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Abstract

The Covid epidemic has provided an excellent example of the need to call on a

wide variety of statistical tools to address a global problem, and can give stu-

dents insights into some of the dimensions of data science. Here, we describe

some of the characteristics of data that students encounter as citizens. We set

out some teaching ideas, which focus on a few familiar core ideas—such as

exponential growth, estimation, interpreting graphs, measurement, and

sampling—set in the authentic context of containing a pandemic. In the final

section, we sketch some more ideas on activities to develop student skills

essential for civic engagement in a data-rich world.
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1 | INTRODUCTION

A tenant of epidemiology is that disease “outbreaks are
inevitable, but epidemics are optional” [1], where
‘optional’ here means they can be prevented by appropri-
ate action. A large number of people—3 million people at
the time of writing (April 2021)—had died as a result of
SARS-CoV-2 or Coronavirus Disease 2019 (hereafter,
Covid). Every unavoidable death is a personal tragedy.
The epidemic has had an impact on the daily lives and
circumstances of billions of people and will continue to
do so for the foreseeable future. Some governments
imposed Draconian laws on their citizens and some did
not. Citizens world-wide, if not impacted directly by ill-
ness or death, have been asked at the very least to change
their behavior, often at considerable cost to themselves
and their families. Within every country, citizens have
had to make decisions about their own behavior, within

these government frameworks across the world. A very
wide variety of approaches has been taken to dealing with
the pandemic—life-and-death decisions have been made
on the basis of less than perfect information, uncertain
models, and rapidly changing knowledge and events.
Covid has posed a unique set of challenges; initially,
everyone was ignorant about key aspects of the disease:
how dangerous was it? how quickly could it spread? what
could be done to reduce the damage caused? These are
exactly the sorts of questions that provoked the invention
of statistics. This is the heartland of data science.

Engel and Ridgway [3] identify some key features of
information relevant to social issues that citizens encounter.
Data have properties that should be encountered in all intro-
ductory statistics courses, including: choices of measures
and decisions about the operationalization of concepts (eg,
“Covid deaths” or “poverty”) are contested; phenomena are
multivariate; there are interactions between variables, and
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non-linear relationships are typical, not exceptional; data are
often aggregated; and indicator systems are common. Rich,
new methods of representation and analysis continue to
emerge. The variety of data types continues to increase; data
are collected in innovative ways; new data visualizations
and new analytic tools continue to be invented.

Data science is about using statistical methods, data,
and technical tools to solve problems. It can involve creat-
ing and implementing more tools when we need them.
Data science is characterized by thinking about ways to
measure, the consequences of different decisions, making
judgements about the quality of available evidence, and
making predictions. Here, we set out some teaching ideas,
which focus on a few familiar core ideas—such as expo-
nential growth, estimation, interpreting graphs, measure-
ment, and sampling—set in the authentic context of
containing a pandemic. In the final section, we sketch
some more ideas on activities to develop student skills
essential for civic engagement in a data-rich world.
Teachers will be sensitive to the needs of their own stu-
dents. There are clear advantages in illustrating the use-
fulness of data science to society by using authentic data
relevant to a pressing problem. However, for some groups
(especially if individuals have been directly affected by
Covid), it might be more appropriate to use data relevant
to earlier pandemics such as ebola, influenza, or smallpox.

2 | CORE IDEAS

2.1 | Plausible estimation

The essence of plausible estimation is to derive an esti-
mate that is good enough for a decision to be made when
necessary, such as under time or information constraints.
Interval estimates are much better than point estimates,
and should be accompanied by a description of the
assumptions that have been made. Covid planning has
involved a great deal of plausible estimation. For example:

How much personal protective equipment (PPE)
will be needed by health workers in your country
over the course of 1 month?

If every citizen uses a disposable mask every day,
what will be the weight and volume of the waste
each week?

Suppose you have an infinite supply of an effec-
tive vaccine. How long would it take to inoculate
everyone in your country?

In each case, one needs definitions and “facts” as
starting points. Who is to be counted as a “health
worker,” and how many people does this include? How
many masks and pairs of gloves does one person need
each day? How many people are available who are com-
petent to give injections? Start with strong simplifying
assumptions—for example, in the vaccine question,
assume that everyone will be able to attend for vaccina-
tion; and that vaccination centers will function perfectly,
24 h every day. Then, add more realistic assumptions—
bout personal mobility, geography, and the availability of
competent staff. In 2001, Swan and Ridgway [14] created
and gave detailed lesson plans to support teaching about
(and assessment of) plausible estimation.

2.2 | Exponential growth

Here is a deal for you—On New Year's Eve, I'm
going to give you £1 billon! Yes, really! All I want
back is £1 on first January, £2 on Jan second, £4
on Jan third, £8 on Jan fourth… until the end of
the month. Waddaya say?

Time to reach for a spreadsheet… Students can be
asked to create a table and graph to display deterministic
exponential growth over days for different exponents. On
screen, it is a simple matter to create a display where the
user can change the exponent, and see the deterministic
effects in both the table and the graphic.

Table 1 shows deterministic exponential growth for dif-
ferent exponents. The column headed £, where the payment
doubles every day shows that, after 31 days of daily re-pay-
ments, the person offering the deal will be more than £1 bil-
lion ahead (the column total—which is £2 147 483 647—
minus the original payment). So the response to the offer
should be I've got a better idea—let ME give YOU the billion…

2.2.1 | On to Covid

The £ column corresponds to a reproduction rate (R0) of
exactly 2; that is, each infected person infects 2 more
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people the next day. The next three columns in Table 1
are introducing ideas of disease spread. Simplistic deter-
ministic assumptions have been made. Starting with
10 people, if there is perfect transmission, and every
infected person infects exactly 5 others (R0 = 5) by the
next day, day 14 would see more than 12 billion newly
infected people; that is, the world population (about 8 bil-
lion people) would catch the disease within 14 days.
There are some big Ifs here that will be explored later. If
each infected person infects exactly one other person
(R0 = 1), then the total number of infected people

increases linearly by 10 each day; if the exact infection
rate is less than 1 (R0 = 0.9), on day 30, the number of
new cases falls below 0.5 (0.47) and continues to rapidly
fade away.

Apart from the absurdity of considering fractions of
people, such a model for the spread of infection might
appear too simplistic to be useful, but in the case of Covid
it has its uses, with the above results a good approximation
on average, with R0 the average number of people infected
by each infected person. A general model for epidemics
must take into account many factors including: the viru-
lence of the virus, the nature of the contacts between peo-
ple in terms of spatial distribution and frequency, the
nature of the contacts in terms of the circumstances of
meeting (indoors or outdoors, wearing/not wearing masks
etc.), and other chance factors including “virus load", indi-
vidual immunity and the natural variation of infection
spread by droplets or aerosol. Models of infection usually
need to consider both the number of infected people and
the number of those susceptible to infection, and the
chance that a contact between an infected person and a
non-infected person produces a new infected person. How-
ever, in the case of Covid, everyone was susceptible and the
virus is easily transmitted, so the simplest model for an epi-
demic provides some answers. This model assumes an
unlimited number of susceptible people, with R0 the aver-
age number infected by each infected person. Although the
same R0 can arise from different assignation of probabilities
over the number of possible people infected by each
infected person, it is certain that the epidemic will die out if
R0 < 1, and grow indefinitely if R0 > 1. How quickly either
of these happens depends on both the value of R0, and the
distribution of probabilities. Simple models of this are very
easy to explore and simulate by school students, as
explained, for example, by Helen MacGillivray [7]. Hence,
we see how important it has been to try to estimate R0, and
to reduce it by good hygiene, reducing contact, and finding
and applying vaccines.

Table 1 assumes that the number of new infected
people each day increased by a factor of exactly R0. If,
instead, we assume that R0 is the mean number of
new infected people per day from each infected person,
and consider R0 = 0.9, but that the number of new
daily infected people from an infected person has a
normal distribution with mean 0.9 and SD 0.3, we can
examine the distribution of infected people after a cer-
tain period.

Figure 1 shows the results of 100 iterations of this
process (starting with 100 cases) applied for 20 successive
days. (Note that the values simulated from the normal
have been rounded to whole numbers).

Of course, public health measures are designed to
reduce R0; so estimating R0 is an important challenge for

TABLE 1 Exponential growth for different parameters

Daily payment
Daily cases

Day £ R0 = 5 R0 = 1 R0 = 0.9

1 1 10 10 10

2 2 50 10 9

3 4 250 10 8

4 8 1250 10 7

5 16 6250 10 7

6 32 31 250 10 6

7 64 156 250 10 5

8 128 781 250 10 5

9 256 3 906 250 10 4

10 512 19 531 250 10 4

11 1024 97 656 250 10 3

12 2048 488 281 250 10 3

13 4096 2,441 406 250 10 3

14 8192 12 207 031 250 10 3

15 16 384 61 035 156 250 10 2

16 32 768 10 2

17 65 536 10 2

18 131 072 10 2

19 262 144 10 2

20 524 288 10 1

21 1 048 576 10 1

22 2 097 152 10 1

23 4 194 304 10 1

24 8 388 608 10 1

25 16 777 216 10 1

26 33 554 432 10 1

27 67 108 864 10 1

28 134 217 728 10 1

29 268 435 456 10 1

30 536 870 912 10 0

31 1 073 741 824 10 0
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planning during a pandemic. Figure 2 shows estimates of
R0 for India, over the course of a year (sampling problems
associated with all aspects of Covid are discussed later). It
is clear that successes in curbing the virus in the autumn
of 2020 were followed by a second wave of infection in
2021 (with disastrous human consequences).

2.3 | Interpreting graphs

Graphs are being used increasingly to convey complex
information in the media. A picture may be worth 1000
words, but sometimes a graph needs 1000 words of expla-
nation. Figures 3 and 4 present graphs downloaded from
the Our World in Data website [9] about the spread of the

disease in the United States and the United Kingdom.
Each graph uses data from the same data set.

The Our World in Data grapher offers a number of
choices about how data are to be displayed. One can choose

• Deaths or cases
• Daily deaths/cases or cumulative deaths/cases
• Raw numbers or numbers per million of population
• A linear or log scale

Students can be asked to describe to each other what they
see in each graph—and if they believe, the graphs are
based on the same data set. Then, tell students the graphs
do show data from the same data set, and pose these
challenges.

FIGURE 1 One simulation of

the number of new daily Covid

cases after 20 days when we assume

the number of new daily cases

arising from each infected person is

N(0.9, 0.3) [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 2 Estimates of R0 for

India over a 1-year period [Colour

figure can be viewed at

wileyonlinelibrary.com]
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The graphs look very different—explain why.
What type of scale is being used in each graph?
What conclusions can you draw from each
graph?
In the context of Covid
When should you use a linear scale, and when
should you use a log scale?
When should you use raw numbers, and when
should you use events per million of population?

When should you use deaths, and when should
you use cases?
When should you use new cases, and when
should you use cumulative cases?

Linking Table 1 and Figure 3 highlights the most
obvious advantage of log scales—the slope of the curve at
any point gives a direct indication of the speed of spread

FIGURE 3 Cumulative

confirmed Covid-19 cases in the

United Kingdom and the United

States [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 4 Daily new

confirmed cases per million people

in the United Kingdom and the

United States [Colour figure can be

viewed at wileyonlinelibrary.com]
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of the disease; changes in the slope show changes in dis-
ease acceleration (positive or negative). For instance, epi-
demics at an early stage can be compared with those at a
later stage, even though there are big differences in actual
deaths. However, log scales can be hard to understand,
and can be visually misleading—for example, a change of
one unit on the y-axis corresponds to both a rise from
100 to 1000 cases, and for a rise from 1000 to 100 000
cases. A linear scale gives a clearer impression of the size
of the epidemic.

Raw numbers are essential for planning; scaling num-
bers by the size of the population is not useful at the start
of an epidemic, but later gives some indication of the suc-
cess of eradication programs in different countries, and
the load on a country's resources. Estimates based on
small samples are usually less stable than those based
on larger samples; this is true of countries, too—those
with small populations often have very high “cases per
million” (eg, Andorra and Montenegro), and also have
very low “cases per million” (eg, Mauritius, Fiji).

2.4 | Measurement issues

The discussion of cases vs deaths leads directly to ques-
tions about measurement. Clearly, identification of cases
depends on the extent of testing; if testing is sparse, the
count of cases will be too low. Even with comprehensive
testing, a test may fail to detect Covid in the early stages
of the disease. Further, some people get the virus and
have mild symptoms or no symptoms at all. For example,
in 2020, Pollan et al [11] conducted a survey of 61 000
randomly selected people in Spain, completed in May
2020, to determine the prevalence of Covid. About 5% of
the sample tested positive; of these, about 1 in 3 were
asymptomatic. So, the true number of cases is probably
much higher than the reported number.

Measuring deaths is not without its problems. Is
everyone who dies tested for Covid? In hospital settings,
the death count is likely to be reliable (because it is
important to know which patients had Covid); in com-
munity settings, such as care homes for the elderly, or in
people's homes, data may be unreliable. Measures them-
selves can change; for example, moving from simply cou-
nting deaths in hospital to including deaths in prison,
care homes, and the community produces major changes
in the numbers reported. There are problems comparing
numbers from different countries—different measures
are used in different countries, and countries differ in the
extent to which official statistics are independent of polit-
ical dictat. The recoding system itself may be unreliable
(as in some poorer countries). All of this can be used to

draw students' attention to the critical importance in data
science of understanding what is being measured and
how, and to the importance of accessing and understand-
ing metadata. It illustrates the reason that agencies con-
cerned with cross-country comparisons (such as
Organisation for Economic Co-operation and Develop-
ment, Eurostat, and the United Nations) place such
emphasis on the development of measures, reaching
international agreement on methods of measurement,
along with their insistence on linking metadata descrip-
tions to datasets. Let us consider some of these measure-
ment problems in more detail.

For everyone who dies, suppose we know exactly
who did, and did not, have Covid. Is this a good
measure of deaths attributable to Covid?

Someone could have Covid and die from heart dis-
ease. This is problematic in care homes for the elderly,
where the mortality rate is high, so Covid deaths may be
exaggerated (conversely, one could argue that Covid
made the heart attack far more likely). A bigger problem
was discussed in a paper by Loke and Heneghan in 2020
[6] from the Centre for Evidence-Based Medicine in the
United Kingdom. In England, there is a register of
everyone who has ever been diagnosed with Covid-19.
In July 2020, when someone died, if they were regis-
tered as having had Covid-19, they were recorded as a
Covid death. So someone who recovered fully, but sub-
sequently died in a traffic accident, was recorded as a
Covid death (this recoding method has now changed).
Covid deaths were recoded differently in Scotland, mak-
ing it difficult to draw comparisons between the two
countries.

Use the (historical) English model for recording
Covid deaths. Assume a constant rate of infec-
tion, and a constant true death rate. Sketch a
graph of UK recorded Covid deaths over time.

Are there other ways to estimate Covid deaths?
Figure 5 shows weekly total deaths in the United

Kingdom, together with weekly total deaths averaged
over the previous 5 years, and deaths attributed to a num-
ber of causes. There are obvious peaks in April both in
total deaths and deaths attributed to Covid-19.
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We have data on total deaths each week over sev-
eral years. So, it is easy to calculate excess
deaths—the number of deaths that are higher
than expected. Is this a good measure of deaths
attributable to Covid?

Excess mortality data (available for different coun-
tries on the Financial Times website [4]) needs accurate
historical data on deaths; these data are rare in middle-
income and poor countries. Excess deaths might be
underestimated if, for example, influenza deaths are
lower in a particular year or if there are fewer deaths
from other causes, such as road traffic accidents, or
deaths attributable to air pollution, because people work
from home.

Excess deaths might be overestimated if a pandemic
results in increased deaths from other causes, such as
resources being directed away from treating diseases such
as cancers or HIV/AIDS, or if people die because they
were unwilling to go to hospitals (eg, for emergency care)
out of fear of contracting the disease.

So confirmed deaths associated with Covid (assuming
these are not the result of a statistical anomaly!) and excess
deaths are reflecting similar but not identical things. Covid
deaths do reflect the cause of death, but probably underes-
timate the death toll (unless Public Health England were
counting). Excess deaths are giving an overall impression

of the effect of the pandemic, but can give an estimate of
deaths directly attributable to the disease that might be
overestimated (because of [say] more heart deaths associ-
ated with unwillingness to seek treatment) or under-
estimated (because of [say] fewer deaths associated with
traffic accidents). Detailed lesson plans to support teaching
about (and assessment of) inventing measures have been
created by Swan and Ridgway [13].

2.5 | Sampling

Sampling is one of the Big Ideas in statistics. Covid dem-
onstrates clearly that this Big Idea has not been grasped
(or acted upon) by very many decision makers world-
wide. For planning and action, we need to be able to esti-
mate a number of parameters—how many people in the
population are susceptible? Infected? How long will
infected people (as a function of age, obesity, severity of
infection, and other co-morbidities) stay in hospital?
What is the case fatality rate? What proportion of people
who have recovered are immune? (and for how long?). To
determine these parameters, one needs to take sampling
very seriously. Too much of the early work on estimation
was based on opportunistic sampling. There are very big
local variations in all these parameters, and parameters
change over time, so careful testing needs to be an on-
going process.

3 | FURTHER ACTIVITIES

In this paper, we have confined the discussion to some
fundamental data science ideas that students need to
acquire. However, Engel and Ridgway [3] offer a longer
list of skills necessary for informed citizenship. We con-
clude by recommending ways in which the Covid epi-
demic can be a focus for inculcating some more of these
skills (see also [7] and [12]).

• Use a wide range of data sources—from hospitals, offi-
cial statistics agencies, newspapers, university depart-
ments, web searches and tracking apps;

• Explore a variety of data collection methods—analyzing
clinical reports, mass testing, surveys such as those
described by Pew [10] on attitudes to Covid;

• Use a wide range of analytic techniques—from curve
fitting to modelling—for example by exploring the
effects of changing parameters in the SIR
(Susceptibles, Infectives, Removed) approach to model-
ling epidemics using the model in a New York Times
article by Kristof and Thompson [5];

FIGURE 5 Weekly deaths: data from the Office for National

Statistics CC BY-SA 4.0 [8] [Colour figure can be viewed at

wileyonlinelibrary.com]
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• Use data sets that are multivariate—(incidence, deaths,
recovery rates and geographies, etc) for example from
worldometer [16] or WHO [15];

• Discuss the advantages and disadvantages of using
aggregated and disaggregated data—use graphics from
Our World in Data [9], or the Financial Times [4],
which track cases and deaths in each US state. Does it
make sense to add deaths in New York to deaths in
Alaska?;

• Discuss and design indicator systems—for example
using “expected quality of life years” to make decisions
about which patients to treat if resources are limited;

• Explore interactions between variables—the likelihood
of contracting Covid appears to be a function of
(at least) poverty, age, obesity, and perhaps ethnicity;

• Point to the fact that data may be time critical—failing
to act on early evidence about the spread of Covid lead
to the preventable deaths of tens of thousands of peo-
ple; and that parameters change over time, as a function
of human behavior (eg, the chance of contracting
Covid reduced when social distancing was observed);

• Teach beyond “graph reading” to “deconstructing and
interpreting novel visual displays” by working with
innovative visualizations;

• Teach “criticality”—that is, the ability to map out the logi-
cal structure of claims being made, and to evaluate both
the logic of the argument, and the strength of the evi-
dence on which it is based; statistical arguments are often
embedded in rich text—so ask students to deconstruct and
reconstruct stories about data in a variety of media;

• Discuss causality—this is a difficult arena that we
should explore with students—the study of disease is
an excellent context. For example, in 2015, DeBold and
Friedman [2] writing in the Wall Street Journal present
displays of the number of infected people in every US
state over a 70 year time period for different diseases,
along with a line corresponding to the time when vac-
cination was introduced. In some cases, the evidence
to support a causal claim that vaccination had a dra-
matic effect seems overwhelming; for some other dis-
eases, less so;

• Teach about risk—a central issue—we need to go
beyond probability and embrace the consequences of
different outcomes—for example, the UK Prime Minis-
ter boasted on March 3, 2020 about shaking hands
“with everybody” at a hospital with confirmed Covid
patients (the same day that the government advisory
group warned specifically against this). Four weeks
later, he was a Covid patient in an intensive care ward.

Covid offers a context for presenting data science as an
overarching structure for empowering students (and

citizens, and decision makers). Data science and statis-
tics are inextricably bound together—fundamental sta-
tistical ideas can be exemplified vividly by devoting
time to real-world problems, and grand principles can
be illuminated by working with authentic data pres-
ented in exciting and engaging ways. Pandemics are
optional; if we choose not to act, pandemics pose an
existential threat to individuals and societies; students
can see that, indeed, understanding R0 is a matter of
life and death.
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