≺cl+1

· · · ≺cl+1
ql+1. This

establishes (d) for k = l + 1. Our final claim proves (a) for k = l + 1.

Claim A.6. For all q ∈ Q \ {q0, . . . , ql+1}, q > ql+1.

Proof. By contradiction, suppose there exists q̂ ∈ Q \ {q0, . . . , ql+1} such

that q̂ ≯ ql+1. We know from Claim A.5 that q̂ � ql+1. For all ε, ρ ∈ R+,

define

Xε(ρ) ≡
{
q ∈ Rḡ+ : ∃λ ∈ [0, 1] s.t. q ≤ ρ

[
λql+1 + (1− λ)q̂ + ε1)

]}
,

where 1 denotes a ḡ-dimensional vector of ones. Figure A.2 provides an

illustration of X0 for ḡ = 2. Importantly, since Q is discrete, we can let q̂

be such that for sufficiently small ε > 0, Xε(1) ∩Q = {q0, . . . , ql+1, q̂}.20

20Setting ε > 0 (instead of ε = 0) ensures that for all q ∈ Rḡ+, there exists ρ ∈ R+ such
that q ∈ Xε(ρ). This feature is important for the function rε below to be well defined.
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q1

q2

0

ql

q̂

ql+1

X0(1)

X0(ρ), ρ > 1

Figure A.2: [Proof of Claim A.6] Illustration of X0 for ḡ = 2. The dark
gray shaded area is X0(1). The union of the dark- and light gray shaded
areas is X0(ρ), ρ > 1.

We are going to construct types v ∈ V and c ∈ C such that

q0 ≺v · · · ≺v ql ≺v q̂ ≺v ql+1, (A.10)

q0 ≺c · · · ≺c ql ≺c ql+1 and q̂ �c q for all q ∈ Q \ {q̂}. (A.11)

Before proving (A.10) and (A.11), we show that these two conditions are

incompatible. By Claim A.1 and the definition of q̂, there exists ĉ ∈ C

such that Qb(ĉ) = {q0, . . . , ql, q̂}. (A.10) implies that Optb(v,Qb(ĉ)) = {q̂}
and thus q̂ ∈ Qs(v). From (A.11), it follows that Opts(c,Qs(v)) = {q̂} and

thus ϕ(c, v) = q̂. Moreover, by Claim A.4, there exists vl+1 ∈ V such that

Qs(vl+1) = {q0, . . . , ql+1}. (A.11) implies that Opts(c,Qs(vl+1)) = {ql+1}
and thus ϕ(c, vl+1) = ql+1. Since q̂ ≺v ql+1, ICb is violated for type v.

Proof of (A.10). Since q̂ � ql+1, there exists γ ∈ Rḡ++ such that γ · q̂ <
γ ·ql+1. For all q ∈ Q, define v(q) ≡ 1

ε (γ ·q), where ε > 0 is sufficiently small.

By (a), q0 < · · · < ql < q̂ and thus v(q0) � · · · � v(ql) � v(q̂). Moreover,

by definition of γ, v(q̂)� v(ql+1).
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Proof of (A.11). For all q ∈ Q̄, define

c(q) ≡
∑
g∈Ḡ

[
εqg +

(∑
f∈Ḡ

εq̂f +
max{ps(ql+1)− ps(q̂), 0}∑

h∈Ḡ max{qhl+1 − q̂h, 0}

)
max{qg − q̂g, 0}

]

+
1

ε
max

{
rε(q)− 1, 0

}
,

where rε(q) ≡ min{ρ ∈ R+ : q ∈ Xε(ρ)} and ε > 0 is sufficiently small. The

function rε : Rḡ+ → R+ is convex,21 which implies that c ∈ C.

Recall that for sufficiently small ε > 0, Xε(1) ∩ Q = {q0, . . . , ql+1, q̂}.
Hence, for all q ∈ Q, rε(q) > 1 if and only if q ∈ Q \ {q0, . . . , ql+1, q̂}. It

follows that for all q ∈ Q \ {q0, . . . , ql+1, q̂}, c(q)� c(q̂) and thus q ≺c q̂.
It remains to show that q0 ≺c · · · ≺c ql ≺c ql+1 ≺c q̂. There are three

steps. First, for all k ∈ {1, . . . , l}, qk−1 ≺c qk because ps(qk−1) < ps(qk) and

c(qk−1) ≈ c(qk). Second, ql ≺c ql+1 because

[
ps(ql+1)− c(ql+1)

]
−
[
ps(ql)− c(ql)

]
= min

{
ps(ql+1), ps(q̂)

}
− ps(ql)︸ ︷︷ ︸

>0

− ε
∑
g∈Ḡ

(
qgl+1 − q

g
l + max{qgl+1 − q̂g, 0}

∑
f∈Ḡ

q̂f
)

︸ ︷︷ ︸
≈0

> 0.

Third, ql+1 ≺c q̂ because

[
ps(q̂)− c(q̂)

]
−
[
ps(ql+1)− c(ql+1)

]
= ε
[∑
g∈Ḡ

qgl+1︸ ︷︷ ︸
>0

+
(∑
f∈Ḡ

q̂f
)

︸ ︷︷ ︸
>0

(∑
g∈Ḡ

max{qgl+1 − q̂g, 0} − 1
)

︸ ︷︷ ︸
≥0

]

+ max
{
ps(q̂)− ps(ql+1), 0

}︸ ︷︷ ︸
≥0

> 0.

21It is straightforward to verify that (i) rε(0) = 0, (ii) for all q ∈ Rḡ+ \ {0}, rε(q) > 0,
(iii) rε is homogenenous of degree 1 and (iv) rε is quasiconvex. These four properties imply
that rε is convex. The proof is standard and available from the authors upon request.
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A.6 Proof of Lemma 5

We only prove (i); (ii) is analogous. Consider any c ∈ C. Clearly, there exists

v ∈ V such that Qs(v) ∩ Opts(c) 6= ∅. ICs requires that ϕ(c, v) ∈ Opts(c)

and thus Qb(c) ∩ Opts(c) 6= ∅. Define l ∈ {0, . . . , n} by ql ≡ max{Qb(c) ∩
Opts(c)}.

Next, we show that Qb(c) ⊆ {q0, . . . , ql}. By contradiction, suppose

that qm ∈ Qb(c) for some m ∈ {l + 1, . . . , n}. From the definition of ql, it

follows that qm /∈ Opts(c). Moreover, by Lemma 4(iv), there exists cl ∈ C
such that Qb(cl) = {q0, . . . , ql}. Define v ∈ V by v(q) ≡ ∑

g∈Ḡ
[
εqg +

1
ε min{qg, qgm}

]
for all q ∈ Q̄. In light of Lemma 4, parts (i) and (iii), we get

that q0 ≺v · · · ≺v ql ≺v · · · ≺v qm �v · · · �v qn for sufficiently small ε > 0.

Hence, Optb(v,Qb(c)) = {qm} and Optb(v,Qb(cl)) = {ql}. From Lemma 3,

it follows that ϕ(c, v) = qm and ϕ(cl, v) = ql, which violates ICs for type c.

Finally, we show that {q0, . . . , ql} ⊆ Qb(c). The proof is by induction

with basis ql ∈ Qb(c). Consider any k ∈ {1, . . . , l} and suppose that qk ∈
Qb(c). We prove that qk−1 ∈ Qb(c). To the contrary, assume that qk−1 /∈
Qb(c). By Lemma 4(iv), there exists ck ∈ C such that Qb(ck) = {q0, . . . , qk}
and q0 ≺ck · · · ≺ck qk. Define v ∈ V as follows: for all q ∈ Q̄,

v(q) ≡
∑
g∈Ḡ

[
εqg +

1

ε
min{qg, qgk−1}+

(
pb(qk)− pb(qk−1)∑
g∈Ḡ(qgk − q

g
k−1)

− 2ε

)
min{qg, qgk}

]
.

For sufficiently small ε > 0, qk−1 �v qk �v q for all q ∈ Q\{qk−1, qk}. Hence,

Optb(v,Qb(c)) = {qk} and Optb(v,Qb(ck)) = {qk−1}. From Lemma 3, it

follows that ϕ(c, v) = qk and ϕ(ck, v) = qk−1. Since qk �ck qk−1, ICs is

violated for ck.

A.7 Proof of Lemma 6

We only prove (i); (ii) is analogous. By contradiction, suppose there exist

k ∈ {1, . . . , n− 1} and γ ∈ Rḡ++ such that

∆k
k−1 ≡

ps(qk)− ps(qk−1)

γ · (qk − qk−1)
<
ps(qk+1)− ps(qk)
γ · (qk+1 − qk)

≡ ∆k+1
k .
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Define α ≡ γ·(qk−qk−1)
γ·(qk+1−qk−1) ∈ (0, 1). Then

∆k+1
k−1 ≡

ps(qk+1)− ps(qk−1)

γ · (qk+1 − qk−1)
= α∆k

k−1 + (1− α)∆k+1
k > ∆k

k−1.

Take δ ∈
(
∆k
k−1,∆

k+1
k−1

)
. Define c ∈ C as follows: for all q ∈ Q̄,

c(q) ≡ ε(γ · q) + (δ − ε) max{γ · (q − qk−1), 0}+
1

ε
max{γ · (q − qk+1), 0},

where ε ∈ (0, δ) is sufficiently small. Figure A.3 provides a graphical illus-

tration of type c for ḡ = 2.

q1

q2

0

qk−1

qk

qk+1

δγ

(δ + 1
ε )γ

εγ

Figure A.3: [Proof of Lemma 6] Illustration of the isocost curves of type c
for ḡ = 2. The three expressions along the axes are the unique subgradients
of c in the interior of the three shaded regions.

It is easy to check that q0 ≺c · · · ≺c qk−1 and qk+1 �c · · · �c qn.

In addition, δ > ∆k
k−1 implies that qk−1 �c qk, and δ < ∆k+1

k−1 implies

that qk−1 ≺c qk+1. Since Opts(c) = {qk+1}, Lemma 5(i) requires that

Qb(c) = {q0, . . . , qk+1}. Moreover, by Lemma 4(v), there exists vk ∈ V such

that Qs(vk) = {q0, . . . , qk} and q0 ≺vk · · · ≺vk qk. Hence, Opts(c,Qs(vk)) =

{qk−1} and qk−1 /∈ Optb(vk, Qb(c)). Lemma 3 then implies that ϕ(c, vk) ∈ ∅,
which is impossible.
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A.8 Proof of Lemma 7

Consider any (c, v) ∈ C × V . By Lemma 3, ϕ(c, v) ∈ Qs(v) ∩ Qb(c).
Moreover, defining qsb ≡ min{qs(c), qb(v)}, Lemma 5 implies that Qs(v) ∩
Qb(c) = {q0, . . . , qsb}. Hence, ϕ(c, v) ∈ {q0, . . . , qsb}. Since also ϕ(c, v) ∈
Opts(c,Qs(v)), it follows that ϕ(c, v) ∈ Opts(c, {q0, . . . , qsb}). Lemma 1(i)

implies that Opts(c, {q0, . . . , qsb}) =
{

min{qsb,
¯
qs}, . . . , qsb

}
. Thus, ϕ(c, v) ∈{

min{qsb,
¯
qs}, . . . , qsb

}
. Analogous reasoning for the buyer yields that ϕ(c, v) ∈{

min{qsb,
¯
qb}, . . . , qsb

}
. Combine both expressions to obtain that

ϕ(c, v) ∈
{

max
{

min{qsb,
¯
qs},min{qsb,

¯
qb}
}
, . . . , qsb

}
. (A.12)

Without loss of generality, suppose that
¯
qs ≤

¯
qb. Then min{qsb,

¯
qs} ≤

min{qsb,
¯
qb} and thus

max
{

min{qsb,
¯
qs},min{qsb,

¯
qb}
}

= min{qsb,
¯
qb}

= min
{
qsb,max{

¯
qs,

¯
qb}
}
.

Plug into (A.12) to conclude that

ϕ(c, v) ∈
{

min
{
qsb,max{

¯
qs,

¯
qb}
}
, . . . , qsb

}
.
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