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ABSTRACT
We search for the baryon acoustic oscillations in the projected cross-correlation function binned into transverse comoving radius
between the SDSS-IV DR16 eBOSS quasars and a dense photometric sample of galaxies selected from the DESI Legacy Imaging
Surveys. We estimate the density of the photometric sample of galaxies in this redshift range to be about 2900 deg−2, which
is deeper than the official DESI emission line galaxy selection, and the density of the spectroscopic sample is about 20 deg−2.
In order to mitigate the systematics related to the use of different imaging surveys close to the detection limit, we use a neural
network approach that accounts for complex dependences between the imaging attributes and the observed galaxy density. We
find that we are limited by the depth of the imaging surveys that affects the density and purity of the photometric sample and
its overlap in redshift with the quasar sample, which thus affects the performance of the method. When cross-correlating the
photometric galaxies with quasars in the range 0.6 ≤ z ≤ 1.2, the cross-correlation function can provide better constraints on
the comoving angular distance DM (6 per cent precision) compared to the constraint on the spherically averaged distance DV

(9 per cent precision) obtained from the autocorrelation. Although not yet competitive, this technique will benefit from the arrival
of deeper photometric data from upcoming surveys that will enable it to go beyond the current limitations we have identified in
this work.
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1 IN T RO D U C T I O N

The baryon acoustic oscillations (BAO) feature (Cole et al. 2005;
Eisenstein et al. 2005) in the clustering of galaxies left by the baryon–
photon plasma that propagated as sound waves until decoupling in the
early Universe has emerged as a very robust way of measuring cosmic
distances across time. The BAO measurement in samples of galaxies
at different redshifts is a powerful geometrical test to probe the
expansion history of the Universe in a complementary way to cosmic
microwave background anisotropies (Planck Collaboration VI 2020)
and to the Hubble diagram with Type Ia supernovae for the local Uni-
verse, such as the recent HST programme SH0ES (Riess et al. 2018,
2019) and the Carnegie-Chicago Hubble programme (Freedman et al.
2019). These various cosmological data sets have shown increasing
evidence that the cosmic expansion has been accelerating for 6 billion
yr. However, the mechanism that is driving such an acceleration is
one of the biggest mysteries in cosmology. It is commonly known
as ‘dark energy’ where, in the standard cosmological model, we
introduce the cosmological constant � that could be associated with
vacuum energy to account for this late-time acceleration. The current
observations could also be explained by more complex dark energy
models with time-dependent properties or even a modification of
general relativity at cosmological scales (e.g. Linder & Cahn 2007;
Guzzo et al. 2008).

Ongoing and planned cosmic surveys have been designed to
distinguish between these possibilities and more generally to test the
standard model of cosmology, Lambda cold dark matter (�CDM).
Dense spectroscopic samples of large-scale structure tracers are
required to measure the BAO feature accurately, but it becomes
observationally expensive especially at high redshifts (z ≥ 1) where
galaxies are fainter and less abundant. Bright galaxies such as the
BOSS luminous red galaxies (BOSS LRGs; Alam et al. 2017) have
been extensively probed by spectroscopic surveys to reconstruct the
map of the large-scale structures of the Universe up to z < 0.6.
The SDSS-IV eBOSS programme (Dawson et al. 2016) undertook
a survey of emission line galaxies (ELGs) and quasars to probe
the unexplored intermediate redshift range (0.6 < z < 2.2) and
set the scene for the advent of Stage IV dark energy experiments
including the Dark Energy Spectroscopic Instrument at the Kitt
Peak Observatory (DESI Collaboration 2016a, b), the space mission
Euclid (Amendola et al. 2013), and the Legacy Survey of Space and
Time at the Vera C. Rubin Observatory (LSST Dark Energy Science
Collaboration 2012). Current and upcoming galaxy surveys are also
providing larger and larger samples of photometric data. Attempts to
measure the BAO feature in the correlation function of photometric
galaxy samples (Padmanabhan et al. 2007; Ross, Percival & Manera
2015) continue improving with the ongoing generation of surveys
like Hyper-Suprime Camera (HSC; Aihara et al. 2018), the Dark
Energy Survey (DES Collaboration 2018), and the Kilo-Degree
Survey (KIDS; de Jong et al. 2015). However, the photometric BAO
analysis is based on the angular correlation function of galaxies that
loses the clustering information along the line-of-sight direction due
to projection. It thus mixes different physical scales, which leads
to a smearing of the BAO feature and to a loss of precision in the
cosmological constraints.

On the one hand, spectroscopic data provide accurate redshift
measurements but are limited by the statistics at high redshift (z >

1). On the other hand, samples of photometric data are much larger
but with less precise information in the radial direction. Therefore,
exploiting the cross-correlation between both types of data has been
more and more used, mainly in order to characterize the properties
of the photometric data set. For instance, Padmanabhan et al. (2009)

studied the small-scale clustering of a sample of photometrically
selected LRGs using a spectroscopic sample of quasars in the
range 0.2 < z < 0.6. Methods to infer the redshift distribution
of a photometric sample by measuring the amplitude of cross-
correlation with spectroscopic samples have been developed (for
a review, see Newman 2008) and this technique has been recently
applied to the photometric sample of DESI LRGs and was able to
recover the expected redshift distribution (Kitanidis et al. 2020).
Another application of such kind of cross-correlation was proposed
by Patej & Eisenstein (2018) with the goal of improving the BAO
measurement in a sparse spectroscopic sample by exploiting the
cross-correlation with a denser photometric sample. Nishizawa,
Oguri & Takada (2013) already showed that the measurement of
the correlation function as a function of transverse comoving radius
rather than angular separation preserves the BAO scale inherent in
the large-scale structures. Then, Patej & Eisenstein (2018) derived
the analytical prediction in configuration space and they presented
a proof of concept that the BAO scale could be measured in the
cross-correlation function binned by transverse comoving radius.

In this paper, we develop and apply this method to measure the
BAO feature in the projected cross-correlation of eBOSS DR16
quasars and a photometric sample of galaxies selected from the DESI
Legacy Imaging Surveys (Dey et al. 2019). We perform two analyses
in parallel, one from the autocorrelation function of the eBOSS DR16
quasars and one from the projected cross-correlation function, both
under the same fitting conditions. By providing a proper comparison
between the two statistics, our goal is to highlight the potential benefit
of using the cross-correlation between photometry and spectroscopy
for BAO measurement. The paper is structured as follows. Section 2
presents the analytical prediction for the projected cross-correlation
function. Then, we present the spectroscopic and photometric data
sets in Section 3 and the methodology for this analysis in Section 4.
Eventually, the measurements and results are shown and discussed
in Section 5 followed by the conclusion in Section 6.

2 BAO I N THE PRO J ECTED
C RO S S - C O R R E L AT I O N FU N C T I O N

2.1 Transverse comoving separation

Instead of considering angular separation between a spectroscopic
object and the surrounding photometric galaxies, the key idea is
to consider the cross-correlation binned by transverse comoving
separation where photometric galaxies are assumed to be at the same
redshift as the spectroscopic object they are correlated with. The
transverse separation R is thus defined in terms of observed angular
positions and the comoving angular diameter distance evaluated at
the spectroscopic redshift DM(zs):

R = DM(zs) arccos(γ s · γ p) = DM(zs)|θ s − θp|, (1)

where the unit vector on the celestial sphere γ is defined by γ =
(sin θ cos φ, sin θ sin φ, cos θ ) and θ s (θp) is the angular separation
between the spectroscopic quasar (the photometric galaxy) and
the line-of-sight direction. We assume the sky is locally flat over
separations between correlated galaxies.

The conversion from angular position to transverse comoving
separation assumes a fiducial cosmological model, and also in the
next section, we will assume a linear matter power spectrum. We use
a flat �CDM cosmological model with the following parameters:

h = 0.676, �m = 0.31, �� = 0.69,

�bh
2 = 0.022, mν = 0.06 eV, σ8 = 0.80. (2)
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where the subscripts m, b, and ν stand for matter, baryon, and
neutrino, respectively, and h is the standard dimensionless Hubble
parameter. These choices match the fiducial cosmology adopted for
the BAO analysis of the eBOSS quasar sample DR14 (Ata et al.
2018) and DR16 (Neveux et al. 2020; Hou et al. 2021).

2.2 Analytical projected cross-correlation function

Patej & Eisenstein (2018) detailed the mathematical formalism
associated with the projected cross-correlation function wθ (R). In
this section, we just recall the most important steps in obtaining
an analytical prediction for wθ (R). The spectroscopic sample is
characterized by an overdensity field δs(r) and the photometric
sample by a projected overdensity field 
p(θ ) defined as


p(θ) =
∫

r2np(r)δp(r)dr∫
r2np(r)dr

, (3)

where np(r) is the number density of photometric galaxies and δp(r)
the overdensity field associated with the photometric sample.

The projected cross-correlation function wθ (R) is then:

wθ (R) = 〈δs(r)
p(θ + R/r)〉, (4)

where the transverse comoving separation R is defined by equa-
tion (1) and r = (r, θ ).

Using the flat-sky approximation, Patej & Eisenstein (2018)
derived a detailed analytical expression in agreement with Padman-
abhan et al. (2009) who first showed that the projected correlation
function binned by physical transverse separation wθ (R) can be
related to the standard projected correlation wp(R) (Davis & Peebles
1983) by

wθ (R) = 〈f (bs, ns, bp, np)〉wp(R) (5)

where 〈f(χ )〉 scales the amplitude of the standard projected cross-
correlation function according to the overlap in redshift between
the photometric galaxies and the spectroscopic quasars they are
correlated with. This factor is defined in Patej & Eisenstein (2018)
as follows:

〈f (bs, ns, bp, np)〉 = bsbp

2π

∫
dr r2ns(r)W (r, η)np(r)∫

dr ns(r)W (r, η)
∫

dr ′ r ′2np(r ′)
, (6)

where bs is the linear bias of the spectroscopic sample, bp is the
linear bias of the photometric sample, ns is the redshift-dependent
mean number density of the spectroscopic sample, np is the redshift-
dependent mean number density of the photometric sample, and W(r,
η) is a weighting function that accounts for selection effects and can
depend on r and other variables that are collectively referred to as
η. However, so far in the clustering analyses, the weights that have
been derived do not depend on r or η and we generally assume that
the linear biases are scale-independent, therefore equation (6) can
be seen as a normalization factor that will be fitted to the data. If
the two redshift distributions were overlapping perfectly, the second
ratio would be equal to 1 and the normalization factor would simply
be bsbp/2π .

The standard projected correlation function wp(R) can be calcu-
lated as the line-of-sight integral of the 2D power spectrum defined
as

wp(R) = 1

2π

∫
d2k⊥P (k⊥)eik⊥·R, (7)

where k =
√

k2
‖ + k2

⊥ ≈ k⊥ assuming that the range of the line-of-

sight distance projected over is much larger than the BAO scale.

Figure 1. Evolution with redshift of the template for the matter projected
correlation function following equation (9) and with a bin width of 1 h−1 Mpc.

However, the expectation value derived for wθ (R) in equation (5)
only holds for a single separation R whereas the data are binned.
So to account for this binning, one can exploit that the clustering
depends only on r due to isotropy. Therefore, by integrating over
circular annuli with bounds R1 and R2, we can obtain the following
binned correlation function:

w(R1, R2) = 2
∫ R2

R1

RdR

(R2
2 − R2

1)

∫
dφ

2π
wθ (R), (8)

which then leads to equation (80) of Patej & Eisenstein (2018):

w(R1, R2) = bsbp

2π2(R2
2 − R2

1)

∫
dr r2ns(r)W (r, η)np(r)∫

dr ns(r)W (r, η)
∫

dr ′ r ′2np(r ′)

×
∫

d2k⊥P (k⊥)
R2J1(k⊥R2) − R1J1(k⊥R1)

k⊥
. (9)

This is the analytical expression we will use to fit to the data in
Section 5.2.2.

2.3 Implicit assumptions

The above derivation implicitly assumes that wp(R) does not vary
across the redshift range of interest. Of course, this is not true and
Fig. 1 shows the redshift evolution of the matter projected cross-
correlation function using equation (9) for a bin width of 1 h−1 Mpc.
However, in the context of BAO measurements, we argue that the
position of the BAO peak is not affected and any modification of the
shape of the projected cross-correlation can be accounted for with
the bias and broad-band parameters. Nevertheless, in Section 4.4, we
propose three assumptions for the redshift distribution of the photo-
metric sample that can affect the effective redshift definition and in
Section 5.2.2, we will show the impact on the BAO measurements.

Another assumption is related to the input matter power spectrum
P(k⊥) that enters equation (9). We generate it using CAMB (Lewis,
Challinor & Lasenby 2000) assuming a linear prediction. We have
checked that including non-linear corrections from the Halofit
model (Smith et al. 2003; Takahashi et al. 2012) in CAMB has a
marginal effect on small scales (R ≤ 20 h−1 Mpc). Moreover, the
projected clustering is less affected by redshift-space distortions,
RSD (Ross et al. 2011) and we do not use photometric redshifts to
locate the position of the galaxies along the line of sight. So we
expect the RSD correction to be negligible. Eisenstein, Seo & White
(2007) showed that non-linearities can also lead to a broadening
of the BAO peak. However, this evolution is sufficiently slow that
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Figure 2. Redshift distribution of the spectroscopic eBOSS quasars. We
keep quasars in 0.6 ≤ z ≤ 1.5 only as indicated by the dotted lines.

it can be accounted for by adding a damping term in the BAO
template. Eventually, we can also have a scale-dependent bias that
becomes important at small scales. In a BAO analysis, however, this
is usually accounted for by the broad-band parameters. We refer to
Section 4.3 where we present the BAO fitting procedure and introduce
the damping term and the broad-band parameters.

3 DATA

3.1 Spectroscopic data set

As highlighted in Patej & Eisenstein (2018), the cross-correlation
method described above is expected to reduce shot noise and to
improve the BAO measurement in a sparse spectroscopic sample.
Actually, the SDSS-IV eBOSS quasars represent a sparse spectro-
scopic sample with nP0 = 0.12 < 1 where n � 10−4 h−3 Mpc−3 is
the quasar density (which is about an order of magnitude lower than
for galaxies) and P0 = 6000 h−3 Mpc3 is the typical amplitude of the
quasar power spectrum at the BAO scale.

Our analysis uses the CORE spectroscopic sample of quasars
obtained by the SDSS-IV eBOSS programme (Dawson et al. 2016)
using the 2.5-m Sloan Foundation telescope (Gunn et al. 2006) at the
Apache Point Observatory with the same two-arm optical fibre-fed
spectrographs as BOSS (Smee et al. 2013). The CORE quasar target
selection (Myers et al. 2015) is based on the SDSS-I-II-III optical
imaging data in the ugriz (Fukugita et al. 1996) bands and on the
imaging data from the Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010). Selection is performed using a likelihood-based
routine called the ‘Extreme Deconvolution’ algorithm (XDQSO)
in order to obtain a homogeneous quasar sample at g < 21. The
algorithm has been improved for eBOSS with XDQSOz (Bovy et al.
2012) so that it can be applied to any redshift range. The spectroscopic
sample used in this analysis is obtained with the same methodology
as for the large-scale structure DR16 eBOSS quasar catalogue (Ross
et al. 2020) but instead of considering quasars between 0.8 ≤ z ≤
2.2, we use quasars between 0.6 ≤ z ≤ 1.5. Including quasars at z <

0.8 and removing those at z > 1.5 allows us to increase the overlap in
redshift with the sample of photometric galaxies. There are very few
quasars below z = 0.6 and few photometric galaxies above z = 1.5.
The photometric sample is described in the next section. The redshift
distribution of the eBOSS DR16 quasar catalogue (Lyke et al. 2020)
is shown in Fig. 2 in blue for the Northern Galactic cap (NGC) and
red for the Southern Galactic cap (SGC). The dotted vertical lines
delineate our range 0.6 < z < 1.5.

Figure 3. Quasar target density variation with imaging systematics before
(raw data as dotted lines) and after applying weights to correct for the variation
with g-band depth and Galactic extinction (E[B − V]). Here, we consider
quasars in 0.6 ≤ z ≤ 1.5.

As in Ross et al. (2020), we apply a cut in the completeness per
sector where we restrict to sectors that have CeBOSS > 0.5 such that
the completeness of the quasar sample is ∼ 97.7 per cent. We also
correct for any missing targets or spurious correlation in the target
density by applying several weights to the data and the randoms
following Ross et al. (2020):

(i) Systematics weights wsys are used to correct for inhomo-
geneities in the quasar density due to variations in the quality of
the SDSS photometry. Such variations can lead to angular variations
of the depth (5σ detection in magnitude for a point-source object)
that also depend on the airmass, seeing, and Galactic extinction. We
compute systematics weights for the NGC and SGC separately based
on linear regression according to the dependence of the quasar density
on the SDSS imaging depth in the g-band, Galactic extinction, the
seeing, and the sky background. The procedure was identical to that
described in Ross et al. (2020), except for the 0.6 < z < 1.5 redshift
range. Fig. 3 displays the target density variation with the imaging
systematics before applying the correction with depth and Galactic
extinction (raw data) and after (corrected). We then correct for the
remaining dependence on seeing and sky background.

(ii) Close-pairs (fibre-collisions) weights wcp are used to account
for the missing targets in a collision group due to the finite size
of a spectroscopic fibre that prevents observing two quasars within
a radius of 62 arcsec. We compute weights that are assigned and
equally distributed per collision group.

(iii) Redshift failures weights wnoz are used to account for the
missing targets due to invalid redshifts that we correct for by
computing weights based on the spectrograph signal to noise in the
i-band and the fibre ID.

(iv) FKP weight wFKP (Feldman, Kaiser & Peacock 1994) is used
to minimize the variance of the measurement and is defined by
wFKP = (1 + P0n(z))−1.

The total weight that is applied to the data and the random is thus
defined by

wtot = wFKP · wsys · wcp · wnoz (10)
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3.2 Photometric data set

In order to maximize the cross-correlation signal, we need to select
photometric galaxies in the same footprint but also in the same
redshift range as the spectroscopic sample. We also need to reach a
sampling of galaxies dense enough such that npPp > 1 where np is the
density of the photometric galaxies and Pp is the typical value of the
power spectrum of the photometric sample at the BAO scale. Given
our choice of spectroscopic sample, we want to select photometric
galaxies in the redshift range 0.6 < z < 1.5, where star-forming
galaxies are ideal candidates as they are abundant at these redshifts
with strong emission lines (e.g. Madau & Dickinson 2014). Such
kind of ELGs have been already observed by the SDSS-IV eBOSS
programme which confirms that optical colour selection techniques
can be used to optimally select ELGs in 0.6 < z < 1.1 (Raichoor
et al. 2017). The DESI instrument (DESI Collaboration 2016b) has
been designed to resolve the [O II] doublet over the redshift range 0.6
< z < 1.6 such that the ELGs constitute the largest sample of objects
that DESI will observe with 28 million ELGs over 14 000 deg2. We
select the photometric sample using the DR8 release1 of the DESI
Legacy Imaging Surveys (Dey et al. 2019) which consist of:

(i) The Dark Energy Camera Legacy Survey (DECaLS), which
provides imaging over 2/3 of the DESI footprint covering both the
Northern and Southern Galactic caps (NGC and SGC) at Dec ≤
32 deg in g, r, and z bands. It also includes the DES imaging where
available.

(ii) The Beijing-Arizona Sky Survey (BASS), which observes
5500 deg2 in the NGC footprint at Dec ≥ 32 deg in two optical
bands (g and r). Its coverage includes 500 deg2 of overlap with
DECaLS in order to investigate any systematic biases in the target
selection.

(iii) The Mayall z-band Legacy Survey (MzLS), which observes
5500 deg2 in the NGC footprint at Dec ≥ 32 deg in the z band.

Altogether, they provide photometric data in three optical/near-
infrared bands (g, r, and z) over more than 14 000 deg2 with a 5σ

galaxy depths of g = 24.4, r = 23.8, and z = 23.0. Note that the
separation between BASS/MzLS and DECaLS is at Dec =32.375 deg
and that this declination does not reflect the limits of the imaging
but, rather, is imposed by the DESITARGET code.2 The photometric
catalogue also includes two mid-infrared bands observed by the
WISE satellite (Wright et al. 2010). All the Legacy Imaging Surveys
catalogues are built using TRACTOR3 (Lang, Hogg & Mykytyn 2016)
which is a forward-modelling algorithm to perform source extraction
on pixel-level data. The footprint of the different DESI Legacy
Imaging Surveys with BASS/MzLS, DECaLS, and DES together
with the eBOSS footprint are shown in Fig. 4.

3.2.1 Photometric selection

Our target selection is based on three criteria: (i) clean photometry
(masking around bright stars/objects and removing defective pixels),
(ii) high target density, (iii) galaxies in the desired redshift range.
The corresponding cuts are detailed in Table 1 and we modify the
DESITARGET code4 to implement them.

Our cuts are done on magnitudes corrected for Galactic extinction
using the maps of Schlegel, Finkbeiner & Davis (1998). The

1http://legacysurvey.org/dr8/description/
2https://github.com/desihub/desitarget/blob/master/py/desitarget/io.py#L95
3https://github.com/dstndstn/tractor
4https://github.com/desihub/desitarget/tree/master/py/desitarget

Figure 4. Footprint of the DESI Legacy Imaging Surveys with BASS/MzLS
(red), DECaLS (red), and DES (blue) and of the DR16 eBOSS/QSO footprint
(black).

Table 1. The ELG target selection in this study using the DESI Imaging
Legacy Surveys in the NGC and SGC.

Criterion DESI BASS/MzLS DESI DECaLS

Clean photometry nobs, g/r/z > 0, GAIA stars masking and pixel masking
Magnitude range 20 < g < 23.6 20 < g < 23.5
Redshift range 1.15(r − z) − 1.5 < g − r < 1.15(r − z) − 0.15

−1.2(r − z) + 1.0 < g − r < −1.2(r − z) + 2.8

extinction coefficients for the DECam filters are computed using
airmass = 1.3 for a source with a 7000 K thermal spectrum as done
in Schlafly & Finkbeiner (2011). These coefficients are A/E(B –
V) = 3.995, 3.214, 2.165, 1.592, 1.211, 1.064 for the g, r, z, W1 and
W2 bands, respectively. Galactic extinction coefficients for BASS
and MzLS are also calculated as if they are on the DECam filter
system. TRACTOR outputs also provide the number of observations
nobs in the three bands where we impose at least one observation in
each band (nobs, g/r/z > 0), a masking around GAIA DR2 stars (Gaia
Collaboration 2018) and corrections for instrumental effects that we
call ‘pixel masking’. These corrections enable us to track the pixels
that have been compromised due to bad quality, saturation, cosmic
rays, bleed trails, transients, edges, and outliers. They are compiled
in the ALLMASK bitmask5 and we remove those bad pixels for each
band. Our pixel masking also includes pixels in the vicinity of bright
stars, large galaxies6, and globular clusters.

Fig. 5 displays the g − r versus r − z colour–colour diagram for
galaxies in our g-band magnitude range with our selection (red box),
the DESI ELG selection (black box), and the SDSS-IV eBOSS ELG
selection (magenta box). The colour-coding shows the photometric
redshifts of the galaxies after matching the ELG targets with HSC-
PDR2 (Aihara et al. 2019). The DESI ELG target selection does not
provide enough targets for this study, with a mean target density of
2400 deg−2 while we would like a mean density of ∼3000 deg−2 to
have npPp ∼ 5 where we choose P0 = 4000 h−3 Mpc3 for ELGs. To
reach a higher redshift density, we select less star-forming objects
(i.e. with redder colours) given that we are not constrained by desiring
a minimal [O II] flux as spectroscopic targets are.

Because we are only interested in the overlapping footprint with
eBOSS, we apply the eBOSS geometry to the photometric sample
including four veto masks for bad fields, bright objects, a centre
post mask that removes the areas at the centre of the plates where no
targets can be observed and a collision priority mask that removes the

5http://legacysurvey.org/dr8/bitmasks/#maskbits
6https://github.com/moustakas/LSLGA

MNRAS 503, 2562–2582 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2562/6131853 by guest on 14 January 2022

http://legacysurvey.org/dr8/description/
https://github.com/desihub/desitarget/blob/master/py/desitarget/io.py#L95
https://github.com/dstndstn/tractor
https://github.com/desihub/desitarget/tree/master/py/desitarget
http://legacysurvey.org/dr8/bitmasks/#maskbits
https://github.com/moustakas/LSLGA


BAO in the projected cross-correlation function 2567

Figure 5. Colour–colour diagram showing the selection used in this analysis
(red), the DESI ELG main selection (black), and the eBOSS ELG selection
(magenta). The colour-codding represents photometric redshifts from HSC-
PDR2. Top: in BASS/MzLS, bottom: in DECaLS.

areas where higher priority targets prevent any fibre being assigned
to a quasar target.

In order to validate our selection, we match our catalogue after
applying the colour-cuts and the eBOSS geometry with HSC-PDR2
for the NGC and SGC separately. Fig. 6 shows the resulting redshift
distribution for the matched objects in the NGC (blue) and SGC
(red) using the HSC-PDR2 photometric redshifts (Nishizawa et al.
2020). The black lines show, respectively, the npPp = 1, 3, 5 surface
density when evaluated at wavenumber k = 0.14 h Mpc−1 and
orientation relative to the line of sight μ= 0.6. These surface densities
assume a fiducial constant bias b(z)D(z) = 0.84 from DEEP2 ELG
data (Mostek et al. 2013) where D(z) is the linear growth factor
normalized by D(z = 0) = 1. We can see that the photometric
redshift distribution is above nP = 5 for 0.6 < z < 1.2, meaning that
in this redshift range we reach a high sampling with an approximate
target density of 2900 deg−2. For this reason, we decide to explore
the performance of the cross-correlation technique in two redshift
ranges: 0.6 ≤ z ≤ 1.2 and 0.8 ≤ z ≤ 1.5. In the latter, we can expect

Figure 6. Photometric redshift distribution of the matched galaxies between
our photometric sample and HSC PDR2. The blue curve shows the redshift
distribution of the matched objects in the BASS/MzLS region and the red
curve in the DES region. The dotted, dashed, and solid curves represent,
respectively, npPp = 1, npPp = 3, and npPp = 5.

the cross-correlation technique to be less efficient due to a limitation
in our capability of selecting a denser sample of galaxies at z >

1.2 as we are already pushing the selection to very faint objects
(gfaint end = 23.5–23.6), at the limit of detection given the imaging
surveys we use (g5σ = 24).

3.2.2 Imaging systematics and mitigation technique

As for the spectroscopic sample, the number density of ELGs in the
photometric sample suffers from observational systematics that arise
because of inhomogeneities in the imaging. In order to minimize the
impact of these inhomogeneities on our estimate of the true galaxy
overdensity field, we apply weights to the photometrically selected
galaxies. So far, previous studies using the large-scale structure
catalogues such as for BOSS DR12 galaxies (Reid et al. 2016) and for
eBOSS DR16 tracers (Ross et al. 2020), were based on multivariate
regression techniques to model the dependence between the imaging
systematics and the observed target density by usually assuming
a linear or quadratic relation. However, for strong contamination
like the one close to the Galactic plane, this assumption may be no
longer valid. Moreover, the correlations between the Legacy Survey
imaging bands are more complex than the ones in SDSS and may
not be fully captured by a linear model. Because we are selecting
very faint objects at the limit of the survey depth, we also expect
the ELG selection to be prone to more fluctuations. For all these
reasons, recent progress has been made to develop more advanced
systematics mitigation technique, such as the one in Rezaie et al.
(2019) based on artificial neural networks (NNs) that has been
applied to the DECaLS DR7 data with the eBOSS ELG selection.
The approach implements a five-fold partitioning of the data that
allows permutation of training, validation, and testing over the entire
footprint thereby without a need for multiple realizations of the sky.
The methodology presents a multilayer NN with non-linear activation
function on the hidden layers that provides a non-linear mapping
between the input imaging maps and observed density of ELGs. The
network parameters are trained using gradient descent with batches of
pixels and minimizing the sum of the residual squared error between
the observed density of ELGs and the output of the network, plus
an additional L2 regularization term (i.e. proportional to the sum
of parameters squared) to suppress overfitting. The hyperparameters
include the number of hidden layers, regularization scale, and batch
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size that are tuned by applying the trained network on the validation
set. Ultimately, the network with the best set of hyper-parameters
is applied to the test set. Assuming there is no correlation between
the cosmological signal and input imaging maps, the output of the
regression, called the selection mask, represents solely the systematic
effects in the observed density and therefore its inverse can be applied
as a weight to galaxies to mitigate the imaging systematics. Rezaie
et al. (2019) illustrated that the non-linear NN regression reduces
the excess clustering on the largest scales more effectively than the
conventional, linear regression.

We apply this technique to the photometric sample used in this
analysis and for comparison, we also derive weights based on the
standard multivariate linear regression assuming both linear and
quadratic terms. In what follows, we summarize the main steps to
derive weights based on the NN and a detailed description of the
methodology can be found in Rezaie et al. (2019):

(i) We first produce a HEALPIX map (Górski et al. 2005) by
splitting the sky into equal-area pixels for the imaging attributes
that we consider as potential sources of systematics based on the
DR8 ccds-annotated file,7 using the VALIDATIONTESTS pipeline8, a
modified implementation of QUICKSIP9 (Leistedt et al. 2015). These
maps have a resolution of 13.7 arcmin (nside = 256) and we use
the following imaging quantities: Galactic extinction (Schlegel et al.
1998), stellar density (Gaia Collaboration 2018), and hydrogen atom
column density (Bekhti et al. 2016), as well as galaxy depth, sky
brightness, seeing, airmass, exposure time, and Modified Julian Date
in r, g, and z pass bands. In total, we have 21 CCD-based maps.

(ii) We use the same modelling and setting parameters for the NN,
i.e. the number of hidden layers, type of non-linear activation function
and numbers of neurons in each layer as in Rezaie et al. (2019). We
also use five folds to train the parameters, tune the hyper-parameters
and to estimate the performance of the method. The NN takes as
input the imaging attributes as independent variables and the galaxy
density as target variable, then it provides as output an estimate of the
selection mask (or contamination model) whose inverse corresponds
to the photometric weights we can apply to the data.

To estimate the linear correlation between each pair of the imaging
attributes and the galaxy density, we compute the Pearson correlation
coefficient (PCC) defined by

rx,y = Cx,y√
CxxCyy

, (11)

where C(x, y) corresponds to the covariance between x and y
across all pixels. Fig. 7 shows the colour-coded Pearson correlation
matrix between each pair of the imaging attributes and the galaxy
density (ngal/nran) where the top panel corresponds to DECaLS-
North, the middle panel to DECaLS-South, and the bottom panel to
BASS/MzLS. First, we confirm that we cannot neglect the correla-
tions between the imaging quantities and the complex shape of the
overall matrix needs to be taken into account when correcting for the
variations of the galaxy density with these systematics. We can also
see different behaviours across the imaging surveys. For instance,
as in Rezaie et al. (2019), we also find an anticorrelation between
the Galactic foregrounds (stellar density, neutral hydrogen column
density, and Galactic extinction) and the observed galaxy density

7http://www.legacysurvey.org/dr8/files/#ccds-annotated-camera-dr8-fits-
gz
8https://github.com/legacysurvey/legacypipe/tree/master/validationtests
9https://github.com/ixkael/QuickSip

Figure 7. Correlation coefficients between each imaging systematics and the
observed galaxy density. Top: DECaLS-North, middle: DECaLS-South, and
bottom: BASS/MzLS.
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in the NGC with BASS/MzLS and DECaLS-North but we find a
positive correlation in DECaLS-South. As expected, the observed
galaxy density is also anticorrelated with the depth, because we
select more low-z objects with shallower imaging, but the amplitude
of the correlation in each band can vary between the surveys.

Because of the different behaviours, the weights are derived by
fitting the entire DESI footprint split into BASS/MzLS, DECaLS-
North, and DECaLS-South. Fig. 8 shows the target density varia-
tions with the most important imaging systematics, where the top
panel displays the variation in DECaLS-North, the middle panel in
DECaLS-South, and the bottom panel in BASS/MzLS. In all cases,
the solid black curve corresponds to the galaxy density without
any correction; the dotted curve is using a multivariate regression
technique assuming a linear relation between the observed galaxy
density and the systematics; the dashed curve assumes a quadratic
relation and the solid red line corresponds to the case after applying
the NN. As seen with the PCC, for the same systematic quantity we
can have different trends of the observed galaxy target density in each
region. However, in the three regions, only the NN approach enables
correction for the non-linear variations with systematics and recovery
of a constant target density. In Section 5.1.2, we will show the impact
of each set of weights on the projected cross-correlation function.
Another step called ‘feature selection’ was also added in Rezaie et al.
(2019) in order to reduce redundancy among the imaging attributes
and to avoid overfitting the cosmological signal. We also apply this
step and derive another set of NN weights after applying the feature
selection that corresponds to the blue curve in Fig. 8. In our case, it
has a marginal impact on the target density variation, the projected
cross-correlation function, and the BAO constraints. More details
can be found in Appendix A.

In what follows, in order to avoid mixing the surveys and because
the analysis is limited to the eBOSS footprint, we remove the region
at Dec <32.275 deg10 in both the spectroscopic and photometric
samples to consider BASS–MzLS only in the NGC. We also remove
the DES region in the SGC (Dec <5 deg) as it is deeper than DECaLS.
Given that we restrict to the eBOSS footprint, the removed regions
have small areas so the statistical precision is only slightly affected
but in Appendix B, we show that mixing these surveys degrades the
cosmological signal significantly.

4 ME T H O D O L O G Y

4.1 Clustering estimators

Given that random catalogues are made available for both spec-
troscopic and photometric objects, we can use the Landy–Szalay
estimator (Landy & Szalay 1993):

wθ (R) = D1D2(R) − D1R2(R) − D2R1(R) + R1R2(R)

R1R2(R)
, (12)

where DD, DR, and RR are the paircounts between data–data, data–
random, and random–random, respectively, at average separation R.
For the spectroscopic data set, we generate a catalogue of randoms
25 times larger than the eBOSS quasar catalogue following the same
methodology as in Ross et al. (2020) for the official eBOSS DR16
quasar analysis. For the photometric data set, we take the randoms
made for the Legacy Surveys11 and given the already high-density

10https://github.com/desihub/desitarget/blob/master/py/desitarget/io.py#L
95
11http://www.legacysurvey.org/dr8/files/random-catalogs

sampling, we generate a catalogue of randoms only five times larger
than the target catalogue.

We modify the publicly available code TWOPCF12 to include
the calculation of the cross-correlation function binned in transverse
comoving separation.

4.2 Covariance matrix

The code can also calculate jackknife errors in a single loop over
the galaxy pairs that makes this calculation very efficient. Therefore,
we use the jackknife method to estimate our covariance matrix (for
a review on the error estimation methods, see Norberg et al. 2009).
The covariance matrix is given by

Ci,j = Nj − 1

Nj

Nj∑
n=1

[ξl,n(si) − ξ̄l(si)] [ξl′,n(sj ) − ξ̄l′ (sj )], (13)

where Nj is the number of jackknife realizations. We divide the
footprint into 100 independent sub-regions for both the spectroscopic
and photometric sample as showed in Fig. 9. To do so, we create
regions of similar area by splitting the survey with straight line cuts
in RA and then Dec such that each region contains the same number
of points in the random catalogue.

We then compute the corresponding covariance matrix for the
monopole of the eBOSS quasars autocorrelation function and the
projected cross-correlation function separately after applying their
respective weights. For the autocorrelation function, in the redshift
range 0.8 ≤ z ≤ 1.5, we can compare the covariance matrix and
diagonal elements obtained from the 100 jackknife regions and the
1000 eBOSS QSO EZ mocks (Zhao et al. 2020) that are used in
the cosmological analysis of the eBOSS DR16 quasars (Neveux
et al. 2020; Hou et al. 2021). These mocks are based on the
Effective Zel’dovich approximation following the method developed
in Chuang et al. (2015); they use seven simulation snapshots to
create a lightcone and they are tuned to match the clustering of
the final DR16 quasar catalogues. Fig. 10 displays the correlation
matrix for the monopole of the autocorrelation function of eBOSS
quasars in 0.8 ≤ z ≤ 1.5 obtained from the 100 jackknife realizations
(left-hand panel) and the 1000 EZ mocks (right-hand panel). The top
(respectively bottom) row shows the results for the NGC (respectively
SGC). As expected, the correlation matrix from the jackknife method
is noisier as it is limited by the number of independent realizations
we can create from the survey. We can also compare the diagonal
elements as shown in Fig. 11 where we can see the monopole of the
autocorrelation function for the NGC (top) and the SGC (bottom)
obtained from both methods. They give very similar errors on the
measurement while they rely on different assumptions, which gives
confidence that both techniques provide a reasonable estimate of the
error bar. We also checked that the covariance matrix was stable
when varying the number or locations of the jackknife regions.

The correlation matrix of the projected cross-correlation function
in the NGC/BASS–MzLS (top panel) and the SGC/DECaLs (bottom
panel) is shown in Fig. 12. In this case, we do not have available
mocks with the properties of both the photometric and spectroscopic
samples so we can only use the jackknife method to fit the data.
We checked that the correlation matrix was robust with respect to
binning and systematics weights for the photometric sample and in
Section 5.2, we will also show the BAO results when fitting each
individual jackknife region and taking the mean.

12https://github.com/lstothert/two pcf
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Figure 8. Target density variation of the photometric sample with imaging systematics before applying weights (black) and after assuming a linear (dotted),
quadratic (dashed) or NN based (red) relation between the observed galaxy density and the potential systematics. The blue curves show the correction based
on NN and after applying a feature selection that avoids overfitting and is described in Appendix A. Top: DECaLS-North, middle: DECaLS-South, and bottom:
BASS/MzLS.
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Figure 9. Footprint of the NGC (top panel) and SGC (bottom panel), where
colours indicate the 100 jackknife regions.

Figure 10. Correlation matrix obtained from the 100 jackknife regions and
used to fit the monopole of the eBOSS quasars autocorrelation function in
25 bins of width 8 h−1 Mpc between 0 and 200 h−1 Mpc and in the redshift
range 0.8 ≤ z ≤ 1.5.

Figure 11. Monopole of the autocorrelation of eBOSS DR16 quasars in the
NGC (top) and SGC (bottom) with error bars coming from the 100 jackknife
realizations and from the 1000 EZ mocks.

Figure 12. Correlation matrix obtained from the 100 jackknife regions and
used to fit the projected cross-correlation in 25 bins of width 8 h−1 Mpc
between 0 and 200 h−1 Mpc.
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4.3 BAO fitting procedure

We use a similar BAO fitting procedure for the autocorrelation func-
tion of the eBOSS DR16 quasars and the projected cross-correlation
function, except for the template. We follow the same methodology
as for the BAO analysis in the DR14 eBOSS quasars (Ata et al. 2018)
and in the BOSS DR10/DR111 LRG sample (Anderson et al. 2014)
and DR9 LRG sample (Anderson et al. 2012).

(i) Compute the two-point statistics (using the LS estimator for
the correlation function as described in Section 4.1).

(ii) Generate a template BAO feature (ξ temp or wtemp) using the
linear power spectrum Plin(k) obtained from CAMB assuming a
fiducial cosmological model.

(iii) Generate a template without the BAO feature where Pnw(k)
(‘nw’ stands for ‘no wiggle’ that corresponds to no BAO feature
in k-space) obtained from the fitting formulae in Eisenstein & Hu
(1998) using the same fiducial cosmological model.

We can then model the autocorrelation function following Xu et al.
(2012):

ξmod(s) = B0 ξtemp(α, s) + A1 + A2/s + A3/s
2, (14)

where B0 is a multiplicative constant allowing for an unknown large-
scale bias and A1, 2, 3 are the coefficients of the additive polynomial
function to make the results insensitive to shifts in the broad-band
shape of the measured correlation function. As in Ata et al. (2018),
we apply a Gaussian prior of width 0.4 around the B0 value found
when fitting the template to the data in 10 < s, R < 80 h−1 Mpc
without including the broad-band terms.

The BAO template for the correlation function is obtained by
Fourier transformation of the power spectrum:

ξtemp(s) =
∫

k2dk

2π2
Ptemp(k)j0(ks)e−k2a2

, (15)

where the exponential term has been introduced to damp oscillatory
patterns associated with the Bessel function j0 at high-k and induce
better numerical convergence (Anderson et al. 2014). The exact
damping scale is not important, in this analysis it is set to a = 1
h−1 Mpc.

The template for the power spectrum is given by

Ptemp(k) = Pnw(k)

[
1 +

(
Plin(k)

Pnw(k)
− 1

)
e− 1

2 k2�2
nl

]
, (16)

where the BAO signature in linear theory is described by the
oscillatory pattern in the Olin(k) = Plin(k)/Pnw(k) and the �2

nl term
is used to damp the acoustic oscillations in the linear theory power
spectrum to account for the effects of non-linear evolution of the
density field. As in Ata et al. (2018), we use �2

nl = 6 [h−1Mpc]2 but
previous studies showed that the results are insensitive to this choice,
as also confirmed in galaxy samples.

For the cross-correlation function template, we use equation (9)
with both the linear Plin(k) and Ptemp(k) with the damping term to
account for non-linear effects.

For both clustering statistics, we determine how different the BAO
scale is in the clustering measurements compared to its location in a
template generated using our fiducial cosmology. The observed BAO
position can differ from the one in the template because of two main
effects. The first effect is related to the fact we do not know the BAO
position in the true intrinsic primordial power spectrum, therefore
to account for this in the template we include a multiplicative shift
that depends on the ratio rdrag/r

fid
drag, where rdrag is the sound horizon

at the drag epoch and corresponds to the expected location of the

BAO feature in comoving distance units. The second effect is due to
the fact we need to assume a fiducial cosmological model to convert
angles and redshift from the catalogue into comoving coordinates.
If the true cosmology is different than the one we assumed, the
inferred clustering will contain detectable distortions, in addition to
the redshift space distortions due to peculiar velocities. This effect is
known as the Alcock–Paczynski effect (Alcock & Paczynski 1979).
By introducing two shift parameters, α� and α⊥, we can account
for this dilation of scales in the direction along and perpendicular
to the line of sight. The parameters α� and α⊥ can be related to the
expansion rate H(z) and the comoving angular diameter distance DM

through:

α‖ = H fid(z)rfid
drag

H (z)rdrag
, α⊥ = DM(z)rfid

drag

Dfid
M (z)rdrag

. (17)

However, given the low statistical precision of the quasar sample in
the redshift ranges we consider, it is more optimal to fit an isotropic
shift αiso and constrain the spherically averaged distance DV as in Ata
et al. (2018):

DV =
[

(1 + z)2cz
D2

M

H

] 1
3

, (18)

where c is the speed of light and αiso is thus defined by

αiso = DV(z)rfid
drag

Dfid
V (z)rdrag

. (19)

Therefore, the autocorrelation function measurements will enable
the constraint of DV(z) by fitting an isotropic shift αiso while
the projected cross-correlation function will put constraints on the
comoving angular diameter distance DM(z) by fitting a transverse
shift α⊥.

4.4 Effective redshift

It is common in standard clustering analyses to approximate the
effects of fiducial cosmology as a single rescaling of the cosmological
parameters. The redshift range that the eBOSS quasars span is broad,
between z = 0.8 and z = 2.2 and therefore the redshift evolution
is more important. Recent techniques using a redshift-weighting
have been developed to account for the redshift evolution of the
parameters. In Zhu et al. (2018), they performed a BAO analysis
of the eBOSS DR14 QSO sample and the constraint they obtained
on the spherically averaged distance Dv with and without redshift
weighting differs by less than 1 per cent. So we can neglect this
effect for this analysis where the redshift range is also smaller and
consider a single effective redshift. In order to match the definition
used for the clustering analysis of the eBOSS DR16 quasars in 0.8 ≤
z ≤ 2.2 (Neveux et al. 2020; Hou et al. 2021), we define the effective
redshift by

zeff =
∑

i,j wtot,iwtot,j (zg,i + zg,j )/2∑
i,j wtot,iwtot,j

, (20)

where the sum is performed over all galaxy pairs between 0 and
200 h−1 Mpc. We use this definition for the autocorrelation function.

For the cross-correlation function, we do not know the redshift
distribution for the photometric sample. Nevertheless, we can make
different assumptions and study their impact on the definition of
the effective redshift and thus on the cross-correlation function. If
we assume the redshift distribution of the photometric sample is
flat, then the effective redshift depends only on the distribution of
the spectroscopic sample such that zeff,1 is given by equation (20).
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We also consider another definition, zeff,2 where we account for the
shape of the redshift distribution of the photometric galaxies by
weighting the spectroscopic redshift distribution with the signal-to-
noise ratio of the cross-correlation signal. To do so, we divide the
quasar sample into redshift bins of width 
z = 0.1. Finally, we also
compute the effective redshift by using the HSC-PDR2 photometric
redshifts (Nishizawa et al. 2020) when available with bins of width

z = 0.1. For the two redshift ranges we consider, we obtain the
following:

0.6 ≤ z ≤ 1.2 : zeff,1 = 0.95 , zeff,2 = 0.92 , zeff,3 = 0.93

0.8 ≤ z ≤ 1.5 : zeff,1 = 1.19 , zeff,2 = 1.10 , zeff,3 = 1.19.

The three definitions are in good agreement with relatively close
values. Moreover, because we measure a distance relative to the
fiducial assumption that has been measured and not an absolute
distance, there is indeed some systematic uncertainty on how the
impact of the effective redshift choice plays out when testing
cosmology, but it is minor. Therefore, in Section 5.2.2, we measure
the projected BAO scale assuming zeff,1 only but we checked that
using zeff,2 leads to the same results.

4.5 Parameter inference

We extract the results of the fitting of either the monopole of the
autocorrelation function or the projected cross-correlation function
by minimizing the χ2 defined by

χ2 = (ξData − ξModel)C−1(ξData − ξModel)T . (21)

where ξData corresponds to the measurement, ξModel to the associated
theoretical prediction, and C−1 is the inverse of the estimated covari-
ance matrix. When using the 1000 eBOSS QSO EZ mocks (Zhao
et al. 2020) to obtain a covariance matrix in 0.8 ≤ z ≤ 1.5, we
include the Hartlap correction (Hartlap, Simon & Schneider 2007)
due to finite number of mocks and number of bins in the analysis
that can bias the measurements:

C−1
unbiased = (1 − D)C−1

mock with D = Nb + 1

Nm − 1
, (22)

where Nb is the total number of bins in the measurements and Nm =
1000 is the number of realizations.

We use the public code BAOfit13 to perform the BAO fitting for
both the auto- and cross-correlation functions (using our template
for the fit to the cross-correlation).

5 R ESULTS

5.1 Clustering measurements

5.1.1 Autocorrelation function

We measure the monopole of the autocorrelation function of eBOSS
DR16 quasars in the NGC-BASS/MzLS and SGC-DECaLS regions
separately and for the two redshift ranges we consider. To do so, we
follow the methodology in Ata et al. (2018) where we calculate the
autocorrelation function ξ (s, μ) in evenly spaced bins in s from 0
to 200 h−1 Mpc with a bin width of 8 h−1 Mpc and 0.01 in μ. The
multipoles of the autocorrelation function are then determined by:

ξl(s) = 2l + 1

2

100∑
i=1

0.01 ξ (s, μi)Ll(μi), (23)

13https://github.com/ashleyjross/BAOfit

Figure 13. Monopole of the autocorrelation function of the eBOSS DR16
quasars for the NGC (red squares) and SGC (blue squares) for quasars in 0.8
≤ z ≤ 1.5 (top) and 0.6 ≤ z ≤ 1.2 (bottom). The solid curves display the
mean of the 1000 EZ mocks. The data in each region are consistent with each
other and with the mean of the mocks.

where μi = 0.01i − 0.005 and Ll is the Legendre polynomial of
the order of l. In this work, we use only the monopole (l = 0).
This definition of the monopole ensures an equal weighting as a
function of μ which thus corresponds to a truly spherically averaged
observable. Fig. 13 displays the spherically averaged redshift-space
autocorrelation function in the NGC (red squares) and SGC (blue
squares) for quasars in 0.8 ≤ z ≤ 1.5 (top) and 0.6 ≤ z ≤ 1.2
(bottom). The solid curves in the top panel show the mean of the
1000 EZ mocks available in this redshift range for the NGC (blue)
and SGC (red). The data in each region are consistent with each
other, and with the mean of the mocks for the redshift range 0.8 ≤ z

≤ 1.5 where EZ mocks are available.

5.1.2 Projected cross-correlation function

As for the autocorrelation function, we compute the projected cross-
correlation function in evenly spaced bins in s from 0 to 200 h−1 Mpc
with a bin width of 8 h−1 Mpc. We first investigate the impact of the
imaging weights used for the photometric sample on the projected
cross-correlation function. As described in Section 3.2, we derived
the three sets of weights separately for the two regions, BASS/MzLS
and SGC-DECaLS, which together comprise our full DESI footprint.
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Figure 14. w(R) for NGC-BASS/MzLS (top) and SGC-DECaLS (bottom)
regions with and without weights assuming different relations between the
observed galaxy density and the potential systematics. The solid (dashed)
curve shows the template for the projected correlation function with (without)
the BAO feature. For simplicity, we show the redshift range 0.8 ≤ z ≤ 1.5
only but we find a similar behaviour for 0.6 ≤ z ≤ 1.2.

Each set is based on a different assumption to model the dependence
between the observed target density and the imaging attributes: linear
relation, quadratic relation, NN.

The projected cross-correlation function in the NGC-BASS/MzLS
(top) and SGC-DECaLS (bottom) regions for each type of weights is
shown in Fig. 14 for the cross-correlation with quasars in 0.8 ≤ z ≤
1.5. The blue dots correspond to the case without applying imaging
weights to the photometric sample, the red dots show the case after
applying linear weights, the green dots after applying quadratic
weights, and the black dots correspond to the case after applying
NN weights. In general, applying the imaging weights improves the
agreement with the model (solid black curve with BAO and dashed
black curve without) and as expected the weights based on the NN
provide the best improvement. However, the agreement is less good
around 50 h−1 Mpc (especially in the NGC) and on scales above
∼110 h−1 Mpc in the NGC-BASS/MzLS region suggesting that there
is some remaining systematics that the NN did not capture and/or
which is not contained in the imaging attributes used to train the NN.
We found a similar behaviour both for the impact of the different
weights and the potential remaining systematics in the NGC when
cross-correlating with quasars in 0.6 ≤ z ≤ 1.2. We checked that the
correlation coefficient between these points is high, typically about

0.75, meaning that the same trend between the points is expected. We
also computed the projected correlation function of the quasar sample
and the angular correlation function of the photometric sample and
nothing unusual was found.

We also note that the amplitude of the BAO feature is more
pronounced in the data than in the template. In order to investigate the
validity of the template for the projected cross-correlation function
given by equation (9), we use the DESI ELG EZ mocks based on the
Effective Zel’dovich approximation following the method developed
in Chuang et al. (2015). We need to have both the spectroscopic
and photometric samples in the same mock realization. Therefore,
we use the DESI ELG EZ mocks that have been tuned to match the
target density of the main DESI selection which is about 2400 deg−2

over the entire DESI footprint and use only the angular coordinates
for the photometric sample. In order to mimic the spectroscopic
quasar sample, in each mock we consider objects in 0.8 ≤ z ≤
1.5 and randomly downsample them to reach the target density of
the eBOSS quasars in this redshift range. By doing so, we do not
expect the bias of the samples to be exactly the same as the one
of the data, especially for the spectroscopic sample as we know
quasars are more biased tracers than ELG. A better way of creating a
higher bias sample like the quasar one would be to select the objects
based on the background density but the density information is not
available in this version of the DESI EZ mocks. We also imprint
the inhomogeneities observed in the number density of the ELGs
selected from the DESI Legacy Imaging Surveys. The depth of the
survey varies across the footprint that introduces a fluctuation in the
number of ELGs detected across the sky. This artificial fluctuation is
also function of redshift. In order to assess the fluctuation imprinted in
the redshift distribution of ELGs, we use a Monte Carlo approach.14

We take a 3 deg2 region of DECaLS(DR7) where the photometry is
∼1.5 magnitude deeper than the average photometry and which is
inside the HSC(DR2) footprint (Aihara et al. 2019). We match that
sample with the HSC(DR2), and thus have a sample that we consider
as our ‘truth’ sample, where we have deep grz-photometry, along
with their errors, and a precise redshift estimation from HSC(DR2).
We obtain our ‘truth’ redshift distribution by applying the DESI ELG
target selection to that sample. We then imprint the fluctuation in the
DESI ELG mocks following these steps:

(i) We divide the DESI footprint in HEALpix pixels and repeat
the steps below for each pixel.

(ii) We measure the imaging depth in the three photometric bands
g, r, and z.

(iii) We take our ‘truth’ catalogue and add noise to the photometry
according to the depth ratio between the considered HEALpix pixel
and the original truth one, and we also account for the Galactic
extinction.

(iv) We then apply the DESI ELG target selection on that degraded
photometry, and take the ratio of the redshift distribution obtained
from that selection to the ‘truth’ redshift distribution.

(v) We finally take the DESI ELG mock and select all galaxies in
the given HEALpix pixel. We then randomly sub-sample the mock
galaxies as a function of redshift using the ratio estimated in the
previous step.

Fig. 15 shows the difference in standard deviation, σ , between the
projected cross-correlation function of the data, wdata, and the best-
fitting model, wtemp given by equation (9), for the redshift range 0.8

14See this notebook for technical details: https://github.com/desihub/LSS/b
lob/master/Sandbox/MCeff.ipynb.
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Figure 15. Difference in standard deviation between the projected cross-
correlation function of the data and the template given by equation (9). The
black dots correspond to the weighted mean of the data, the blue curves show
the 100 DESI EZ mocks without imaging systematics, and the red ones with
systematics.

≤ z ≤ 1.5. The black dots show the result for the weighted mean of
the data and each blue (red) curve shows one DESI EZ mock without
(with) imaging systematics. We can see the 3σ discrepancy at the
BAO scale in the data which is counterbalanced by the negative
difference in χ2 from correlations between the offset data point,
with other data points. However, the behaviour in the data is not
completely unusual when compared to the EZ mocks, suggesting
that it could be a statistical fluctuation. We also checked the angular
clustering of the photometric galaxies and the standard projected
autocorrelation function of the quasars and found nothing unusual
either. In Section 5.2.2, we will also present the BAO fits we perform
on mocks in order to validate the fitting procedure. When deeper
photometric data are available, it would be interesting to look again
at this observable. Moreover, when the first set of DESI ELGs spectra
are obtained to create a clustering catalogue, it would be worth
checking whether the discrepancy at the BAO scale remains.

5.2 BAO measurements

5.2.1 Autocorrelation function

Fig. 16 displays the measurement of the BAO feature in the eBOSS
DR16 quasar sample in both redshift ranges: 0.6 ≤ z ≤ 1.2 (red) and
0.8 ≤ z ≤ 1.5 (blue). In each case, we isolate the BAO feature by
subtracting the smooth component of the best-fitting model.

Table 2 summarizes the results of the BAO fits obtained from
the autocorrelation of the eBOSS DR16 quasars in the two redshift
ranges we consider for our fiducial configuration and the consistency
tests we perform on the data. The fiducial configuration uses a
bin width of 8 h−1 Mpc, a fitting range 20 < s < 140 h−1 Mpc,
a covariance matrix from 100 jackknife realizations and a total
weight defined by equation (10) that is applied to both the data
and random catalogues. We note that as shown in the BAO analysis
of the eBOSS DR14 quasar sample, for instance Ata et al. (2018),
at the precision we are working we do not lose constraining power
with bins of this width. We note that the difference in the quoted
error between the two redshift ranges is large, which could suggest
that the BAO fitting response is sensitive to weak BAO peaks due to
low statistics. A similar behaviour was found with the eBOSS DR14
quasar sample when splitting the redshift sample into 2 redshift bins,

Figure 16. The spherically averaged BAO signal of the eBOSS DR16 quasars
in 0.6 ≤ z ≤ 1.2 (red) and 0.8 ≤ z ≤ 1.5 (blue). The smooth component of
the best-fitting model has been substracted to both the best-fitting model and
the measurements in order to isolate the BAO feature.

Table 2. Results for the isotropic BAO fits to the autocorrelation of the DR16
eBOSS quasars. The fiducial configurations use data with 8 h−1 Mpc bin size
and centres in the range 20 < s < 140 h−1 Mpc and a covariance matrix from
100 jackknife realizations.

Configuration αiso χ2/d.o.f.

0.8 ≤ z ≤ 1.5
Fiducial 1.013 ± 0.036 12.5/9
mean of the jackknifes 1.014 ± 0.034 13.3/9

s = 5 h−1 Mpc 1.036 ± 0.035 23.4/19
EZmock cov fiducial 1.005 ± 0.033 14.5/9
EZmock cov 5 h−1 Mpc 1.003 ± 0.034 24.8/19
20 < s < 150 h−1 Mpc 1.031 ± 0.036 14.7/11
10 < s < 140 h−1 Mpc 1.029 ± 0.035 15.1/11
no wsys 1.017 ± 0.035 12.4/9
NGC 1.009 ± 0.044 9.7/9
SGC 1.044 ± 0.063 11.0/9

0.6 ≤ z ≤ 1.2
Fiducial 1.003 ± 0.096 6.0/9
mean of the jackknifes 0.999 ± 0.092 6.4/9

s = 5 h−1 Mpc 1.019 ± 0.096 18.4/19
20 < s < 150 h−1 Mpc 1.037 ± 0.106 7.0/11
10 < s < 140 h−1 Mpc 1.016 ± 0.090 6.2/11
no wsys 0.990 ± 0.090 6.2/9
NGC 1.008 ± 0.098 5.3/9
SGC 1.003 ± 0.101 7.6/9

although the difference in the volume probed by each redshift bin
was also bigger (Gil-Marı́n et al. 2018). We also fit the individual
jackknife realizations and report the mean result for the value and
the error bar. As expected, both the full sample and the mean of the
jackknife regions are consistent with each other. Then, we perform
several consistency tests by varying the binning, the fitting range
and for 0.8 ≤ z ≤ 1.5, we also look at the impact of changing
the covariance matrix by using the one from the eBOSS QSO
mocks. All the results are consistent with each other within 1σ ,
demonstrating the robustness of the BAO feature in the spherically
averaged autocorrelation function.
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Figure 17. Projected cross-correlation function for the weighted mean of
the data (black) compared to the mean of the 100 DESI EZ mocks without
(blue) and with (red) imaging systematics. For each EZ mock, the error bar is
obtained using 100 jackknife realizations and we show the mean of the error
bars for the 100 DESI EZ mocks. For this test, we use quasars in 0.8 ≤ z ≤
1.5.

5.2.2 Projected cross-correlation function

In order to validate the BAO fitting procedure using the projected
cross-correlation function, we first apply the pipeline on the DESI
EZ mocks. Fig. 17 displays the projected cross-correlation function
of the weighted mean of the data (NGC with BASS/MzLS and SGC
with DECaLS-S) in black dots with error bars corresponding to the
diagonal elements of the covariance matrix obtained from the 100
jackknife realizations. We also show the mean of the DESI EZ mocks
without (blue dots) and with (red dots) systematics while the solid
curves show the best-fitting model in each case. In both cases, the
error bar corresponds to the mean of the error bars from the 100
DESI EZ mocks. For each EZ mock, the error bar is obtained using
100 jackknife realizations such that the fit to each DESI EZ mock
is under the same fitting conditions as for the data. Given that the
DESI mocks do not completely represent both the photometric and
spectroscopic samples by construction, we prefer not to use them
to determine the uncertainties on the measurements from the data.
We can see that the amplitude of the BAO signal in the mocks
is consistent with the template, which confirms the validity of the
template. Adding imaging systematics to the mocks yields a constant
offset in the projected cross-correlation function but which can be
taken into account in the best-fitting model with the normalization
factor.

The results of the BAO fitting are shown in Fig. 18 where the top
panel displays the value and error obtained on the BAO position for
each mock without (blue) and with (red) systematics, compared to
the result for the data (black star). We fit the individual DESI EZ
mocks with their covariance matrix from 20 < s < 140 h−1 Mpc.
Only mocks with a ‘BAO detection’ are kept meaning that they have

χ2 ≥ 1 within 0.8 < α < 1.2. Over 75 per cent (70 per cent) of
the DESI EZ mocks without (with) imaging systematics satisfy this
condition. The bottom panel shows the χ2 distribution of the mocks
compared to the value for the data. The BAO measurement in the data
is consistent with the statistics of the mocks, both in terms of BAO
position and χ2, which therefore validates the fitting procedure for
the projected cross-correlation function. We also check that the BAO
results are robust when using the damping term �NL that accounts

Figure 18. Results of the BAO fitting of the DESI EZ mocks in 0.8 ≤ z ≤
1.5. Top: Value and error bar of αcross for each individual mock without (blue)
and with (red) imaging systematics from the Legacy Imaging Surveys. The
black star shows the result of the data. Bottom: Distribution of the χ2 for the
mocks without (blue) and with (red) imaging systematics compared to the χ2

of the data in dashed black.

for non-linear effects in the BAO template as in the autocorrelation
function. We report the mean value of the 100 individual EZ mocks
on the projected BAO parameter αcross: Without systematics

�2
NL = 0 [h−1 Mpc]2 : αcross = 0.998 ± 0.051

�2
NL = 6 [h−1 Mpc]2 : αcross = 1.001 ± 0.058.

With systematics

�2
NL = 0 [h−1 Mpc]2 : αcross = 0.985 ± 0.057

�2
NL = 6 [h−1 Mpc]2 : αcross = 0.982 ± 0.058.

Fig. 19 displays the BAO measurements for the weighted mean of
the projected cross-correlation function when using quasars in 0.6 ≤
z ≤ 1.2 (red) and 0.8 ≤ z ≤ 1.5 (blue) together with the best-fitting
model in solid curves for our fiducial configuration: bin width of 8
h−1 Mpc, fitting range 20 < s < 140 h−1 Mpc and a covariance matrix
from 100 jackknife realizations. We can see that the amplitude of the
cross-correlation signal is higher for the redshift range 0.6 ≤ z ≤
1.2, meaning that more photometric ELGs lie in this redshift range
as expected according to the photometric redshift distribution shown
in Fig. 6.

Table 3 summarizes the results of the BAO fits obtained from the
projected cross-correlation in the two redshift ranges we consider for
our fiducial configuration with a bin width of 8 h−1 Mpc, a fitting
range 20 < s < 140 h−1 Mpc, a covariance matrix from 100 jackknife
realizations. Despite the apparent bad fits, the χ2 are fine and we
remind that the data points are very correlated with each other. As
for the autocorrelation function, we also fit the individual jackknife

MNRAS 503, 2562–2582 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2562/6131853 by guest on 14 January 2022



BAO in the projected cross-correlation function 2577

Figure 19. The projected cross-correlation function for 0.6 ≤ z ≤ 1.2 (red)
and 0.8 ≤ z ≤ 1.5 (blue) and the acoustic scale region. The solid curves
represent the best-fitting model in each case.

Table 3. Results for the projected BAO fits to the cross-correlation of the
DR16 eBOSS quasars with ELG galaxies from DESI DR8 Legacy Imaging
Surveys. The fiducial configurations use data with 8 h−1 Mpc bin size and
centres in the range 10 < s < 140 h−1 Mpc and a covariance matrix from 100
jackknife realizations.

Configuration αcross χ2/d.o.f.

0.8 ≤ z ≤ 1.5
Fiducial 0.994 ± 0.051 9.1/9
mean of the jackknifes 0.994 ± 0.051 9.3/9
�NL = 6 [h−1 Mpc]2 0.993 ± 0.055 9.4/9

s = 5 h−1 Mpc 1.005 ± 0.047 17.3/19
20 < s < 150 h−1 Mpc 0.997 ± 0.049 9.4/11
10 < s < 140 h−1 Mpc 0.998 ± 0.052 10.8/11
no wsys 0.995 ± 0.044 8.6/9
wsys-lin 0.989 ± 0.046 7.5/9
wsys-quad 0.988 ± 0.046 8.4/9
wsys-nn − fs 0.993 ± 0.046 9.4/9
NGC 0.970 ± 0.066 7.8/9
SGC 1.025 ± 0.109 5.9/9

0.6 ≤ z ≤ 1.2
Fiducial 0.999 ± 0.059 13.1/9
mean of the jackknifes 0.999 ± 0.059 13.3/9
�NL = 6 [h−1 Mpc]2 0.998 ± 0.063 13.2/9

s = 5 h−1 Mpc 1.014 ± 0.058 20.2/19
20 < s < 150 h−1 Mpc 0.991 ± 0.059 14.8/11
10 < s < 140 h−1 Mpc 1.003 ± 0.061 13.5/11
no wsys 1.004 ± 0.057 11.3/9
wsys-lin 0.997 ± 0.059 12.9/9
wsys-quad 0.994 ± 0.058 13.7/9
wsys-nn − fs 0.999 ± 0.056 13.4/9
NGC 0.965 ± 0.078 16.2/11
SGC 1.045 ± 0.112 5.3/11

realizations and report the mean result for both the value and the error
bar. As expected, both the full sample and the mean of the jackknife
regions are consistent with each other. Table 3 also shows the results
of the consistency tests when including the damping term �NL that
accounts for non-linear effects, when varying the binning, the fitting
range and when using different imaging weights for the photometric
sample. We also find very similar results on αcross between the three
definitions of the effective redshift described in Section 4.4. All
the results are consistent with each other within 1σ , demonstrating

Figure 20. Likelihood of the transverse BAO parameter αcross in terms of

χ2 in the redshift ranges 0.8 ≤ z ≤ 1.5 (top) and 0.6 ≤ z ≤ 1.2 (bottom).
In each panel, the solid curves display the likelihood obtained when fitting
the data with a model that contains the BAO feature, while the dashed curves
display the same information for a model without BAO.

the robustness of the BAO feature in the projected cross-correlation
function.

5.3 BAO constraints and discussion

Fig. 20 displays the likelihood and BAO detection significance in
terms of 
χ2 obtained from the auto- and projected cross-correlation
function in 0.8 ≤ z ≤ 1.5 (top) and 0.6 ≤ z ≤ 1.2 (bottom). The
dashed curves represent the template without the BAO feature in
each case. The likelihoods from the autocorrelation function (red
and dark red) are more skewed towards large values of α compared
to the ones from the projected cross-correlation function. In both
redshift ranges, the BAO detection significance is about 2σ for the
projected cross-correlation function while it is greater than 3σ in 0.8
≤ z ≤ 1.5 and less than 1.5σ in 0.8 ≤ z ≤ 1.5 for the autocorrelation
function.

In both redshift ranges, the statistics are too low to enable an
anisotropic BAO measurement from the autocorrelation function of
the eBOSS DR16 quasar sample but Hou et al. (2021) and Neveux
et al. (2020) did the anisotropic BAO fitting using eBOSS DR16
quasars in 0.8 ≤ z ≤ 2.2. Both techniques provide consistent results
within less than 0.5σ , showing the robustness of the BAO feature
in galaxy clustering. However, the BAO shifts are not sensitive to
exactly the same cosmic distance as presented in Section 4.5. The
BAO shift from the autocorrelation is sensitive to the spherically
averaged distance DV while the BAO shift from the projected cross-
correlation function is sensitive to the angular diameter distance DM
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Table 4. Comparison between the autocorrelation and the projected cross-correlation functions for this work (top rows)
and Patej & Eisenstein (2018, bottom row) in terms of redshift range, target density, and constraints on the BAO scale.

Redshift range Area (deg2) Spectro (deg−2) Photo (deg−2) σ auto σ cross

0.8 ≤ z ≤ 1.5 4000 35 2100 3.5 per cent 5 per cent
0.6 ≤ z ≤ 1.2 4000 20 2900 9 per cent 6 per cent
0.6 < z < 0.8 6000 35 1100 – 3 per cent

such that we obtain:

0.8 ≤ z ≤ 1.5 zeff = 1.20

auto : DV(zeff )/rdrag = 26.53 ± 0.94

cross : DM(zeff)/rdrag = 30.42 ± 1.56

0.6 ≤ z ≤ 1.2 zeff = 0.92

auto : DV(zeff )/rdrag = 26.3 ± 2.5

cross : DM(zeff)/rdrag = 30.6 ± 1.8.

In the redshift range 0.6 ≤ z ≤ 1.2 where we expect to have more
ELGs, we indeed obtain a more precise distance measurement with
the projected cross-correlation function than with the autocorrelation
function (5.9 per cent against 9.5 per cent). However, as mentioned
above, the BAO detection significance remains low in both cases.
The comparison between the two redshift ranges suggests that it is
essential to ensure the best overlap in redshift between the spec-
troscopic and photometric samples. Moreover, it seems to suggest
that although the spectroscopic target density may be too low to
obtain a strong BAO detection in the autocorrelation function, we
can expect a stronger detection in the projected cross-correlation
function. Table 4 summarizes the configuration for each redshift
range with the target density for each sample and the precision on the
BAO scale obtained from the auto- and projected cross-correlation
function. The first two rows correspond to this work where the
galaxy density of the photometric sample in each redshift range
is computed using the photometric redshifts of Fig. 6. We also show
the configuration in Patej & Eisenstein (2018) in the third row, but the
authors did not provide a BAO measurement from the autocorrelation
function of their spectroscopic sample; this is why we did not quote
a precision for σ auto in 0.6 < z < 0.8. The number densities in our
analysis are more optimal for this type of cross-correlation (mainly a
denser photometric sample), so we may have expected a more precise
measurement from the projected cross-correlation function but we
also have more important systematics in the photometric sample
obtained from the DESI Legacy Imaging Surveys as we pushed
towards very faint objects to reach a high sampling of galaxies at
high redshifts (z > 1). Moreover, Patej & Eisenstein (2018) used
a narrower redshift bin that could also help improve the constraint
from the projected cross-correlation function.

However, the comparison with the autocorrelation function is
very encouraging, showing that we can not only detect the BAO
feature in the projected cross-correlation function but also put better
constraints when the spectroscopic target density is too low to
enable a strong BAO detection in the autocorrelation function. We
also compare our measurements of DM with other measurements
using different tracers and methods, as shown in Fig. 21: BOSS
DR12 LRG results using BAO only (Alam et al. 2017); DES Y1
using photometric data in a combined analysis with weak lensing
and clustering (DES Collaboration 2018); the eBOSS final results
(eBOSS Collaboration 2020) including eBOSS + BOSS LRG using
BAO only (Gil-Marı́n et al. 2020; Bautista et al. 2021), eBOSS

Figure 21. Measurements of the comoving angular diameter distance DM

as a function of redshift. Our measurements at zeff = 0.92 and zeff = 1.1 are
shown using a blue star.

ELG using BAO + RSD15 (Tamone et al. 2020; de Mattia et al.
2021), eBOSS QSO using BAO only (Neveux et al. 2020; Hou et al.
2021), and eBOSS Ly α forests (du Mas des Bourboux et al. 2020)
using BAO from the autocorrelation Ly α/Ly α (dark red), cross-
correlation Ly α/quasar (light red), and the combined measurement
(red). This latest example shows the gain in precision on the
combined measurement from auto- and cross-correlation. Although
the analysis in this work is very different from the one of the Ly α

forests, in future work it would be interesting to investigate the
potential gain on DM of combining the auto- and projected cross-
correlation function.

6 C O N C L U S I O N S

We have applied a method proposed in Patej & Eisenstein (2018)
based on the cross-correlation between a sparse spectroscopic sample
and a denser photometric sample to constrain the angular diameter
distance by searching for the transverse BAO. We have used a sample
of SDSS-IV eBOSS quasars between 0.6 ≤ z ≤ z1.5 and we have
produced a high-density sample of galaxies using the DESI Legacy
Imaging Surveys. Since we need to select fainter objects at the limit of
the survey depth, we expect the photometric sample to be more prone
to density fluctuations due to inhomogeneities in the selection. To
mitigate for this effect, we have applied the NN technique developed
in Rezaie et al. (2019) to our photometric sample and confirmed that
it can correct for complex variations that standard multivariate linear
regression techniques cannot. We have validated the pipeline of the
projected cross-correlation function against approximate mocks and
we have demonstrated that the BAO measurement with this method
is robust against a variety of observational choices.

15The statistics of the eBOSS ELG sample is not enough to perform an
anisotropic BAO fitting and thus to measure DM from BAO only.
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We have performed two analyses in parallel: the autocorrelation
of the eBOSS quasars and the projected cross-correlation function
in order to provide a detailed comparison. We have investigated
two configurations: one where we cross-correlate the photometric
galaxies with quasars in 0.8 ≤ z ≤ 1.5 and another one with quasars
in 0.6 ≤ z ≤ 1.2. In the latter, we find that the cross-correlation
technique can reduce shot noise and thus provide better constraints
on the cosmic distance (6 per cent precision) compared to the results
obtained from the autocorrelation (9 per cent precision). However, we
also find that we are limited by the number density and purity of the
photometric sample and its overlap in redshift with the spectroscopic
sample, which thus affects the performance of the method. We also
find a noticeable peak in the acoustic scale region that is larger
than expected in usual theories, although the fits with templates
based on the matter power spectrum yield only a 2σ indication. We
compare the amplitude of the signal in the acoustic scale region with
approximate mocks and we perform a series of consistency tests
that indicate no bias on the cosmological constraint we derive from
the fits of the projected cross-correlation function. Nevertheless, we
highlight that DESI will soon start its cosmological survey and it
would be worth checking whether the discrepancy at the BAO scale
remains when the clustering catalogues are available.

In addition, the technique will be even more promising with the
arrival of deeper photometric data, thanks to upcoming surveys such
as Euclid (Amendola et al. 2013). The method could be applied
to DESI quasars, which will still be limited by shot noise (DESI
Collaboration 2016a), with a sample of H α (0.7 < z < 2) and [O III]
emission galaxies (2 < z < 2.7) selected from Euclid (Mehta et al.
2015). This should enable to put better constraints on the transverse
BAO scale at z ≥ 2 than DESI will with the autocorrelation function
of the quasars alone.
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APPENDI X A : N EURAL NETWORK W I TH
FEATURE SELECTI ON

Because the imaging attributes are correlated, they can contain
redundant information which increases the risk of overfitting and
degrading the cosmological clustering. Within the NN framework,
we can apply a feature selection process to identify the redundant
and irrelevant imaging maps (and thus reduce the number of input
imaging attributes) by splitting the data into five partitions. We train
a linear model on all the input imaging quantities and then eliminate
one and train again the model on the remaining input features. Note
that given the definition of the minimization function, if the feature
contains relevant information on the systematic effect, it would make
the fit worse and the model would yield a higher validation error. This
procedure removes one map at a time iteratively, and finally it ranks
the imaging maps such that the features which produce the highest
improvement in fitting are removed. Fig. A1 shows the results of
the feature selection procedure described above where the darker the
dot, the more important the imaging attribute, for DECaLS-South
(left) and BASS/MzLS (right). We can see that the most important
imaging systematics are not the same depending on the region, which
confirms the importance of treating the different surveys separately.
In both regions, Galactic extinction (ebv) and the hydrogen atom
column density (logHI) are important, such Galactic depths, airmass
and sky brightness but in different bands depending on the region.

After identifying the most important imaging attributes, we derived
a new set of photometric weights that account for the feature
selection. In Fig. A2, we compare the projected cross-correlation
function after applying this new set of NN weights (NN-FS) with
our baseline where the feature selection was not applied. The top
panel corresponds to BASS/MzLS in the eBOSS footprint and the
bottom panel to DECaLS-South, for the redshift range 0.8 ≤ z ≤
1.5. The effect of including the feature selection is marginal and we
found the same behaviour for 0.6 ≤ z ≤ 1.2. For this reason, we kept
the baseline to be the one without feature selection. We also check
the consistency in terms of BAO constraints and the results when
including the feature selection are shown in Table 3.

Figure A1. Important imaging maps according to the feature selection
procedure for DECaLS-South (left) and BASS/MzLS (right). The selected
maps are shown with circles and their rank is colour coded to represent the
more important maps with the darker circles.
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Figure A2. Projected cross-correlation function in 0.8 ≤ z ≤ 1.5 in the
BASS/MzLS (top) and DECaLS-South (bottom) regions after applying NN
with feature selection (blue) and without (black, our baseline).

APPEN D IX B: IMPAC T O F MIXING
DIFFER ENT IM AG ING SURVEYS

In what follows, in order to avoid mixing the surveys and because the
analysis is limited to the eBOSS footprint, we remove the region at
dec < 32.375 deg in both the spectroscopic and photometric samples
to consider BASS–MzLS only in the NGC. We also remove the
DES region in the SGC (dec < 5 deg) as it is deeper than DECaLS.
Given that we restrict to the eBOSS footprint, the removed regions
have small areas so the statistical precision is only slightly affected
but in this section, we show that mixing these surveys degrades the
cosmological signal significantly.

In Section 3.2, we describe the different imaging surveys we use to
select the photometric sample and we show that the observed galaxy
density correlates with imaging systematics differently depending
on the survey. When we restrict to the eBOSS footprint, the NGC
contains both BASS/MzLS at dec > 32.375 deg and DECaLS-North
below while the SGC contains both DECaLS and DES at dec <

5 deg. In the main analysis, we decide to remove DECaLS-North
in the NGC and DES in the SGC. Fig. B1 displays the impact on
the projected cross-correlation function of removing those regions in
the NGC (top) and in the SGC (bottom). In all cases, we show the
projected cross-correlation function after applying the NN weights.

The measurements in blue correspond to the ones used in the
main analysis when considering BASS/MzLS only in the NGC and
DECaLS-S only in the SGC. We can see that the signal is largely
improved when we consider BASS/MzLS only in the NGC. The
effect of removing DES is less pronounced.

Fig. B2 displays the correlation matrix of the projected cross-
correlation function obtained from the 100 jackknife regions for
BASS/MzLS only (top) and for the entire eBOSS NGC (bottom).
It seems that mixing the different surveys in the North brings
inhomogeneities in the photometry that degrade the cosmological
signal. Treating the DESI imaging surveys separately is therefore
essential to preserve the cosmological information. Moreover, given
that the main DESI ELG selection is also pushed towards faint
magnitudes, there is an important ongoing effort within the DESI
collaboration to study the impact of heterogeneous photometry on
the clustering of these faint galaxies. The DESI ELG EZ mocks
presented in Section 5.1.2 have been developed with this purpose in
mind, in order to perform BAO and Full-Shape analyses on these
mocks and quantify the effect on the cosmological parameters.

Figure B1. Impact of removing DECaLS-North in the eBOSS NGC (top)
and DES in the eBOSS SGC (bottom) on the projected cross-correlation
function. The measurements used in the main analysis correspond to the ones
in blue. The cosmological signal is more degraded in the NGC as we combine
different imaging surveys using different observing sites (BASS/Mzls and
DECaLS) while in the SGC, we are using the same imaging camera but DES
goes deeper than DECaLS.
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Figure B2. Correlation matrix of the projected cross-correlation function
obtained from the 100 jackknife regions for BASS/MzLS only in the eBOSS
NGC footprint (top) and for the entire eBOSS NGC (bottom) with two
different imaging surveys, BASS/MzLS and DECaLS.
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