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ABSTRACT 40 
Southern right whales (SRW) are capital breeders that use stored energy reserves to sustain 41 
themselves and their calves on nursery areas. With successful calving events declining in some SRW 42 
populations, it has been hypothesized that nutritional stress in adult females causes reproductive 43 
failure or death of calves shortly after birth. Here we compared offsets in carbon and nitrogen isotope 44 
values of mothers and their offspring (∆13Ccalf-cow and ∆15Ncalf-cow) among three SRW populations. 45 
SRW from Aotearoa New Zealand, with high population growth rates and body conditions scores, 46 
have negative ∆13Ccalf-cow suggesting calves are utilizing 13C-depleted lipid carbon in milk to fuel the 47 
synthesis of nonessential amino acids used to build new tissues and rapidly grow. In contrast, a 48 
significantly positive ∆13Ccalf-cow offset previously reported for SRW from Argentina during a mass 49 
die-off event was hypothesized to be due to calves consuming milk with low lipid content. Patterns in 50 
∆15Ncalf-cow were more difficult to interpret and highlight the complexity in nitrogen transfer between 51 
mother and offspring. When combined with similar data collected from Brazil and during a low 52 
mortality year in Argentina, we hypothesize this approach provides a way to retrospectively compare 53 
nutritional condition of breeding adult female SRW across nursery areas. 54 
 55 
RESUMEN 56 
Las ballenas francas australes (BFA) tienen una estrategia de reproducción de “acumulación de 57 
capital”, es decir que utilizan las reservas de energía almacenadas para mantenerse a sí mismas y a sus 58 
crías en las áreas de cría. Con la disminución de los eventos de partos exitosos en algunas poblaciones 59 
de BFA, se ha planteado la hipótesis que el estrés nutricional en las hembras adultas causa fallas 60 
reproductivas o la muerte de los ballenatos poco después del nacimiento. En este trabajo comparamos 61 
las diferencias en los valores de isótopos de carbono y nitrógeno de las madres y sus crías (∆13Ccría-62 
madre y ∆15Ncría-madre) entre tres poblaciones de BFA. Las BFA de Aotearoa Nueva Zelanda, con 63 
altas tasas de crecimiento de la población y altos puntajes de condiciones corporales, tiene ∆13Ccría-64 
madre negativo, lo que sugiere que las crías están utilizando carbono lipídico empobrecido en 13C en 65 
la leche para impulsar la síntesis de aminoácidos no esenciales utilizados para construir nuevos tejidos 66 
y crecer rápidamente. En contraste, diferencias significativamente positivas de ∆13Ccría-madre 67 
reportadas previamente para BFA de Argentina durante un evento de muerte masiva han sido 68 
hipotetizadas como debido al consumo de leche con bajo contenido de lípidos. Los patrones de 69 
∆15Ncría-madre fueron más difíciles de interpretar y resaltan la complejidad en la transferencia de 70 
nitrógeno entre las madres y sus crías. Al combinar los datos de este estudio con datos similares 71 
recopilados en Brasil y durante un año de baja mortalidad en Argentina, podemos plantear la hipótesis 72 
de que este enfoque proporciona una forma de comparar retrospectivamente la condición nutricional 73 
de las hembras adultas de BFW en distintas áreas de cría. 74 
 75 
RESUMO 76 
A baleia-franca-austral (BFA) possui a estratégia de acumular energia para manter a si mesma e aos 77 
seus filhotes nas áreas reprodutivas. Devido a diminuição do número de partos bem sucedidos em 78 
algumas populações de BFA, foi sugerida a hipótese de que o estresse nutricional nas fêmeas adultas 79 
causaria falhas reprodutivas ou a morte dos filhotes logo após o nascimento. Neste estudo 80 
comparamos as diferenças nos valores dos isótopos de carbono e nitrogênio das fêmeas e seus filhotes 81 
(∆13Cfilhote-mãe e ∆15Nfilhote-mãe) entre três populações de BFA. As BFA de Aotearoa Nova 82 
Zelândia, com altas taxas de crescimento da população e altos valores de condição corporal, têm 83 
∆13Cfilhote-mãe negativo, resultado que sugere que os filhotes estão utilizando carbono lipídico 84 
empobrecido em 13C do leite para estimular a síntese de aminoácidos não essenciais utilizados para 85 
construir novos tecidos e crescer rapidamente. Por outro lado, as diferenças significativas positivas de 86 
∆13Cfilhote-mãe reportadas previamente para BFA de Argentina, durante um evento de mortalidade 87 
em massa, foram atribuídas ao consumo de leite de baixo conteúdo de lipídios. Os padrões de 88 
∆15Nfilhote-mãe foram mais difíceis de se interpretar e demonstraram a complexidade na 89 
transferência de nitrogênio entre as mães e seus filhotes. Ao combinar os dados deste estudo com 90 
dados similares coletados no Brasil e durante um ano de baixa mortalidade na Argentina, sugere-se 91 
que os estudos isotópicos seriam uma forma de comparar retrospectivamente a condição nutricional 92 
das fêmeas de BFA em distintas áreas reprodutivas. 93 
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1 | INTRODUCTION 94 

Most baleen whales are ‘capital breeders’ that use stored energy reserves to finance the cost of 95 

reproduction. Southern right whales (SRW, Eubalaena australis) may be one of the most extreme 96 

examples of this strategy in cetaceans, as calves grow rapidly (between 2.2 and 3.5 cm per day), 97 

resulting in a loss of up to 25% in the body volume of nursing females during the winter lactation 98 

period (Best & Ruther, 1992; Christiansen et al., 2018). Gestation and lactation are energetically 99 

demanding, with female SRWs historically having an average reproductive cycle of three years: one 100 

year for gestation, one year for lactation, and a rest year to regain body condition for the next 101 

pregnancy (Best, 1994; Burnell, 2001; Davidson et al., 2018; Thomas & Taber, 1984).  102 

 103 

In recent years, there has been an increase in the average interval between successful calving events 104 

from three to four or five years in SRW that use the South African wintering grounds (Vermeulen et 105 

al., 2020). This is hypothesized to be due to a decrease in prey availability and/or quality leading to 106 

SRW females to either defer breeding, thereby lengthening calving intervals, and/or to females losing 107 

a calf in its first year of life (Leaper et al., 2006; Rowntree et al., 2013; Seyboth et al., 2016; van den 108 

Berg et al., 2021). In this latter case, if a females loses a calf early in lactation she may recover 109 

quickly and mate in the following year, resulting in a five year interval to a successful breeding event 110 

(weaned calf) (Marón et al., 2015). Also, unusually high calf mortality events have occurred on the 111 

Argentinean wintering ground (Rowntree et al., 2013; Sironi et al., 2018) which has similarly seen a 112 

lengthening in successful breeding intervals (Marón et al., 2015), resulting in a decrease in the 113 

population growth rate (Crespo et al., 2019). The Brazilian wintering ground is likely 114 

demographically distinct from, but linked by high levels of connectivity to, the Argentinean wintering 115 

ground (Best et al., 1993; Carroll, Ott, et al., 2020; Rowntree et al., 2020). Models linking calf output 116 

with conditions on high latitude foraging grounds (Seyboth et al., 2016) suggest SRW in Brazil may 117 

have been experiencing nutritional stress. In contrast, the best available data from the Aotearoa New 118 

Zealand (hereafter New Zealand) wintering ground shows a high rate of growth of 7% per annum 119 

between 1995 and 2009 (Carroll et al., 2013). This is consistent with the New Zealand population 120 
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having no recorded mortality events and the highest recorded body condition of any studied right 121 

whale population (Christiansen et al., 2020). 122 

 123 

As SRW reproduction and by extension population growth rate are linked to environmental conditions 124 

that influence prey availability on the high latitude foraging grounds (Leaper et al., 2006; Seyboth et 125 

al., 2016), several studies have aimed to identify the location of the species’ offshore foraging 126 

grounds (Mackay et al., 2020; Mate et al., 2011; Valenzuela et al., 2018; van den Berg et al., 2021; 127 

Zerbini et al., 2018, 2015). A common tool to investigate the location and trophic level at which 128 

baleen whales feed is stable isotope analysis. Early studies reported oscillations of carbon (δ13C) and 129 

nitrogen (δ15N) isotope values in SRW baleen that was linked to the whale’s annual migration across 130 

oceanographic regions that varied in their baseline isotopic composition (Best and Schell, 1996; 131 

Schell et al., 1989). In addition, because the isotopic composition of skin tissue reflects dietary inputs 132 

integrated over several months prior to collection (Busquets-Vass et al., 2017), biopsy samples 133 

collected from whales on their winter nursery or socializing grounds reflect recently visited foraging 134 

grounds. This approach has been used to identify foraging grounds or foraging traditions, infer diet 135 

composition, and characterize migratory patterns for SRW (Carroll et al., 2015; Rowntree et al., 2001, 136 

2008; Valenzuela et al., 2018, 2009; van den Berg et al., 2021; Vighi et al., 2014).  137 

 138 

Stable isotopes are also being used to investigate physiology and nutritional stress in marine mammals 139 

(e.g., Lübcker, Whiteman, Millar, et al., 2020; Marón et al., 2020). In the case of SRW, we 140 

hypothesize that differences between d13C values in the tissues of mothers and their offspring can be 141 

used as a proxy for maternal nutritional stress, and that this is correlated with population health and 142 

growth rates (Habran et al., 2019; Valenzuela et al., 2010). Changes in the d13C of calves relative to 143 

their mothers likely reflects the balance of protein and lipid sources used by adult females to produce 144 

milk to fuel calf growth. Lipids have d13C values that are 6‰ –8‰ lower than associated proteins 145 

(Cherry et al., 2011), and carbon derived from lipids can be used to build the carbon skeletons of 146 
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nonessential amino acids needed to synthesize new tissue in rapidly growing offspring (Newsome et 147 

al., 2014; Wolf et al., 2015).  148 

 149 

The lipid content of marine mammal milk is exceptionally high in comparison to other mammals and 150 

varies widely within and among species (Lefèvre et al., 2010; Oftedal, 1993). Many mammalian 151 

species show a decline in lipid content of milk when nutritionally stressed (Neville & Picciano, 1997). 152 

The point where this decline occurs varies between species, but we hypothesize that capital breeders 153 

that have evolved to lactate while fasting would also show a decline in milk lipid when nutritional 154 

stress reaches a metabolic tipping point. This decrease in lipid content could result in a slightly 155 

positive offset in d13C between calves and their mothers, with the offset defined here as the d13C value 156 

of calves minus the d13C value of their mothers, or ∆13Ccalf-cow. This slightly positive offset is expected 157 

because offspring are directly routing milk proteins rather than using a substantial amount of 13C-158 

depleted lipids to synthesize proteinaceous tissues, a process often cited to explain trophic 159 

discrimination in carbon isotopes (Kelly, 2000). This phenomenon may be associated with poor body 160 

condition and lower reproductive success, with potential population level consequences. Conversely, 161 

when milk lipid content is high, the offset in d13C between calves and their mothers is predicted to be 162 

negative as 13C-depleted lipid carbon can be converted into acetyl CoA that enters the tricarboxylic 163 

acid cycle and used to synthesize the carbon skeletons of nonessential amino acids that are needed to 164 

rapidly build tissues (Newsome et al., 2014). We would assume this would be associated with good 165 

maternal body condition and stable population growth rates. Stable isotope analysis of northern 166 

elephant seal (Mirounga angustirostris) tissues supports the above hypothesized patterns and found 167 

that 13C-depletion in offspring relative to their mothers correlated with fasting duration (Habran et al., 168 

2019). While not a primary focus here, a positive offset in d15N in calves relative to their mothers 169 

(∆15Ncalf-cow)  is also expected since females catabolize their own tissues to produce milk for their 170 

offspring. This pattern often manifests as a significant 15N-enrichment akin to that observed in trophic 171 

discrimination in nitrogen isotopes between consumer and prey (Fogel et al., 1989; Fuller et al., 2004; 172 

Newsome et al., 2006). 173 
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This hypothesis was previously tested in a study of 42 SRW cow-calf pairs from the Argentinean 174 

wintering ground, where Valenzuela et al. (2010) investigated the offset in carbon and nitrogen 175 

isotope composition between paired calves and cows (∆13Ccalf-cow and ∆15Ncalf-cow respectively) during 176 

years of relatively low (2004: 13 dead calves) and high (2003: 29 dead and 2005: 36 dead) calf 177 

mortality. In the years with high calf mortality, the offset between calf and cow was positive in both 178 

carbon and nitrogen, whereas in the year with low mortality neither offset was  found to be 179 

significantly different than zero (Table 1). 180 

 181 

Here, we measured ∆13Ccalf-cow and ∆15Ncalf-cow in the New Zealand (n=21) and Brazilian (n=7) 182 

wintering grounds, and compare these patterns with previously published data on cow-calf pairs in the 183 

Argentinean wintering ground summarized above (Valenzuela et al., 2010). This provides 184 

comparative framework to assess the change in ∆13Ccalf-cow and ∆15Ncalf-cow in populations that are 185 

suspected to have relatively low (New Zealand) and high (Argentina) levels of nutritional stress. 186 

 187 

2 | METHODS 188 

2.1 | Sample collection and stable isotope analysis 189 

Skin biopsy samples were collected from SRW in Brazil from 1999–2002 (Carroll, Ott, et al., 2020; 190 

Ott, 2002) and in New Zealand from 2007–2009 (Carroll et al., 2013). Data collection from cow-calf 191 

pairs was noted in the field and maternity confirmed via microsatellite genotyping (Supplementary 192 

Material). A subsample of the skin biopsy sample was freeze-dried and underwent lipid extraction 193 

following protocols described in Todd et al. (1997) for the Brazilian samples or Busquets-Vass et al. 194 

(2017) for the New Zealand samples. Lipid extraction is also known to correct for effects of 195 

preservation medium (Newsome et al., 2018; Todd et al., 1997). Carbon (δ13C) and nitrogen (δ15N) 196 

isotope values were measured on a Costech 4010 elemental analyzer coupled to a Thermo Scientific 197 

Delta V isotope ratio mass spectrometer at the University of Wyoming Stable Isotope Facility 198 

(Laramie, WY, USA) or the Durham University Stable Isotope Biogeochemistry Laboratory 199 

(Durham, UK); see Carroll et al. (2015) for analytical details. Stable isotope data are expressed as δ 200 

values using the equation δX = (RSample/RStandard) – 1, where X is any isotope system of interest (e.g. C 201 
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or N) and RSample and RStandard are the ratios of the heavy to light isotope (e.g. 13C/12C or 15N/14N) for 202 

each sample and standard, respectively. The internationally accepted standards are Vienna Pee Dee 203 

Belemnite (V-PDB) for δ13C, and atmospheric nitrogen for δ15N; units are expressed as parts per 204 

thousand, or per mil (‰). Analytical precision for δ13C and δ15N was assessed via analyses of in-205 

house reference materials for each run, which were stringently calibrated against international 206 

standards (e.g., USGS 40, IAEA 600, IAEA N2), and was measured to be ±0.2‰ (SD). The 207 

calibration of in-house reference materials to international standards ensure isotope data can be 208 

compared across laboratories. We also measured the weight percentage carbon ([C]) and nitrogen 209 

([N]) concentrations of each sample via analysis of organic materials with known elemental 210 

concentrations.  211 

 212 

2.2 | Testing for normality  213 

We first used the Shapiro-Wilk test in the statistical programming language R base package (R Core 214 

Team, 2020)  to test whether the distributions of δ13C, δ15N, ∆13Ccalf-cow, and ∆15Ncalf-cow, partitioned by 215 

nursery ground, deviated from the expectation of normality. For the Brazilian samples (n=7 pairs), no 216 

isotope values or offsets were found to be significantly different from the expectation of normality 217 

(p>0.05). For the New Zealand samples (n=21 pairs), the Shapiro-Wilk test indicated significant 218 

deviations from the expectation of normality for d13C (p<0.001), but not for the ∆13Ccalf-cow, d15N, or 219 

∆15Ncalf-cow data sets (p>0.05). Therefore, we assessed the d13C and d15N data sets for differences 220 

between sampling regions with both parametric and nonparametric statistics and the ∆13Ccalf-cow or 221 

∆15Ncalf-cow data sets only with parametric analyses. Data visualisations were done using R package 222 

ggplot2 (Wickham, 2016). 223 

 224 

2.3 | Patterns in d13C and d15N values across and within nursery grounds 225 

We used t-tests (parametric) and Kolmogorov-Smirnov tests (non-parametric) to test for significant 226 

differences in the d13C and d15N values for cows between nursery grounds. As the New Zealand data 227 

were collected over four years, we used these tests to investigate any interannual variation.  228 
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2.4 | Patterns in ∆13Ccalf-cow and ∆15Ncalf-cow values across nursery grounds 229 

For each nursery ground, distributions of ∆13Ccalf-cow or ∆15Ncalf-cow values were calculated by taking 230 

the offset in nitrogen and carbon isotope composition between paired calves and cows. The mean and 231 

standard deviation for these distributions were calculated, and were tested to see if they were 232 

significantly different from zero using a one-sample t-test in R. The distributions of ∆13Ccalf-cow and 233 

∆15Ncalf-cow values for different nursery grounds were compared in a pairwise manner using the 234 

Kolmogorov-Smirnov test.  235 

 236 

3 | RESULTS  237 

3.1 | Data set summary 238 

There were 7 and 21 cow-calf pairs for which d13C and d15N data (Figure 1, Table 1) were produced 239 

from Brazil and New Zealand, respectively. We also included the published data from a low mortality 240 

year (2004, n = 20) and high mortality years (2003 and 2005, n = 22) from Argentina (Valenzuela et 241 

al., 2010). 242 

 243 

3.2 | Patterns in d13C and d15N values across nursery grounds  244 

We found no significant differences between years within the New Zealand data set (Table 2). There 245 

was a significant difference between both South American data sets and the New Zealand data set for 246 

cow d13C (Figure 2) and δ15N values (Figure 3; p<0.001 for all comparisons: Supplementary Table 1), 247 

but not between the Argentina and Brazil data sets (Supplementary Table 1, Figure 1). 248 

 249 

3.3 | Patterns in ∆13Ccalf-cow values across nursery grounds  250 

Mean and standard deviations for ∆13Ccalf-cow and ∆15Ncalf-cow offsets can be found in Table 1 and 251 

graphically displayed in Figures 2 and 3. ∆13Ccalf-cow (p<0.01) for the New Zealand data set was 252 

significantly different from zero based on a one-sample t-test, whereas the offsets for the Brazilian 253 

dataset were not (∆13Ccalf-cow: p=0.12). There were significant differences in ∆13Ccalf-cow across nursery 254 

grounds, with the Argentinean high mortality years having significantly higher offsets than all other 255 
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wintering grounds and the Argentinean low mortality year. We also observed significant differences 256 

in ∆15Ncalf-cow between wintering grounds, with the Argentinean high mortality years having 257 

significantly higher offsets than the Argentinean low mortality year or the Brazilian dataset (Table 1).  258 

 259 

4 | DISCUSSION 260 

Overall, our results suggest a relationship between physiological condition and ∆13Ccalf-cow across 261 

SRW populations calving in three wintering grounds. Specifically, the New Zealand population shows 262 

a negative ∆13Ccalf-cow (Table 1) that is significantly different than zero, suggesting calves are utilizing 263 

13C-depleted lipid carbon in milk to fuel the synthesis of nonessential amino acids needed to build 264 

new tissues and rapidly grow. This coincided with a period (1995–2009) of high estimated population 265 

growth and no observed cow or calf mortality events (Carroll et al., 2013). In contrast, there were 266 

weakly negative mean ∆13Ccalf-cow values in the data sets from both the Brazilian wintering ground and 267 

low mortality year in Argentina (Table 1), both of which were statistically indistinguishable from 268 

zero. We hypothesize this represents a decrease in maternal lipid catabolism to fuel growth in calves 269 

in the Brazilian wintering grounds relative to those from New Zealand. Modelling suggests that there 270 

was a decrease in calf production in the Brazilian wintering ground coincident with our sampling 271 

period (1998–2005) of this population, which is believed to be driven by decreases in krill abundance 272 

in high latitude foraging areas (Seyboth et al., 2016). If this hypothesis is correct, decreases in calf 273 

output were likely driven by higher nutritional stress in females that calved over this time period in 274 

the Brazilian wintering ground. Finally, as previously described (Valenzuela et al., 2010), the high 275 

mortality years in Argentina had a positive mean offset in ∆13Ccalf-cow (+0.8 ± 0.3‰), which was 276 

significantly higher than observed in the New Zealand, Brazil, and the low mortality Argentina data 277 

sets (see Table 2 for pairwise p-values). This suggests that cows during high mortality years in 278 

Argentina were nutritionally stressed and were using fewer lipids to fuel calf development in 279 

comparison to the other datasets. 280 

 281 

Patterns in ∆15Ncalf-cow were not as clear as those for carbon isotopes, as the data sets for New Zealand 282 

(+0.5 ± 0.8‰) and Argentina high mortality years (+0.7 ± 0.7‰) showed positive offsets that were 283 
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significantly higher than zero but statistically indistinguishable from one another. These positive 284 

offsets are expected since mammals catabolize their own tissues to produce milk for their offspring, 285 

which often manifests as a significant 15N-enrichment akin to trophic discrimination in nitrogen 286 

isotopes between consumer and prey (Fogel et al., 1989; Fuller et al., 2004; Newsome et al., 2006). 287 

Small but consistent mother-offspring D15N offsets of 1-2‰ have been observed in a wide range of 288 

mammal species (Fogel et al., 1989; Jenkins et al., 2001; Newsome et al., 2009, 2006). In contrast, the 289 

negligible mean ∆15Ncalf-cow in the Brazilian (-0.1 ± 0.6‰) and low mortality year Argentina data sets 290 

(0.2 ± 0.5‰) that appear not to be significantly different from zero suggests a more complex 291 

relationship between nutritional status, nitrogen balance, and transfer of nitrogen from mother to calf 292 

during gestation and lactation. Recent work on healthy southern elephant seal (Mirounga leonina) 293 

mother-pup pairs utilizing a combination of bulk tissue and amino acid nitrogen isotope analysis 294 

highlights this complexity, but also shows that offspring in utero generally have higher d15N values 295 

than their mother at parturition (Lübcker, Whiteman, Millar, et al., 2020), an isotopic offset that is 296 

likely maintained or enhanced during lactation under healthy conditions. Negligible mother-offspring 297 

D15N offsets may indicate a disruption in nitrogen balance in either offspring or parent. For example, 298 

the direct routing of amino acids from diet to tissue with minimal isotopic alteration, resulting in 299 

mother-offspring D15N offsets apparently statistically indistinguishable from zero, could indicate 300 

nutritional stress in calves similar to patterns observed in mammals fed diets with low protein content 301 

and quality (Robbins et al., 2005). Likewise, fasting has been shown to increase the nitrogen isotope 302 

composition of both bulk tissues (Hertz et al., 2015) and individual amino acids catabolized to fuel 303 

gluconeogenesis (Lübcker, Whiteman, Newsome, et al., 2020), which could yield increases the d15N 304 

of mothers over the course of the winter breeding season relative to their calves and produce 305 

negligible or even negative ∆15Ncalf-cow. Additional work utilizing amino acid isotope analysis is 306 

needed to further explore the potential drivers of ∆15Ncalf-cow in SRW. 307 

 308 

The interpretation of isotopic differences between calves and cows assumes that the isotopic 309 

composition of calf skin largely represents the lactation period, rather than time in utero. While skin 310 
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isotopic incorporation rates for SRW are unknown, studies of bottlenose dolphins and blue whales 311 

report similar estimates of complete isotopic turnover of skin in adults: 163±91 days for d15N in blue 312 

whales (Busquets-Vass et al., 2017) and 180±71 and 104±35 days for d15N and d13C, respectively, in 313 

bottlenose dolphins (Giménez et al., 2016). Isotopic incorporation rates for rapidly growing calves are 314 

likely faster than in adults, and to ensure that skin sampled from calves primarily reflects the lactation 315 

period, we recommend that future work focuses on sampling older calves whose skin tissue reflects 316 

time since parturition. Another important assumption of the approach we used to assess maternal 317 

physiological condition is that the isotopic composition of cow skin is a reliable proxy for the protein-318 

rich tissues (e.g., muscle) being catabolized to produce milk for their offspring. We believe this 319 

assumption is valid because SRW are capital breeders and cows are catabolizing muscle tissue to 320 

repair their skin while on the wintering grounds, which is consistent with the lack of significant 321 

differences in the isotopic composition of fin whale muscle and skin (Borrell et al., 2012). 322 

 323 

Finally, the difference between the New Zealand and South American nursery ground cow d13C and 324 

δ15N values was unsurprising, given that the foraging grounds of SRWs in the two regions are most 325 

likely located in the South Atlantic and South Pacific, respectively, that have different isotopic 326 

baselines (Mackay et al., 2020; Valenzuela et al., 2018; Vighi et al., 2014; Zerbini et al., 2018). There 327 

was no difference in the d13C and δ15N values of cows from Argentina and Brazil (Supplementary 328 

Table 1, Figure 1), suggesting that whales that use these two wintering grounds likely share foraging 329 

grounds, which contrasts with isotope data from historical samples that suggested SRWs wintering in 330 

the two areas used different foraging grounds (Vighi et al., 2014). 331 

 332 

Our results contribute to the growing number of comparative studies that use data collected across 333 

years and populations to provide insight into broader trends in SRW population health, growth, and 334 

genetic diversity (Carroll et al., 2019; Christiansen et al., 2020; Corkeron et al., 2018). Given concern 335 

over the decrease in reproductive success and population growth rates in some SRW wintering 336 

grounds (Carroll, Charlton, et al., 2020), we recommend that skin biopsy sampling continues on cow-337 
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calf pairs to facilitate a year-to-year understanding of nutritional stress of populations and to increase 338 

our understanding of the processes governing isotopic discrimination between mothers and calves. 339 

We also anticipate that ongoing work to measure amino acid d13C and d15N values of these samples, 340 

which shows promise as a proxy for nutritional status (Lübcker, Whiteman, Millar, et al., 2020; 341 

Whiteman et al., 2019), will provide greater insights into SRW nitrogen balance and the transfer of 342 

carbon and nitrogen from mother to offspring during lactation.  343 

 344 
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Table 1: Mean and standard deviations (±SD) of ∆13Ccalf-cow and ∆15Ncalf-cow from southern right whale 590 

nursery grounds. Also shown are pairwise comparisons of these values between southern right whale 591 

wintering grounds, as well as years with differing levels of calf mortality in Argentina: low (2004) 592 

and high (2003 and 2005); acronyms include New Zealand (NZ), Brazil (BRZ), and Argentina (ARG) 593 

and sample size (n). The top right and bottom left quadrants show the p-values from t-tests for 594 

∆13Ccalf-cow and ∆15Ncalf-cow, respectively. Argentinean data from Valenzuela et al. (2010). 595 

 n NZ BRZ ARG 
(low) 

ARG 
(high) 

∆13Ccalf-

cow±SD (‰) 
∆15Ncalf-

cow±SD (‰) 
NZ 21  0.125 0.044 <0.001 -0.8±1.1 0.5±0.8 

BRZ 7 0.054  0.678 <0.001 -0.3±0.5 -0.1±0.6 
ARG (low 
mortality ) 

20 0.137 0.266  <0.001 -0.2±0.6 0.2±0.5 

ARG (high 
mortality) 

22 0.066 0.003 <0.001  0.8±0.3 0.7±0.7 
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Table 2: P-values for pairwise comparisons in ∆13Ccalf-cow and ∆15Ncalf-cow between years for the New 613 

Zealand data set using Kolmogorov-Smirnov (KS) and t-tests. 614 

Year 1 Year 2 Offset KS test t-test 

2007 2008 ∆13Ccalf-cow 0.135 0.316 

2007 2009 ∆13Ccalf-cow 0.212 0.316 

2008 2009 ∆13Ccalf-cow 0.833 0.235 

2007 2008 ∆15Ncalf-cow 0.225 0.235 

2007 2009 ∆15Ncalf-cow 0.718 0.873 

2008 2009 ∆15Ncalf-cow 0.491 0.873 
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634 

Figure 1: Location of southern right whale wintering grounds and skin d13C and d15N values for 635 

the cow (triangles) and calf (circles) samples from Argentina (ARG), Brazil (BRZ) and New 636 

Zealand (NZ). Also shown are the locations of the South African (SAF), southwest Australian 637 

(SWA) and southeast Australian (SEA) wintering grounds. Argentinean data are from 638 

Valenzuela et al. (2010).639 
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 640 

Figure 2: a. Boxplot of cow and calf stable d13C isotope data summarised by wintering ground for 641 

Argentina (low and high mortality years), Brazil, and New Zealand. b. Boxplot of offset between cow 642 

and calf for d13C (∆13Ccalf-cow) by wintering ground for low (low mortality) and high (high mortality) 643 

calf mortality years in Argentina, Brazil and New Zealand. Argentina data from Valenzuela et al. 644 

(2010). Boxes defined by 25% and 75% quantile values with median showed by black line, with 645 

whiskers extending up to 1.5x the interquartile range and outliers shown by open circles. 646 

 647 
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  648 

Figure 3: a. Boxplot of cow and calf stable d15N isotope data summarised by wintering ground for 649 

Argentina (low and high mortality years), Brazil, and New Zealand. b. Boxplot of offset between cow 650 

and calf for d15N (∆15Ncalf-cow) by wintering ground for low (low mortality) and high (high mortality) 651 

calf mortality years in Argentina, Brazil and New Zealand. Argentina data from Valenzuela et al. 652 

(2010). Boxes defined by 25% and 75% quantile values with median showed by black line, with 653 

whiskers extending up to 1.5x the interquartile range and outliers shown by open circles. 654 


