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Quantum annealing has great promise in leveraging quantum mechanics to solve combinatorial optimization
problems. However, to realize this promise to its fullest extent we must appropriately leverage the underlying
physics. In this spirit, we examine how the well-known tendency of quantum annealers to seek solutions where
more quantum fluctuations are allowed can be used to trade off optimality of the solution to a synthetic problem
for the ability to have a more flexible solution, where some variables can be changed at little or no cost.
We demonstrate this tradeoff experimentally using the reverse annealing feature a D-Wave Systems quantum
processing unit for both problems composed of all binary variables, and those containing some higher-than-
binary discrete variables. We further demonstrate how local controls on the qubits can be used to control the
levels of fluctuations and guide the search. We discuss places where leveraging this tradeoff could be practically
important, namely in hybrid algorithms where some penalties cannot be directly implemented on the annealer
and provide some proof-of-concept evidence of how these algorithms could work.
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I. INTRODUCTION AND BACKGROUND

Quantum annealing, in which combinatorial optimization
problems are mapped directly Hamiltonians and solved us-
ing sweeps of Hamiltonian parameters, has been a subject
of much interest recently. This is in part due to the wide
variety of potential applications, in a diverse range of subjects,
including for instance air traffic control [1], hydrology [2],
protein folding [3], flight gate assignment [4], finance [5–7],
and even quantum field theory [8,9]. This subject has further
attracted interest because of the experimental maturity of the
flux qubit devices produced by D-Wave Systems Inc. which
allow for large-scale experimentation.

One crucial direction in the growth of flux qubit quantum
annealing is an increase in the variety of controls which users
can be applied to the experimental quantum annealing process
on flux qubit annealers. Traditionally formulated quantum
annealing starts from an easy to prepare ground state of a
so-called driver Hamiltonian and monotonically interpolates
the Hamiltonian to a problem Hamiltonian with an unknown
ground state. However, major advantages can be gained by
using a different control pattern known as reverse annealing,
which starts in a state which is a guess for the solution of
the optimization problem, turns on fluctuations, and searches
nearby states in Hamming distance by taking advantage of
thermal dissipation [10]. Likewise, controls have been added
which allow different qubits to be annealed differently [11].

These features have proven useful in a variety of ways,
reverse annealing for instance is motivated by the ability to
implement more complex algorithms than traditional forward
annealing [12], and these algorithms have shown promising
initial experimental results. For example, it was shown in
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Ref. [6] that starting from the output of a simple classical
algorithm can lead to a large improvement over forward an-
nealing. References [13,14] showed that iterative methods
can help over non-negative matrix factorization. The work in
Ref. [15] showed experimentally that adding mutation per-
formed using reverse annealing can aid the performance of
genetic algorithms. Furthermore the simulation of the cele-
brated Kosterlitz-Thouless phase transition in Ref. [16] would
not have been possible without reverse annealing techniques,
and reverse annealing has been used to simulate quantum field
theories [9].

Similarly, anneal offsets have shown promise in synchro-
nizing the freezing of qubits [11,17]. The algorithmic use
of these controls was initially motivated by numerical work
which demonstrated that locally varying transverse fields can
mitigate perturbative anticrossings [18]. Fluctuations which
can be mitigated using these tools were shown [19] to be
important in the heavy tails which were observed in early
experimental work on D-Wave quantum processing units
(QPUs) [20]. The demonstration that anneal offsets can miti-
gate these effects came later, in Ref. [17].

The tendency of quantum fluctuations to lead to uneven
sampling of ground state manifolds has traditionally been
viewed as a drawback for quantum annealing [21–23]. How-
ever, it has been observed that when coupled with classical
techniques, this uneven sampling could be a positive feature
because the states which quantum annealers find tend to be
very different from those found by classical solvers, and there-
fore could give a more complete picture of the manifold [24]
if both were used together. In all of this previous work, the
uneven sampling was found to be due to quantum, rather
than thermal, fluctuations. While thermal fluctuations play an
unavoidable role in the experiments reported in this paper, the
tendency to favor solutions with more free spins is likely due
to the same quantum effects observed in this previous work.
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Furthermore, the tendency of the annealer to seek out
states with more free spins plays a fundamental role in the
effect observed in Ref. [16]. The role of quantum fluctua-
tions in causing uneven sampling is also important to graph
isomorphism applications which have been proposed and im-
plemented on quantum annealers [25–27] In this paper, we
explore a different advantage of this preferential search, the
fact that it tends to find states which are flexible in the sense
that some variables can be changed at little to no energy
cost.

In this paper we experimentally investigate the role which
quantum fluctuations can play in the local search which re-
verse annealing implements. This is done by using specialized
Hamiltonians which represent hard problems for the annealer
(although not necessarily hard in the computational sense) and
have sets of local minima in their energy landscape where
fluctuations are enhanced. We also show that the anneal off-
sets (controls offsets on chains or gadgets which enhance
(δs < 0) or suppress (δs > 0) fluctuations) can be used to
guide the search by locally enhancing fluctuations on some
parts of the system. The technique of locally enhancing fluc-
tuations is reminiscent of the methods proposed in Ref. [28]
and provides some experimental validation of these concepts.

To do this, we construct problems where there is a planted
solution which is guaranteed to have the lowest energy, but
which does not support strong quantum fluctuations, but fluc-
tuations can be increased by paying an energy cost. We study
structures which include both “gadgets” which involve binary
variables which, in some configurations, can be flipped with
no energy penalty. We also investigate higher than binary
variables encoded into “chains (Hamiltonian element which
encodes a discrete variable)” which have a “soft” configu-
ration where small changes have little or not effect on their
energy, but start in a configuration where a small change has a
large effect. We also study the effects of anneal offsets which
can locally increase or suppress fluctuations.

We use these fluctuations to trade off optimality in solu-
tions for flexibility, in other words find solutions which are
a bit less optimal, but for which certain variables can be
changed at little or no cost. These variables could either be
binary variables directly represented by qubits, or discrete
variables which can be encoded using a method we describe
later. We argue that this is a property which is likely to be
relevant in some real world situations and give a motivational
example of how it can be used in a hybrid quantum classical
algorithm to find a more optimal solution in the presence
of a global penalty function which is not encoded into the
annealer.

On the devices studied here (D-Wave 2000Q quantum
processing units), dissipation plays an important (often pos-
itive [29]) role in the annealing process, and the reverse
annealing techniques used here fundamentally rely on dissi-
pation. Dissipation can also play a very detrimental role, as
pointed out in earlier works such as Ref. [30]; however, when
techniques like reverse annealing are included, even devices
with more limited coherence still present opportunities for
quantum advantage [31]. Recent experiments, have suggested
that improvements can be made by reducing the noise on
the current D-Wave devices [32,33]; however, whether these

improvements would continue until the noise is reduced to
zero is an open question.

The intuition developed here, however, is likely to
carry over into the more coherent protocols proposed in
Refs. [34–36]. This is relevant because coherence rates can be
improved through a variety of routes, in both supercoducting
flux qubit architectures [32,37] and trapped ion quantum an-
nealers [38]. Furthermore, there is significant evidence that in
the fully coherent regime fast, but coherent, quenches known
as “diabatic” quantum computing may be a promising path
to a quantum advantage [31]. This is due to both adiabatic
mechanisms involving multiple energy levels [31,39] and
mechanisms related to energy transfer [40–42].

Because the experimental details are likely to be interesting
only to readers who engage with experiments on the D-Wave
devices at a relatively low level, we have reserved a detailed
description for the Appendix. In Sec. II we give the core ex-
perimental results, demonstrating how fluctuations can enable
a tradeoff between optimality and flexibility of solutions, as
well as how anneal offsets can be used to guide the search by
emulating these nonengineered fluctuations. Next, in Sec. III
we give a motivational example of how trading off optimality
and flexibility can be useful. We then discuss some of the more
detailed aspects of the experimental methods and concluded
the paper with some discussion.

II. RESULTS

In this section we discuss the results of the experiments,
which demonstrate how both existing and introduced fluc-
tuations can be used to guide the search which a quantum
annealer performs. First, we will introduce how the number of
free gadgets (gadget in the configuration which allows more
fluctuations) or soft chains (chain in a configuration where
more fluctuations are allowed) can be controlled by different
parameters, such as the value of the reversal parameter s� and
the anneal offsets δs applied to the chains or gadgets. The pa-
rameter s� controls the range of reverse annealing search with
s� = 1 corresponds to no search, s� = 0 to forward annealing.
Meanwhile δs controls offsets on chains or gadgets which
enhance (δs < 0) or suppress (δs > 0) fluctuations. Measures
of the performance of these different control settings will be
introduced in Sec. II A and further discussed in Sec. II B.
A proof-of-principle example for how guided search can be
useful will be discussed in Sec. III.

The first result which we find is that the number of free
gadgets and soft chains both can be increased by decreasing
the value of s�, in other words by increasing the range of the
search. Figure 1 shows this effect for gadgets, not only are
more free gadgets the lower value of s�, this effect is also
much stronger when the gadgets are not locked, indicating that
the free variables have a significant effect on the dynamics.
For s� � 0.45 the dynamics are highly localized and very few
if any gadgets are free, meanwhile for s� � 0.38, the behavior
is indistinguishable from a search with s� = 0.2, effectively a
global search. We have chosen a nonuniform mesh of s� values
which focuses on the regime where the reverse anneal can
lead to long-range dynamics, but does not search so far that
all information about the initial state is completely forgotten.
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FIG. 1. Fraction of observations for different numbers of free
gadgets against different values of s� averaged over all 10 Hamilto-
nians (recall that s� is a unitless quantity). Solid red (gray) lines with
“X” markers represent the mean for the plot, while the dashed line
with “+” markers is the mean of the other plot for comparison. (a)
Unlocked gadgets with no anneal offsets. (b) Locked gadgets with no
anneal offsets. The methods for creating the plots given the nonlinear
mesh are explained in the Appendix.

The experiments we have conducted can be understood
as probing a finite size precursor to a transition from the
the phase which is realized at s� = 1 and the paramagnetic
phase found at s� = 0. The exact nature of the phase which is
realized in the large system limit for s� = 1 is not immediately
clear so therefore neither is the nature of the transition and the
factors which affect its location. The fact that annealing from
the paramagnetic precursor tends not to find the ground state
provides weak evidence against this phase transition being
a simple transition into a ferromagnetic phase and is more
consistent with a spin glass [43] or a Griffiths-type phase
transition [44,45].

Figure 2 shows the same effect for embedded chains in
planted solution problems. In this case, reducing the fluctu-
ations by increasing the softness coefficient leads to fewer
soft chains. As with the gadget example, nontrivial reverse
annealing dynamics are seen for 0.38 � s� � 0.45.

Let us further observe that if we apply anneal offsets to
the locked gadgets [version of gadget element which does not
allow for more fluctuations (used as comparison point)], we
can mimic the effect of the free variables, as Fig. 3 shows
the proper choice of anneal offsets renders the distributions
indistinguishable for the locked and unlocked gadgets (Hamil-
tonian element encoding binary variables with configurations
allowing more or fewer fluctuations). We show in Sec. II B
that introduced fluctuations from anneal offsets can be as
effective if not more so than fluctuations due to truly free
variables.

The question now becomes whether anneal offsets can
similarly mimic the effect of a lower softness coefficient for
chains within the planted solution Hamiltonian. Figure 4 indi-
cates that it cannot, while a negative anneal offset parameter,
δs < 0, increases the number of soft chains at intermediate
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FIG. 2. Fraction of observations for different numbers of soft
chains against different values of reversal parameter s� averaged
over all 10 Hamiltonians (recall that s� is a unitless quantity). Solid
red (gray) lines with “X” markers represent the mean for the plot,
while the dashed line with “+” markers is the mean of the other
plot for comparison. (a) Minimum softness coefficient chains with
no anneal offsets. (b) Maximum softness coefficient chains with no
anneal offsets. The methods for creating the plots given the nonlinear
mesh are explained in the Appendix.

values of s�, it decreases the number at low s�. Therefore no
value can be used to mimic the behavior of a lower softness
coefficient simultaneously in both regimes. This is likely due
to the more complicated structure of the chain encoded dis-
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FIG. 3. Fraction of observations for different numbers of free
gadgets against different values of reversal parameter s� averaged
over all 10 Hamiltonians (recall that s� is a unitless quantity). Solid
red (gray) lines with ‘X’ markers represent the mean for the plot,
while the dashed line with “+” markers is the mean of the other
plot for comparison. (a) Unlocked gadgets with no anneal offsets.
(b) Locked gadgets with anneal offsets (δs) of up to −0.04 applied to
the gadgets. The methods for creating the plots given the nonlinear
mesh are explained in the Appendix.
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FIG. 4. Fraction of observations for different numbers of soft
chains against different values of reversal parameter s� averaged over
all 10 Hamiltonians (recall that s� is a unitless quantity). Solid red
(gray) lines with “X” markers represent the mean for the plot, while
the dashed line with “+” markers is the mean of the other plot for
comparison. (a) Chains with maximum softness coefficient and no
anneal offsets. (b) Chains with maximum softness coefficient and
offsets (δs) of up to −0.04 applied to the gadgets. The methods
for creating the plots given the nonlinear mesh are explained in the
Appendix

crete variables. We demonstrate in Sec. II B that in contrast
to the locked versus unlocked gadget example, anneal offsets
cannot make up the difference between the minimum and
maximum values of this parameter.

A. Conditional performance

Simply analyzing solution optimality is a losing proposi-
tion, since we have designed the experiments such that, by
construction, there is no way of improving beyond the starting
condition. However, there is still hope to find high-quality
solutions which meet conditions which the global solution
does not. We define this as conditional performance, the best
performance attainable which also meets certain conditions.
Because of how the gadgets and chains have been constructed,
the condition we have chosen to analyze is how many gadgets
can be in the free configuration, or chains can be in a soft con-
figuration. This is an interesting criteria since free gadgets and
soft chains both make the solution more flexible, allowing for
modifications which can be made with little or no energy cost.
This flexibility could be important in real world scenarios, for
instance, if small changes to the solution may need to be made
after the time of solving to account for unpredictable events,
or if the annealer is being used as part of a hybrid solving
technique where difficult to encode global constraints are not
included (for an example of the latter see Ref. [6]). In Sec. III
we give an example where flexible solutions can be used to
gain an advantage when an additional nonlinear constraint is
added.

For a fair comparison, we should compare the results from
the annealer with a trivial classical strategy of simply frustrat-

FIG. 5. Energy cost per free gadget for 10 different Hamiltonians
using best performing value of s� blue “+” markers are without
anneal offsets, red “X” markers are best anneal offset (including
the possibility of no offset). Red boxes and blue circles represent
mean for without and with anneal offsets, respectively, with error
bars representing standard error. Black dashed line is a guide to the
eye at a cost of 2. Energy is in dimensionless coupling units, and s�

is a unitless quantity.

ing the couplings between the gadgets or chain and the rest of
the problem, this “trivial” strategy leads to a cost per gadget
or chain of two energy units compared to the most optimal
solution. Solutions with a lower cost per gadget or chain are
in principle interesting solutions, whereas those which have
a higher energy than the trivial approach are not, since there
is a know method which will always attain a better solution
using the same starting information. Since the focus of this
work is proof-of-concept rather than benchmarking, we will
not explore whether or not there are other, less trivial, classical
algorithms which can have better conditional performance
than the annealer.

To start off, let us examine the conditional performance for
the Hamiltonian with gadgets inserted without using anneal
offsets. As Fig. 5 shows, even without anneal offsets the
annealer is able to outperform a trivial algorithm in all but one
case, in which the energy cost is more only if every gadget is
made free. When different anneal offsets on the gadgets are
allowed, the energy cost per free gadget never exceeds 1.5.

For discrete variables represented as domain walls [feature
used to encode the information on the chains (see Appendix)],
reverse annealing is also usually able to find a solution which
beats the trivial approach, in fact Fig. 6 shows that even with-
out using anneal offsets, the annealer was always able to find
a solution which was better than the trivial approach when the
soft region of the chain is flat [softness parameter (parameter
controlling level of fluctuations within soft range) s of 0].
Even when the region of the chain which is being searched out
is not flat, but a sloping minima (softness parameter s of 1), the
annealer is able to beat the trivial approach in most cases, and
always does both on average, and for all cases examined with
less than 14 soft chains. The results for the higher softness
parameter are depicted in Fig. 7. A full definition of s can be
found in the Appendix.

I have now shown that reverse annealing in combination
with anneal offsets can be effective at modifying solutions to
meet certain conditions, but have not elucidated why or how
this might happen, in the next subsection we examine potential
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FIG. 6. Energy cost per soft chain for 10 different Hamiltonians
using best performing value of s� blue “+” markers are without
anneal offsets, red “X” markers are best anneal offset (including the
possibility of no offset). Red boxes and blue circles represent mean
for without and with anneal offsets, respectively, with error bars
representing standard error. Black dashed line is a guide to the eye at
a cost of 2. Softness parameter used was s = 0 in both cases. Energy
is in dimensionless coupling units, and s� is a unitless quantity.

underlying mechanisms and discuss what the data can teach us
about anneal offset strategies.

B. Performance with anneal offsets and locked gadgets

It is now worth examining more closely the role which
quantum fluctuations play in conditional performance, by
comparing Figs. 6 and 7 (averages directly compared in Fig. 8
(left)). We are able to see that better solutions are possible with
a lower softness parameter s, the question not yet explicitly
answered is whether the same is true for the fluctuations the
free spins cause in the gadgets. To do this we need to compare
the “free” and “locked” versions of the gadgets, where free
spins are not possible, regardless of the configuration of ex-
ternal spins, which are described in detail in the Appendix. As
Fig. 8 (right) shows, in the absence of anneal offsets having
locked gadgets is very detrimental to performance, at least if
more than about six gadgets are desired to be free. On the

FIG. 7. Energy cost per soft chain for 10 different Hamiltonians
using best performing value of s� black “+” markers are without
anneal offsets, magenta “X” markers are best anneal offset (including
the possibility of no offset). Magenta boxes and black circles repre-
sent mean for without and with anneal offsets, respectively, with error
bars representing standard error. Black dashed line is a guide to the
eye at a cost of 2. Softness parameter used was s = 1 in both cases.
Energy is in dimensionless coupling units.
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FIG. 8. Average energy cost per gadget (a) and chain (b) av-
eraged over 10 different Hamiltonians. Magenta boxes and black
circles represent mean of best performance without and with anneal
offsets, respectively, and for locked gadgets (a) or softness parameter
1 (b). Red boxes and blue circles represent the same, but with un-
locked gadgets (a) or softness parameter 0 (b). Error bars represent
standard error. Black dashed line is a guide to the eye at a cost of 2.
Energy is in dimensionless coupling units.

other hand there is barely any difference once anneal offsets
are employed, suggesting that the offsets can enhance the
fluctuations and guide the search. Conversely, the effect of an-
neal offsets seems to be rather minimal for discrete variables
encoded in chains.

The first question to ask is what is the optimal value of s�

for given a desired number of free gadgets and soft chains,
and how is this affected by factors like whether or not gadgets
are locked and the softness parameter used for chains, as well
as whether or not anneal offsets are used. Figure 9 shows the
optimal value of s� for both gadgets and chains under different
circumstances. The first thing to notice from this figure is that,
perhaps unsurprisingly, s� decreases monotonically (within
statistical uncertainty) with the desired number of free gadgets
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FIG. 9. Average value of s� (averaged over 10 Hamiltonians)
used to obtain optimal conditional performance with a desired num-
ber of free gadgets (a) or soft chains (b). Red and magenta squares
represent cases where no anneal offsets are used and are unlocked
(softness parameter 0) and locked (softness parameter 1), respec-
tively. Blue and black circles represent represent the cases where
anneal offsets are used and and are unlocked (softness parameter 0)
and locked (softness parameter 1), respectively. Error bars represent
standard error. In all cases the largest value of s� was taken in the
event of a tie. Insets are the same plots but zoomed out. Energy is in
dimensionless coupling units.
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FIG. 10. Average anneal offset δs taken for 10 Hamiltonians.
Blue [red (lighter gray)] triangles represent Hamiltonians with un-
locked (locked) gadgets. While black [magenta (darker gray)] stars
represent Hamiltonians with chains with a softness parameter of 0
(1). Error bars represent standard error. Note that positive offsets
indicate that fluctuations are suppressed, relative to the rest whereas
negative indicates that they are enhanced. In the event of a tie, the
lowest numerical value of the offsets which gave the tying energy
were taken. Energy is in dimensionless coupling units.

or soft chains, this behavior makes intuitive sense, because
changing more variables requires a broader search. Further-
more, constant with Fig. 8, the values of s� based on whether
or not anneal offsets are used differ much more for gadgets
than for chains, indicating that allowing anneal offsets greatly
changes the optimal strategy for gadgets, and does not change
it as much for chains. Furthermore, except for when about
14 or more free gadgets are desired, the optimal value of s�

when anneal offsets are used is almost the same for locked and
unlocked gadgets, supporting the hypothesis that increased
fluctuations from anneal offsets can act as an effective proxy
for truly free variables.

To better understand the role anneal offsets are playing,
it is worth examining how the best choice of anneal offset
depends on the number of free gadgets, or soft chains desired.
As Fig. 10 shows, the best strategy is indeed to use stronger
offsets in the locked gadget case, and to use them to enhance
rather than suppress fluctuations on the gadgets, suggesting
that there is indeed a mechanism where offsets artificially
guide the search by making the locked gadgets behave as if
they have free qubits.

Figure 10 further shows that domain wall encoded dis-
crete variables show very different behavior to the gadgets,
in particular, up to statistical uncertainty, the offsets used
in the discrete variable case monotonically approaches zero
as more soft chains are desired, while for gadgets with free
binary variables, there is nonmonotonic behavior, and a trend
toward locally enhancing fluctuations if more free gadgets are
desired. This difference is likely due to the more complex
structure of the domain wall encoded variables, leading to
less tolerance to fluctuations before they no longer faithfully
encode the intended variable.

III. MOTIVATIONAL EXAMPLE FOR FLEXIBLE
SOLUTIONS

Now that it has been shown that the underlying dynamics
of quantum annealers can be used to find solutions which are

more flexible, it is worth demonstrating an example where
such solutions could be useful. To do this, let us consider a
problem which natively fits onto the chimera graph, but is also
subject to global nonlinear penalty. Such global penalties are
likely to be encountered in realistic problems, and for example
may arise when a shared resource is being used for different
purposes and there is a penalty which depends on the total
amount required. A simple example of how such a constraint
could arise in the real world is minimizing the total cost of a
project if a company owns X number of a piece of equipment,
so there is no penalty for a solution which uses any number
up to X ; however, there is a cost associated with renting every
additional piece of equipment beyond the original X .

While techniques are known to implement global nonlinear
penalties on quantum annealers, for example, those proposed
in Refs. [46,47], these techniques require a fully connected
graph and number of auxiliary qubits equal to the number of
original qubits, and such an encoding is not practical for large
problems on existing quantum annealers. Consider first an al-
ternative strategy for solving such problems: first, encode the
entire problem except for the global penalty onto the annealer
and use reverse annealing techniques to find solutions with
various levels of trade-off between flexibility (for example,
measured by the number of free gadgets) and optimality. We
then perform greedy optimization as described in the Methods
section starting from the best solution found at each level of
flexibility. This greedy optimization is performed against the
entire problem including the nonlinear penalty.

Before considering the results for the QPU-sized problems
used in earlier demonstrations, it is worth demonstrating this
approach with a simpler 16-qubit example. To do this, con-
sider the Hamiltonian used in Ref. [29], which is in turn
similar to the Hamiltonian considered in Ref. [48]. This
Hamiltonian has both a local minimum where eight of the 16
qubits are “free,” able to exist in either the zero or one state
without incurring an energy penalty, and a global minimum
where none of the qubits are free; the (unique) ground state
and first excited state manifold of this Hamiltonian are de-
picted in Fig. 11. At least for short run times, the close avoided
crossings in these devices mean that quantum annealers will
typically find the false minimum with more free qubits due
to a close avoided crossing relatively late in the annealing
schedule [29].

We now consider the ability of the solution to adjust to
nonlinear penalties of different strength. The global nonlinear
penalty we elect to use is nonlinear function of the Hamming
distance D from a random state

E (D) = 1 − exp

{[
D − (

n
2 + √

n + 1
)]2

n + 1

}
, (1)

where n is the number of qubits involved in the Hamiltonian.
The states which the annealer returns will be a Hamming
distance D = n

2 away from most random states, therefore this
penalty offsets the Gaussian from the point where a typical
solution will sit by its standard deviation,

√
n + 1. This will

guarantee that the nonlinear penalty will have a substantial
gradient for typical starting states.

Equipped with this definition let us consider the results of
adding a nonlinear penalty followed by a greedy search for
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FIG. 11. The 16-qubit gadget used in Ref. [29]. Edges represent
ferromagnetic coupling of unit strength, and circles represent qubits.
Red (and dotted borders) indicates that a qubit is subject to a field
of +1, while magenta (and dashed borders) indicates −1 and gray
(solid borders) indicates no field. In the top figure diagram the arrows
indicate the unique ground state which satisfies +1 fields on the outer
qubits but frustrates the −1 field. The bottom diagram is the first
excited manifold, where a superimposed 0 and 1 indicates that a qubit
is “free” and can take either value without affecting the energy.

the 16-qubit problem mentioned earlier. As Fig. 12 shows, it
is much easier for the greedy search heuristic to compensate
for the global nonlinear penalty starting from the higher en-
ergy but more flexible solution which the annealer finds as
compared to the true minimum; the result is that for moderate
penalty strength, the more flexible state is a superior choice
for a starting configuration.

FIG. 12. Energy in dimensionless coupling units after applying a
nonlinear penalty with a strength given by the x axis and performing
greedy search. The gold (lighter gray) line shows results for starting
from the true minimum, while the blue (darker gray) line shows
the result starting from the higher energy, but more flexible false
minimum the annealer typically finds. The dashed red line is the
energy of the true lowest energy state. Ten thousand samples were
taken for each point on this plot, and statistical error bars are smaller
than the depicted lines.

FIG. 13. Energy in dimensionless coupling units of the best so-
lution (where planted solution energy is defined to be zero) with a
different number of free gadgets versus nonlinear penalty strength.
The color encoding of the number of gadgets is depicted in the inset.
This plot is for Hamiltonian number 7 and for the best solution
found including the use of anneal offsets, although it is typical of the
behavior seen in both cases. The green (dark gray) line is included as
a visual aid and follows the state with zero free gadgets. These data
were averaged over 300 choices of random states, and in cases where
multiple states were tied for the lowest energy for a given number of
free gadgets, a new state was chosen at random for each sample.

A. Synthetic use case: Optimizing with global
nonlinear penalties

We now consider what happens when we apply a nonlinear
penalty followed by greedy search to states with different
numbers of free gadgets found for QPU scale problems. While
neither the original problem nor the nonlinear penalty is based
on anything which one might encounter in the real world,
recall that situations where a problem containing a nonlinear
penalty must be solved are realistic, and this can therefore be
considered a “synthetic” use case for a quantum annealer, not
directly based on an application, but with a structure which
is likely to be encountered in the real world. We start by
considering the best solutions the annealer could find with
different free gadget numbers for a single Hamiltonian, in this
case Hamiltonian number 7. As Fig. 13 shows, as the penalty
strength is increased to a moderate value, the best solution is
no longer obtained from starting a greedy search at the true
energy minimum, but from starting with a more flexible state
with more free gadgets. For these experiments we consider
only the best solution found with each number of free gadgets,
choosing at random in the event of a tie. All greedy searches
are performed on the unlocked gadgets, where having free
variables is likely to improve the solution quality when the
nonlinear penalty is added.

From Fig. 14 we can see that the behavior seen in Fig. 13
is indeed typical of results found both with and without an-
neal offsets, although, unsurprisingly, the cases where anneal
offsets are used perform better on average since lower energy
solutions can be found by using anneal offsets.

Finally, consider the optimal number of free gadgets in the
starting state for different Hamiltonians and penalty strengths.
Figure 15 shows that, for both the strategy using anneal offsets
and the one which does not, the typical number of free gadgets
in the best performing state increases for a while with penalty
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FIG. 14. Energy difference in dimensionless coupling units be-
tween greedy search performed with a nonlinear penalty starting
in planted solution (with no free gadgets) and the best performing
state found via reverse annealing. Panel (a) considers only solutions
found without using anneal offsets, while panel (b) is the same but
including offsets. The colored lines represent the average over all
10 Hamiltonians, and the gray squares represent individual Hamilto-
nians. Panel (c) shows only the averages, with the blue (dark gray)
circles representing the method inducing offsets and red (lighter gray
than the circles but still darker than background) squares without.
These data were averaged over 300 choices of random states, and
in cases where multiple states were tied for the lowest energy for a
given number of free gadgets, a new state was chosen at random for
each sample. Penalty strength is in dimensionless coupling units.

strength and then settles to an average across all Hamiltonians
of around seven free gadgets. While it is possible that the av-
erage number of free gadgets is slightly higher for the strategy
using offsets, the difference is relatively small. It is however
clear that for the solutions which used anneal offsets, there is a
much wider variety of solutions and, in particular, a tendency
to use some solutions with many more free gadgets.

Recall that the gadgets and chains were observed to be-
have qualitatively differently in the previous section, so the
results from gadgets may or may not carry over to chains.
The purpose of this section is to provide proof-of-concept for
the usefulness of fluctuation guided behaviors, not to provide
exhaustive evidence of how they can be used, so we will not
analyze these in detail. The data associated with this paper
however are publicly available [49], and analysis of the chain
data from the perspective of hybrid algorithms, similar to what
we have done here for gadgets, is likely to produce interesting
results.

IV. METHODS

All reverse annealing experiments were performed using
the maximum allowed annealing rate on both the forward and
reverse anneal, and at this rate the entire (forward) anneal
would be completed in 5 μs. All experiments used a hold
time τ of 20 μs. All annealer calls were set to perform 1000
individual runs. The reverse annealing experiments presented
here were performed using the D-Wave Matlab API between
27 October 2018 and 30 October 2018 on a commercially
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FIG. 15. Top: number of free gadgets in optimal solution for all
10 Hamiltonians versus penalty strength, shading indicates number
of Hamiltonians where the same number of free gadgets are optimal
for the same penalty strength; a legend for the shading levels appears
in the middle of the figure. The colored lines are the mean. Panel
(a) is the best solutions not including anneal offsets, and (b) is
including them. (c) The mean from the top two plots shown on the
same axis to compare them. Penalty strength is in dimensionless
coupling units.

available D-Wave 2000Q QPU with QPU time purchased by
BP plc. Data are publicly available at Ref. [49].

Greedy optimization was performed by checking all single
bit flips and performing the one which reduces the energy the
most, choosing at random in the event of a tie. The greedy
procedure is repeated until no single bit flip will reduce the
energy.

All plots were produced in the Python language [50] and
the matplotlib plotting package [51] l code used to produce
the plots and perform the experiments is available from the
same public repository as the experimental data. Heat-map
plots with nonlinear grids were plotted such that the center of
each cell aligns with the value of each axis. The NumPy [52]
and SciPy [53] packages were also used as well as jupyter
notebooks [54] and the IPython interpreter [55].

V. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated how fluctuations can
guide quantum annealers to trade off optimality for more
flexible solutions, as well as motivated cases where such a
tradeoff could be useful. The particular useful case we focus
on is when a problem involved global penalties which cannot
practically be implemented on the annealer. While in the past
the tendency of quantum annealers to find solutions where
fluctuations are stronger has been seen as a weakness, for
instance, in inhibiting the ability to uniformly sample ground
states, we demonstrate ways in which it could be useful.

In addition to demonstrating that the existing fluctuations
on the annealer can help guide searches toward more flexible
states, we show that locally offsetting the annealing schedule
of the qubits can be used to guide the search. This provides
experimental motivation for methods like those proposed in
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Ref. [28], which incorporate bitwise uncertainty into algo-
rithms.

Realistic problems may have chain like structures if the
encode discrete variables, but will not contain gadgets like the
ones discussed here. Even for problems which encode discrete
variables, it will not necessarily be obvious which chains
should have the offsets applied. Identifying areas where there
is more potential for flexibility to be increased using anneal
offsets in the setting of either binary or higher-than-binary
discrete variables is an interesting problem, but one which
is beyond the scope of the current work. Techniques could
include experimental analysis to see where soft chains or free
qubit variables appear and offset those parts of the problem
Hamiltonian, but testing would need to be done to determine
whether this approach is useful or practical.

While not explored here, it is likely that analogous effects
could be seen in quantum inspired algorithms based on spin-
like systems, for example, quantum Monte Carlo techniques
[56] which should show analogous effects to the fluctua-
tions observed here. In fact, the proof-of-concept numerics
in Ref. [28] exhibited that fluctuations can attract quantum
Monte Carlo dynamics preferentially to some minima over
others. This work has introduced alternative ways in which
quantum annealers and related algorithms can be used, be-
yond directly finding the most optimal solution, an important
direction in hybrid quantum-classical computing. By laying
the groundwork for how modifying fluctuations locally can
be used algorithmically to guide a search, the work here opens
a path to using these modified fluctuation strengths algorith-
mically, in a similar vein to currently used reverse annealing
techniques, but guiding the direction of the search, rather than
the starting point.
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APPENDIX: EXPERIMENTAL SETUP

These experiments involve both specially engineered
Hamiltonians to construct a search space with the necessary
properties and the use of advanced control features of the
QPU, both anneal offsets and reverse annealing, which are
used in combination. We first describe how the Hamiltonians
are constructed, and than how they are used in the actual ex-
perimental protocols. Before we do this, it is useful to provide
some background on the operation of the quantum annealer.
In the simplest implementation of its protocol, QPU realizes a
transverse field Ising Hamiltonian

H = −A(s)
∑

i

Xi + B(s)Hprob, (A1)

where A(s) and B(s) are functions of a control parameter 0 �
s � 1, which are nonlinear in general but could also be linear
in principle, Xi is a Pauli X acting on qubit i, and Hprob is a

programmable Ising problem Hamiltonian,

Hprob =
∑

i j

Ji jZiZ j +
∑

i

hiZi, (A2)

where Zi is a Pauli Z acting on qubit i; the details of how Ji j

and hi are chosen is discussed later.
The QPU is designed so that |A(0)

B(0) | � 1 and |A(1)
B(1) | � 1,

the ratio |A(s)
B(s) | decreases monotonically with s, and neither

A nor B schange sign during the protocol. We do employ a
more advanced feature known as anneal offsets, which slightly
changes the form of Eq. (A1) and will be discussed in due
course.

1. Hamiltonian construction

The goal of the experiments in this paper are to study the
ability of a quantum annealer to use fluctuations to find high-
quality solutions which are flexible in the sense that changing
some elements of the solution will not affect the energy of
the solution or will affect it only very little. Since we am not
developing this study as a benchmark against classical meth-
ods, we have focused on designing Hamiltonians which are
difficult to solve for the annealer and have a known solution,
but which are not necessarily computationally hard problems.
To this end, the problems used here build on the planted
solution construction from Ref. [57], which yields limited
computational hardness [58,59] (for state-of-the-art solution
planting techniques, see Ref. [60]). Furthermore, we use many
more clauses than would be desirable to construct the hardest
problems in the interest of ensuring that the problem graph is
connected and to reduce the degeneracy of the ground state
manifold.

The methods which we use, proposed in Ref. [57],
construct problems with planted solutions by generating over-
lapped frustrated loops on the edges of the underlying graph
via random walks which terminate when they intersect their
own path. We use planted solution problems with loop size
less than six and 8000 loops on a QPU with approximately
2000 qubits (some of which are reserved for specialized
features as discussed later in this section), with a coupling
arrangement known as a chimera graph. The details of this
coupling graph are not important to understand this study,
but a full description of the graph can be found in Ref. [61].
Figures 17 and 18 depict chimera graphs with a 3×3 grid of
eight qubit unit cells, and the 2000Q has the same eight qubit
unit cells arranged in a 16×16 grid.

In addition to having a known planted solution, the experi-
mental Hamiltonians also need features which can explore the
ability of the annealer to use fluctuations to find more flexible
solutions. Since we intend to study the ability to find more
flexible solutions in both a binary and discrete setting, in other
words both in the setting where a variable can take two values
and in the setting where it still takes a finite number of discrete
values, but can take more than two, two different strategies
need to be employed: gadgets where variables are allowed
to become “free” should be embedded, henceforth referred
to as “gadgets,” as well as chains of qubits which encode
discrete variables using the domain wall encoding described
in Ref. [62], henceforth referred to as “chains.”
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FIG. 16. A free spin gadget inserted into a planted solution
Hamiltonian. Green circles (dark gray) and dashed edges indicate
qubits which are not part of the gadget, while black qubits indicate
the active qubits within the gadget, with black edges indicating
ferromagnetic couplers of unit strength and red edges indicating
antiferromagnetic couplers of unit strength. Gray circles and edges
indicate the unused couplers and qubits within the gadget. Pink
(gray) is used as a guide to the eye.

Fortunately, the planted solution construction does not re-
quire a full chimera graph to be effective. This means that the
construction can be performed with some qubits reserved for
either gadgets or chains, and these features can be added in
later. The gadgets are constructed with the following proper-
ties:

(1) Couplings to neighboring qubits within the planted
solution construction

(2) A unique ground state when all external qubits which
the gadget couples to are in the |0〉 (or |1〉) configuration

(3) Degenerate ground state with free variables in cases
where the external couplings do not agree, and therefore the
planted solution components may be frustrated, and these
have equal energy to the unique state

(4) Occupy a single chimera unit cell
Figure 16 depicts a gadget which obeys these properties

embedded into a larger problem Hamiltonian. The top row of
Fig. 17 depicts the lowest energy states of this gadget when
external qubits either agree of disagree. To be able to separate
the effects of fluctuations due to free spins from other effects,
we have also developed a “locked” version of the free variable
gadget; in this version some of the couplings are reduced
to half the strength of the others so that the lowest energy
state when the external variables do not agree no longer con-
tains free variables; these are depicted on the bottom row of
Fig. 17.

To embed discrete variables, we use the domain wall en-
coding from Ref. [62] to encode a variable with 16 possible
values within a 15-qubit chain with unit ferromagnetic cou-
pling strength. For completeness, we review the domain wall
encoding at the end of the Appendix. We use the field controls
of the annealer to control the potential on this chain such

FIG. 17. Top: Minimum energy state of free variable gadget with
different configurations of external variables; left is where all exter-
nal variables agree, right is where one disagrees. Bottom: Same but
for locked gadget. Gray edges and circles indicate unused couplers
and qubits, green indicates (dark gray) external qubits, red (dark
gray, between pairs of dark nodes), and black edges indicate anti-
ferromagnetic and ferromagnetic coupling, respectively, while thick
edges indicate coupling of unit strength and thin indicate coupling
with a strength of 0.5. Superimposed 1 and 0 characters indicate free
variables. Slashes indicate frustrated couplings, with gray slashes
indicating multiple possibilities depending on the values of the free
variables.

that the 0 value of the variable (all qubits are in the |0〉
configuration) has the same energy as the minimum energy in
a “soft” region which corresponds to seven consecutive values
of the discrete variable which are randomly chosen to start
anywhere from two to six (recall that we use a convention
where the allowed values run from 0 to 15). The chain is
coupled to to the rest of the problem Hamiltonian on the first
and last qubit of the soft region, such that the planted solution
must be frustrated if the domain wall is in the soft region.
All other values of this variable have an energy which is two
energy units higher than either the minimum of the soft range
(range of values where more fluctuations are allowed) or the 0
state of the variable. Henceforth we refer to a chain where the
domain wall is in the soft region as a “soft chain.” The qubit
chain used to encode the domain wall variable is randomly
placed within the planted solution problem by performing 15
steps of a non-self-intersecting random walk on the hardware
graph; an example of a chain within the larger Hamiltonian is
depicted in Fig. 18.

The potential within the soft range is always equal to
the 0 value of the variable at the midpoint m of the range.
Away from the midpoint the potential increases such that
E (m + j) = E (m) + s| j/2|. Lower values of s allow for more
fluctuations since it costs less energy for the domain wall to
move away from the center of the chain.

For both the gadget and chain versions of the problem, 10
Hamiltonians were created at random. Other than the reduced
strength of the gadget couplings, the free and locked gadget
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FIG. 18. Chain encoding domain wall variable placed within a
planted solution problem. Black circles indicate qubits which are
part of the domain wall encoding but not within the soft range, blue
(darker gray) is a guide to the eye to indicate the soft range and the
externally coupled qubits at each end of the range. Green (lighter
gray) indicates those outside of the domain wall variable. Solid edges
indicate ferromagnetic coupling of unit strength, while dashed edges
indicate couplings which are part of the planted solution encoding.
Pink (gray) is used as a guide to the eye.

runs use the same 10 Hamiltonians. Each Hamiltonian incudes
either 15 gadgets or 15 chains.

2. Annealing protocol

The key feature of the Hamiltonians constructed for these
experiments is that they have known planted solutions. This
is crucial for the purpose of this study: to explore the ability
of the device to trade off between optimality and flexibility,
we need to start off in a state which is known to be optimal.
Fortunately the reverse annealing feature [10] allows for a
search around the planted (or any other classical) state. The
reverse annealing feature uses a protocol which starts the QPU
in a state determined by the user at s = 1, anneals to a value s�

held for a time τ , and then anneals back to s = 1 as depicted
in Fig. 19. Thermal dissipation allows the device to seek out
lower energy states during the reverse annealing protocol.

In addition to the reverse annealing feature, we also make
use of another feature called anneal offsets [11]. The function
of this feature is to offset the annealing parameter on different
qubits. In particular, we offset the parameter values of either
the chains or the gadgets (a subset of qubits we call g), which
makes the Hamiltonian

H = −A(s)
∑
i/∈g

Xi + B(s)

( ∑
i/∈g, j /∈g

Ji jZiZ j +
∑
i/∈g

hi

)

− A(s + δs)
∑
i∈g

Xi + B(s + δs)

×
( ∑

i∈g, j∈g, j /∈g

Ji jZiZ j +
∑
i∈g

hi

)
, (A3)

t

1

s,
s
−

δs

τ

s�

FIG. 19. Schematic of reverse annealing protocol; solid line is
the value of s for qubits not in gadgets or chains (or all qubits in no
offset case). Dot-dashed line is the schedule for chains and gadgets
with positive δs, the dashed line is the same for negative δs. The
quantity s is unitless, and time is typically in units of μs.

where i ∈ g means that qubit i belongs to a gadget or chain
and i /∈ g means that it does not. Effectively, for a positive
value of δs the strength of the couplings and longitudinal field
terms within g as well as coupling between g and the rest of
the qubits is increased, while the transverse field within g is
decreased. For negative g the opposite happens. In simplified
terms, positive δs leads to weaker fluctuations with g, while
negative δs leads to stronger. Since the original purpose of the
anneal offset purpose was to suppress fluctuations, previous
work has focused most strongly on positive δs.

For all experiments reported here, the anneals in the reverse
annealing protocol were performed at the maximum allowed
rate, which traverses from s = 0 to s = 1 in 5 μs and a hold
time τ of 20 μs was used. As a comparison point, the energy
scale of these devices leads to natural frequencies in the GHz
range. The same parameters were used for chains and gadgets.
For all values of s�, we used a linearly spaced grid of 11 values
of δs evenly spaced between −0.2 to 0.2, inclusive of the end
points. Since not all qubits are capable of the full range of
offset values, the maximum magnitude allowed (positive or
negative) value was used when the desired value fell outside of
the range. Because we wanted to study extreme values of s� as
well as studying more values within a region of interest where
the data were observed to change rapidly with s�, we chose
the nonuniform grid of 19 values of s� depicted in Fig. 20.

3. Review of the domain wall variable encoding strategy

The domain wall encoding strategy used here was origi-
nally developed to undertake the research described in this
paper, since it can encode discrete variables on a chimera
graph without requiring minor embedding unlike the more
traditional one-hot strategy. Because the domain wall encod-
ing strategy has been observed to significantly out perform
the one-hot strategy on several key metrics related to em-
bedding on realistic hardware graphs, a full description of
this technique as well as numerical evidence of its superior
performance has been published elsewhere [62], and an ex-
perimental study of its comparative performance to one-hot is
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FIG. 20. Grid of values of s� used in this study; dotted lines
are guides to the eyes to show the region of higher interest, be-
tween about s� = 0.4 and s� = 0.5. Both quantities in this plot are
unitless.

forthcoming [63]. This technique has also been used in solv-
ing quantum field theory problems using quantum annealers
[8].

In the interest of making the current paper self-contained,
we review the basics of the domain wall encoding and some
of its key features. As Fig. 21 (top), shows, the domain wall
encoding is produced by creating a linearly connected chain
of n − 1 qubit with frustrating fields on each end such that
there are n total possible domain wall locations, including
frustrating the the fields at either end, which can be thought of
as couplings between the terminal qubits and “virtual” qubits
which are constrained to take either the 1 or 0 value. As was
discussed in detail in Ref. [62], any interaction between two
discrete variables can be realized using two body couplings

FIG. 21. Top: Encoding of a discrete variable as a domain wall
position, where the domain wall is depicted in blue, real qubits in
green, and “virtual” qubits which are fixed are depicted in pink
with dotted borders. Bottom: A binary variable in the domain wall
encoding reduces to the standard qubit representation.

between the qubits in the domain wall encoding, and arbitrary
penalties can be realized by putting fields (single body terms)
on the chain. Moreover, the domain wall encoding of a binary
variable simply reduced to a normal qubit representation, as
depicted in Fig. 21 (bottom).

I am interested in simple couplings which force frustration
in the planted solution problem if the domain wall variable
takes one of its soft values, while simultaneously avoiding
the need for minor embedding. To do this, we place a single
ferromagnetic coupler between the qubits encoding the dis-
crete variables and the other qubits at each end of the soft
region. For the additional energy penalties on the chain, we
make use of the fact that a single (nonextreme) value of the
discrete variable can be penalized using a term of the form
δi = 1

2 (Zi − Zi−1). For the extreme values can be penalized in
the same way, but omitting terms which correspond to virtual
qubits. This method is described in more detail in Ref. [62],
and software for realizing these encodings can be found at
Ref. [64].
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[56] R. Martoňák, G. E. Santoro, and E. Tosatti, Quantum annealing
by the path-integral monte carlo method: The two-dimensional
random Ising model, Phys. Rev. B 66, 094203 (2002).

[57] I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer, and D. A.
Lidar, Probing for quantum speedup in spin-glass problems
with planted solutions, Phys. Rev. A 92, 042325 (2015).

[58] A. D. King, T. Lanting, and R. Harris, Performance of a quan-
tum annealer on range-limited constraint satisfaction problems,
arXiv:1502.02098.

[59] F. Hamze, D. C. Jacob, A. J. Ochoa, D. Perera, W. Wang, and
H. G. Katzgraber, From near to eternity: Spin-glass planting,
tiling puzzles, and constraint-satisfaction problems, Phys. Rev.
E 97, 043303 (2018).

[60] D. Perera, I. Akpabio, F. Hamze, S. Mandra, N. Rose, M.
Aramon, and H. G. Katzgraber, Chook—A comprehensive suite
for generating binary optimization problems with planted solu-
tions, arXiv:2005.14344.

[61] D-Wave Systems Inc, D-wave QPU architecture: Topologies,
https://docs.dwavesys.com/docs/latest/c_gs_4.html.

[62] N. Chancellor, Domain wall encoding of discrete variables
for quantum annealing and QAOA, Quantum Sci. Technol. 4,
045004 (2019).

[63] J. Chen, N. Chancellor, and T. Stollenwerk, Experimental tests
of a domain wall encoding of discrete variables (unpublished).

[64] N. Chancellor, Code associated with paper Domain wall en-
coding of integer variables for quantum annealing and QAOA,
https://doi.org/10.15128/r27d278t029.

062606-14

https://www.scipy.org/
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1103/PhysRevB.66.094203
https://doi.org/10.1103/PhysRevA.92.042325
http://arxiv.org/abs/arXiv:1502.02098
https://doi.org/10.1103/PhysRevE.97.043303
http://arxiv.org/abs/arXiv:2005.14344
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.15128/r27d278t029

