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ABSTRACT 30 

This paper presents the complete set of incremental equations for the numerical 31 

integration of the Glasgow Coupled Model (GCM) and a comprehensive algorithm for 32 

its numerical integration. The incremental formulation proposed is expressed in terms 33 

of strain and suction increments (i.e. strain-driven) and defines an initial value problem 34 

(IVP) that can be solved once the initial state and the pair of increments of the driven 35 

variables are known. The numerical integration of this IVP is carried out by extending 36 

to unsaturated condition, the well-known explicit substepping formulation with 37 

automatic error control widely used for saturated soils. A notable feature of the 38 

substepping integration scheme presented is that it integrates simultaneously the model 39 

equations for both mechanical and water retention responses. Hence, the estimate of the 40 

local truncation error to automatically adjust the size of the integration step is not only 41 

affected by the local error in stresses and mechanical hardening parameter (as in a 42 

saturated soil model) but, additionally, by the local error incurred in the integration of 43 

the water retention relations (i.e. degree of saturation and water retention hardening 44 

parameter). The correctness of the integration scheme is then verified by comparison 45 

of computational outcomes against analytical/reference solutions. 46 

 47 

 48 

49 
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1. INTRODUCTION 50 

Advanced numerical methods have been applied to geomechanics during the last 51 

decades to solve geotechnical problems involving unsaturated soils (e.g. Pinyol et al., 52 

2008, Borja and White, 2010, Cattaneo et al., 2014, Sheng et al., 2003ab, Gens, 2010, 53 

Khalili et al., 2008, Ng et al., 2000, Nuth and Laloui, 2008, Tsiampousi et al., 2013, 54 

Zhou and Sheng, 2015, Zhang et al., 2019). A key aspect in many of these numerical 55 

applications is the amount of water retained in the soil pores because it controls the loss 56 

or gain of soil’s strength, critical to geotechnical instabilities. When the soil reaches full 57 

saturation after intense rainfall, for instance, all the additional contribution of the 58 

unsaturated condition to the soil strength vanishes. Changes in the saturation of the soil 59 

are also relevant to serviceability design because substantial volumetric compressions 60 

may occur during wetting (collapse) or drying (shrinkage) (Alonso et al., 1990, 61 

Gallipoli et al., 2003, Lloret-Cabot et al., 2014).  62 

The amount of water stored within the pores of a soil is described by the water retention 63 

behaviour which relates the degree of saturation Sr (or the water content w) to matric 64 

suction s ( where s is the difference between pore air pressure ua and pore water pressure 65 

uw). However, due to the occurrence of hysteresis, a one-to-one relation between Sr and 66 

s is rarely observed in soils (Romero et al., 1999, Tarantino 2009, Wheeler et al., 2003). 67 

In addition to this hysteresis, the water retention behaviour can be highly dependent on 68 

changes of the soil’s porosity and, hence, on the mechanical behaviour (Romero et al., 69 

1999, Tarantino 2009, Wheeler et al., 2003).  70 

In order to represent accurately the potential changes in saturation when a soil is 71 

subjected to external environmental actions it is necessary to use a model that properly 72 

handles not only retention hysteresis but also the couplings between the mechanical 73 

behaviour and the water retention response. A model that includes all these effects is 74 

the Glasgow Coupled Model GCM (Wheeler et al., 2003; Lloret-Cabot et al., 2013), 75 

and the major focus of this paper is the development of an integration scheme capable 76 

to integrate, accurately and efficiently, the incremental constitutive relations of this 77 

model.  78 

The explicit substepping formulation with automatic error control proposed in Sloan, 79 

(1987) and Sloan et al. (2001) has been extensively used in the literature for the 80 

numerical integration of elasto-plastic models for saturated soils (Sloan et al., 2001, 81 

Abbo, 1997, Sheng et al., 2000, Pedroso et al., 2008, Zhao et al., 2005, Pérez-Foguet et 82 
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al., 2001). Full extension of this formulation to the unsaturated case is presented in this 83 

paper in the context of the GCM. The extended substepping integration scheme 84 

integrates simultaneously the model equations for both mechanical and water retention 85 

responses. Hence, the local error incurred during the numerical integration of the model 86 

is not only affected by the local error in stresses and mechanical hardening parameters 87 

(as in the saturated case) but, additionally, by the local error incurred in the integration 88 

of the water retention relations. A consequence of this is that the measure of the local 89 

error used in a substepping integration scheme to adjust automatically the size of the 90 

next integration step is now estimated accounting for both sources of numerical error, 91 

including the inexact integration of the mechanical and water retention relations. 92 

Equivalent conclusions are reached when integrating other coupled constitutive models 93 

for unsaturated soils with substepping integration schemes with automatic error control 94 

(Zhang and Zhou, 2016).   95 

The paper presents a comprehensive algorithm for the numerical integration of the 96 

GCM. Although some aspects of the algorithm are linked to specific features of the 97 

GCM, the overall approach is general and can be applied to other coupled constitutive 98 

models for unsaturated soils.  99 

A small reformulation of the GCM is first presented with the aim of simplifying its 100 

numerical integration. Based on this reformulation, the relevant incremental 101 

mechanical and water retention relations of the model for each possible response, 102 

including unsaturated and saturated conditions, are developed. Two explicit 103 

substepping integration schemes with automatic error control are proposed in order to 104 

investigate the accuracy of the numerical integration: the second order modified Euler 105 

with substepping and the fifth order Runge-Kutta-Dormand-Prince with substepping. 106 

A verification study is presented at the end of the paper extending to unsaturated 107 

conditions, the verification strategy proposed in Lloret-Cabot et al. (2016) for saturated 108 

soils. 109 

2. REFORMULATING GCM 110 

Certain aspects of the GCM are reformulated in this section with the aim of simplifying 111 

its numerical integration. This reformulation does not involve any modification of the 112 

model, simply a change in how it is presented. 113 
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The version of the GCM presented here is that given in Lloret-Cabot et al. (2017), which 114 

assumes that there are no elastic changes of degree of saturation (the gradient of elastic 115 

scanning curves in the water retention plane is zero i.e. κs = 0 in the original model of 116 

Wheeler et al., 2003), in order to achieve consistent behaviour across transitions 117 

between unsaturated and saturated states. 118 

Soil mechanics sign convention is adopted hereafter (compression positive). Vectors 119 

and tensors are indicated in bold and the superscript T indicates transposed.  120 

2.1. Mechanical Behaviour  121 

The mechanical behaviour describes the stress-strain relations. In the GCM, strains are 122 

related to the “Bishop’s stress” tensor 
*
σ , defined as:  123 

( )( )* 1T T

r w r a rS u S u S s= − − − = +σ σ m σ m      (1) 124 

where σ  is the total stress tensor, mT = (1,1,1,0,0,0) an auxiliary vector, Sr the degree 125 

of saturation, ua the pore air pressure, uw the pore water pressure, s matric suction and 126 

σ  net stress tensor (σ  = σ ‒ mTua). Equation 1 reverts to the saturated effective stress 127 

tensor σ′ (i.e. σ′ = σ ‒ mTuw) when Sr = 1. 128 

2.1.1 Elastic response 129 

The incremental elastic relationship between Bishop’s stress and strains is given by: 130 

*d d=
e

σ D ε      (2) 131 

where d refers to an infinitesimal variation and 
eD  is the elastic stiffness matrix:  132 
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eD     (3) 133 

K and G in Equation 3 are, respectively, the elastic tangential bulk and shear moduli 134 

defined as:  135 
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* *d

d e

v

p vp
K = =

 
     (4) 136 

d

3d e

d

q
G =


     (5) 137 

where p* is the mean Bishop’s stress, q is the deviatoric stress, 
e

v  is the elastic 138 

volumetric strain, 
e

d  is the elastic deviatoric strain, v is the specific volume and κ is 139 

the gradient of a swelling line in the v:ln p*plane. A variety of expressions are possible 140 

for G (Potts and Zdravkovic, 1999), but the simplest is to assume a constant value of 141 

shear modulus.  142 

Given that σ* = σ′ when Sr = 1, Equation 2 has the advantage of converging naturally 143 

to the conventional saturated elastic relations of the Modified Cam Clay model, MCC 144 

(Roscoe and Burland, 1968).   145 

2.1.2. Mechanical yield curve  146 

In order to reduce potential inaccuracies in the evaluation of the mechanical yield curve 147 

fM, Sheng et al. (2000) propose that fM is normalised against a stress parameter, so that 148 

its evaluation is not significantly influenced by the magnitude of stresses. Using the 149 

preconsolidation stress p*
0 (also referred to as the mechanical yield stress) as a 150 

normalising factor, the general expression for the mechanical yield curve of the GCM 151 

is (Lloret-Cabot et al., 2013):  152 

( )
( )

2
* *

22
M 2 * **

0 00

3
0

J p p
f

p pp

  
 = +  − = 
   

     (6)  153 

where J2 is the second invariant of the deviatoric stress tensor s (i.e. s = σ* ‒ mTp*) and 154 

M(θ) is a function of the Lode’s angle θ describing the shape of the mechanical yield 155 

surface in the deviatoric plane (Potts and Gens, 1984). Available expressions for M(θ) 156 

in the literature for saturated conditions (e.g. Potts and Gens, 1984, Potts and 157 

Zdravkovic, 1999, Sheng et al., 2000) can be readily incorporated to the unsaturated 158 

case. However, for simplicity, M is assumed constant herein. Then, for axisymmetric 159 

conditions, the mechanical yield curve becomes:  160 

( )

2
2 * *

2

M 2 * **
0 00

0
q p p

f
p pp

  
 = + − = 
   

     (7) 161 
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where M is the slope of the critical state line in the q:p* plane and q is the deviatoric 162 

stress i.e. q2 = 3J2.  163 

Expressions for M(θ) are possible by extending to the unsaturated case available 164 

expressions in the literature for saturated conditions (e.g. Potts and Gens, 1984, Potts 165 

and Zdravkovic, 1999, Sheng et al., 2000). For simplicity, axisymmetric conditions are 166 

assumed in the formulation presented here, so that M can be assumed a soil constant.  167 

The preconsolidation stress p*
0 varies with the degree of saturation Sr according to:    168 

( )* 1
0 0' exp 1 r

s

k
p p S

 
= − 

 
     (8) 169 

where p′0 is the value of the saturated preconsolidation stress. k1 and λs are soil 170 

constants.   171 

Equation 6 indicates that the mechanical yield curve fM is elliptical in shape (of aspect 172 

ratio M) when plotted in the q:p* plane (Figure 1). The size of this ellipse is defined by 173 

the current value of mechanical yield stress p*
0, and this varies linearly with the degree 174 

of saturation in the Sr: lnp* plane (Equation 8). For the special case of Sr = 1, the 175 

mechanical yield curve corresponds to the conventional ellipse of the MCC (Figure 1), 176 

because p*
0 = p′0, which simplifies the implementation of the GCM in finite element 177 

programs where the MCC is already available.  178 

 179 

Figure 1 Typical mechanical yield curves of the GCM for a general value of Sr and for 180 

Sr =1 in the p*:q:Sr space. 181 
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Interestingly, the new form of expressing the variations of mechanical yield stress with 182 

degree of saturation given by Equation 8 resembles the expression proposed by Jommi 183 

and Di Prisco (1994), with the difference here that the GCM represents the variation of 184 

degree of saturation within a single constitutive framework. Some of the advantages in 185 

constitutive modelling of expressing the mechanical (Bishop’s) yield stress p*
0 in terms 186 

of degree of saturation are discussed in Lloret-Cabot & Wheeler (2018). Also, when 187 

the mechanical yield condition in GCM is represented in terms of Bishop’s stresses and 188 

degree of saturation (as in Figure 1), there is no movement of the yield surface until the 189 

soil state reaches the surface. This contrasts with the original presentation of the GCM 190 

in Wheeler et al. (2003), where coupled movements of the mechanical yield surface 191 

(expressed there in terms of Bishop’s stresses and modified suction s* (defined later)) 192 

occur during yielding on water retention yield surfaces. As a consequence, the new 193 

formulation has advantages in numerical modelling. Firstly, it is easier to use various 194 

common numerical techniques that have been developed to overcome issues arising 195 

when performing explicit numerical integration of saturated elasto-plastic critical state 196 

models (e.g. yield intersection, elasto-plastic unloading, drift correction, etc). Secondly, 197 

as demonstrated later, this specific form of fM facilitates the formulation of an 198 

unambiguous strategy to identify the correct model response activated by any given 199 

stress path. Finally, it provides a very simple representation of the transitions between 200 

saturated and unsaturated conditions that avoids the drawbacks discussed in Pedroso et 201 

al. (2008) about the non-convex form of the mechanical yield curve at the transition 202 

from unsaturated to saturated states.  203 

2.1.3. Hardening law 204 

Given that the saturated preconsolidation stress p′0 remains constant unless mechanical 205 

yielding occurs, it is possible to relate p′0 to changes of plastic volumetric strains d p

v  206 

through the following hardening law:  207 

0

0

d '
d

'

p

v

p v

p
= 
 − 

     (9) 208 

where κ is the gradient of a swelling line (in the v:ln p′ plane for saturated conditions 209 

and the v:ln p* plane for unsaturated conditions) and λ is the gradient of the saturated 210 

normal compression line in the v:ln p′ plane.  211 
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Equation 9 is valid whether the soil is under saturated or unsaturated conditions and, as 212 

in the Barcelona Basic Model of Alonso et al. (1990), p′0 can be viewed in the GCM as 213 

the mechanical hardening parameter. Equation 9 is identical to the conventional 214 

volumetric hardening law of the MCC which, as highlighted earlier, is helpful when 215 

combining existing critical state finite element formulations for saturated soils with the 216 

GCM.  217 

2.1.4. Flow rule 218 

An associated flow rule is adopted for the mechanical behaviour:   219 

M
Md d

f
= 



p

*
ε

σ
     (10) 220 

where dλM is an unknown positive scalar (referred to as the mechanical plastic 221 

multiplier) to be found by imposing that the stress point remains on fM during 222 

mechanical yielding (consistency condition).  223 

2.1.5. Analytical relations for the mechanical behaviour 224 

The relationships for the mechanical behaviour of the GCM just presented lead to the 225 

following analytical expressions for isotropic normal compression states and critical 226 

states. These analytical expressions are relevant for verification purposes and provide 227 

further insight on specific features of the GCM. For example, isotropic stress states 228 

involving yielding on fM are predicted to lie on a normal compression line in the v:lnp* 229 

plane, the position of which depends on the current value of Sr (see also Lloret-Cabot 230 

et al. 2018ab):  231 

( ) *lnrv S p=  −      (11) 232 

where  233 

( )
( )( )1 1 r

r

s

k S
S

 −  −
 =  +


     (12) 234 

and N is the intercept of the conventional saturated normal compression line (see Figure 235 

2). 236 

Critical states, on the other hand, are defined by:  237 

*Mq p=      (13) 238 

( ) *lnrv S p=  −      (14) 239 
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where q is the deviatoric stress and  240 

( ) ( ) ( )
( )( )1 1

ln 2
r

r r

s

k S
S S

 −  −
 =  −  −  = +


   (15) 241 

and Γ is the intercept of the conventional saturated critical state line (see Figure 2). 242 

 243 

Figure 2. Normal compression and critical state lines for constant values of Sr in the 244 

v:lnp* plane. 245 

2.2. Water Retention Behaviour 246 

Water retention behaviour is typically expressed in terms of degree of saturation Sr and 247 

matric suction s, however, based on the work of Houlsby (1997), the GCM relates Sr to 248 

the “modified suction” s*, defined as:  249 

( )* 1
a w

v
s n u u s

v

−
= − =      (16) 250 

where n is porosity.  251 

2.2.1. Elastic response 252 

For situations where the GCM is to be used for both unsaturated and saturated 253 

conditions, Lloret-Cabot et al. (2017) recommends to assume that elastic variations of 254 

degree of saturation are zero d 0e

rS =  (the gradient in the original model of Wheeler et 255 
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al. (2003) of elastic scanning curves in the Sr:lns* plane is zero i.e. κs = 0). The same 256 

assumption is made here.  257 

2.2.2. Retention yield curves 258 

Water retention behaviour is described by two yield functions: the wetting retention 259 

yield curve fWR and the drying retention yield curve fDR. Variations of modified suction 260 

occurring inside fWR and fDR result in no changes of Sr (i.e. dSr = d 0e

rS = ). Yielding on 261 

fWR produces plastic increases of Sr (i.e. dSr = d 0p

rS  ), whereas yielding on fDR causes 262 

plastic decreases of Sr (i.e. dSr = d 0p

rS  ). Similarly to the mechanical yield curve, the 263 

expression of the wetting retention yield curve is also normalised:   264 

* *

1
WR *

1

0
s s

f
s

−
= =      (17) 265 

where s1
* is the wetting yield stress controlling the occurrence of yielding on fWR 266 

(equivalent to p0
* for mechanical yielding).  267 

The wetting yield stress s1
* varies with the occurrence of mechanical yielding according 268 

to: 269 

2

* * *0 2
1 10 10

00

'
exp

'

k

pp k
s s s v

p

  − 
= =    

 −   
     (18) 270 

where k2 is a coupling parameter, p′0 is the mechanical hardening parameter and Δvp 271 

indicates plastic decreases of specific volume from a reference state. s10
* and p′00 are, 272 

respectively, the values of s1
* and p′0 at the reference states when Δvp = 0. 273 

Similarly, the expression of the drying retention yield curve is: 274 

* *

2
DR *

2

0
s s

f
s

−
= =      (19) 275 

where s2
* is the drying yield stress for fDR which varies with p′0 (or Δvp) according to:    276 

2

* * *0 2
2 20 20

00

'
exp

'

k

pp k
s s s v

p

  − 
= =    

 −   
     (20) 277 

where s20
* and p′00 are, respectively, the values of s2

* and p′0 when Δvp = 0. 278 

Equations 17 and 19 indicate, respectively, that the wetting retention yield curves fWR 279 

and the drying retention yield curve fDR form two parallel straight lines when plotted in 280 

the lns*:lnp0′ plane (see Figure 3). The positions of these straight lines and their gradient 281 

with respect to lnp0′ are given by Equations 18 and 20. The current values of the 282 



 12 

parameters s10
* and s20

* (which correspond, respectively, to the values of s1
* and s2

* at 283 

a reference state in which p′0 = p′00) fix the position of fWR and fDR respectively, whereas 284 

the gradient is given by the value of the soil parameter k2. Therefore, the parameters 285 

s10
* and s20

* are equivalent to the mechanical hardening parameter p0' and, hence, can 286 

be viewed as the hardening parameters of the water retention response. Equations 17-287 

20 are still active under fully saturated conditions, because they track the influence of 288 

mechanical yielding on the potential occurrence of desaturation on drying (i.e. air-entry 289 

point) and re-saturation on wetting or loading (i.e. air-exclusion point). 290 

The spacing between fWR and fDR is assumed constant when plotted in terms of lns* (i.e. 291 

s2
*=R‧s1

*, where R is a soil constant (Lloret-Cabot et al., 2017) and this spacing defines 292 

the current range of values of s* for which no plastic changes of Sr will occur at a given 293 

value of p′0. Hence, the spacing between fWR and fDR in the lns*:lnp0' plane defines the 294 

elastic domain of the water retention behaviour (see shaded zone in Figure 3). Yielding 295 

on the drying retention yield curve reduces the values of Sr and causes a coupled 296 

movement of the wetting retention yield curve (Wheeler et al., 2003). Equivalent 297 

comments apply when yielding on fWR.   298 

 299 

Figure 3. Water retention yield curves in lns*:lnp0′ plane. 300 

2.2.3. Hardening law 301 

Given that s10
* and s20

* remain constant unless water retention yielding occurs, it is 302 

possible to relate them to plastic changes of degree of saturation dSp

r  through the 303 

following hardening law:  304 
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* *

10 20

* *

10 20

d d d p

r

s

s s S

s s

−
= =


     (21) 305 

where λs is the gradient of a main wetting/drying curve in the Sr:lns* plane.  306 

For completeness, it is useful to include here how the water retention yield stress sR
* 307 

(where the subscript R is 1 for fWR and 2 for fDR) vary against the water retention and 308 

mechanical hardening parameters:  309 

**

R0 0R
2* *

R R0 0

d d 'd

'

s ps
k

s s p
= +      (22) 310 

Similarly, the mechanical yield stress p0
* varies with the mechanical and water retention 311 

hardening parameters according to: 312 

* *

0 0 R0
1* *

0 0 R0

d d ' d

'

p p s
k

p p s
= +      (23) 313 

2.2.4. Flow rule 314 

Associated flow rules are assumed for the water retention response: 315 

R
Rd d dp

r r

f
S S

s


= = − 

 *
     (24) 316 

where dλR is an unknown positive scalar (referred to as the water retention plastic 317 

multiplier) to be found by imposing that the stress point remains on fR during retention 318 

yielding (consistency condition). 319 

Given that d 0e

rS =  (Figure 4), total and plastic variations of Sr are the same ( d d p

r rS S=320 

).  321 

2.2.5. Analytical relations for the water retention behaviour 322 

The water retention relations just presented result in the following expressions for main 323 

wetting and drying curves:  324 

*

*
1 lnr s

ex

s
S

s

 
= −  

 
     (25) 325 

*

*
1 lnr s

e

s
S

s

 
= −  

 
     (26) 326 

where 
*

exs  and 
*

es  are, respectively, the current air-exclusion and air-entry values of 327 

modified suction (see Figure 4). These air-exclusion and air-entry values of modified 328 
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suction are related to the saturated preconsolidation stress p0′ through the saturation and 329 

desaturation lines, respectively (Lloret-Cabot et al., 2017):  330 

( )*

*

2 0*

1
ln ln 'ex

s

s k p
 −

= +


     (27) 331 

( )*

*

2 0*

1
ln ln ' lne

s

s k p R
 −

= + +


     (28) 332 

where λs
* and Ω* are soil constants corresponding to the gradient and intercept, 333 

respectively, of the unsaturated normal compression planar surface for Sr derived in 334 

Lloret-Cabot et al. (2017). λs
* can be expressed in terms of soil constants  λs, k1 and k2 335 

and Ω* can be expressed in terms of soil constants N, * , λ, κ, λs and k1 (see Appendix 336 

A), where *  is the intercept of the unsaturated normal compression planar surface for 337 

v derived in Lloret-Cabot et al. (2017).  338 

Combining main wetting and main drying equations with the saturation and 339 

desaturation lines, respectively, the expressions of the main wetting and main drying 340 

curves can be expressed in terms of p′0: 341 

( )( )* *

1 2 2 01 1 1 ln ' lnr s sS k k k p s = +  − − +  −
 

    (29) 342 

( )( )* *

1 2 2 01 ln 1 1 ln ' lnr s s sS R k k k p s = +  +  − − +  −
 

   (30) 343 

 344 

Figure 4. Main wetting and main drying water retention curves for constant values of 345 

p0' in the Sr:lns* plane. 346 
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2.3. Model responses 347 

There are six possible responses in the GCM to represent mechanical and water 348 

retention behaviour of soils under saturated and unsaturated conditions. Each of them 349 

is identified hereafter by an integer number assigned to the variable “STRPTH”:  350 

(1) STRPTH=1 is for purely elastic behaviour (Δεp = 0 and ΔSr = 0). 351 

(2) STRPTH=2 is for yielding on only fWR (Δεp = 0 and ΔSr > 0). 352 

(3) STRPTH=3 is for yielding on only fDR (Δεp = 0 and ΔSr < 0).  353 

(4) STRPTH=4 is for yielding on only fM (Δεp ≠ 0 and ΔSr = 0).  354 

(5) STRPTH=5 is for simultaneous yielding on fM and fWR (Δεp ≠ 0 and ΔSr > 0). 355 

(6) STRPTH=6 for simultaneous yielding on fM and fDR (Δεp ≠ 0 and ΔSr < 0).  356 

Transitions from unsaturated to saturated conditions (saturation) occur whilst on fWR. 357 

This means that an initially unsaturated soil (Sr < 1) can only saturate during stress paths 358 

that involve yielding on fWR (i.e. STRPTH=2 or STRPTH=5). Once the soil is saturated, 359 

further increases of Sr are prevented (i.e. flow rule no longer applies on fWR) and the 360 

consistency condition on fWR is removed so that the stress point can pass beyond fWR 361 

(see Lloret-Cabot et al., 2017, Lloret-Cabot et al., 2018ab for details).Transitions in the 362 

reverse direction (desaturation), occur whilst on fDR. In this case, an initially saturated 363 

soil (Sr = 1) can only desaturate during stress paths that involve yielding on fDR (i.e. 364 

STRPTH=3 or STRPTH=6).  365 

Typical examples of the six possible responses in the GCM are illustrated in Figure 5 366 

for unsaturated states. Each response is represented by a pair of plots. The top plot 367 

shows the water retention behaviour in the lnp0′:lns* plane and the bottom one, the 368 

mechanical response in the Sr:lnp* plane. The initial position of each yield curve is 369 

indicated by a solid line whereas, if yielding occurs, the corresponding final positions 370 

of the yield curves are indicated by chain-dotted lines. Arrows indicate the movement 371 

of the stress point and the shaded zone indicates other possible positions of the final 372 

stress point that would also activate the same type of model response. For clarity, the 373 

responses are shown for isotropic stress conditions, but equivalent conclusions apply in 374 

general stress space.  375 

Figure 5a shows an example of purely elastic behaviour (STRPTH=1) and corresponds 376 

to a situation where the final stress point remains inside the elastic domain (i.e. fWR ≤ 377 

FTOL & fDR ≤ FTOL & fM ≤ FTOL, where FTOL is a specified tolerance) so that all 378 
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yield curves remain at the same initial position. In contrast, Figures 5b and 5c show 379 

typical responses for retention yielding alone (STRPTH=2 or 3) causing plastic changes 380 

of Sr. Note that in each of these two cases the retention curve not being yielded has also 381 

moved from its initial position as a consequence of the associated movement defined 382 

by Equation 21. No plastic straining occurs when STRPTH=2 or 3 because the stress 383 

path remains inside fM (Figures 5b and5c). As a consequence, the saturated mechanical 384 

yield stress p0' remains unchanged (and, hence, the mechanical yield curve does not 385 

move).  386 

Figure 5d shows an example of yielding on only fM (STRPTH=4) where only the 387 

mechanical yield curve moves from its initial position as a consequence of plastic 388 

straining. Examples of yielding on two yield curves simultaneously are illustrated in 389 

Figures 5e and 5f. In these, plastic straining and plastic changes of Sr occur at the same 390 

time and, as a result, all yield curves move.  391 

The forms of Equation 8 (for the mechanical response) and Equations 18 and 20 (for 392 

water retention response) plotted in Figure 5 demonstrate one of the computational 393 

advantages of the reformulated equations of the GCM discussed earlier. Equation 8, for 394 

example, corresponds to the integrated form of how the coupling of the water retention 395 

behaviour on the mechanical response is represented within the GCM. Similarly, 396 

Equations 18 and 20, correspond to the integrated form of the coupling of the 397 

mechanical response on the water retention. As further demonstrated later, these 398 

integrated forms of the couplings between mechanical and retention responses facilitate 399 

the identification of the active model response and simplify the intersection problem 400 

arising when a stress path crosses a yield curve of the model.  401 
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 402 

Figure 5 Typical model responses for isotropic stress states under unsaturated 403 

conditions. 404 

3. MECHANICAL AND WATER RETENTION RELATIONS 405 

When using the finite element method in problems involving saturated soils that may 406 

eventually desaturate, the local (i.e. within the element) integration of the coupled 407 

constitutive model representing the material behaviour of the soil involves the solution 408 

of both the mechanical and water retention incremental relations. During a typical finite 409 

element iteration in such problems, the nodal displacement and pore fluid pressures 410 

(including water and air) increments are usually found from the solution of the 411 

discretized global system of equations, typically involving equilibrium and mass 412 

balance relations (e.g. Olivella et al., 1996). Nodal displacement increments are 413 

combined with the strain-displacement relations to find the corresponding strain 414 

increments at a finite number of Gauss points within each element and, similarly, nodal 415 
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pore fluid pressures increments are combined to find the corresponding increment of 416 

suction at each Gauss point. The known strain and suction increments can be then used 417 

at the local level to find the corresponding increments of stresses and degree of 418 

saturation via integration of the coupled constitutive model. It is hence convenient in 419 

finite element analysis (FEA) to express the local integration algorithm in terms of the 420 

known strain and suction increments (i.e. strain-driven algorithm). Because of their 421 

compatibility in FEA, this section focuses on strain-driven formulations to integrate the 422 

constitutive relations of the GCM, extending to unsaturated conditions the work on 423 

explicit substepping algorithms with automatic error control proposed in Sloan et al. 424 

(2001) for saturated soils.  425 

3.1. Formulation of the problem 426 

The numerical integration of a constitutive model for unsaturated soils involves the 427 

solution of an initial value problem (IVP) defined by the incremental relationships of 428 

the model, the initial (or current) state, the corresponding parameters of the model and, 429 

in the context of strain-driven formulations, a given pair of ∆ɛ and ∆s ( denotes a finite 430 

variation). Expressing the relations of the GCM by means of a strain-driven formulation 431 

is very convenient because, irrespective of the model response active, Δs* can be 432 

computed correctly from the initial (or current) state at i and the exact updates of 433 

specific volume v and matric suction s at i+1:   434 

1i is s s+ = +      (31) 435 

( )1

vexpi iv v+ = −      (32) 436 

The correct update of s* at i+1 is then given by: 437 

1
1 * 1

1

1i
i i

i

v
s s

v

+
+ +

+

−
=      (33) 438 

From where the correct increment of modified suction can be calculated:  439 

* 1 * *i is s s+ = −      (34) 440 

Once the increments of modified suction are known, the remaining incremental 441 

quantities can be expressed in a general IVP form as follows. The first two equations 442 

describe the mechanical response (Bishop’s stress – strain relations) and the second pair 443 

the water retention response (modified suction – degree of saturation relations): 444 

M =  −*

e e Mσ D ε D a      (35) 445 
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0 M M'p B =      (36) 446 

R RrS a = −      (37) 447 

*

R0 R Rs B = −      (38) 448 

where the subscript M indicates mechanical response and the subscript R indicates 449 

retention response (with 1 for fWR and 2 for fDR), ΔλM and ΔλR are the respective plastic 450 

multipliers, p0' and 
*

R0s  are the respective hardening parameters, aM is the gradient of 451 

the mechanical yield curve with respect to Bishop’s stress, aR is the derivative of the 452 

retention yield curve with respect to modified suction, BM is a scalar function for the 453 

mechanical response and BR is a scalar function for the retention response. 454 

3.1.1. Elastic behaviour 455 

Elastic behaviour under saturated or unsaturated conditions (STRPTH=1) is a particular 456 

case of the general problem defined by Equations 35-38, noting that for STRPTH=1, 457 

the mechanical and retention plastic multipliers are both zero.  458 

Elastic behaviour is represented in the GCM in terms of the secant bulk K  and shear 459 

G  moduli, equivalent to saturated soils (Sheng et al., 2000). This representation ensures 460 

the correct computation of Bishop’s stresses at the intersection of the stress path with 461 

one of the three yield curves of the model, when the computed response passes from 462 

elastic to plastic. Integrating Equation 4 for p* and 
e

v  the following analytical 463 

expression for K  can be found (Lloret-Cabot et al., 2016):  464 

( )( )* 1 exp
exp 1

i e
i

v

e

v

vp
K

  − −
  = −
   

  

     (39) 465 

where ip* and iv are, respectively, the mean Bishop’s stress and specific volume at the 466 

start of the volumetric strain increment i. A corresponding appropriate expression for 467 

G  should also be used (the form of this will depend upon what assumption is made for 468 

the tangent shear modulus G, see Potts and Zdravkovic, 1999).  469 

3.1.2. Elasto-plastic behaviour 470 



 20 

Equations 35-38 are valid for all types of elasto-plastic yielding, including unsaturated 471 

and saturated conditions, noting that, under saturated conditions, increases of Sr are 472 

prevented.  473 

Some useful simplifications are possible for the particular cases of yielding on one 474 

water retention curve alone (STRPTH=2 or 3). Due to the absence of mechanical 475 

yielding, p0' remains unchanged which means that the mechanical plastic multiplier is 476 

zero and then the increment of Bishop’s stress can be computed exactly, using the 477 

approach discussed for the elastic case. Also, given that ΔλM = 0, it is possible to 478 

compute exact values of degree of saturation at the updated exact value of modified 479 

suction (Equation 33) using Equation 25 for yielding on only fWR or Equation 26 for 480 

yielding on only fDR.  481 

For mechanical yielding alone (STRPTH=4), whether the soil is saturated or 482 

unsaturated, ΔλR = 0 because ΔSr = 0. This means that the expression for ΔλM can be 483 

found in the same way as that of the plastic multiplier for the MCC (see Sloan et al., 484 

(2001) for details).   485 

Hence, the only two mechanisms that require the derivation of a new expression for the 486 

mechanical and water retention plastic multipliers correspond to simultaneous yielding 487 

on fM and fR (STRPTH=5 or 6). When fM and fR yield simultaneously, it is necessary to 488 

impose the consistency condition on both to find expressions for ΔλM and ΔλR in terms 489 

of ∆ɛ and ∆s: 490 
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   (41) 492 

General expressions for the mechanical and retention plastic multipliers can be found 493 

by solving simultaneously the above expressions, after inserting the relevant hardening 494 

laws (Equations 9 and 21) and the relevant flow rules (Equations 10 and 24):   495 

*

M
M

C s
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 + 
 =

+

Μ
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D ε

D a
     (42) 496 

*
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R

D s

A

 + 
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+

R

Μ Μ

C ε

D a
     (43) 497 

where DM, DR, CM, CR and A are given by:  498 

T=M M eD a D      (44) 499 
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The expressions for the scalar functions BM and BR are:  504 

0 M
M *

'
p

v

p f
B

p

 
=
 

     (49) 505 

*

R0 R
R *p

r

s f
B

S s

 
=
 

     (50) 506 

As noted earlier, ∆s* can be computed exactly when ∆ɛ and ∆s are known (Equation 507 

34). 508 

3.2. Algorithm for the identification of the model response 509 

The reformulation of GCM has facilitated the development of an algorithm that 510 

identifies, unambiguously, which is the model response activated by the given 511 

increments ∆ɛ and ∆s. Once the model response is known, all variables are updated 512 

using the appropriate set of incremental relations derived in the previous section. In 513 

such update, the algorithm automatically checks if the stress path intersects a yield 514 

curve and, if so, finds the corresponding intersection by using the Pegasus algorithm 515 

proposed by Dowell and Jarratt (1972), and widely tested for saturated soil models 516 

(Sloan et al., 2001, Abbo, 1997, Sheng et al., 2000, Pedroso et al., 2008, Zhao et al., 517 

2005).  518 

Figure 6 illustrates the various steps carried out by the algorithm to decide how to 519 

integrate the given increments of ∆ɛ and ∆s correctly. The case illustrated corresponds 520 

to the most challenging scenario in which, from an initial point inside the elastic 521 

domain, the known increments ∆ɛ and ∆s end up activating yielding on two yield 522 

curves. The particular model response plotted corresponds to STRPTH=6, but 523 

equivalent results are obtained for STRPTH=5. A maximum of three different trials is 524 
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needed to handle correctly this problem. This means that, in the worst situation, the 525 

algorithm needs to break ∆ɛ and ∆s in three parts. All other cases (i.e. initial stress point 526 

on one or two yield curves) are a simplified version of this one and, hence, follow the 527 

same logic.  528 

Figure 6 is in two parts. Part a shows the full sequence of steps in the lnp0′:lns* plane 529 

whereas Part b illustrates their counterparts in the Sr:lnp* plane (note that the values of 530 

Sr in the vertical axis increase downwards). The current stress point is indicated by i 531 

and is assumed to be inside the three yield curves of the model (note that ifWR is not 532 

included in Figure 6a for clarity, but its location is to the left of point i, see Figure 5 for 533 

reference). Trial 1 (indicated by t1) is purely elastic (ΔSr = 0 and Δp0' = 0) and ends up 534 

outside both ifDR (see Figure 6a) and ifM (see Figure 6b). Hence, it is necessary to check 535 

which of these two yield curves is hit first by trial 1. This problem involves finding two 536 

scalars (α1 for fDR and α2 for fM), both between 0 and 1, that indicate the portion of ∆ɛ 537 

and ∆s required to move, elastically, the stress point i to the corresponding intersection 538 

point (indicated as iR1 for fDR and iM1 for fM). The lower value of the two scalars 539 

corresponds to the yield curve hit first by trial 1. In the example represented in Figure 540 

6, fDR is the yield curve hit first (i.e. α1 < α2). Hence, a purely elastic update of the stress 541 

point from i to the intersection point iR1 is then carried out using the appropriate portion 542 

of the given increments (i.e. α1∆ɛ and α1∆s). The next step is to compute Trial 2 543 

(indicated as t2) starting from iR1 (also indicated as iR in Figure 6) and now assuming 544 

yielding on only fDR. Importantly, Trial 2 uses only the not yet integrated part of the 545 

increments of strains and suction i.e. (1-α1)∆ɛ and (1-α1)∆s. Given that yielding on only 546 

fDR is the model response assumed in computing t2, the mechanical hardening parameter 547 

p0' is constant (see Figure 6a) and the corresponding value of Sr is exact because it can 548 

be calculated inserting the exact value of modified suction at t2 (which equals that 549 

calculated in t1, see Figure 6a) in the equation of the main drying curve (Equation 26). 550 

A second intersection problem arises, now with ifM (Figure 6). This second intersection 551 

problem involves finding a scalar β (also between 0 and 1) that defines the portion of 552 

(1-α1)∆ɛ and (1-α1)∆s required to move, under yielding on only fDR, the stress point 553 

from iR to iM (also indicated as iY in Figure 6 to highlight that the stress point lies on 554 

both yield curves). Once β has been found, the stress point is updated from iR to iM 555 

assuming yielding on only fDR and using the relevant portion of strain and suction 556 

increments i.e. β(1-α1)∆ɛ and β(1-α1)∆s. In moving the stress point from iR to iM, 557 

yielding on only fDR is occurring and, consequently, ifDR yields to YfDR as indicated by 558 
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the thicker light dashed line in Figure 6a. At this stage, the stress point is on both yield 559 

curves. A final trial 3, now assuming yielding on only fM, needs to be computed to 560 

determine whether the portion not yet integrated of strains and suction increments (i.e. 561 

(1-β)(1-α1)∆ɛ and (1-β)(1-α1)∆s) activates yielding on only fM or simultaneous yielding 562 

on fM and fDR. Conveniently, the algorithm knows at this point that yielding on only fDR 563 

is not possible because trial 2 fell outside fM when assuming yielding on only fDR. In 564 

the example of Figure 6, trial 3 ends up outside YfDR meaning that this final portion of 565 

∆ɛ and ∆s, moving the stress point from iY to i+1, has to be integrated assuming 566 

simultaneous yielding on fM and fDR. The stress path followed to integrate the full size 567 

of ∆ɛ and ∆s is indicated in the figure by a thick black solid line and the final positions 568 

of fM and fDR at i+1 are indicated by a lighter thick solid line.  569 

 570 

 571 

Figure 6 Example of a typical integration of the GCM starting from inside the three 572 

yield curves and ending up activating yielding on two yield surfaces (STRPTH=6). 573 

 574 

A more formalised description of the sequence of steps followed by the algorithm to 575 

determine which is the active response of the GCM is presented in Appendix B. 576 

3.3. Yield intersections  577 
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The given increments of ∆ɛ and ∆s may change the stress state from elastic to elasto-578 

plastic within the increment. In the context of the GCM, this means that a trial intersects 579 

at least one yield curve. Note that during a transition from unsaturated to saturated 580 

conditions, there might also be the reverse situation (i.e. from elasto-plastic to elastic 581 

within an individual increment) in wetting paths that saturate during collapse 582 

compression (Lloret-Cabot et al., 2017, Lloret-Cabot et al., 2018) i.e. it is possible to 583 

have within a single increment a first part (while unsaturated) that is elasto-plastic and 584 

a second part (while saturated) that is elastic. The intersection point in such cases is 585 

controlled by the value of Sr but it is found in an equivalent way to any other intersection 586 

problem. All of these intersections are found here using the Pegasus algorithm proposed 587 

by Dowell and Jarratt (1972) and extensively used in the literature (e.g. Sloan et al., 588 

2001, Abbo, 1997, Sheng et al., 2000, Pedroso et al., 2008, Zhao et al., 2005). Its 589 

algorithmic form is summarised in Appendix C for completeness).  590 

There might situations in which the given increments of strain and suction intersect a 591 

yield surface twice, even though initial and final stress states are both inside the yield 592 

locus. Such situation is aggravated when using too large increments and, hence, the use 593 

of sufficiently small increments of strain and suction is recommended. Sołowski & 594 

Sloan (2012) discuss this intersection problem further in the context of the BBM 595 

(Alonso et al. 1990).  596 

Another possible intersection problem is that referred to as “elasto-plastic unloading” 597 

(Sloan et al. 2001). The solution to this problem in the context of the GCM is equivalent 598 

to that proposed for critical state saturated models (e.g. Sloan et al., 2001, Abbo, 1997, 599 

Sheng et al., 2000, Pedroso et al., 2008).   600 

3.4. Drift correction 601 

Similarly to what is observed in explicit integration schemes for saturated soils, in 602 

unsaturated soils too the stress point at the end of each integration step/substep may 603 

drift from the yield condition, so that |fA| > FTOL. The extent of this drift primarily 604 

depends on the accuracy of the integration scheme used and, in general, when using 605 

substepping strategies with error control, drift correction is rarely needed Sołowski et 606 

al. (2012). However, as advised in Sloan et al. (2001), it is prudent to consider the 607 

possibility to correct a potential drift at the end of each integrated step/substep.  608 
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In the context of the GCM, a correction of the drift of the stress point is only potentially 609 

needed when mechanical yielding occurs, whether this implies yielding on only fM 610 

(STRPTH=4) or simultaneous yielding on fM and a retention yield curve (STRPTH=5 611 

or 6). Yielding on a retention yield curve alone (STRPTH=2 or 3) does not require any 612 

drift correction in the context of strain-driven formulations because, as explained 613 

earlier, an exact update of all relevant variables is possible. 614 

The strategy to correct the stress point in the GCM adopts the drift correction method 615 

recommended in Potts and Gens (1984) for saturated soils. The extension of such 616 

strategy to unsaturated soils includes the assumption that, in addition to imposing no 617 

strain variations i.e. δɛ = 0 during the correction of the stress point, also suction remains 618 

unchanged i.e. δs =0. The latter assumption has been successfully used for the 619 

numerical integration of many other unsaturated soil models (e.g. Sánchez et al. 2008, 620 

Sołowski and Gallipoli 2010ab).    621 

Assuming δɛ = 0 and δs =0 means that the correction of modified suction δs* and 622 

specific volume δv are both zero. Given that δs*=0, the correction of degree of 623 

saturation δSr and of the water retention hardening parameters δsR0
* are all also zero. 624 

The correction of Bishop’s stresses δσ* and mechanical hardening parameter δp0' are 625 

unknown quantities and can be found by expanding fM in Taylor series about the stress 626 

point to be corrected i. Neglecting second order terms and above, this can be expressed 627 

by:  628 
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   (51) 629 

where δSr=0. 630 

Equations 35 and 36 mean that for the total strain increment to remain zero, the 631 

corrections in the Bishop’s stress and mechanical hardening parameter are, 632 

respectively:   633 

M = −*

e M
σ D a      (52) 634 

0 M M'p B =       (53) 635 

where δλM is an unknown multiplier and De, aM and BM are all evaluated at i.  636 

The following expression for δλM is found by combining Equations 51-53, after 637 

imposing that fM = 0:  638 
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While there is no need to correct s*, sR0
*, Sr nor v, a correction needs to be applied to 640 

the mechanical and the water retention yield stresses:  641 
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where all variables are evaluated at i.  644 

4. EXPLICIT SUBSTEPPING INTEGRATION SCHEMES 645 

This section presents two explicit substepping integration schemes for the numerical 646 

integration of the GCM. The first one corresponds to the second order accurate 647 

modified Euler with substepping (ME2) whereas the second one is the fifth order 648 

accurate Runge-Kutta-Dormand-Prince (RKDP5) with substepping. The notation 649 

adopted extends that employed by Sloan et al. (2001) to unsaturated soils, making 650 

explicit the dependence of the initial value problem (IVP) on the specific volume (as in 651 

critical state models for saturated soils, see Lloret-Cabot et al., 2016) and also on the 652 

degree of saturation. A comparative analysis of the relative numerical performance of 653 

these two substepping integration schemes is provided in the next section.  654 

For the same reasons given in the drift correction approach, the application of a 655 

substepping strategy with error control in the GCM is unnecessary in absence of 656 

mechanical yielding, whether this means elastic behaviour or yielding on only one 657 

retention curve (i.e. STRPTH=1, 2 or 3). In contrast, a substepping strategy with error 658 

control becomes extremely convenient for the numerical integration of the incremental 659 

relations of the GCM when mechanical yielding is active, because for STRPTH=4, 5 660 

or 6 the incremental constitutive laws are not integrable analytically. In such cases, the 661 

key to ensure an accurate and efficient numerical integration is to control the local error 662 

in the computed variables arising due to the inexact integration of the integration 663 

scheme. In a substepping integration scheme, this local error is controlled by using a 664 

measure of the truncation error, which is estimated as the difference between the 665 

approximate solutions from two integration schemes of different order (Shampine, 666 
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1994). How much these two approximations differ from each other is indicative of the 667 

deviation of the numerical solution from the true solution and, hence, this difference 668 

can be used to estimate the truncation error and to automatically adjust, then, the size 669 

of the current integration step/substep.  670 

To extend to unsaturated conditions the formulation of Sloan et al. (2001) presented for 671 

saturated soils, it is useful to express the equations involved in the problem in terms of 672 

a pseudo-time T:  673 

0it t
T

t

=−
=


     (57) 674 

where t = i=0t is the time at the start of the strain increment Δε and suction increment Δs 675 

(i.e. T = 0), t = 0t + Δt  is the time at the end of the strain and suction increments (i.e. T 676 

= 1) and 0 ≤ T ≤ 1.  677 
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where the subscript “R” is 1 for fWR and 2 for fDR. 685 

The system of Equations 58-64 defines an initial value problem (IVP) that can be 686 

integrated over T knowing the values at the initial (or current) state i of modified suction 687 

is*, Bishop’s stress iσ*, hardening parameters ip0′ and isR0
*, specific volume iv and degree 688 

of saturation iSr , together with the imposed ∆ɛ and ∆s. Similarly to the strain-driven 689 

numerical integration of the MCC for ∆ɛ, also ∆s is fixed in the strain-driven integration 690 

of the GCM presented here, meaning that the IVP is solved assuming constant strain 691 

and suction rates, ∆ɛ/∆t and ∆s/∆t, during each step/substep.  692 
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The form of the system of equations 59-64 is a direct consequence of assuming that not 693 

only the mechanical behaviour of unsaturated soils can be represented as an elasto-694 

plastic process but also the water retention response (Wheeler et al. 2003). Under these 695 

considerations, the system of equations 59 to 64 encompasses saturated and unsaturated 696 

conditions and incorporates the coupling between the mechanical and the water 697 

retention behaviour. Although the specific GCM equations are used, the same 698 

integration scheme is applicable to any model that, in addition to assuming elasto-699 

plastic formulations for the mechanical and the water retention responses, accounts for 700 

the coupling between mechanical and water retention behaviour via plastic volumetric 701 

strains and plastic changes of degree of saturation. 702 

A substepping integration scheme integrates the incremental relations of a constitutive 703 

model by automatically adjusting the size of the given integration interval (or 704 

increment) depending on a relative measure of the local error, REL. When REL is 705 

larger/smaller than a specified tolerance (i.e. STOL), the current size of the integration 706 

step/substep is reduced/increased according to i+1(∆T)=r i(∆T) where the scalar r is 707 

estimated as follows. Based on the assumption that the size of a step/substep varies 708 

proportionally to a measure of the local error r, Sloan et al. (2001) suggest to use r  709 

0.9(STOL/RELn)
1/2 for the second order accurate modified Euler with substepping and 710 

r  0.9(STOL/RELn)
1/5 for the fifth order accurate Runge-Kutta-Dormand-Prince with 711 

substepping. An additional constraint for the scalar r is to bound its values between 0.1 712 

and 1.1 to limit the change in size during two consecutive substeps, and a maximum 713 

number of substeps needs to be also specified (see Sloan et al. (2001) for full details).  714 

A major point of the substepping integration schemes presented here is that the measure 715 

of the relative error REL is estimated for σ*, p0′, Sr and sR0
*. The reason for treating 716 

these variables separately is because the estimated values of the respective local error 717 

for mechanical (σ* and p0′) and water retention responses (Sr and sR0
*) can have different 718 

magnitudes. Hence, it is important for an efficient integration of a problem involving 719 

unsaturated soils that when substepping integration schemes with automatic error 720 

control are used, the error measure REL is estimated accounting for all major sources 721 

of error, and for unsaturated soils these should include the local error arising during the 722 

numerical integration of both mechanical and water retention constitutive relations. In 723 

the two substepping integration schemes presented here, this measure of relative local 724 
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error REL is estimated by taking the difference between the higher order accurate and 725 

the lower order accurate approximations for σ*, p0′, Sr and sR0
*. Each of these 726 

differences is then divided by the corresponding higher order approximation (indicated 727 

by a hat in Equation 65). For the modified Euler with substepping this corresponds to 728 

the difference between second order accurate modified Euler and first order accurate 729 

forward Euler. For the RKDP5 with substepping, REL is calculated from fourth and 730 

fifth Runge-Kutta-Dormand-Prince approximations.  731 

Equivalently to what is proposed in Sloan et al. (2001) for saturated soils, REL takes 732 

the maximum of these four relative measures of the step/substep error as a way to bound 733 

the local error: 734 
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4.1. Modified Euler with substepping 736 

Given a pseudo-time step/substep i(∆T) with 0 < i(∆T) ≤ 1, the forward Euler and 737 

modified Euler updates for σ*, p0′, Sr and sR0
*are described in the following by adopting 738 

the Butcher tableau (Dormand and Prince, 1980). The coefficients for the two methods 739 

are summarised in Table 1. The subscripts i and i+1 denote quantities evaluated at 740 

pseudo-times iT and i+1T= iT + i(∆T) respectively:  741 
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where the coefficients kb are summarised in Table 1, ns is the number of stages of the 749 

integration scheme, and 750 
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where De, aM, ∆λM, ∆λR, BM and BR are evaluated at k using: 752 
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and the coefficients kja are summarised in Table 1.  754 

Lloret-Cabot et al. (2016) demonstrate, for critical state models for saturated soils, the 755 

importance of ensuring that the update of v is consistent (i.e. at the same integration 756 

portion of Δε) with the update of effective stresses σ' and hardening parameter p0'. An 757 

equivalent logic applies to integration of critical state models for unsaturated soils that 758 

account for mechanical and water retention behaviour where not only v, but also Sr 759 

needs to be updated rigorously (i.e. now at the same integration portion of both Δε and 760 

Δs) with the update of σ*, s*, p0' and sR0
* (Equation 74).  761 

Strain-driven formulations allow for the exact computation of specific volume, matric 762 

suction and modified suction at the end of the step/substep because it is possible to 763 

integrate them analytically over iΔT to find the precise values of v, s and s* at i+1. The 764 

corresponding second order accurate updates for σ*, p0′, Sr and sR0
* are respectively 765 

given by Equations 69-72 where 1 *σ , 1

0 'p , 1

rS  and 1 *

R0s  correspond to the 766 

forward Euler increments and, 2 *σ , 2

0 'p , 2

rS  and 2 *

R0s  are computed using first 767 

order updated variables (see Equations 73 and 74). If the step/substep is accepted, the 768 

variables σ*, p0′, Sr and sR0
* are updated using the higher order approximation (i.e. local 769 

extrapolation see Shampine, 1994). 770 

Table 1. Coefficients for the forward Euler and modified Euler integration schemes 771 

(Dormand and Prince, 1980) 772 

kc 
kja ˆkb  (2nd) 

kb (1st) 

0      1/2 1 

1 1     1/2 0 

4.2. Runge-Kutta-Dormand-Prince (RKDP) with substepping 773 

The explicit Runge-Kutta-Dormand-Prince (RKDP) with substepping is applied here to 774 

integrate the mechanical and water retention relations of the GCM for STRPTH= 4, 5 775 

and 6. When applying this scheme to Equations 58-64, the same Equations 66-74 are 776 

obtained but, for this method, the coefficients kb and kja correspond to those summarised 777 

in Table 2.  778 
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The RKDP scheme with substepping gives very accurate values for i+1σ*, i+1p0′, 
i+1Sr 779 

and i+1sR0
* at the end of each step/substep, at the expense of additional evaluations of 780 

the constitutive relations. In the absence of an analytical solution, these highly accurate 781 

approximations are used as a reference to check the accuracy of lower order methods. 782 

Table 2. Coefficients for the RKDP4 and RKDP5 integration schemes (Dormand and 783 

Prince, 1980) 784 

kc 
kja ˆkb  (5th) 

kb (4th) 

0      19/216 31/540 

1/5 1/5     0 0 

3/10 3/40 9/40    1000/2079 190/297 

3/5 3/10 -9/10 6/5   -125/216 -145/108 

2/3 226/729 -25/27 880/729 55/729  81/88 351/220 

1 -181/270 5/2 -266/297 -91/27 189/55 5/56 1/20 

5. VERIFICATION AND COMPUTATIONAL ASPECTS 785 

The variation of the local error with the size of the integrated increments depends on 786 

the order of local accuracy of the numerical method used. Based on this information, 787 

Lloret-Cabot et al. (2016) propose a verification method for the numerical integration 788 

of constitutive models for saturated soils. This verification strategy is especially 789 

convenient for explicit substepping integration schemes, because it first checks the 790 

expected behaviour of the error at the level of one single step/substep and it then checks 791 

the theoretical response of the cumulative error over several substeps.  792 

As demonstrated here, the same strategy can be adapted to study the behaviour of the 793 

error in the numerical integration of models for unsaturated soils. In the development 794 

presented hereafter, e refers to the error incurred by the numerical scheme in a single 795 

substep (or step in the case of no substepping) and E is the cumulative error over a 796 

number of substeps. Note that the error control in a substepping strategy only controls 797 

the error in a single substep, with the aim of controlling the cumulative error over 798 

several steps. 799 

To study the behaviour of the local error when numerically integrating a model, it is 800 

useful to compare the approximations given by the integration scheme against a 801 

reference or, when possible, an analytical solution. Given that the GCM involves 802 
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mechanical and water retention behaviour, it is necessary to study the magnitude of the 803 

error not only in the mechanical response (as shown in Lloret-Cabot et al. (2016) for 804 

the saturated MCC) but also in the water retention response. Consequently, the 805 

assessment of the error investigated here for the integration of the GCM will include 806 

the relative error incurred in the approximated mechanical response (in terms of 807 

Bishop’s stresses σ* and mechanical hardening parameter p0′) and the approximated 808 

water retention response (in terms of degree of saturation Sr and a water retention 809 

hardening parameter sR0
*) when varying the size of ∆ɛ, ∆s or both. The relative error in 810 

each of these variables in a single substep/step is computed as: 811 
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where the subscript ref indicates a reference solution (or, when available, analytical).  816 

5.1. Relative error in a single-step  817 

Two numerical tests are carried out to study how the error in σ*, Sr, p0′ and sR0
* 818 

propagates during a single integration step (i.e. with no substepping) using the second 819 

order modified Euler (ME2) and the fifth order Runge-Kutta-Dormand-Prince 820 

(RKDP5) integration schemes. Both tests assume axisymmetric conditions and consider 821 

an initial unsaturated stress state lying on both mechanical and wetting retention yield 822 

curves, at zero deviatoric stress. The soil constants and initial state considered in all the 823 

simulations are summarised in Tables 3 and 4, respectively. This initial state gives 824 
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initial values of specific volume and degree of saturation v = 2.20, Sr = 0.65. Further 825 

details on model parameters and initial state of GCM are found in Lloret-Cabot et al. 826 

(2017). The tolerance associated with yield surface intersections and the correction of 827 

the stresses back to the yield curve, FTOL, is assumed equal to 10-12.  828 

Table 3. Values of soil constants for the GCM simulations for Tests A, B and C 829 

0.15 =  0.02 =  2.73 =  1.4R =  1.20 =  
* 2.90 =  1 0.70k =  

2 0.80k =  
s 0.12 =  0.33 =  (*) 

(*) where υ is the Poisson’s ratio (tangent and secant values of shear modulus were calculated from the corresponding tangent and 830 
secant values of bulk modulus by assuming a constant value of Poisson’s ratio.  831 

Table 4. Initial state for GCM simulations for Tests A and B (see the Appendix A) 832 

* 200p = kPa 0q = kPa *

0 200p = kPa 
* 109.09s = kPa -- 

*

1 109.09s = kPa 

The reason for considering this type of initial state (with p* = p*
0 and s* = s1

*) is because 833 

when positive increments of strain (loading) and/or decrements of matric suction 834 

(wetting) are applied from the assumed initial state, simultaneous yielding on the 835 

mechanical and wetting retention yield curves (STRPTH=5) is activated which 836 

corresponds to the desired situation in which the numerical approximation of all four 837 

variables investigated contain some amount of error.  838 

The first numerical test (Test A) studies the variation of the error for given finite equal 839 

variations of axial strain and radial strain ∆εa = ∆εr ≈ ∆εv/3 (where ∆εv is the increment 840 

of volumetric strain) with no variation of suction (i.e. isotropic straining at constant 841 

suction). The second test (Test B) studies the error response for a combined axial strain 842 

increment ∆εa (with no radial strains, ∆εr) and a finite decrement of suction ‒∆s (i.e. 843 

axial straining under wetting).  844 

Test A computes the error by comparing the numerical approximation against the 845 

corresponding analytical solution. This comparison provides, hence, a clear and 846 

unambiguous interpretation of the error results. Conversely, Test B compares the 847 

numerical approximation against a reference solution (obtained by using the RKDP 848 

scheme with substepping and very stringent tolerances). In the two numerical tests 849 

presented, the size of the assumed input increments of strains and suction are varied to 850 

study how such variation in size influences the error in the solution. For Test A, the 851 
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volumetric strain increment size analysed varies from ∆εv = 10-06 to 0.1 (with ∆s = 0). 852 

For Test B, the increment sizes varied from ∆εa = 10-06 and ∆s = ‒10-06 kPa to ∆εa = 853 

0.01 and ∆s = ‒0.01kPa (keeping ∆εr = 0).  854 

Accuracy in each numerical method is assessed by plotting the error in σ*, Sr, p0′ and 855 

s10
* against the size of the input of strain or suction variations using logarithmic scales. 856 

This form of plotting the error results provides a first form of verification of an 857 

integration scheme, because the gradient obtained for the best-fitted straight line 858 

through a particular set of error results (i.e. all belonging to approximations from the 859 

same integration scheme) should be in correspondence with the order of accuracy of 860 

the numerical integration method (Lloret-Cabot et al., 2016).  861 

Figures 7 and 8 illustrate the behaviour of the relative error for Tests A and B 862 

respectively, for a single step. Each figure is in four parts. The response of the relative 863 

error for the mechanical behaviour is shown in Parts (a) and (c), in terms of Bishop’s 864 

stress σ* and mechanical hardening parameter p0′, respectively. Parts (b) and (d) show 865 

the response of the relative error for the water retention behaviour in terms of degree of 866 

saturation Sr and wetting retention hardening parameter s10
*, respectively. In the figures, 867 

symbols indicate the computed relative error and the dashed lines indicate the best-868 

fitted straight line through the computed relative error for the same numerical method. 869 

Typical error results for Test A when using the ME2 and RKDP5 schemes, respectively, 870 

are summarised in Tables 5 and 6.  871 

Table 5. Typical relative error values in Bishop’s stress σ*, degree of saturation Sr, 872 

mechanical hardening parameter p0′ and wetting retention hardening parameter s10
* for 873 

a single elasto-plastic isotropic loading step at constant suction for the modified Euler 874 

with substepping (ME2) considering STOL = 1. 875 

∆εv Error in σ* Error in Sr  Error in p0′ Error in s10
* 

061 10−  < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 

1·10-05 4.50·10-14 < 1.0·10-15 6.74·10-13 5.41·10-13 

1·10-04 4.37·10-11 2.15·10-13 6.72·10-10 5.38·10-10 

1·10-03 4.35·10-08 2.14·10-10 6.64·10-07 5.31·10-07 

1·10-02 4.10·10-05 2.09·10-07 5.89·10-04 4.72·10-04 

1·10-01 1.39·10-02 9.00·10-05 1.30·10-01 1.18·10-01 



 36 

Table 6. Typical relative error values in Bishop’s stress σ*, degree of saturation Sr, 876 

mechanical hardening parameter p0′ and wetting retention hardening parameter s10
* for 877 

a single elasto-plastic isotropic loading step at constant suction for Runge-Kutta-878 

Dormand-Prince with substepping (RKDP5) considering STOL=1. 879 

∆εv Error in σ* Error in Sr  Error in p0′ Error in s10
* 

061 10−  < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 

1·10-05 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 

1·10-04 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 

1·10-03 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 < 1.0·10-15 

1·10-02 1.02·10-11 < 1.0·10-15 2.39·10-09 1.91·10-09 

1·10-01 6.94·10-06 5.31·10-12 1.33·10-03 1.06·10-03 

The respective gradients of each best-fitted straight line plotted in both figures match 880 

the expected order of accuracy of the method, suggesting that both substepping schemes 881 

work correctly at a single step/substep level. In particular, for both tests, approximate 882 

gradients of 6 are obtained when best-fitting a straight line through the computed error 883 

values in σ*, Sr, p0′ and s10
* corresponding to the RKDP5 method and approximate 884 

gradients of 3 are obtained when best-fitting a straight line through the computed error 885 

values in σ*, Sr, p0′ and s10
* corresponding to the ME2 method. Note that, for 886 

completeness, Figures 7 and 8 also include the best-fitted lines for the computed error 887 

values for the single-step first order forward Euler (gradient 2) and single-step fourth 888 

order Runge-Kutta-Dormand-Prince (gradient 5) integration schemes, in addition to the 889 

error results for ME2 and RKDP5.  890 

The results in Figures 7 and 8 show that the specific values of the local relative error 891 

incurred in each variable considered during the numerical integration, differ in each 892 

numerical test considered. In particular, the variation of the position of each best-fitted 893 

line (i.e. intercept) differs in each test and for each variable considered. This behaviour 894 

justifies the decision of treating separately the local error from mechanical (i.e. σ* and 895 

p0′) and water retention (i.e. Sr and s10
*) responses.  896 



 37 

  

  

Figure 7. Relative error for single-step explicit integration schemes against volumetric 897 

strain increment size for a single elasto-plastic isotropic strain increment at constant 898 

suction: (a) Bishop’s stress σ*; (b) degree of saturation Sr; (c) mechanical hardening 899 

parameter p0′; (d) water retention hardening parameter s10
*.   900 
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Figure 8. Relative error for single-step explicit integration schemes against axial strain 901 

increment size for a single elasto-plastic axial strain increment (at constant radial strain) 902 

under wetting: (a) Bishop’s stress σ*; (b) degree of saturation Sr; (c) mechanical 903 

hardening parameter p0′; (d) water retention hardening parameter s10
*.   904 

5.2. Substepping analysis: cumulative relative error 905 

Once a substepping integration scheme has been verified at a single step level, the 906 

verification process should study the numerical performance over several substeps. In 907 

this context, Lloret-Cabot et al. (2016) propose to study the behaviour of the cumulative 908 

relative error E incurred in an integration scheme when the substepping is active. 909 

Assuming no cancellation, the addition of each amount of relative error e incurred in 910 

each substep corresponds to the cumulative relative error E. Lloret-Cabot et al. (2016) 911 

show that e  chp+1 (where h is the substep size, p is the order of the integration scheme 912 
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and c is simply a constant that fixes the position of an error line for a single step/substep 913 

in the lne:lnh plane) and that, for n equal-sized substeps of size h, E  nchp+1 = Hchp 914 

(where H is the size of the total increment integrated i.e. H=hn). This means that the 915 

final cumulative error (incurred during the integration of a given total increment H) 916 

approximately lies on a straight line when plotted against the substep size h in a log-log 917 

scale, having gradient 2 for the ME2 and 5 for RKDP5 with substepping schemes. 918 

Similarly to the error lines for a single step/substep, the intercept of a cumulative error 919 

line is Hc (as E  Hchp) and, hence, the distance between the best-fitted straight line for 920 

the single-step error and a cumulative error line for an increment involving many 921 

substeps can be checked at a particular step/substep size h (Lloret-Cabot et al. 2016).  922 

The numerical integration of Tests A and B is performed again using the ME2 and 923 

RKDP5 schemes with substepping but now imposing values of STOL small enough to 924 

activate the substepping. In the analyses presented next, the maximum number of 925 

substeps is limited to 10+06 and the values for STOL vary from 1 to 10-08. 926 

The study of the numerical performance of each integration scheme is in two parts. An 927 

investigation on how the errors are accumulated over the substeps integrated is 928 

presented first, to check that the computed cumulative error is consistent with that of 929 

the numerical method used. The performance maps proposed in Lloret-Cabot et al. 930 

(2016) are presented in the second part of the analysis to check that the substepping 931 

integration performs correctly. Without loss of generalisation, the first part of the 932 

analysis is carried out only for Test A. The study of the performance maps, on the other 933 

hand, is carried out for both numerical tests.    934 

The different values of STOL considered (from 1 to 10-08) together with the accumulated 935 

contributions of relative error at each substep are illustrated in Figures 9 and 10 for the 936 

ME2 and RKDP5 schemes with substepping, respectively. Tables 7 and 8 present 937 

typical values of cumulative relative error for ME2 and RKDP5 substepping schemes, 938 

respectively, during the numerical integration of a volumetric strain increment of 0.1 939 

for STOL = 10-02, 10-04, 10-06 and 10-08 (Test A). In the tables, the total number of 940 

substeps required in the algorithm is indicated by TS whereas the total number of failed 941 

substeps (substeps requiring a further subdivision in size) is indicated by TF. No drift 942 

correction iterations were necessary in Test A.  943 
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Table 7. Typical cumulative relative error values in Bishop’s stress σ*, degree of 944 

saturation Sr, mechanical hardening parameter p0′ and wetting retention hardening 945 

parameter s10
* for an elasto-plastic isotropic strain increment of ∆εv =0.1 at constant 946 

suction for the modified Euler with substepping (ME2) considering different values of 947 

STOL. 948 

STOL Error in σ* Error in Sr  Error in p0′ Error in s10
* TS TF 

021 10−  2.96·10-04  1.44·10-06  4.45·10-03  3.57·10-03  11 2 

1·10-04 2.79·10-06  1.32·10-08  4.45·10-05  3.56·10-05  114 3 

1·10-06 2.78·10-08  1.31·10-10  4.46·10-07  3.57·10-07  1141 4 

1·10-08 2.78·10-10  1.31·10-12  4.46·10-09  3.57·10-09  11416 5  

Table 8. Typical cumulative relative error values in Bishop’s stress σ*, degree of 949 

saturation Sr, mechanical hardening parameter p0′ and wetting retention hardening 950 

parameter s10
* for an elasto-plastic isotropic strain increment of ∆εv =0.1 at constant 951 

suction for the Runge-Kutta-Dormand-Prince with substepping (RKDP5) considering 952 

different values of STOL. 953 

STOL Error in σ* Error in Sr  Error in p0′ Error in s10
* TS TF 

021 10−  6.94·10-06 5.30·10-12 1.33·10-03 1.06·10-03 1 0 

1·10-04 3.95·10-07 1.22·10-13 8.87·10-05 7.10·10-05 2 2 

1·10-06 1.07·10-09 1.24·10-15 2.72·10-07 2.17·10-07 6 2 

1·10-08 8.38·10-12 1.24·10-15 2.16·10-09 1.73·10-09 16 2 

The form of plotting the results shown in Figures 9 and 10 is particularly convenient to 954 

study how the cumulative relative error increases as the integration progresses 955 

(indicated by a series of data points forming a near vertical path in the figure) for various 956 

values of STOL. During a typical substepping integration of a prescribed volumetric 957 

strain increment ∆εv with n substeps, the relative error incurred in each of these substeps 958 

(all fulfilling the imposed STOL) accumulates over the substeps to give a value of the 959 

cumulative relative error (Lloret-Cabot et al., 2016). Figures 9 and 10 demonstrate that, 960 

indeed, the final values of cumulative relative error once the entire ∆εv has been 961 

integrated approximately lie on a straight line of gradient two for the ME2 with 962 

substepping and five for the RKDP5 with substepping (see dashed lines). This 963 

behaviour is true for all values of STOL used (Figures 9 and 10). The vertical distance 964 

(measured upwards) from the best-fitted straight line for the single substep relative error 965 

(indicated by a thicker dark line) and one of these cumulative relative error lines (at a 966 

particular total increment size ∆εv and substep size δεv) corresponds to 1/n where n is 967 
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the number of substeps (Lloret-Cabot et al., 2016). This error response is illustrated in 968 

Figure 9 for three different sizes of volumetric strain increment (i.e. 0.001, 0.01 or 0.1), 969 

when using the ME2 with substepping and a value of STOL=10-08. A total number of 970 

118 substeps are needed to integrate the volumetric strain increment size of 0.001, 1185 971 

for 0.01 and 11416 for 0.1. This response is less apparent when using the RKDP5 972 

scheme because of the small number of substeps typically required in this higher order 973 

method (Figure 10).    974 

During the numerical integration of each ∆εv considered, the actual substep size being 975 

integrated is quite regular in the two substepping schemes considered as reflected by 976 

the approximately vertical paths traced by the cumulative error (Figures 9 and 10).  977 

 978 

Figure 9. Cumulative relative error behaviour in Bishop’s stresses for the modified 979 

Euler with substepping (ME2) integration scheme with different values of STOL against 980 

strain increment size for an elasto-plastic isotropic loading increment.  981 
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 982 

Figure 10. Cumulative relative error behaviour in Bishop’s stresses for the Runge-983 

Kutta-Dormand-Prince with substepping (RKDP5) integration scheme with different 984 

values of STOL against strain increment size for an elasto-plastic isotropic loading 985 

increment. 986 

Figure 11 shows the cumulative relative error (i.e. the accumulated relative error 987 

incurred over the number of substeps required to integrate a given increment of 988 

volumetric strain) for Bishop’s stresses incurred in Test A plotted against STOL for 989 

each integrated size of volumetric strain increment Δεv. Figure 12 plots the same 990 

cumulative relative error plotted against the number of substeps required for the 991 

integration of the entire strain increment. In these figures, part a) presents the results 992 

for the ME2 with substepping and part b) their RKDP5 substepping counterparts. 993 

Inspection of Figure11 shows how the influence of STOL in the relative error incurred 994 

in an individual substep δεv affects the cumulative relative error incurred in the 995 

integration of the entire Δεv. As expected, a reduction in the values of STOL leads to a 996 

reduction in the relative error incurred in each individual substep of the computations 997 
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which, in turn, reduces the cumulative relative error. However, this reduction of the 998 

cumulative relative error with decreasing STOL is not apparent for small sizes of 999 

volumetric strain increment unless STOL is less than a critical size (Figure 11). 1000 

Similarly to what is observed in saturated soils (Lloret-Cabot et al., 2016), this is 1001 

because for small increment sizes, even without substepping the difference between the 1002 

two solutions of different order within the substepping scheme tends to be very small 1003 

and, if it is less than the STOL considered, the substepping strategy is not activated. For 1004 

example, for a volumetric strain increment size of 10-02, values of STOL smaller than 1005 

10-02 are required to activate the substepping strategy with the ME2 scheme (Point Y in 1006 

Figure 11a). The RKDP5 with substepping, on the other hand, needs values of STOL 1007 

smaller than 10-06 to activate substepping for a volumetric strain increment size of 10-2 1008 

(Point Y in Figure 11b). Figure 11a shows that for a volumetric strain increment size 1009 

of 10-02, 1186 substeps are required in the ME2 substepping scheme (with STOL = 10-1010 

08) to reach a cumulative relative error of about 10-10. In contrast, the RKDP5 1011 

substepping scheme requires only 2 substeps to reach a similar (even substantially 1012 

smaller) value of the cumulative relative error (see Figure 11b). 1013 

As discussed earlier, the second order accurate modified Euler with substepping uses r 1014 

 0.9(STOL/RELn)
1/2 and the fifth order accurate Runge-Kutta-Dormand-Prince with 1015 

substepping uses r  0.9(STOL/RELn)
1/5. This means that the variation of the cumulative 1016 

relative error with the number of substeps should follow, approximately, straight lines 1017 

of gradient -2 for the ME2 integration scheme and, similarly, approximately straight 1018 

lines of gradient -5 for the RKDP5 integration scheme as correctly illustrated in Figure 1019 

12.  1020 

The plots presented in Figure 11 and 12 correspond to the performance maps proposed 1021 

in Lloret-Cabot et al. (2016) for saturated soils and its application is demonstrated here 1022 

for unsaturated soils. The results obtained confirm that this specific form of plotting the 1023 

computational outcomes from a substepping integration scheme is a powerful 1024 

verification tool.  1025 

Similar error responses to those just discussed for Figure 12 are also observed in Figure 1026 

13 (Test B) for σ*, Sr, p0′ and s10
* when using the ME2 substepping integration scheme. 1027 

Even in the case of not using an analytical solution to compute the relative error, the 1028 



 44 

error behaviour observed is consistent with that discussed when analytical solutions 1029 

were available.  1030 

 

 

Figure 11. Cumulative relative error behaviour against STOL for an elasto-plastic 1031 

isotropic strain increment at constant suction: (a) Modified Euler with substepping 1032 

scheme (ME2); (b) Runge-Kutta-Dormand-Prince with substepping scheme (RKDP5). 1033 
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Figure 12. Cumulative relative error behaviour against number of substeps for an elasto-1034 

plastic isotropic strain increment at constant suction: (a) Modified Euler with 1035 

substepping scheme (ME2); (b) Runge-Kutta-Dormand-Prince with substepping 1036 

scheme (RKDP5). 1037 
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 1038 

Figure 13. Cumulative relative error behaviour against number of substeps for an elasto-1039 

plastic axial strain increment (at constant radial strain) under wetting using the modified 1040 

Euler with substepping scheme (ME2). 1041 

5.3. Computational cost and efficiency 1042 

The simplicity of the numerical examples discussed above implies a very small CPU 1043 

time and, therefore, it is reasonable to assess the computational cost associated with 1044 

each example as proportional to the number of evaluations of the constitutive relations 1045 

that the substepping integration scheme employs to solve the problem (Sloan et al., 1046 

2001). Equivalently to Lloret-Cabot et al. (2016), two evaluations of the constitutive 1047 

relations are required in the ME with substepping scheme and six are needed in the 1048 

RKDP substepping scheme. Additionally, the computational cost associated with any 1049 

rejected step as well as the computational cost associated with the number of iterations 1050 

used by the drift correction subroutine are also accounted for.  1051 

Figure 14 shows the computational cost as a function of STOL (i.e. STOL= 10-02, 10-04, 1052 

10-06 and 10-08), and the input increment size for the three numerical tests considered 1053 

earlier. Plots on the left correspond to the ME substepping scheme and plots on the right 1054 

show the approximations for the RKDP substepping scheme. A similar pattern to that 1055 



 47 

found by Lloret-Cabot et al. (2016) when using the MCC model is also observed here 1056 

for the GCM. In general, from the two integration schemes investigated, the ME 1057 

substepping scheme requires a larger number of evaluations of the constitutive relations 1058 

(i.e. higher computational cost) to satisfy the value of STOL when the sizes of the input 1059 

increment Δεv, Δεa, or Δs are large (and this observation is more pronounced when the 1060 

values of STOL are more restrictive). In contrast, the RKDP substepping scheme is 1061 

more expensive for the smaller increment sizes. For intermediate increment sizes, the 1062 

optimal computational efficiency depends on the level of accuracy specified (RKDP 1063 

substepping scheme is most efficient for stringent tolerances whereas ME substepping 1064 

scheme is best for looser values of STOL).    1065 

  1066 

Figure 14. Computational cost for different STOL values against input increment sizes: 1067 

(left) modified Euler substepping scheme; (right) Runge-Kutta-Dormand-Prince 1068 

substepping scheme.   1069 

6. CONCLUSIONS 1070 
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The complete formulation of the incremental constitutive relations of the Glasgow 1071 

Coupled Model (GCM) has been presented for all possible elastic and elasto-plastic 1072 

responses of the model, including transitions between saturated and unsaturated 1073 

conditions. The formulation is expressed in terms of the increments of strain and 1074 

increments of suction (i.e. strain-driven formulation) so that it is suitable for 1075 

implementation into a finite element program, as it properly defines an initial value 1076 

problem (IVP) when the initial stress state and the increments of strain and suction are 1077 

known.  1078 

A rigorous algorithm capable of identifying unambiguously which is the model 1079 

response activated by a trial stress path has been developed after a small reformulation 1080 

of the GCM that included the derivation of a useful closed-form expression for the 1081 

mechanical yield curve in terms of degree of saturation. The correct identification of 1082 

the intersection point, when a trial stress path moves from elastic to elasto-plastic 1083 

behaviour, is achieved by using the Pegasus algorithm, widely used for solving the 1084 

equivalent problem in explicit formulations for saturated soil models. The same strategy 1085 

is applied to find the correct stress point at saturation and desaturation. A drift 1086 

correction subroutine has been also presented to correct any potential deviation of the 1087 

stress point at the end of each integrated elasto-plastic step/substep.  1088 

Two explicit substepping formulations to integrate numerically the IVP defined by the 1089 

initial state and the incremental relations of the GCM have been then presented, 1090 

extending to unsaturated conditions the well-known explicit substepping integration 1091 

schemes with automatic error control for saturated soils. These two substepping 1092 

schemes presented correspond to the second order accurate modified Euler with 1093 

substepping and the fifth order accurate Runge-Kutta-Dormand-Prince with 1094 

substepping. 1095 

In contrast to existing substepping formulations with automatic error control for 1096 

saturated soils, which account only for the relative error associated with the integration 1097 

of the mechanical part of the problem (i.e. stresses and mechanical hardening 1098 

parameter), the extended substepping version with automatic error control presented in 1099 

this paper accounts for the relative error incurred during the numerical integration of 1100 

both the mechanical (stresses and mechanical hardening parameter) and water retention 1101 

(degree of saturation and water retention hardening parameter) components of the 1102 
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problem. This is essential when applying substepping schemes to solve problems 1103 

involving unsaturated soils, as this is what ensures an accurate and efficient integration.  1104 

The correctness of the two substepping schemes presented is checked by investigating 1105 

how the error over an individual step/substep and the cumulative error over multiple 1106 

substeps propagate during the integration of two simple numerical tests, involving an 1107 

isotropic straining at constant suction and a combined axial straining under wetting. 1108 

The behaviour of the relative error observed when adopting a single-step integration in 1109 

solving each of these tests is different for the mechanical and the water retention 1110 

components of the problem, which confirms the importance of accounting separately 1111 

for the different sources of error. The computational performance of the two 1112 

substepping schemes is then checked by ensuring that the influence of the internal 1113 

substepping tolerance STOL on the accuracy and the number of substeps used is as 1114 

expected. The results obtained extend to unsaturated conditions the conclusions 1115 

observed for saturated soils (Lloret-Cabot et al., 2016), confirming that the substepping 1116 

methods proposed are capable of controlling the cumulative error (i.e. they satisfy the 1117 

error tolerance STOL for all the cases considered).    1118 

Finally, this investigation confirms that the importance of updating rigorously the 1119 

specific volume in Cam Clay family models for saturated soils in substepping 1120 

integration schemes extends also to the rigorous update of the degree of saturation in 1121 

substepping integration schemes for critical state models for unsaturated soils.  1122 
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8. APPENDICES 1127 

8.1 Appendix A  1128 

The Glasgow Coupled Model (GCM) predicts that isotropic stress states at the 1129 

intersection of fM and fWR yield curves fall on unique unsaturated isotropic normal 1130 

compression planar surfaces for  v  (in  v: *ln p : *ln s   space) and also for  Sr  (in  Sr:
*ln p1131 
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: *ln s  space). The forms of these two planar surfaces are (see also Lloret-Cabot et al. 1132 

2017):  1133 

* * * * *

0 1 1ln lnv p k s=  − +        (A1) 1134 

* *

1 0

* * *
s 2ln lnrS s k p= − +        (A2) 1135 

where *  and *  are their respective intercepts. The expressions of gradients * , *

1k , 1136 

*
s  and 

*

2
k  are a combination of the soil parameters of the model  (assuming 0d e

rS = ):  1137 
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1 21

sk k
k k

=
−


        (A6) 1141 

Assuming κs = 0 (the gradient of elastic scanning curves in the Sr:lns* plane as defined 1142 

in Wheeler et al., 2003), Lloret-Cabot et al. (2017) derives the following relationship 1143 

between intercepts N, *  and * : 1144 

( )
( )

*

s*

1

1
k

 − 
 = −

 − 
        (A7) 1145 

Combining the above equations with the elastic relations of the GCM, it is possible to 1146 

find the following expressions for v for any general stress state (Lloret-Cabot et al., 1147 

2017):   1148 

*
* * * * * 0

0 1 1 *
ln ln ln

p
v p k s

p

 
=  − + +   

 
      (A8) 1149 
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Equation A8 can be used to calculate initial value of v when initial values of p*, p0
* and 1150 

s1
* are known, together with the model parameters. Given that 0d e

rS = , the initial value 1151 

of Sr can be also calculated from Equation A2 (Lloret-Cabot et al., 2017).  1152 

8.2 Appendix B 1153 

A more formalised description of the sequence of the steps followed by the algorithm 1154 

to determine which is the active response of the GCM is presented here for the most 1155 

general case of a stress point starting inside the three yield curves of the model and 1156 

potentially activating any of the six possible model responses. Any other case (i.e. stress 1157 

point starting on one or two yield curves) is a particular case of this one.  1158 

(A) Compute trial 1 assuming purely elastic behaviour.  1159 

If trial 1 is inside fM, fDR and fWR then, elastic update from i to i+1 and return. 1160 

If trial 1 is outside fM, outside fR or outside both, yielding has occurred (note that 1161 

fR is either fDR or fWR). Hence: 1162 

If trial 1 is outside only one yield curve (fM or fR). 1163 

Find the portion α of ∆ɛ and ∆s, that moves the stress point to the 1164 

intersection with fM, iM1, (or with fR, iR1). Note that α = 0 means that the 1165 

stress point was already on fM (or fR). 1166 

Update elastic from i to iM1 (or iR1).  1167 

Move to trial 2 with the portion not yet integrated of ∆ɛ and ∆s given by 1168 

(1-α). At this stage, the stress point is on fM (or on fR). 1169 

If trial 1 is outside two yield curves (fM and fR). 1170 

Find intersection with fM, α1.  1171 

Find intersection with fR, α2. 1172 

If α1 < α2 then fM is reached first. 1173 

Update elastic from i to iM1 using α1.  1174 

Move to trial 2 with (1-α1). The stress point is on fM 1175 

If α2 ≤ α1then fR is reached first. 1176 

Elastic update from i to iR1 using α2 (note that if α1 = α2, then iR1=iM1 1177 

and, hence, α1 = α2 =0 i.e. stress point is on both fM and fR) 1178 

Move to trial 2 with (1-α2). The stress point is on fR (if α2 < α1) or 1179 

on both fR and fM (if α2 = α1). 1180 
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(B) At this stage, there are three possible ways to compute trial 2 depending on whether 1181 

the stress point is on fM (point iM1, case B.1) on fR (point iR1, case B.2) or on both (point 1182 

iY, case B.3).  1183 

(B.1) If the stress point is only on fM (point iM1) then,  1184 

Compute trial 2 assuming yielding on fM, but not on fR (using the portion not yet 1185 

integrated of ∆ɛ and ∆s i.e. (1-α) if trial 1 crosses only one yield curve or (1-α1) if trial 1186 

1 crosses two yield curves).  1187 

If trial 2 is inside fR, then yielding on fM (but not on fR) has occurred. 1188 

Update stress point from iM1 to iM1+1 assuming yielding on fM alone (using 1189 

1-α or 1-α1) and return. 1190 

If trial 2 is outside fR, then trial 2 crosses fR at point iY, on both fM and fR. 1191 

Find intersection with fR iR = iY, β. Note that β = 0 means that the stress 1192 

point was already on fR. 1193 

Update stress point from iM1 to iR assuming yielding on fM alone (using β) 1194 

and move to trial 3.  1195 

At this stage, the stress point is on fM and fR (point iY). There are only two possible 1196 

model responses here: yielding on only fR or simultaneous yielding on fM and fR. 1197 

Yielding on only fM is not possible because, if that was the case, trial 2 would had fallen 1198 

inside fR when assuming yielding on only fM and, in fact, the algorithm is at this point 1199 

because trial 2 fell outside fR.   1200 

Compute trial 3 assuming yielding on fR (but not on fM) with (1-β). 1201 

If trial 3 is inside fM, then update the stress point from iY to iY+1 assuming 1202 

yielding on fR alone (using 1-β) and return. 1203 

Otherwise, update the stress point from iY to iY+1 assuming simultaneous yielding 1204 

on fM and fR (using 1-β) and return. 1205 

(B.2) If the stress point is on fR (point iR1) then,  1206 

Compute trial 2 assuming yielding on fR (but not on fM) using the portion not yet 1207 

integrated of ∆ɛ and ∆s i.e. (1-α) or (1-α2).  1208 

If trial 2 is inside fM, then yielding on fR (but not on fM) has occurred 1209 

Update stress point from iR1 to iR1+1 assuming yielding on fR alone (using 1210 

1-α or 1-α2) and return. 1211 

If trial 2 is outside fM, then trial 2 crosses fM at point iY, on both fM and fR. 1212 

Find intersection with fM iM= iY, β. 1213 
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Update stress point from iR to iM assuming yielding on fR alone (using β) 1214 

and move to trial 3. 1215 

At this stage, the stress point is on fM and fR (point iY). There are only two possible 1216 

model responses here: yielding on only fM or simultaneous yielding on fM and fR. Note 1217 

that yielding on only fR is not possible because, if that was the case, trial 2 would had 1218 

fallen inside fM when assuming yielding on only fR and, in fact, fell outside fM. 1219 

Compute trial 3 assuming yielding on fM (but not on fR) with (1-β). 1220 

If trial 3 is inside fR, then update the stress point from iY to iY+1 assuming yielding 1221 

on fM alone (using 1-β) and return. 1222 

Otherwise, update the stress point from iY to iY+1 assuming simultaneous yielding 1223 

on fM and fR (using 1-β) and return. 1224 

(B.3) If the stress point is on fM and fR (point iY). There are three possible model 1225 

responses here: yielding on only fR, yielding on only fM or simultaneous yielding on fM 1226 

and fR. Therefore, the algorithm may need to compute a maximum of two trials to ensure 1227 

the correct model response.  1228 

Compute trial 2 assuming yielding on fR, (but not on fM) using the portion not yet 1229 

integrated of ∆ɛ and ∆s i.e. (1-α) or (1-α2).  1230 

If trial 2 is inside fM, then yielding on fR (but not on fM) has occurred. 1231 

Update from iY to iY+1 assuming yielding on fR alone (using 1-α or 1-α2) 1232 

and return. 1233 

Otherwise, move to trial 3.  1234 

Compute trial 3 assuming yielding on fM (but not on fR) using the portion not yet 1235 

integrated of ∆ɛ and ∆s i.e. (1-α) or (1-α2). 1236 

If trial 3 is inside fR, then update the stress point from iY to iY+1 assuming yielding 1237 

on fM alone and return. 1238 

Otherwise, update the stress point from iY to iY+1 assuming simultaneous yielding 1239 

on fM and fR and return. 1240 

Note that step (B.3) can be accommodated in steps (B.1) or (B.2), but, for clarification, 1241 

it has been kept as a separate case.  1242 

8.3 Appendix C  1243 

Given the increments of ∆ɛ and ∆s, the stress state can move from elastic to elasto-1244 

plastic. In the context of the GCM, this means that a trial intersects at least one yield 1245 

curve and that an intersection point needs to be found. The proposed integration 1246 
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schemes solve all intersections using the Pegasus algorithm illustrated in Figure C1 1247 

(Dowell and Jarratt, 1972). Two conditions are necessary for a trial to cross a generic 1248 

yield curve fA. The first one is that the stress point at i is not already lying on fA 1249 

(indicated in Figure C1 as 0fA < -FTOL). The second one is that the evaluation of the 1250 

yield curve at the trial is larger than FTOL (indicated by 1fA > FTOL in Figure C1). If 1251 

both of these conditions are true, the Pegasus algorithm finds the scalar α that defines 1252 

the portion of ∆ɛ and ∆s that moves the current stress point to fA (indicated as i in Figure 1253 

C1). A value of α = 0 indicates that the initial stress point is already on fA (i.e. |fA| ≤ 1254 

FTOL) and the update of the stress point is elasto-plastic. A value α = 1 indicates that 1255 

the final stress point (once the full size of ∆ɛ and ∆s has been updated) ends up exactly 1256 

on fA so that no intersection occurs. These two extreme cases explain why the possible 1257 

values of the scalar α range between 0 and 1.  1258 
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 1259 

Figure C.1 Typical intersection problem using Pegasus algorithm (Dowell and Jarratt, 1260 

1972) 1261 

 1262 
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