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1 Introduction

Z boson pair production is an essential process at the Large Hadron Collider (LHC).
Besides its immediate relevance as a signal process for precision physics [1–5], it is a sig-
nificant background to on-shell and off-shell Higgs production for the four-lepton final
state [6–9]. Continuum Z pair production significantly contributes to off-shell Higgs pro-
duction (∼ 10%) through interference effects [10, 11]. This is, in particular, important for
indirect Higgs width constraints as proposed in [12, 13]. The primary production channel
for vector bosons at the LHC is quark-antiquark annihilation, which starts at tree level and
is known to next-to-next-to-leading order (NNLO) QCD [14–20]. The gluon fusion channel
is loop-induced and starts formally at NNLO for the process pp → ZZ. Nevertheless, it
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accounts for O(60%) [14] of the total NNLO correction owing to the high gluon luminos-
ity at the LHC. Additionally, NLO corrections to gg → ZZ were also found to be quite
sizable [21], resulting in an O(5%) increase to the total pp→ ZZ cross section [22].

The one-loop QCD amplitude for gg → ZZ was calculated a long time ago in [23–25].
At two-loops, the massless quark contribution was computed in [26, 27]. It is expected that,
due to the Goldstone boson equivalence theorem [28, 29], top-quark corrections at two-loops
could be significant as well, especially for longitudinally polarised Z bosons at high invariant
mass. This configuration is of particular interest, since it provides unique opportunities for
measurement of an anomalous ttZ coupling [30, 31]. Contributions from top-quark at two-
loops were calculated in [32, 33] using the large top-mass approximation and subsequently
improved using Padé approximants in [34]. In [35], an expansion around top-quark pair
production threshold was incorporated with the large top-mass approximation for the form
factors relevant for interference with the Higgs production amplitude, and in [36], the
authors used both the large top-mass approximation and the small top-mass approximation
along with Padé approximants to improve the expansion in the intermediate region. Higgs
mediated two-loop contributions to ZZ production involving a closed top-quark loop were
calculated some time ago [37–40]. Contributions of the third generation quarks to W+W−

production with exact mass dependence were computed recently in [41].
In this paper, we calculate the two-loop QCD corrections to on-shell gg → ZZ produc-

tion which involve a closed top-quark loop, keeping the dependence on the top-quark mass
exact. We present a new variant of the syzygy based approach for reduction of dimension-
ally regulated multi-loop integrals, which we use to reduce our amplitudes. Since many of
the topologies involved in this calculation are rather complicated and can not be expressed
in terms of multiple polylogarithms, we use sector decomposition and numerically evaluate
our master integrals. To improve our numerical performance, we choose a basis of finite
integrals, where we also allow for linear combinations of divergent integrals. The building
blocks of these linear combinations are rather general Feynman integrals, possibly with
numerators, higher propagator powers (“dots”), pinched propagators (subsectors), or di-
mension shifts. We present a new algorithm to systematically construct all possible linear
combinations which are finite at the integrand level, starting from a set of seed integrals.

The paper is organised as follows. We introduce the setup for our amplitude calculation
in section 2, describing our projector method, the construction of helicity amplitudes and
the electroweak coupling structure. In section 3, we describe a new variant of the syzygy
based approach to linear relations between loop integrals, which allows us to reduce the
amplitude. In section 4, we present our novel algorithm for construction of finite Feynman
integrals, which we use to arrive at a basis of integrals suitable for numerical evaluation. In
section 5, we discuss UV renormalisation and IR subtraction, we then present the checks
we perform on our calculation to establish correctness of our results. Finally, we present
numerical results for our helicity amplitudes in section 6. We detail some of our numerical
checks in appendix A.
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2 Setup of the calculation

2.1 Form factors and helicity amplitudes

We consider Z pair production in gluon fusion,

g(p1) + g(p2) −→ Z(p3) + Z(p4) . (2.1)

Here, p1, p2 are incoming and p3, p4 are outgoing momenta, so that p1 + p2 = p3 + p4 and

p2
1 = p2

2 = 0, p2
3 = p2

4 = m2
Z , (2.2)

that is, we consider the Z-bosons to be on-shell. Our Mandelstam variables are

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 , with s+ t+ u = 2m2
Z . (2.3)

The amplitude can be represented as

M =Mµνρσ(p1, p2, p3, p4) εµλ1
(p1) ενλ2(p2) ε∗ρλ3

(p3) ε∗σλ4(p4) (2.4)

using polarization vectors ελi(pi), for which we will also use the abbreviation εi ≡ ελi(pi).
Using Lorentz invariance, the amplitude can be decomposed in terms of 138 parity-even

tensor structures [26]:

Mµνρσ(p1, p2, p3, p4) = a1 g
µν gρσ + a2 g

µρ gνσ + a3 g
µσ gνρ

+
3∑

i,j=1
( a1,ij g

µν pρi p
σ
j + a2,ij g

µρ pνi p
σ
j + a3,ij g

µσ pνi p
ρ
j

+ a4,ij g
νρ pµi p

σ
j + a5,ij g

νσ pµi p
ρ
j + a6,ij g

ρσ pµi p
ν
j )

+
3∑

i,j,k,l=1
aijkl p

µ
i p

ν
j p

ρ
k p

σ
l . (2.5)

Parity-odd tensor structures involving the epsilon tensor do not need to be taken into
account due to Bose symmetry and charge-parity conservation for our process [24]. Since
the color structure of the external states is straight-forward, we suppress color indices here
and in the following. We can reduce the number of tensors using transversality of the gluon
polarization vectors,

ε1 · p1 = 0 , ε2 · p2 = 0 , (2.6)

and the gauge choice

ε1 · p2 = 0 , ε2 · p1 = 0 , ε3 · p3 = 0 , ε4 · p4 = 0 . (2.7)

These polarisation vectors correspond to the polarisation sums∑
pol

εµ1 ε
∗ν
1 = −gµν + pµ1p

ν
2 + pµ2p

ν
1

p1.p2
,

∑
pol

εµ3 ε
∗ν
3 = −gµν + pµ3p

ν
3

p3.p3
,

∑
pol

εµ2 ε
∗ν
2 = −gµν + pµ1p

ν
2 + pµ2p

ν
1

p1.p2
,

∑
pol

εµ4 ε
∗ν
4 = −gµν + pµ4p

ν
4

p4.p4
. (2.8)
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The amplitude can then be written as

Mµνρσ(p1, p2, p3, p4) =
20∑
i=1

Ai(s, t,m2
t ,m

2
Z)Tµνρσi , (2.9)

where the Ai are the form factors, and the remaining 20 tensors Ti are as follows:

Tµνρσ1 = gµνgρσ , T µνρσ2 = gµρgνσ , T µνρσ3 = gµσgνρ , T µνρσ4 = pρ1 p
σ
1 g

µν ,

Tµνρσ5 = pρ1 p
σ
2 g

µν , Tµνρσ6 = pσ1 p
ρ
2 g

µν , Tµνρσ7 = pρ2 p
σ
2 g

µν , Tµνρσ8 = pσ1 p
ν
3 g

µρ ,

Tµνρσ9 = pσ2 p
ν
3 g

µρ , Tµνρσ10 = pρ1 p
ν
3 g

µσ , Tµνρσ11 = pρ2 p
ν
3 g

µσ , Tµνρσ12 = pσ1 p
µ
3 g

νρ ,

Tµνρσ13 = pσ2 p
µ
3 g

νρ , Tµνρσ14 = pρ1 p
µ
3 g

νσ , Tµνρσ15 = pρ2 p
µ
3 g

νσ , Tµνρσ16 = pµ3 p
ν
3 g

ρσ ,

Tµνρσ17 = pρ1 p
σ
1 p

µ
3 p

ν
3 , T µνρσ18 = pρ1 p

σ
2 p

µ
3 p

ν
3 , T µνρσ19 = pρ2 p

σ
1 p

µ
3 p

ν
3 , T µνρσ20 = pρ2 p

σ
2 p

µ
3 p

ν
3 .

(2.10)

The form factors Ai(s, t,m2
t ,m

2
Z) can be derived from the amplitude using projection op-

erators Pµνρσi , which fulfill∑
pol

Pµνρσi ε∗1µε
∗
2νε3ρε4σε1µ′ε2ν′ε

∗
3ρ′ε
∗
4σ′Mµ′ν′ρ′σ′ = Ai . (2.11)

These projection operators themselves can be decomposed in terms of the Tµνρσi as

Pµνρσi =
20∑
j=1

Bij(s, t,m2
t ,m

2
Z) (Tµνρσj )† , i = 1, . . . , 20 . (2.12)

where the exact forms of the Bij are available at the VVamp project website:
https://vvamp.hepforge.org/.

Due to Bose symmetry, the amplitude must remain unchanged under the exchange of
the incoming gluons or the outgoing Z-bosons [26] i.e.

1↔ 2 : p1 ↔ p2, ελ1(p1)↔ ελ2(p2),
3↔ 4 : p3 ↔ p4, ελ3(p3)↔ ελ4(p4).

This leads to the following identities between the form factors

A7 = A4 , A12 = −A11 , A13 = −A10 , A14 = −A9 , A15 = −A8 , A20 = A17 , (2.13)

as well as the following relations under the crossing p1 ↔ p2 (t↔ u)

A1(s, t) = A1(s, u) , A4(s, t) = A4(s, u) , A7(s, t) = A7(s, u) ,
A16(s, t) = A16(s, u) , A17(s, t) = A17(s, u) , A20(s, t) = A20(s, u) ,
A2(s, t) = A3(s, u) , A5(s, t) = A6(s, u) , A8(s, t) = A13(s, u) ,
A9(s, t) = A12(s, u) , A10(s, t) = A15(s, u) , A11(s, t) = A14(s, u) ,
A18(s, t) = A19(s, u) . (2.14)

It is straightforward to derive amplitudes for polarised external particles from the Ai
form factors. Taking fermionic decays of the Z bosons into account, the amplitudes for
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specific fermion helicities can be found e.g. in [26]. Here, we consider specific polarisations
of the on-shell Z bosons in the partonic center-of-mass frame. We parametrise the momenta
according to

pµ1 =
√
s

2 (1, 0, 0, 1) , pµ3 =
√
s

2 (1, β sin θ, 0, β cos θ) ,

pµ2 =
√
s

2 (1, 0, 0,−1) , pµ4 =
√
s

2 (1,−β sin θ, 0,−β cos θ) , (2.15)

with β =
√

1− 4m2
Z/s and θ being the angle in the centre-of-mass frame between the direc-

tion p1 and the outgoing Z boson carrying momentum p3. We choose for the polarisation
vectors

εµ±(p1) = 1√
2

(0,∓1,−i, 0) ,

εµ±(p2) = 1√
2

(0,±1,−i, 0) ,

εµ±(p3) = 1√
2

(0,∓ cos θ,−i,± sin θ) , εµ0 (p3) =
√
s

2mZ
(β, sin θ, 0, cos θ) ,

εµ±(p4) = 1√
2

(0,± cos θ,−i,∓ sin θ) , εµ0 (p4) =
√
s

2mZ
(β,− sin θ, 0,− cos θ) . (2.16)

It can be shown that these polarisation vectors satisfy (2.6), (2.7), and (2.8). Moreover, the
helicity amplitudes fulfill a number of symmetry relations [24, 36]. Using (2.13), we find

Mλ1λ2λ3λ4 = (−1)δλ30+δλ40M−λ1,−λ2,−λ3,−λ4

M+++− =M++−+,

M+−−− =M+−++,

M++±0 =M++0±,

M+−±0 = −M+−0∓ (2.17)

in our conventions. In addition, using θ = arccos((t − u)/(βs)) ∈ [0, π], u = 2m2
Z − s − t,

and s = 4m2
Z/(1− β2) to express the helicity amplitudes in terms of β and t, we obtain

M++++(β, t) =M++−−(−β, t),
M+−+−(β, t) =M+−−+(−β, t),
M+±+0(β, t) =M+±−0(−β, t) . (2.18)

Together, (2.17) and (2.18) reduce the number of independent helicity amplitudes to 8.
The expressions for the helicity amplitudes in terms of the form factors Ai are provided in
an ancillary file.

2.2 Diagrams and electroweak coupling structure

To generate the relevant Feynman diagrams, we use Qgraf [42]. In the diagrams considered,
the Z bosons couple only to quark lines. The coupling of a Z boson to a fermion line can
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[A] [B]

Figure 1. Example Feynman diagrams representing the two classes of diagrams.

be written as

VV ff̄µ = ie

[
LZ
ff̄
γµ

(1− γ5
2

)
+RZ

ff̄
γµ

(1 + γ5
2

)]
= i

e

2 sin θW cos θW
γµ (vt + atγ5) (2.19)

where LZ
ff̄

= (If3 −qf sin2 θW )/(sin θW cos θW ), RZ
ff̄

= −qf sin θW / cos θW , e is the positron
charge, and qf is the electric charge of the fermion in terms of e. The vector and axial
components are given in terms of the weak mixing angle θW by vt = 1

2 −
4
3 sin2 θW and

at = −1
2 , respectively. The couplings of the two Z bosons to the fermion line can in

principle generate vector-vector (v2
t ), vector-axial (vtat), and axial-axial (a2

t ) contributions
to the amplitude. However, due to Bose symmetry and charge-parity conservation for this
process, the vector-axial contribution should vanish identically [24]. This also explains the
absence of any terms with the Levi-Civita tensor in (2.5) since such terms would violate
parity and are hence forbidden. For the massless quark case, the vector-vector and the
axial-axial contributions are identical; after including quark masses, they differ by terms
proportional to the quark mass.

We find a total of 166 diagrams containing at least one top-quark propagator. Out of
these, 49 diagrams have a single gluon coupled to a closed fermion loop, and hence they
vanish due to colour conservation. The remaining diagrams can be divided into two classes
shown in figure 1.

Class A: both Z bosons couple to the same fermion line. To appropriately handle γ5
in d dimensions, we use the anti-commuting γ5 scheme described in [43, 44]. Since cyclicity
of trace is not preserved in this scheme, a reading point prescription is employed to ensure
that all traces are read from the same point. However, for a closed fermion loop with
an even number of γ5 matrices, it is trivial to eliminate γ5 using the anti-commutation
relations; this greatly simplifies the implementation of the anti-commuting γ5 scheme.

Class B: the Z bosons couple to different closed fermion lines. For these diagrams,
the vector-vector contribution can be shown to vanish due to Furry’s theorem, while the
vector-axial piece is identically zero because of charge-parity conservation. The axial-axial
piece, however, vanishes only after summing over a degenerate SU(2)L doublet. Since
the third generation of quarks is not degenerate, this cancellation is incomplete and we
see a finite remainder from the top-bottom mass splitting. These diagrams have a single
γ5 in each loop which leads to a non-trivial structure and requires careful application of
the reading point prescription. Since these diagrams are effectively one-loop, we treat
them separately. Exact results for these diagrams were previously presented in [34] and
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Representative Feynman diagrams in class A with irreducible topologies. The number
of master integrals in each topology are 3, 4, 3, 3, 5, 5, and 4 respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3. Representative Feynman diagrams in class A with reducible topologies.

we find full agreement. We will not mention them any further and do not include these
contributions in the results presented below.

After generating the diagrams in class A, we employ Reduze 2 to map them to the 4 dif-
ferent integral families shown in table 1. We find 13 top-level topologies (trivalent graphs),
of which 7 are irreducible (figure 2) and 6 are reducible (figure 3). We use FORM [45–47]
to apply the Feynman rules and generate the amplitude, employing the ’t Hooft-Feynman
gauge (ξ = 1) for internal gluons. Before applying any symmetries, we find a total of
29247 integrals with up to 4 irreducible scalar products in the numerator. This number
can be reduced to 4504 using symmetry relations between the integrals. We see further
simplifications after inserting the symmetry relations in the amplitude; due to cancellations
only 1584 integrals survive in the form factors. This is a significant improvement over the
original number of integrals and underlines the importance of using symmetry relations
and working with amplitudes instead of individual diagrams.

Using Reduze 2 [48–51], we perform a numerical reduction by substituting numbers for
kinematics and find, for the diagrams with a single fermion loop, 85 irreducible topologies
with the worst sector having 6 master integrals with 6 lines. In total, we obtain 264 master
integrals for class A, out of which 172 are not related by any crossing. Our symbolic
reduction is discussed in the following section.
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A B C D

k 2
1 −m 2

t k 2
1 k 2

1 −m 2
t k 2

1

(k1 + p1) 2 −m 2
t (k1 + p1) 2 (k1 + p1) 2 −m 2

t (k1 + p1) 2

(k1 + p1 + p2) 2 −m 2
t (k1 + p1 + p2) 2 (k1 + p1 − p3) 2 −m 2

t (k1 + p1 + p2) 2

(k1 + p4) 2 −m 2
t (k1 + p4) 2 (k1 + p4) 2 −m 2

t k 2
2 −m 2

t

k 2
2 −m 2

t k 2
2 −m 2

t k 2
2 −m 2

t (k2 + p1 + p2) 2 −m 2
t

(k2 + p1) 2 −m 2
t (k2 + p1 − p3) 2 −m 2

t (k2 + p1 − p3) 2 −m 2
t (k2 + p4) 2 −m 2

t

(k2 + p1 + p2) 2 −m 2
t (k2 − p3) 2 −m 2

t (k2 + p4) 2 −m 2
t (k2 − k1) 2 −m 2

t

(k2 + p4) 2 −m 2
t (k2 + p4) 2 −m 2

t (k2 − k1) 2 (k2 − k1 + p2) 2 −m 2
t

(k1 − k2) 2 (k1 + k2 + p4) 2 −m 2
t (k1 − k2 + p1) 2 (k2 − k1 + p4) 2 −m 2

t

Table 1. List of integral families and their propagators.

3 Reduction of Feynman integrals

3.1 Linear relations from syzygies

A general L-loop scalar Feynman integral with N propagators can be represented by

I(ν1, . . . , νN ) =
∫ ( L∏

l=1
ddkl

)
N∏
i=1

1
(q2
i −m2

i )
νi (3.1)

where k1, . . . , kL are the loop momenta, qi are the propogator momenta (linear combina-
tions of loop and external momenta), mi are the masses of the propagators, νi are (integer)
exponents of the propagators, and d = 4− 2ε. Here, we allow also for non-positive powers
νi of the propagators, i.e. we consider a family of integrals with possible irreducible nu-
merators. The total derivative of an integral in dimensional regularisation vanishes; this
allows us to write linear relations between different integrals [52]

0 =
∫ ( L∏

l=1
ddkl

)
∂

∂kµj

(
vµ

N∏
i=1

1
(q2
i −m2

i )
νi

)
, (3.2)

where vµ could be any linear combination of loop and external momenta. We can eliminate
most of the integrals in the amplitude using these relations with the remaining integrals
usually referred to as master or basis integrals. This procedure can be systematically used
to reduce any integral appearing in the amplitude due to an algorithm by S. Laporta [53].
Many public codes based on this algorithm are available for this purpose [48, 54–57].

Conventionally, the vector vµ is chosen as a single loop or external momentum; different
such choices yield a set of simple equations as a starting point. It is easy to see that
the derivatives in (3.2) generate higher powers νi of the propagators, often referred to as
“dots”. Such auxiliary integrals with a large number of dots are usually not required for the
amplitude and lead to relatively large linear systems that are computationally expensive
to reduce.

– 8 –
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A method was proposed in [58] to avoid these higher powers of propagators by con-
structing suitable generating vectors vµ from syzygies. This method involves the compu-
tation of a Gröbner basis to obtain the syzygies. A linear algebra based approach was
presented in [59], albeit the syzygies can only be obtained to a specified degree using this
method. Subsequent work [60–62] refined syzygy based constructions in the momentum
space representation as well as in Baikov’s representation [63]. Syzygies can also be used
to derive linear relations [64–66] in the Lee-Pomeransky representation [67].

The L-loop Feynman integral in (3.1) can be written in Baikov’s representation as

I(ν1, . . . , νN ) = N0

∫
dz1 . . . dzN

1∏N
i=1 z

νi
i

P
d−L−E−1

2 , (3.3)

where the Jacobian of the variable transformation involves the determinant P , the Baikov
polynomial, N0 is a normalization factor, and E is the number of linearly independent ex-
ternal momenta. The integration-by-parts identities in Baikov’s representation are given by

0 =
∫

dz1 . . . dzN
N∑
i=1

(
∂fi
∂zi

+ d− L− E − 1
2P fi

∂P

∂zi
− νi

fi
zi

) 1∏N
i=1 z

νi
i

P
d−L−E−1

2 , (3.4)

where f1, . . . , fN are arbitrary polynomials in the Baikov parameters z1, . . . , zN , and
the kinematic invariants. In the above equation, terms that appear with 1/P lead to
dimensionally shifted integrals. Since these integrals don’t appear in the amplitude, it may
be desirable to avoid them to prevent an unnecessary proliferation of auxiliary quantities
in the system. This can be achieved by imposing the constraint(

N∑
i=1

fi
∂P

∂zi

)
+ fN+1 P = 0 . (3.5)

Here, we introduced a new polynomial fN+1 in the Baikov parameters. Note that P and
its derivatives are known polynomials for the problem, see e.g. [68] for details. A constraint
of this type on the vector of polynomials (f1, . . . , fN+1) is known as a syzygy in algebraic
geometry. Explicit solutions to this equation were pointed out in [68] and can easily be
written down. The resulting fi are linear polynomials in the Baikov variables zk and the
kinematic invariants. It must be noted that these fi generate integration-by-parts relations
which cover [68] those derived in the conventional momentum-space approach (3.2).

To enforce the absence of doubled propagators, one requires that for all i with νi ≥ 1,
the fi are proportional to zi to cancel the 1/zi in the relation,

fi = bi zi ∀ i = 1, . . . , N with νi ≥ 1 . (3.6)

While it is straight-forward to fulfil both constraints (3.5) and (3.6) separately, a simulta-
neous solution requires a non-trivial calculation.

3.2 Constructing syzygies with linear algebra

Formally, finding vectors of polynomials (fi) which are simultaneous solutions of both (3.5)
and (3.6) corresponds to the determination of the intersection of two syzygy modules [69].
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In practice, computer algebra packages implement algorithms to solve this task. For per-
formance reasons we decided to develop a custom syzygy solver based on linear algebra and
finite field arithmetic [70, 71]. Note that if polynomials (fi) satisfy the syzygy constraint
in (3.5), then (zkfi) for any k also satisfy it.

Algorithm 1 Syzygies for linear relations without dimension shifts or dots
Input: syzygies of degree 1 solving (3.5), maximal required degree nmax.
Output: syzygies S1, . . . , Snmax up to degree nmax solving (3.5) and (3.6).

1: Start with syzygies of degree n = 1. Let I1 be a complete set of solutions (fi) to the no-
dimension-shift constraint (3.5), which are linear in the Baikov parameters zk. These
can directly be written down [68]. Abbreviating the momenta squared with variables
zN+1, . . . , the vectors in I1 are of homogeneous degree 1 in the variables zk.

2: At degree n, form a matrix Mn, where each element of (fi) ∈ In corresponds to a row.
The columns enumerate both the component i of (fi) and the power products of zi in
them; the entries of the matrix are the coefficients. A column is called admissable, if
it satisfies the no-doubled propagator constraint (3.6), and non-admissable otherwise.
All admissable columns are ordered to the right of the non-admissable columns.

3: Perform a row reduction of Mn. In the row reduced form, select all rows, which have
an admissable pivot column and form the corresponding syzygies Sn from them. Sn
forms a complete set of linear combinations of the syzygies in In, which satisfy (3.6)
for all of their terms, and are therefore our solutions at degree n.

4: If n is the user-defined maximal degree, stop and return the solutions S1, . . . , Sn.
Otherwise, proceed.

5: For each vector of polynomials (fi) ∈ In and each zk, form the vector of polynomials
(zkfi). This gives the set In+1, which are solutions of (3.5) of degree n + 1 in the zk
but not necessarily solutions of (3.6).

6: Replace n→ n+ 1 and go to step 2.

In algorithm 1, we provide a description of our method which converts the intersection
problem up to a specific degree of the syzygies to row reduction of a matrix. Here, we
treat the kinematic invariants as indeterminates of the polynomial ring, such that the
matrices Mn have entries which are rational numbers. Alternatively, one can treat the
invariants as part of the coefficient field. This decreases the number of columns of the
matrices Mn, but the entries are then rational functions of the kinematic invariants. Since
in the second approach the kinematic invariants do not count towards the degree n in our
algorithm, a lower maximal value may be sufficient for the integral reduction problem at
hand compared to the first approach. It is useful to use e.g. an overall mass dimension
squared as a homogenizing variable zN+1 for the last component of the syzygy vectors in
this setup.

The row reduction of the matrix Mn eliminates redundancies between the syzygies
at degree n. In our approach, we generate templates for the generation of linear relations
between Feynman integrals from the syzygies. We allow the templates to be applied to seed
integrals with specific integer propagator powers and perform a subsequent row reduction
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on the resulting identities, similar to the traditional Laporta algorithm. In this approach,
we find it useful to filter out syzygies that are just a lower degree syzygy multiplied with
an overall power product in the zk. This is achieved by determining reducible monomials
using the row reduced form of an auxiliary matrix for the syzygies induced by lower degree
syzygies [72].

For our current process, we generated the required syzygies and performed the subse-
quent Laporta step with an in-house linear solver, Finred, based on finite field arithmetic
and rational reconstruction. To simplify the linear relations further, we set mt = 1 and use
a numerical value for the Z-boson mass as a ratio over top-quark mass, m2

Z/m
2
t = 5/18.

This amounts to factoring out powers of m2
t corresponding to the mass dimension of the

respective form factor. In this way, we successfully reduced all of the Feynman integrals in
our calculation to master integrals. The reductions proved to be rather challenging never-
theless and required significant computational resources. This is evident from the fact that
the reduction tables exceeded 200 GB in size, with rational functions of degrees of up to 190
in the kinematic variables appearing in the reduction tables. The non-planar topologies,
unsurprisingly, were the most difficult and accounted for almost all of the computation
time and disk space. An interesting point to note is that within the planar topologies, fig-
ures 2a, 2c, and 2b, with adjacent gluons are significantly simpler than 2d with the gluons
at the opposite vertices.

3.3 Inserting the reductions into the amplitude

After having generated the reduction identities, the next task is to insert them into the
unreduced amplitude. The reduction identities for this process are very complicated with
a size of over 200 GB. As such, this task in itself is a major challenge. We used several
tools and techniques to make this more manageable.

We first calculate the reduction identities to the conventional Laporta basis and per-
form multivariate partial-fractioning of the reduction tables based on polynomial reduc-
tions with respect to a Gröbner basis [73–75]. We implement this using the public code
Singular [76]1 with a polynomial ordering that prefers polynomials with lower degrees in
kinematic variables and smaller coefficients, and are able to drastically reduce the size of
the reduction tables. We found it useful to first perform the partial fractioning for the d
dependent denominators and then partial fraction the kinematic denominators. We note
that this procedure can also be used even in the presence of denominators which depend
both on d and the kinematic variables.

We use custom FORM scripts to insert the reduction identities into the amplitudes, and
again perform multivariate partial-fractioning on the reduced amplitudes to arrive at a
simpler representation in terms of kinematic variables and the irreducible denominators.
We see a drastic level of compression at this step; after partial-fractioning, the total size
of amplitudes reduces from ∼300 GB to ∼600 MB.

Next, we perform a change of basis to express our amplitudes in terms of finite inte-
grals. We explain this choice of basis in more detail in section 4. After partial fractioning

1Recently, an alternative method was developed in [77].
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the basis change identities, we insert them into the reduced amplitude to arrive at the final
reduced amplitude in terms of our finite basis. This step was computationally expensive,
with more than a week of run-time and intermediate expressions with sizes in the terabytes
before partial fractioning. Once we have the amplitudes in the new choice of basis inte-
grals, we perform partial-fractioning to simplify them. Note that the form factors in the
conventional Laporta basis contain many denominator factors that are polynomials in both
d and kinematics; we find that all such denominators no longer appear for our choice of
finite master integrals.

As a last simplification measure we expand the form factors around d = 4. Our
projectors introduce a spurious pole of order 1/ε5, which cancels after reduction. Since
we are calculating an NLO amplitude, UV and IR subtractions will involve at most 1/ε
and 1/ε2 poles, respectively. The reduced bare form factors should therefore not have any
pole worse than 1/ε2, which, however, is not completely manifest when using our symbolic
master integrals. However, the change of basis to finite integrals removes the 1/ε4 poles at
the algebraic level. In section 5 we describe in detail how all the poles show the expected
behaviour with high numerical precision.

In the final representation, we are able to bring down the size of the worst coefficients
to less than 1 MB. We create a C++ library for fast evaluation of the integral coefficients,
either with exact rational arithmetic or with arbitrary precision floating point arithmetic
using the GMP library. Even though the expressions are still sizable, we can evaluate all
coefficients for a generic point in phase space within half a minute using rational arithmetic
or within 3s using floating point arithmetic with a target precision of 15 digits on a single
CPU core.

4 Finite basis integrals

4.1 Dimension shifts and dots

To evaluate the master integrals, a powerful approach is to use differential equations to
find analytic solutions [78–83]. This approach was used to calculate the master integrals
in terms of multiple polylogarithms for the 2-loop massless corrections to diboson produc-
tion in [16, 18, 84, 85]. Due to the massive top-quark loop in the corrections considered
here, we expect the presence of functions beyond multiple polylogarithms, which makes
the evaluations of master integrals considerably more challenging. While there has been
significant progress concerning the analytic evaluation of Feynman integrals beyond poly-
logarithms [86–91], integrals of the type considered here remain a challenge. An alternative
is the use of expansions to solve the differential equations numerically [41, 92–95]. Here,
we use a purely numerical approach to integrate the master integrals, namely sector de-
composition [96–99]; see also [100, 101] for recent applications.

A naive integration-by-parts reduction using Laporta’s algorithm with a generic order-
ing criterion leads to a conventional basis of master integrals. This basis is rather difficult
to evaluate numerically since the integrals are often divergent and numerically unstable,
and as such is inadequate for our purpose. We instead choose a different basis of master
integrals that is finite in the limit d→ 4. It was observed in [100, 102] that using a basis of
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(a) Divergent integral in d = 4 − 2ε

(k2−m2
t )

(b) Divergent integral in d = 4 − 2ε with an
irreducible numerator

(c) Finite integral in d = 6 − 2ε (d) Finite integral with a dot in d = 6 − 2ε

Figure 4. Examples of divergent and finite integrals in the limit ε→ 0 for a non-planar topology.
Thick solid lines represent the top-quark while thick dashed lines represent Z-bosons. Topology (b)
contains an irreducible numerator, where k is the difference of the momenta of the edges marked
by the thin dash lines.

finite integrals is highly beneficial, leading to a numerically more stable behaviour. Addi-
tionally, finite integrals often require fewer orders in the ε expansion which, coupled with
better numerical stability, improves the overall performance significantly.

One possible approach to constructing finite integrals is to use dimensionally shifted
integrals [103], possibly with doubled (or higher powers of) propagators. It is always
possible to construct a basis in this way [104, 105] and also straightforward in practice
using e.g. the finite integral finder in Reduze 2. Examples of such integrals are shown in
figure 4. While it is convenient to find such finite integrals with dimension shifts and dots,
they require computation of additional reduction identities beyond those required for the
amplitude. For example, reductions for integrals with 2 additional dots are required for the
dimension shift of two-loop integrals, and typically such integrals do not directly appear in
the amplitude calculation. It may therefore seem interesting to consider alternative choices
of finite integrals.

Here, we explore a different approach by constructing finite integrals through linear
combinations of divergent integrals based on the Feynman parametric representation [106].
In such linear combinations, non-integrable divergences of individual integrals cancel at
the integrand level. This results in a single generalised Feynman parameter integral that
is finite. We briefly describe the algorithm in the following subsection.

4.2 Constructing finite linear combinations

Consider a general L-loop integral in d dimensions with N distinct propagators in the
momentum space representation,

I(ν1, . . . , νN ) =
∫ ( L∏

l=1

ddkl
iπd/2

)
N∏
j=1

1
(q2
j −m2

j + i ε)νj
(4.1)
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with integer exponents νj ∈ Z. If all indices νj are positive, one can use (see e.g. [107, 108])
1

(q2
j −m2

j + i ε)νj
= (−1)νj

Γ(νj)

∫ ∞
0

dxj x
νj−1
j exj (q2

j−m
2
j+i ε) for νj > 0 , (4.2)

to derive the Feynman parametric representation of this integral,

I(ν1, . . . , νN ) = (−1)ν Γ(ν − Ld/2)
∫  N∏

j=1

dxj x
νj−1
j

Γ(νj)

 δ
1−

N∑
j=1

xj


U ν−(L+1) d/2

F ν−Ld/2 (νj > 0) , (4.3)

with ν = ∑N
j=1 νj .

We can include inverse propagators (numerators) with νj < 0 by employing the iden-
tity [109, 110]

1
(q2
j −m2

j + i ε)νj
=

 ∂−νj

∂x
−νj
j

exj (q2
j−m

2
j+i ε)


xj=0

for νj ≤ 0 . (4.4)

Let N+ be the set of all positive νj , N− the set of all negative νj , and r = ∑
j∈N+ νj . Then,

an integral with positive or negative indices can be written as

I(ν1, . . . , νN ) = (−1)r Γ(ν − Ld/2)
∫  ∏

j∈N+

dxj xνj−1

Γ(νj)

 δ
1−

∑
j∈N+

xj


 ∏

j∈N−

∂|νj |

∂x
|νj |
j

 U ν−(L+1)d/2

F ν−Ld/2


xj=0 ∀ j∈N−

(νj 6= 0). (4.5)

Our goal is to combine different integrals sharing a common parent topology into
one merged parametric representation. We therefore wish to base our Feynman parametric
integral on the resulting U and F polynomials for the parent sector. For integrals belonging
to subtopologies of the parent sector, this can be achieved by taking derivatives with respect
to the Feynman parameters corresponding to the pinched lines without setting them to zero,

1
(q2
j −m2

j + i ε)νj
= −

∫ ∞
0

dxj
∂−νj+1

∂x
−νj+1
j

exj (q2
j−m

2
j+i ε) for νj ≤ 0. (4.6)

Here, we use the term “line” for a propagator with a positive index. Let N = {1, . . . , N}
be the set of all indices, NT the set of positive indices of the parent sector (parent lines),
Nt the set of positive indices νj of the current sector (integral lines), N∆t = NT \ Nt (set
of pinched lines), N\T = N \NT be the set of negative indices of the parent sector (parent
numerators), r = ∑

j∈Nt νj the sum of positive indices of the integral, and ∆t = |N∆T | the
number of pinched lines. We find

I(ν1, . . . , νN )= (−1)r+∆t Γ(ν − Ld/2)
∫  ∏

j∈NT

dxj

 ∏
j∈Nt

xνj−1

Γ(νj)

 δ
1−

∑
j∈NT

xj


 ∏

j∈N\T

∂|νj |

∂x
|νj |
j

 ∏
j∈N∆t

∂|νj |+1

∂x
|νj |+1
j

U ν−(L+1)d/2

F ν−Ld/2


xj=0 ∀ j∈N\T

(νj∈Z). (4.7)
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Note that we allow the pinched lines to appear as numerators i.e. νj ≤ 0 for j ∈ N∆t.
The Symanzik polynomials U and F are calculated by taking all indices N into account.
With the prerequisites in place, we can now formulate algorithm 2 to construct linear
combinations of integrals, which have a convergent Feynman parametric representation
for ε = 0.

Algorithm 2 Finite Feynman integrals
Input: dimensionally regularized multiloop integrals with a common parent sector, possibly
involving higher powers of propagators, irreducible numerators, or dimension shifts.
Output: linear combinations of the input integrals which are finite, i.e. they have a conver-
gent Feynman parametric representation for ε = 0.

1: From the ns input or “seed” integrals, form a general linear combination

I =
ns∑
i=1

aiIi , (4.8)

where Ii are the seed integrals and ai are the unknown coefficients. The ai are assumed
to depend on the kinematic invariants and the dimensional regulator ε.

2: Using (4.7), write the Feynman parametric representation for each seed integral and
bring their linear combination over a common denominator such that

I = (−1)ν0

∫  ∏
j∈NT

dxj

 δ(1− ∑
j∈NT

xj) P
U ν0−(L+1) (d0−2ε)/2

F ν0−L (d0−2ε)/2 (4.9)

where NT is the set of distinct propagators in the parent sector, ν0 is the effective
number of propagators, and d0 ∈ Z the effective number of space-time dimensions to
be expanded around. The numerator P is a homogeneous polynomial in the Feynman
parameters,

P =
∑
j

cjMj(x1, . . . , xNT ), (4.10)

where the coefficients cj are polynomials in ai, the kinematic variables, and ε, and
Mj(x1, . . . , xNp) are monomials in Feynman parameters. Note that the numerator
polynomial P in general depends on ε and it is crucial to keep this dependence to
produce correct results. It is sufficient, however, to set ε = 0 in the exponents of the U
and F polynomials for the convergence analysis in the following two steps.

3: Check the scaling behaviour of the integrand near an integration boundary using the
prescription outlined in [105, 111].

4: Make sure a convergent integration of (4.9) is not prevented by a rapid growth of the
integrand near the boundary. This can be achieved by requiring the coefficients of the
offending monomials in the numerator to vanish, which provides constraints on the ai.

5: Repeat 3-4 until all boundaries are checked.
At the end of this exercise, we are left with I = ∑nfin

i=1 ai
(∑ns

j=1 bij Ij
)
, where nfin ≥ 0 is

the number of finite integrals found, and ∑ bij Ij are the finite combinations.
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I1,1 : I2,1 : (k2 −m2
t )

I3,1 : I4,1 :

I5,1 : I6,1 :

I7,1 :

Figure 5. Integrals appearing in (4.11). I1,1 is the corner integral of the topology under con-
sideration. I2,1 is a second integral in the topology, but with a numerator (k2 −m2

t ), where k is
equal to the difference of the momenta of the edges marked by the thin dashed lines. Integrals
I3,1, I4,1, I5,1, I6,1, I7,1 belong to subtopologies. All integrals are defined in d = 4− 2ε dimensions.

As an example, we applied our algorithm to a set of seed integrals including those
shown in figure 5 and obtained the finite linear combination

Ifin,1 = s (m2
z−s−t) I1,1 +s I2,1 +s I3,1 −s I4,1 −s I5,1 −(m2

z−s−t) I6,1 −(m2
z−t) I7,1 .

(4.11)
Allowing for seed integrals with higher numerator rank the algorithm finds, amongst others,
the finite linear combination

Ifin,2 = s (m2
z−s−t) I1,2 +s I2,2 +s I3,2 −s I4,2 −s I5,2 −(m2

z−s−t) I6,2 −(m2
z−t) I7,2 ,

(4.12)
with the constituent integrals given in figure 6. One can see that Ifin,1 and Ifin,2 look
very similar. In fact, it is straightforward to see that for any finite linear combination, an
additional numerator can be added while keeping the integral IR finite. Through power
counting one can see, that the additional numerator does not introduce a UV divergence
in our present example. However, linear combinations obtained simply by augmenting
the existing integrals with additional numerators aren’t the only possibilities at higher
numerator rank. Indeed, we observe that generally the number of finite linear combinations
increases with the numerator rank.

4.3 Numerical performance

One can try to express the amplitude in terms of finite linear combinations, which are
defined in 4 − 2ε dimensions and have at most additional numerators. In practice, we
found it useful to consider integrals with “dots” and dimension-shifts as well, primarily for
the following reasons:

• It can happen that already the corner integral of a sector has a UV divergence, which
can not be cured by a subsector subtraction. Obviously, a numerator insertion is not
going to help. One could try to use a supersector instead, but this can have other
disadvantages such as an unnecessary increase of analytic complexity.
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I1,2 : (k2 −m2
t ) I2,2 : (k2 −m2

t )2

I3,2 : (k2 −m2
t ) I4,2 : (k2 −m2

t )

I5,2: (k2 −m2
t ) I6,2: (k2 −m2

t )

I7,2 : (k2 −m2
t )

Figure 6. Integrals appearing in (4.12). I1,2 is the corner integral of the topology under consid-
eration. I2,2 is a second integral in the topology, but with an extra numerator (k2 −m2

t ) where k
is equal to the difference of the momenta of the edges marked by the thin dashed lines. Integrals
I3,2, I4,2, I5,2, I6,2, I7,2 belong to subtopologies. All integrals are defined in d = 4− 2ε dimensions.

• Choosing integrals with higher numerator ranks leads to extreme proliferation in the
number of terms in the numerator polynomial, often leading to rather large pySecDec
libraries that are difficult to compile on GPUs. Our efforts to condense the numerators
to a more manageable size resulted in the appearance of spurious poles that often
worsened numerical stability.

• In a slightly different approach, integrals with both numerators and dots can be
combined to form finite combinations. These integrals, however, have higher powers
of the F polynomial in the denominator. In our experiments, this led to significantly
worse numerical performance in the physical region, where contour deformation is
required.

A comparison of numerical performance for different divergent and finite integrals for
the first few orders in ε expansion is shown in table 2. It is clear that the finite integrals
perform significantly better. The finite integral in figure 4c has the lowest exponent for
1/F , and unsurprisingly shows the best numerical performance. We can also see that the
finite linear combination in (4.11) is on par with the dimension-shifted integrals, which
demonstrates its viability. One interesting point to note is that both linear combinations
have integrands with 1/F3 compared to 1/F2 for the dimension-shifted finite integral in
figure 4d while having similar performance.

We observe the best numerical performance for a combination of both approaches:
finite linear combinations and dimension-shifted integrals. In addition, we choose our
finite basis of master integrals so that the d-dependence of the denominators appearing in
the reduction identities factors out, using the code of [114] (see also [115]). In other words,
there are no irreducible denominator factors that are polynomials in both kinematics and
d for this choice of master integrals. The definitions of the finite master integrals used in
our calculation in terms of divergent integrals are provided in an ancillary file.
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Integral Order in ε Rel. error Time(s)

Divergent integral in figure 4a 0 ∼ 2 · 10−3 45
Divergent integral in figure 4b 0 ∼ 4 · 10−2 63

Finite integral in d = 6− 2ε, in figure 4c 1 ∼ 8 · 10−6 60
Finite integral in d = 6− 2ε with a dot, in figure 4d 1 ∼ 8 · 10−4 55

Finite linear combination in (4.11) 1 ∼ 1 · 10−4 18
Finite linear combination in (4.12) 0 ∼ 5 · 10−4 150

Table 2. Numerical performance of different non-planar integrals for a physical phase-space point.
Timings generated with pySecDec [112] using the QMC algorithm [98, 113] on an Nvidia Tesla V100S
GPU, with neval = 107.

5 Renormalisation and checks

5.1 UV renormalisation and IR subtraction

We expand the bare form factors Ai perturbatively according to

Ai = αs,0
2π A

(1)
i +

(
αs,0
2π

)2
A

(2)
i +O(α3

s ) , (5.1)

where αs,0 is the bare QCD coupling. Since the LO process already starts at one loop, the
two-loop process is effectively an NLO correction.

We first perform UV renormalisation of αs in the 5-flavour MS scheme, nf = 5, with
the top-quark contribution to the gluon self energy subtracted at zero momentum [116]
using

αs,0 = αs S
−1
ε Zαs

(
µ2
R

µ02

)ε
, (5.2)

where Sε = (4π)εe−γEε, γE ≈ 0.577 is Euler’s constant, µR is the renormalisation scale,
and µ0 is the ’t Hooft scale introduced in the dimensionally regularized bare amplitude.
The renormalisation constant Zαs is given by

Zαs = 1 + αs
2π δZαs + O(α2

s ), δZαs = −1
ε
β0 + 1

ε

(
2
3 TF

(
µ2
R

m2
t

)ε)
, (5.3)

where
β0 = 11CA − 4TF nf

6 , CA = N, CF = N2 − 1
2N , TF = 1

2 . (5.4)

We renormalise the top-quark mass in the on-shell scheme. The renormalised top-quark
mass is related to the bare mass according to

m2
t,0 = m2

t Zm, Zm = 1 + αs
2π δZm, δZm = CF

(
−3
ε
− 4

) (
µ2
R

m2
t

)ε
. (5.5)

In practice, we find it convenient to account for the top-quark mass renormalisation by
inserting counterterm vertices in the 1-loop diagrams. Finally, we take into acount the gluon
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wave function renormalisation by multiplying the amplitude with Z
1/2
G for each external

gluon, where the gluon renormalisation constant is defined as

ZG = 1 + αs
2π

(
−2

3 TF
(
µ2
R

m2
t

)ε)
+ O(α2

s ). (5.6)

This gives us the renormalised form factors

Aren
i = αs

2π A
(1),ren
i +

(
αs
2π

)2
A

(2),ren
i +O(α3

s ). (5.7)

The IR structure of NLO amplitudes was first predicted by Catani in [117]. Here, we
perform IR subtraction using the “qT scheme” described in [118] with

I(1)(ε) = Isoft(1) (ε) + Icollinear(1) (ε), (5.8)

Isoft(1) (ε) = − eεγ

Γ(1− ε)

(
µ2
R

s

)ε ( 1
ε2

+ iπ

ε
+ δ(0)

qT

)
CA, (5.9)

Icollinear(1) (ε) = −
(
µ2
R

s

)ε
β0
ε
, (5.10)

where δ(0)
qT = 0. The finite remainders are then given by

A
(2),fin
i = A

(2),ren
i −A(1),ren

i I(1)(ε) . (5.11)

We present all of our results for µ2
R = s.

5.2 Checks

We perform the following checks to establish the correctness of our results:

(i) We verify our 1-loop amplitude against the literature, specifically the form factors
provided in [36]. This is essential to make sure we match conventions and to facilitate
comparisons for the 2-loop result.

(ii) We explicitly check that the form factors satisfy the identities in (2.13). We see an
exact algebraic identity at the level of reduced amplitude with symbolic kinematics.

(iii) We also verify, numerically for a phase space point, that the relations in (2.14) are
satisfied.

(iv) We check all the finite integrals by numerically evaluating them and comparing them
against their explicit definitions in terms of divergent integrals for a phase space point.

(v) We observe algebraic pole cancellation for the leading poles, see section 3.3 for de-
tails. We calculate our amplitude for a Euclidean point, using Reduze 2 to generate
numerical reductions for the Euclidean point. We verify that spurious 1/ε3 poles
vanish after integration (15 digits), and that the 1/ε2 and 1/ε poles match Catani’s
IR formula [117] (9 digits for the double pole, 7 digits for the single pole) as shown
in the first table of appendix A.
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(vi) We verify that the poles match Catani’s IR formula [117] for a point in the physical
region as shown in the second table of appendix A. For each phase-space point we
compute, we also automatically check that the poles match the IR formula within our
numerical uncertainty.

(vii) We evaluate the amplitude using an alternate finite basis and compare it against our
result from the primary basis. This acts as a very strong check of our calculation since
it validates the basis change, the definitions of our finite integrals, and the reliability
of their numerical evaluation. We find agreement between the two bases within the
expected numerical error, typically within a few percent for the form factors. It must
be noted that this alternate basis is numerically a lot less stable and unsuitable for
large scale evaluation runs.

(viii) We compare the axial-axial piece of the amplitude evaluated using Kreimer’s anti-
commuting γ5 scheme [43, 44] with a separate amplitude calculation utilising Larin’s
γ5 scheme [119, 120]. For the latter calculation we avoid the appearance of γ5 by
expressing all axial-currents in terms of Levi-Civita symbols. Metric tensors obtained
from contracting two Levi-Civita symbols are treated as d-dimensional. Finally, a
finite renormalisation is applied for each non-singlet axial current as required to re-
store the Ward identities. We emphasize that a verbatim application of the scheme
as described in [120] is motivated (ignoring e.g. higher order ε terms in the symmetry
restoration constant), because of the finiteness of our one-loop amplitudes. Per-
forming two independent amplitude calculations utilising different schemes for the
treatment of γ5 provides a strong check of our amplitude calculation. We find agree-
ment between the two calculations for a physical phase space point within numerical
precision.

(ix) We check that our result reproduces the large top-mass expansion [32–34] below
the top-quark threshold and the small top-mass expansion [36] above; a detailed
comparison is presented in the next section.

6 Results

Here, we present the results of our calculation and compare them against several approx-
imations available in the literature. In particular, we perform comparisons against the
large top-mass expansion [32–34] as well as the small top-mass power series and Padé
expansions [36].

Let us define the quantities relevant for presentation of our results. We work in the
helicity basis defined by (2.16). Concretely, we can write the UV renormalised and IR sub-
tracted helicity amplitudes with incoming helicities λ1, λ2 and outgoing helicities λ3, λ4 as

Mfin
λ1λ2λ3λ4 =Mfin

µνρσε
µ
λ1

(p1)ενλ2(p2)ε∗ρλ3
(p3)ε∗σλ4(p4). (6.1)

The amplitudes are expanded as

Mfin
λ1λ2λ3λ4 =

(
αs
2π

)
M(1)

λ1λ2λ3λ4
+
(
αs
2π

)2
M(2)

λ1λ2λ3λ4
+O(α3

s ). (6.2)
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To prepare the summation over polarisations, we consider contributions to the squared 1-
loop helicity amplitudes V(1), and to the interference between the 1-loop and 2-loop helicity
amplitudes V(2) defined as

V(1)
λ1λ2λ3λ4

=M∗(1)
λ1λ2λ3λ4

M(1)
λ1λ2λ3λ4

, (6.3)

V(2)
λ1λ2λ3λ4

= 2 Re
(
M∗(1)

λ1λ2λ3λ4
M(2)

λ1λ2λ3λ4

)
. (6.4)

Note that for our numerical results, we include only the pure top-quark contributions of
class A computed here, both in the amplitudes and in the interference terms. There are
36 helicity amplitudes in total for the gg → ZZ process, fulfilling various relations; see
section 2. In order to further condense the presentation of our results, we average over the
helicities of the incoming gluons and define the quantities

V(i)
λ3λ4

= 1
4
∑
λ1,λ2

V(i)
λ1λ2λ3λ4

and V(i) =
∑
λ3,λ4

V(i)
λ3λ4

, (i = 1, 2), (6.5)

where λ1, λ2 ∈ {+,−}, and λ3, λ4 ∈ {+,−, 0}. In the results shown, we choose our elec-
troweak couplings as

GF = 1.1663787 · 10−5 GeV−2 ,

mZ = 91.1876 GeV ,

m2
W /m

2
t = 14/65 , (6.6)

where the Fermi constant GF and Z boson mass mZ are fixed according to [121]. In our
calculation, we fix m2

Z/m
2
t = 5/18; inserting the value of mZ from (6.6) implies that mt =

173.016 GeV andmW = 80.296 GeV. The weak mixing angle is fixed according to sin(θW ) =√
1−m2

W /m
2
Z . Note, however, that the only mass ratio fixed in the computationally

expensive part of our calculation is that of m2
Z/m

2
t ; all other mass values and couplings

can straightforwardly be varied in our code. All results are presented at renormalisation
scale µ2 = s.

For numerical evaluation of the integrals appearing in our amplitude we apply sec-
tor decomposition and integrate using the quasi-Monte Carlo (QMC) algorithm first ap-
plied to sector decomposed Feynman integrals in [113], as implemented in the program
pySecDec [98, 112]. For a review of QMC methods from a mathematical perspective see,
for example, [122]. We separately evaluate terms appearing in the form factors of our
amplitude according to their colour factor (CF or CA) and whether they form part of
the vector-vector (v2

t ) or axial-axial (a2
t ) contribution. For each phase-space point we aim

to obtain percent level or better precision for each of the Ai form factors, for each colour
structure and for the vector-vector and axial-axial pieces separately. To present our results,
we then rotate to the helicity basis defined in section 2. In order to improve the efficiency
of this approach, the target precision of each integral is set according to its contribution
to the uncertainty on the form factors using a variant of the algorithm presented in [100].
For most phase-space points, the time required to obtain this precision varies between 90
minutes and 24 hours on 2 Nvidia Tesla V100 GPUs. This time is completely dominated
by the numerical integration of the master integrals; the time to evaluate the coefficients
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λ1, λ2, λ3, λ4 M(1)
λ1λ2λ3λ4

(1-loop) M(2)
λ1λ2λ3λ4

(2-loop)

+ + ++ 0.1337854(1)− 0.0286060(1) i 3.15549(8) + 0.47235(8) i
+ + +− 0.0015573(1) + 0.0052282(1) i 0.15950(7) + 0.14052(8) i
+−+− −0.01512820(8)− 0.01060416(8) i −0.38609(7) + 0.10539(7) i
−+ ++ −0.0291599(1)− 0.0062178(1) i −0.46990(8) + 0.40207(8) i
+ + +0 0.0292668(5) + 0.0212966(5) i 1.1248(2)− 0.0805(2) i
+−+0 −0.0643073(5)− 0.0459584(5) i −1.4803(2) + 0.4940(2) i
+ + 00 0.910006(2) + 1.132536(2) i 17.2585(6) + 29.5669(6) i
+− 00 0.355092(2) + 0.404469(2) i 10.2869(5)− 1.0571(6) i

Table 3. Top-quark contributions to the helicity amplitudes for gg → ZZ in (6.2). The results
are given for the physical phase space point s/m2

t = 142/17, t/m2
t = −125/22, m2

Z/m
2
t = 5/18,

mt = 1 and include only the new contributions of class A defined in section 2.2. The numbers in
parentheses denote the uncertainty in the last digit.

1 2 3 4 5√
s/mt
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p
/V
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)
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a
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Exact

1/m12
t

m32
t ,m

4
z

Padé

cos(θ) = −0.1286

Figure 7. Comparison of the
√
s dependence of the unpolarised interference V(2) with expansion

for large and small top-quark mass [36] at fixed cos(θ) = −0.1286.

is basically negligible in this context, see section 3. The result of each integral for a given
phase-space point is shared between all form factors, colour structures and vector/axial
pieces. We observe that requiring percent level precision on all of the form factors indi-
vidually typically results in most of them being obtained to per mille or better precision.
The resulting precision obtained for the interference terms V(2)

λ3λ4
is per mille or better as

well. We expect that a further performance improvement can be achieved by optimising
the sampling of the integrals according only to their contribution to the numerical error of
the interferences rather than the individual unphysical form factors. Table 3 shows our nu-
merical results for the independent helicity amplitudes for a physical point in phase space.
The same phase space point is used for the second table in appendix A, where also the
corresponding (γ5 scheme dependent) values for the form factors A1, . . . , A20 are shown.
We would like to emphasize that all of the plots below actually show error bars for our
numerical results; however, the errors are too small to be visible in the plots.

In figure 7 we show a comparison of our calculation against the large top-mass and
the small top-mass expansions as well as a Padé improved small top-mass expansion for
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a fixed value of cos(θ), with θ being the scattering angle as defined in (2.15). The plot
shows that our calculation agrees very well with the expansions in the relevant regions,
which is an important check of our result. For the smallest value of

√
s, corresponding

to
√
s = 235GeV, our result agrees with the large top-mass expansion to better than per

mille. Similarly, for the largest value of
√
s, corresponding to

√
s = 878GeV, both the

small top-mass expansion and the Padé improved result agree with our result at the sub-
per mille level. Moreover, the best available expansions are in fact capable of reproducing
the exact result within a few percent precision for the central scattering angle considered
here, except for energies close to the top-quark threshold at

√
s = 2mt. For the small

top mass expansion, we see that the Padé approximation provides a drastic improvement
with respect to the power series approach: while the power series data is visible within the
plotted range only for the two highest energies and diverges substantially from the exact
result for smaller values of

√
s, the Padé approximation agrees very well with our result

down to much lower energies.
We observe that the relative level of agreement between the exact results and the

approximations depends greatly on the details of the subtraction scheme in which the com-
parison is performed. For example, to convert the finite 2-loop interference term V(2) from
the “qT scheme” used in this article (see section 5.1) to Catani’s original convention [117]
which has also been used in eq. 13 of [36], at scale µ2

R = s we must subtract π2CAV(1) (for
the real part). This shift is the same for the exact 2-loop results and the approximations
and will therefore not affect the absolute differences between them. However, the size of
the shift is comparable to the 2-loop interference terms themselves and can therefore sig-
nificantly alter the shape of the corrections, their overall size, and consequently also the
relative level of agreement between the exact results and the approximations. We note,
in particular, that the 2-loop curves presented in the following are similar in shape to the
1-loop curves in the “qT scheme”, while this is generally not the case in Catani’s original
scheme. We give explicit examples of these effects in appendix B.

In figure 8 we show a comparison of our calculation to the expansions as a function
of cos(θ) for a fixed value of

√
s. It is apparent that the large top-mass expansion is very

stable with respect to variation in cos(θ) (Top Left Panel). The small top-mass power series
expansion, on the contrary, diverges rapidly away from cos(θ) = 0 such that the samples at
small and large values of cos(θ) are well beyond the plotted range. The breakdown of the
small top-mass approximation away from cos(θ) ≈ 0 can be understood from the fact that
the expansion is performed in the limit m2

Z � m2
t � s, |t|, |u|. In particular, for scattering

angles θ ≈ 0 or θ ≈ π, the parameters |t| and |u| are not guaranteed to be large compared
to m2

t . The Padé improved expansion substantially cures this problem: the agreement
with our exact result is close to perfect for the high energy samples (Bottom Panel) and
good within a few percent for the intermediate energy samples as long as the scattering is
relatively central (Top Right Panel).

Figure 9 shows the interferences for specific final state polarizations but averaged over
gluon helicities as a function of

√
s for a fixed value of cos(θ) = −0.1286. We show interfer-

ence terms at 1-loop, V(1)
λ3λ4

, as well as interference terms at two-loops, V(2)
λ3λ4

, for different
outgoing helicities compared against the expansion results (only at two-loops). Overall, we
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Figure 8. Comparison of the cos(θ) dependence of the unpolarised interference V(2) with the
results expanded in the limit of large top-quark mass for

√
s = 247GeV (Top Left Panel) and small

top-quark mass for
√
s = 403GeV (Top Right Panel) and

√
s = 814GeV (Bottom Panel).
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Figure 9. The
√
s dependence of 1-loop and 2-loop interferences for polarised ZZ production in

gluon fusion at cos(θ) = −0.1286.
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Figure 10. The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ production
in gluon fusion at

√
s/mt = 1.426. The large top-quark mass expansion [36] (to order 1/m12

t ) is
shown for comparison.

find good agreement with the respective best available expansions in the relevant regions.
While the fixed order small top mass expansion lies outside of the plotted range for all
but the highest value of

√
s, the Padé approximation improves the agreement with the full

result down to lower energies. We note that the level of agreement depends on the final
state helicities. Indeed, for the dominant V(2)

00 helicity configuration the approximation
works well rather close to the top-quark threshold. In contrast, for the suppressed V(2)

+−
and V(2)

+0 configurations the approximation begins to visibly deteriorate for
√
s/mt . 3. It

is interesting to observe that the mode with longitudinal polarisation for both the Z bosons
dominates both V(1)

λ3λ4
and V(2)

λ3λ4
. We also see a rapid increase in V(1)

00 and V(2)
00 past the√

s = 2mt threshold, where the top quarks can be produced on-shell.
In figures 10, 11 and 12 we show our results for the polarized interference terms as a

function of cos(θ) and compare them against expansion results for different fixed values
of
√
s. Note that in many plots the one-loop and two-loop results agree so perfectly

when scaled accordingly, that the green points are exactly on top of the black points. In
figure 10, we observe that the large top-mass expansion approximates the exact result
very well below the 2mt threshold also as a function cos(θ). For the intermediate energy
considered in figure 11, the Padé result for small top-quark mass agrees overall rather
well with the exact results. As expected from the previous discussion, some deviations
are visible for non-dominant final state helicities or non-central scattering. Further, we
note an asymmetry in the cos(θ) dependence, which is a consequence of the asymmetric
expansion used to construct the Padé approximation. In figure 8, this asymmetry is absent
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Figure 11. The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ production
in gluon fusion at

√
s/mt = 2.331. The Padé improved small top-quark mass expansion [36] is

shown for comparison.
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Figure 12. The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ production
in gluon fusion at

√
s/mt = 4.703. The small top-quark mass expansion (to order m32

t ) and Padé
improved expansion [36] are shown for comparison.
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by construction since in this unpolarised case the Padé approximation is calculated for a
fixed value of

√
s and pT and used for both the forward and backward directions. For

the high energy in figure 12, we see excellent agreement between the angular dependence
of the Padé result and that of the exact result. As visible from the figure, this is a
significant improvement over the angular dependence of the power series approach to the
small mass expansion for less central scattering angles, where the power series results are
highly divergent and off the plot scale.

7 Conclusions

In this paper, we have presented a calculation of the two-loop top-quark corrections for the
process gg → ZZ. Maintaining exact dependence on the top-quark mass, we calculated
the helicity amplitudes in terms of finite integrals, which we evaluated using numerical
quadrature. For reduction to master integrals, we employed finite field techniques and
syzygies which avoid the introduction of squared propagators (“dots”). We presented a
new computational method to find these syzygies with linear algebra.

We considered finite linear combinations of dimensionally regularized Feynman inte-
grals and presented a novel algorithm to systematically construct them. These linear com-
binations possess convergent parametric integral representations for ε = 0 and are formed
from building blocks which may involve irreducible numerators, higher powers of propa-
gators, dimensionally shifted integrals, and subsector integrals. The resulting parametric
integrand can be expanded in ε allowing for direct numerical integration. We employed
pySecDec and found that such finite linear combinations can significantly improve the
numerical performance of the quadrature, similar to what was observed in the case of di-
mensionally shifted integrals with additional dots. The new approach allows us to stay in a
range of integrals which may be considered more natural in the context of the amplitudes
themselves. We emphasize that our method is fully automated and works for arbitrary
loop order and number of external legs.

Our results for the two-loop amplitudes show good agreement with the large mt ex-
pansion and the small mt expansions in the regions, where they are expected to be valid.
At moderate energies and for non-central scattering at higher energies, we find that the
small mt power series expansion differs substantially from our result. In contrast, the Padé
improved results [36] give a very good approximation to our results for a much larger region
of phase space.

We observed that the quantitative and even qualitative behavior of the 2-loop finite
remainders is rather sensitive to the choice of infrared subtraction terms. In particular,
admixtures of 1-loop contributions may actually dominate the overall behavior of the 2-loop
remainders and smooth 2-loop threshold effects. As a consequence, the level of agreement
between the available approximations and our exact result depends significantly on the
choice of the subtraction scheme.

Our amplitudes provide the last major building block required to include the full top-
quark mass effects in the next-to-leading order cross section for ZZ production in gluon
fusion.
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A Numerical checks

In this appendix, we present details for the numerical pole checks for our basis of finite
integrals in Kreimer’s anti-commuting γ5 scheme. For the UV renormalised two-loop form
factors prior to IR subtraction, we observe analytical pole cancellation through to order
1/ε4 and very precise numerical cancellations at order 1/ε3. For the 1/ε2 and 1/ε poles, the
following table shows our results compared against predicted IR poles (5.9), (5.10) as well
as the ε0 term (before IR subtraction) for the Euclidean point s/m2

t = −191, t/m2
t = −337,

m2
Z/m

2
t = −853, mt = 1. The digits in parentheses for the ε0 term denote the uncertainty

in the last digit.
FF 1/ε2 1/ε ε0

A1 +2.436734851 · 10−1 +8.212518984 · 10−1 + 1.531045661 i −2.806661(2) + 4.18190980(3) i
Pred. +2.436734852 · 10−1 +8.212518977 · 10−1 + 1.531045662 i
A2 −1.760872097 · 10−1 −6.021429768 · 10−1 − 1.106388569 i +2.509969(1)− 3.07651654(4) i

Pred. −1.760872097 · 10−1 −6.021429781 · 10−1 − 1.106388569 i
A3 −3.815946068 · 10−2 −7.236587884 · 10−2 − 2.397629627 · 10−1 i +1.2102(3) · 10−2 − 3.015063(4) · 10−1 i

Pred. −3.815946069 · 10−2 −7.236587838 · 10−2 − 2.397629627 · 10−1 i

A4 −1.565000574 · 10−4 −5.374251500 · 10−4 − 9.833188615 · 10−4 i +2.18538(3) · 10−3 − 2.748510(3) · 10−3 i

Pred. −1.565000575 · 10−4 −5.374251489 · 10−4 − 9.833188622 · 10−4 i

A5 +7.608919171 · 10−4 +1.926944077 · 10−3 + 4.780824914 · 10−3 i −1.051486(4) · 10−2 + 9.052930(4) · 10−3 i

Pred. +7.608919168 · 10−4 +1.926944068 · 10−3 + 4.780824912 · 10−3 i

A6 +7.576619247 · 10−4 +2.735071357 · 10−3 + 4.760530273 · 10−3 i −7.02484(5) · 10−3 + 1.41435102(3) · 10−2 i

Pred. +7.576619247 · 10−4 +2.735071351 · 10−3 + 4.760530273 · 10−3 i

A7 −1.565000574 · 10−4 −5.374251500 · 10−4 − 9.833188615 · 10−4 i +2.18538(3) · 10−3 − 2.748510(3) · 10−3 i

Pred. −1.565000575 · 10−4 −5.374251489 · 10−4 − 9.833188622 · 10−4 i

A8 −3.055600405 · 10−4 −1.158849558 · 10−3 − 1.919890357 · 10−3 i +4.35036(1) · 10−3 − 6.0546699(5) · 10−3 i

Pred. −3.055600405 · 10−4 −1.158849559 · 10−3 − 1.919890357 · 10−3 i

A9 +2.001982671 · 10−4 +7.482078266 · 10−4 + 1.257882810 · 10−3 i −3.07299(1) · 10−3 + 3.897481(1) · 10−3 i

Pred. +2.001982671 · 10−4 +7.482078292 · 10−4 + 1.257882810 · 10−3 i

A10 +3.636573767 · 10−4 +1.390161598 · 10−3 + 2.284926686 · 10−3 i −4.77622(2) · 10−3 + 7.274828(2) · 10−3 i

Pred. +3.636573768 · 10−4 +1.390161596 · 10−3 + 2.284926686 · 10−3 i

A11 +5.388240322 · 10−6 −1.272166624 · 10−4 + 3.385531242 · 10−5 i +1.04254(1) · 10−3 − 8.20955(1) · 10−4 i

Pred. +5.388240348 · 10−6 −1.272166651 · 10−4 + 3.385531259 · 10−5 i

A12 −5.388240322 · 10−6 +1.272166624 · 10−4 − 3.385531242 · 10−5 i −1.04254(1) · 10−3 + 8.20955(1) · 10−4 i

Pred. −5.388240348 · 10−6 +1.272166651 · 10−4 − 3.385531259 · 10−5 i

A13 −3.636573767 · 10−4 −1.390161598 · 10−3 − 2.284926686 · 10−3 i +4.77622(2) · 10−3 − 7.274828(2) · 10−3 i

Pred. −3.636573768 · 10−4 −1.390161596 · 10−3 − 2.284926686 · 10−3 i

A14 −2.001982671 · 10−4 −7.482078266 · 10−4 − 1.257882810 · 10−3 i +3.07299(1) · 10−3 − 3.897481(1) · 10−3 i

Pred. −2.001982671 · 10−4 −7.482078292 · 10−4 − 1.257882810 · 10−3 i

A15 +3.055600405 · 10−4 +1.158849558 · 10−3 + 1.919890357 · 10−3 i −4.35036(1) · 10−3 + 6.0546699(5) · 10−3 i

Pred. +3.055600405 · 10−4 +1.158849559 · 10−3 + 1.919890357 · 10−3 i

A16 +1.898361362 · 10−4 +6.165488820 · 10−4 + 1.192775622 · 10−3 i −2.233448(2) · 10−3 + 3.11183978(6) · 10−3 i

Pred. +1.898361362 · 10−4 +6.165488809 · 10−4 + 1.192775622 · 10−3 i

A17 −4.235989659 · 10−8 −1.659620988 · 10−7 − 2.661550798 · 10−7 i +8.1249(2) · 10−7 − 8.72727(4) · 10−7 i

Pred. −4.235989677 · 10−8 −1.659621000 · 10−7 − 2.661550810 · 10−7 i

A18 −9.857950093 · 10−8 −9.594603102 · 10−7 − 6.193932718 · 10−7 i +4.4198(6) · 10−7 − 5.632743(5) · 10−6 i

Pred. −9.857950139 · 10−8 −9.594603103 · 10−7 − 6.193932747 · 10−7 i

A19 +8.932087549 · 10−7 +3.205282901 · 10−6 + 5.612196125 · 10−6 i −7.43447(5) · 10−6 + 1.6553816(4) · 10−5 i

Pred. +8.932087551 · 10−7 +3.205282889 · 10−6 + 5.612196126 · 10−6 i

A20 −4.235989659 · 10−8 −1.659620988 · 10−7 − 2.661550798 · 10−7 i +8.1249(2) · 10−7 − 8.72727(4) · 10−7 i

Pred. −4.235989677 · 10−8 −1.659621000 · 10−7 − 2.661550810 · 10−7 i
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In the following table, we compare the 1/ε2 and 1/ε poles of the 2-loop form factors
against predicted IR poles (5.9, 5.10) as well as provide the ε0 term (before IR subtraction)
for a point in the physical region with s/m2

t = 142/17, t/m2
t = −125/22, m2

Z/m
2
t = 5/18,

mt = 1. We only note here that we observe an improved agreement for the physical
combinations of these form factors. The digits in parentheses for the ε0 term denote the
uncertainty in the last digit.

FF 1/ε2 1/ε ε0

A1 −5.726898 · 10−1 − 4.634791 · 10−1i −6.75706 · 10−1 − 4.05460 i 6.87787(1)− 7.90340(1) i
Pred. −5.726897 · 10−1 − 4.634791 · 10−1i −6.75704 · 10−1 − 4.05460 i
A2 +4.153857 · 10−1 + 1.097935 · 10−1i +1.40864 + 2.02204 i −2.53566(2) + 7.06651(3) i

Pred. +4.153857 · 10−1 + 1.097934 · 10−1i +1.40865 + 2.02204 i
A3 +2.003102 · 10−1 + 3.116062 · 10−1i −5.02052 · 10−1 + 1.86425 i −3.99592(2) + 2.59711(2) i

Pred. +2.003101 · 10−1 + 3.116062 · 10−1i −5.02053 · 10−1 + 1.86425 i
A4 +3.147592 · 10−2 + 9.237206 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i −4.1039(4) · 10−2 + 5.40365(5) · 10−1 i

Pred. +3.147591 · 10−2 + 9.237121 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i

A5 +1.041667 · 10−1 + 5.382124 · 10−2i +2.44023 · 10−1 + 5.97453 · 10−1i −8.96421(5) · 10−1 + 1.736695(6) i
Pred. +1.041667 · 10−1 + 5.382123 · 10−2i +2.44022 · 10−1 + 5.97453 · 10−1i

A6 +1.242527 · 10−1 + 6.941130 · 10−2i +2.52191 · 10−1 + 7.24307 · 10−1i −1.20930(2) + 1.93865(2) i
Pred. +1.242527 · 10−1 + 6.941131 · 10−2i +2.52189 · 10−1 + 7.24307 · 10−1i

A7 +3.147592 · 10−2 + 9.237206 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i −4.1039(4) · 10−2 + 5.40365(4) · 10−1 i

Pred. +3.147591 · 10−2 + 9.237121 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i

A8 −1.017708 · 10−2 + 8.808524 · 10−2i −4.41618 · 10−1 + 2.61228 · 10−1i −1.00384(5)− 4.4284(4) · 10−1 i

Pred. −1.017707 · 10−2 + 8.808519 · 10−2i −4.41613 · 10−1 + 2.61225 · 10−1i

A9 +7.168287 · 10−2 − 5.063902 · 10−2i +5.37076 · 10−1 + 9.24698 · 10−2i 3.07426(8) · 10−11.266108(9) i
Pred. +7.168286 · 10−2 − 5.063902 · 10−2i +5.37075 · 10−1 + 9.24707 · 10−2i

A10 +1.873343 · 10−2 − 8.497011 · 10−2i +4.70733 · 10−1 − 2.17284 · 10−1i +9.3643(1) · 10−1 + 6.3029(1) · 10−1 i

Pred. +1.873344 · 10−2 − 8.497010 · 10−2i +4.70734 · 10−1 − 2.17286 · 10−1i

A11 −7.675742 · 10−2 + 5.097567 · 10−2i −5.57824 · 10−1 − 1.06514 · 10−1i −3.1397(3) · 10−1 − 1.35727(4) i
Pred. −7.675741 · 10−2 + 5.097571 · 10−2i −5.57827 · 10−1 − 1.06513 · 10−1i

A12 +7.675742 · 10−2 − 5.097567 · 10−2i +5.57824 · 10−1 + 1.06514 · 10−1i +3.1397(3) · 10−1 + 1.35727(4) i
Pred. +7.675741 · 10−2 − 5.097571 · 10−2i +5.57827 · 10−1 + 1.06513 · 10−1i

A13 −1.873343 · 10−2 + 8.497011 · 10−2i −4.70733 · 10−1 + 2.17284 · 10−1i −9.3644(1) · 10−1 − 6.3029(1) · 10−1 i

Pred. −1.873344 · 10−2 + 8.497010 · 10−2i −4.70734 · 10−1 + 2.17286 · 10−1i

A14 −7.168287 · 10−2 + 5.063902 · 10−2i −5.37076 · 10−1 − 9.24698 · 10−2i −3.07426(8) · 10−1 − 1.266108(9) i
Pred. −7.168286 · 10−2 + 5.063902 · 10−2i −5.37075 · 10−1 − 9.24707 · 10−2i

A15 +1.017708 · 10−2 − 8.808524 · 10−2i +4.41618 · 10−1 − 2.61228 · 10−1i 1.00384(4) + 4.4283(4) · 10−1 i

Pred. +1.017707 · 10−2 − 8.808519 · 10−2i +4.41613 · 10−1 − 2.61225 · 10−1i

A16 −6.195421 · 10−2 − 9.197693 · 10−2i +1.25592 · 10−1 − 6.06299 · 10−1i 1.76383(3)− 9.4291(3) · 10−1 i

Pred. −6.195417 · 10−2 − 9.197695 · 10−2i +1.25596 · 10−1 − 6.06299 · 10−1i

A17 +9.152404 · 10−4 + 4.922399 · 10−3i −1.47185 · 10−2 + 2.71477 · 10−2i −8.6390(6) · 10−2 + 2.7504(7) · 10−2 i

Pred. +9.152368 · 10−4 + 4.922402 · 10−3i −1.47187 · 10−2 + 2.71472 · 10−2i

A18 +6.800443 · 10−3 + 5.687424 · 10−3i +7.80438 · 10−3 + 4.98318 · 10−2i −1.02182(8) · 10−1 + 1.37512(8) · 10−1 i

Pred. +6.800439 · 10−3 + 5.687435 · 10−3i +7.80405 · 10−3 + 4.98315 · 10−2i

A19 +4.208648 · 10−3 + 4.547692 · 10−3i −3.01730 · 10−4 + 3.55035 · 10−2i −7.895(10) · 10−2 + 7.980(11) · 10−2 i

Pred. +4.208616 · 10−3 + 4.547808 · 10−3i −3.13880 · 10−4 + 3.55067 · 10−2i

A20 +9.152403 · 10−4 + 4.922399 · 10−3i −1.47185 · 10−2 + 2.71477 · 10−2i −8.6391(6) · 10−2 + 2.7504(7) · 10−2 i

Pred. +9.152368 · 10−4 + 4.922402 · 10−3i −1.47187 · 10−2 + 2.71472 · 10−2i

B Subtraction scheme dependence

In the main text of this article we define the finite remainders for the amplitudes according
to the “qT scheme” [118]; see section 5.1. As described in section 6, the choice of scheme can
significantly affect the results and the level of agreement with the available approximations.
In this appendix we demonstrate this effect explicitly by presenting a selection of our results
using an alternative definition of the finite remainders in Catani’s original scheme [117].
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Figure 13. The
√
s dependence of 1-loop and 2-loop interferences for polarised ZZ production

in gluon fusion at cos(θ) = −0.1286. Here we reproduce the top left and bottom right panels of
figure 9 using Catani’s original subtraction scheme [117].

−1.0 −0.5 0.0 0.5 1.0

cos(θ)

−0.004

−0.003

−0.002

−0.001

0.000

V(2
)

+
−

0.0000

0.0001

0.0002

0.0003

0.0004

V(1
)

+
−

−1.0 −0.5 0.0 0.5 1.0

cos(θ)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

V(2
)

00

0.000

0.001

0.002

0.003

0.004

V(1
)

00

V(2)

1/m−12
t

V(1)

Figure 14. The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ production
in gluon fusion at

√
s/mt = 1.426. The large top-quark mass expansion [36] (to order 1/m12

t ) is
shown for comparison. Here we reproduce the top left and bottom right panels of figure 10 using
Catani’s original subtraction scheme [117].

At the level of form factors, the finite remainders in Catani’s original scheme are
obtained from their “qT scheme” analog in (5.11) according to

A
(1),fin,Catani
i = A

(1),fin
i , (B.1)

A
(2),fin,Catani
i = A

(2),fin
i + ∆I1A

(1),fin
i , (B.2)

where

∆I1 = −1
2π

2CA + iπβ0, (B.3)

see also eqs. 4.9 and 4.10 in [26]. The transformation of the helicity amplitudes follows the
same pattern. For the interference terms considered in eqs. (6.3) and (6.4) an additional
factor of 2 needs to be taken into account and the term due to iπβ0 does not contribute.

As can be seen in figures 13, 14, 15, and 16, the 2-loop corrections can show a rather
different qualitative behaviour than the 1-loop corrections in Catani’s original scheme. This
is in contrast to the corresponding results in the “qT scheme” in figures 9, 10, 11, and 12.
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Figure 15. The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ production
in gluon fusion at

√
s/mt = 2.331. The Padé improved small top-quark mass expansion [36] is

shown for comparison. Here we reproduce the top left and bottom right panels of figure 11 using
Catani’s original subtraction scheme [117].
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Figure 16. The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ production
in gluon fusion at

√
s/mt = 4.703. The small top-quark mass expansion (to order m32

t ) and Padé
improved expansion [36] are shown for comparison. Here we reproduce the top left and bottom
right panels of figure 12 using Catani’s original subtraction scheme [117].

Moreover, the relative agreement between the expansion results and our exact calculation
depends greatly on the choice of scheme for the finite remainder; it is significantly better
in the “qT scheme” than in Catani’s original scheme. In order to assess which relative error
reflects better the resulting relative error on physical observables, the corresponding real
radiation contributions would need to be taken into account in the respective scheme as well.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, ZZ → `+`−`′+`′− cross-section measurements and search for
anomalous triple gauge couplings in 13TeV pp collisions with the ATLAS detector, Phys.
Rev. D 97 (2018) 032005 [arXiv:1709.07703] [INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.97.032005
https://doi.org/10.1103/PhysRevD.97.032005
https://arxiv.org/abs/1709.07703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.07703


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[2] ATLAS collaboration, Measurement of the four-lepton invariant mass spectrum in 13TeV
proton-proton collisions with the ATLAS detector, JHEP 04 (2019) 048
[arXiv:1902.05892] [INSPIRE].

[3] ATLAS collaboration, Measurement of ZZ production in the ``νν final state with the
ATLAS detector in pp collisions at

√
s = 13TeV, JHEP 10 (2019) 127 [arXiv:1905.07163]

[INSPIRE].

[4] CMS collaboration, Measurements of the pp→ ZZ production cross section and the Z→ 4`
branching fraction, and constraints on anomalous triple gauge couplings at

√
s = 13TeV,

Eur. Phys. J. C 78 (2018) 165 [Erratum ibid. 78 (2018) 515] [arXiv:1709.08601]
[INSPIRE].

[5] CMS collaboration, Measurements of pp→ ZZ production cross sections and constraints on
anomalous triple gauge couplings at

√
s = 13TeV, Eur. Phys. J. C 81 (2021) 200

[arXiv:2009.01186] [INSPIRE].

[6] ATLAS collaboration, Constraints on off-shell Higgs boson production and the Higgs boson
total width in ZZ → 4` and ZZ → 2`2ν final states with the ATLAS detector, Phys. Lett. B
786 (2018) 223 [arXiv:1808.01191] [INSPIRE].

[7] CMS collaboration, Measurement and interpretation of differential cross sections for Higgs
boson production at

√
s = 13TeV, Phys. Lett. B 792 (2019) 369 [arXiv:1812.06504]

[INSPIRE].

[8] CMS collaboration, Measurements of the Higgs boson width and anomalous HV V couplings
from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019)
112003 [arXiv:1901.00174] [INSPIRE].

[9] ATLAS collaboration, Measurements of the Higgs boson inclusive and differential fiducial
cross sections in the 4` decay channel at

√
s = 13TeV, Eur. Phys. J. C 80 (2020) 942

[arXiv:2004.03969] [INSPIRE].

[10] N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson
signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

[11] N. Kauer, Interference effects for H →WW/ZZ → `ν̄` ¯̀ν` searches in gluon fusion at the
LHC, JHEP 12 (2013) 082 [arXiv:1310.7011] [INSPIRE].

[12] F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the
LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].

[13] J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs Width at the LHC Using
Full Analytic Results for gg → e−e+µ−µ+, JHEP 04 (2014) 060 [arXiv:1311.3589]
[INSPIRE].

[14] F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735
(2014) 311 [arXiv:1405.2219] [INSPIRE].

[15] G. Heinrich, S. Jahn, S.P. Jones, M. Kerner and J. Pires, NNLO predictions for Z-boson
pair production at the LHC, JHEP 03 (2018) 142 [arXiv:1710.06294] [INSPIRE].

[16] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals
for qq → V V , JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].

[17] F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity
amplitudes for the production of two off-shell electroweak bosons in quark-antiquark
collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP04(2019)048
https://arxiv.org/abs/1902.05892
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.05892
https://doi.org/10.1007/JHEP10(2019)127
https://arxiv.org/abs/1905.07163
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.07163
https://doi.org/10.1140/epjc/s10052-018-5567-9
https://arxiv.org/abs/1709.08601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.08601
https://doi.org/10.1140/epjc/s10052-020-08817-8
https://arxiv.org/abs/2009.01186
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.01186
https://doi.org/10.1016/j.physletb.2018.09.048
https://doi.org/10.1016/j.physletb.2018.09.048
https://arxiv.org/abs/1808.01191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.01191
https://doi.org/10.1016/j.physletb.2019.03.059
https://arxiv.org/abs/1812.06504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06504
https://doi.org/10.1103/PhysRevD.99.112003
https://doi.org/10.1103/PhysRevD.99.112003
https://arxiv.org/abs/1901.00174
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.00174
https://doi.org/10.1140/epjc/s10052-020-8223-0
https://arxiv.org/abs/2004.03969
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.03969
https://doi.org/10.1007/JHEP08(2012)116
https://arxiv.org/abs/1206.4803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.4803
https://doi.org/10.1007/JHEP12(2013)082
https://arxiv.org/abs/1310.7011
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.7011
https://doi.org/10.1103/PhysRevD.88.054024
https://arxiv.org/abs/1307.4935
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.4935
https://doi.org/10.1007/JHEP04(2014)060
https://arxiv.org/abs/1311.3589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.3589
https://doi.org/10.1016/j.physletb.2014.06.056
https://doi.org/10.1016/j.physletb.2014.06.056
https://arxiv.org/abs/1405.2219
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.2219
https://doi.org/10.1007/JHEP03(2018)142
https://arxiv.org/abs/1710.06294
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.06294
https://doi.org/10.1007/JHEP06(2014)032
https://arxiv.org/abs/1404.4853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.4853
https://doi.org/10.1007/JHEP11(2014)041
https://arxiv.org/abs/1408.6409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6409


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[18] T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for
qq′ → V1V2 → 4 leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].

[19] M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections
and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257]
[INSPIRE].

[20] S. Kallweit and M. Wiesemann, ZZ production at the LHC: NNLO predictions for 2`2ν and
4` signatures, Phys. Lett. B 786 (2018) 382 [arXiv:1806.05941] [INSPIRE].

[21] F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in
gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].

[22] M. Grazzini, S. Kallweit, M. Wiesemann and J.Y. Yook, ZZ production at the LHC: NLO
QCD corrections to the loop-induced gluon fusion channel, JHEP 03 (2019) 070
[arXiv:1811.09593] [INSPIRE].

[23] D.A. Dicus, C. Kao and W.W. Repko, Gluon Production of Gauge Bosons, Phys. Rev. D
36 (1987) 1570 [INSPIRE].

[24] E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys.
B 321 (1989) 561 [INSPIRE].

[25] C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs
at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].

[26] A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for
gg → V1V2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].

[27] F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity
amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06
(2015) 129 [arXiv:1503.08759] [INSPIRE].

[28] B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role
of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

[29] M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s,
Nucl. Phys. B 261 (1985) 379 [INSPIRE].

[30] A. Azatov, C. Grojean, A. Paul and E. Salvioni, Resolving gluon fusion loops at current and
future hadron colliders, JHEP 09 (2016) 123 [arXiv:1608.00977] [INSPIRE].

[31] Q.-H. Cao, B. Yan, C.P. Yuan and Y. Zhang, Probing Ztt̄ couplings using Z boson
polarization in ZZ production at hadron colliders, Phys. Rev. D 102 (2020) 055010
[arXiv:2004.02031] [INSPIRE].

[32] K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top
quark approximation, Phys. Lett. B 744 (2015) 43 [arXiv:1503.01274] [INSPIRE].

[33] F. Caola, M. Dowling, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to vector
boson pair production in gluon fusion including interference effects with off-shell Higgs at
the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].

[34] J.M. Campbell, R.K. Ellis, M. Czakon and S. Kirchner, Two loop correction to interference
in gg → ZZ, JHEP 08 (2016) 011 [arXiv:1605.01380] [INSPIRE].

[35] R. Gröber, A. Maier and T. Rauh, Top quark mass effects in gg → ZZ at two loops and
off-shell Higgs boson interference, Phys. Rev. D 100 (2019) 114013 [arXiv:1908.04061]
[INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP09(2015)128
https://arxiv.org/abs/1503.04812
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.04812
https://doi.org/10.1016/j.physletb.2015.09.055
https://arxiv.org/abs/1507.06257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.06257
https://doi.org/10.1016/j.physletb.2018.10.016
https://arxiv.org/abs/1806.05941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.05941
https://doi.org/10.1103/PhysRevD.92.094028
https://arxiv.org/abs/1509.06734
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.06734
https://doi.org/10.1007/JHEP03(2019)070
https://arxiv.org/abs/1811.09593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.09593
https://doi.org/10.1103/PhysRevD.36.1570
https://doi.org/10.1103/PhysRevD.36.1570
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD36%2C1570%22
https://doi.org/10.1016/0550-3213(89)90262-9
https://doi.org/10.1016/0550-3213(89)90262-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB321%2C561%22
https://doi.org/10.1007/BF01557393
https://arxiv.org/abs/hep-ph/9404295
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9404295
https://doi.org/10.1007/JHEP06(2015)197
https://arxiv.org/abs/1503.08835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.08835
https://doi.org/10.1007/JHEP06(2015)129
https://doi.org/10.1007/JHEP06(2015)129
https://arxiv.org/abs/1503.08759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.08759
https://doi.org/10.1103/PhysRevD.16.1519
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C1519%22
https://doi.org/10.1016/0550-3213(85)90580-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB261%2C379%22
https://doi.org/10.1007/JHEP09(2016)123
https://arxiv.org/abs/1608.00977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.00977
https://doi.org/10.1103/PhysRevD.102.055010
https://arxiv.org/abs/2004.02031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.02031
https://doi.org/10.1016/j.physletb.2015.03.030
https://arxiv.org/abs/1503.01274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.01274
https://doi.org/10.1007/JHEP07(2016)087
https://arxiv.org/abs/1605.04610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.04610
https://doi.org/10.1007/JHEP08(2016)011
https://arxiv.org/abs/1605.01380
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.01380
https://doi.org/10.1103/PhysRevD.100.114013
https://arxiv.org/abs/1908.04061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04061


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[36] J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, gg → ZZ: analytic two-loop
results for the low- and high-energy regions, JHEP 04 (2020) 024 [arXiv:2002.05558]
[INSPIRE].

[37] M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC,
Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

[38] R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading
order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

[39] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and
master integrals for the production of a Higgs boson via a massive quark and a scalar-quark
loop, JHEP 01 (2007) 082 [hep-ph/0611236].

[40] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD
Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266]
[INSPIRE].

[41] C. Brønnum-Hansen and C.-Y. Wang, Contribution of third generation quarks to two-loop
helicity amplitudes for W boson pair production in gluon fusion, JHEP 01 (2021) 170
[arXiv:2009.03742] [INSPIRE].

[42] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279
[INSPIRE].

[43] D. Kreimer, The γ(5) Problem and Anomalies: A Clifford Algebra Approach, Phys. Lett. B
237 (1990) 59 [INSPIRE].

[44] J.G. Korner, D. Kreimer and K. Schilcher, A Practicable γ(5) scheme in dimensional
regularization, Z. Phys. C 54 (1992) 503 [INSPIRE].

[45] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

[46] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput.
Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

[47] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

[48] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction,
arXiv:1201.4330 [INSPIRE].

[49] C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181
(2010) 1293 [arXiv:0912.2546] [INSPIRE].

[50] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic
computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1
[cs/0004015] [INSPIRE].

[51] R.H. Lewis, Computer Algebra System Fermat, http://home.bway.net/lewis/.

[52] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate
β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[53] S. Laporta, High precision calculation of multiloop Feynman integrals by difference
equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[54] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order
perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

– 35 –

https://doi.org/10.1007/JHEP04(2020)024
https://arxiv.org/abs/2002.05558
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.05558
https://doi.org/10.1016/0550-3213(95)00379-7
https://arxiv.org/abs/hep-ph/9504378
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9504378
https://doi.org/10.1088/1126-6708/2005/12/015
https://arxiv.org/abs/hep-ph/0509189
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0509189
https://doi.org/10.1088/1126-6708/2007/01/082
https://arxiv.org/abs/hep-ph/0611236
https://doi.org/10.1088/1126-6708/2007/01/021
https://arxiv.org/abs/hep-ph/0611266
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0611266
https://doi.org/10.1007/JHEP01(2021)170
https://arxiv.org/abs/2009.03742
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.03742
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/search?p=find+J%20%22J.Comput.Phys.%2C105%2C279%22
https://doi.org/10.1016/0370-2693(90)90461-E
https://doi.org/10.1016/0370-2693(90)90461-E
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB237%2C59%22
https://doi.org/10.1007/BF01559471
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC54%2C503%22
https://arxiv.org/abs/1707.06453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06453
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2012.12.028
https://arxiv.org/abs/1203.6543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.6543
https://arxiv.org/abs/math-ph/0010025
https://inspirehep.net/search?p=find+EPRINT%2Bmath-ph%2F0010025
https://arxiv.org/abs/1201.4330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.4330
https://doi.org/10.1016/j.cpc.2010.03.012
https://doi.org/10.1016/j.cpc.2010.03.012
https://arxiv.org/abs/0912.2546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.2546
https://doi.org/10.1006/jsco.2001.0494
https://arxiv.org/abs/cs/0004015
https://inspirehep.net/search?p=find+J%20%22J.Symb.Comput.%2C33%2C1%22
http://home.bway.net/lewis/
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB192%2C159%22
https://doi.org/10.1016/S0217-751X(00)00215-7
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102033
https://doi.org/10.1088/1126-6708/2004/07/046
https://arxiv.org/abs/hep-ph/0404258
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0404258


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[55] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685
[INSPIRE].

[56] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira—A Feynman integral reduction program,
Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

[57] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular
Arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].

[58] J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals,
Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

[59] R.M. Schabinger, A New Algorithm For The Generation Of Unitarity-Compatible
Integration By Parts Relations, JHEP 01 (2012) 077 [arXiv:1111.4220] [INSPIRE].

[60] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf.
Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[61] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys.
Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

[62] K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic
geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

[63] P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys.
Lett. B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].

[64] R.N. Lee, Modern techniques of multiloop calculations, in 49th Rencontres de Moriond on
QCD and High Energy Interactions, 5, 2014 [arXiv:1405.5616] [INSPIRE].

[65] T. Bitoun, C. Bogner, R.P. Klausen and E. Panzer, Feynman integral relations from
parametric annihilators, Lett. Math. Phys. 109 (2019) 497 [arXiv:1712.09215] [INSPIRE].

[66] A. von Manteuffel, E. Panzer and R.M. Schabinger, Cusp and collinear anomalous
dimensions in four-loop QCD from form factors, Phys. Rev. Lett. 124 (2020) 162001
[arXiv:2002.04617] [INSPIRE].

[67] R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11
(2013) 165 [arXiv:1308.6676] [INSPIRE].

[68] J. Böhm, A. Georgoudis, K.J. Larsen, M. Schulze and Y. Zhang, Complete sets of
logarithmic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev.
D 98 (2018) 025023 [arXiv:1712.09737] [INSPIRE].

[69] J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete
integration-by-parts reductions of the non-planar hexagon-box via module intersections,
JHEP 09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

[70] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[71] T. Peraro, Scattering amplitudes over finite fields and multivariate functional
reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[72] D. Cabarcas and J. Ding, Linear Algebra to Compute Syzygies and Gröbner Bases, in SSAC
’11: Proceedings of the 36th international symposium on Symbolic and algebraic
computation, San Jose U.S.A. (2011), ACM Press, New York U.S.A. (2011), pg. 67.

[73] A. Pak, The Toolbox of modern multi-loop calculations: novel analytic and semi-analytic
techniques, J. Phys. Conf. Ser. 368 (2012) 012049 [arXiv:1111.0868] [INSPIRE].

– 36 –

https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.2685
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05610
https://doi.org/10.1016/j.cpc.2019.106877
https://arxiv.org/abs/1901.07808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.07808
https://doi.org/10.1103/PhysRevD.83.045012
https://arxiv.org/abs/1009.0472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.0472
https://doi.org/10.1007/JHEP01(2012)077
https://arxiv.org/abs/1111.4220
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.4220
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1145
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.94.116015
https://arxiv.org/abs/1510.05626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.05626
https://doi.org/10.1103/PhysRevD.93.041701
https://arxiv.org/abs/1511.01071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01071
https://doi.org/10.1016/0370-2693(96)00835-0
https://doi.org/10.1016/0370-2693(96)00835-0
https://arxiv.org/abs/hep-ph/9603267
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9603267
https://arxiv.org/abs/1405.5616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.5616
https://doi.org/10.1007/s11005-018-1114-8
https://arxiv.org/abs/1712.09215
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09215
https://doi.org/10.1103/PhysRevLett.124.162001
https://arxiv.org/abs/2002.04617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.04617
https://doi.org/10.1007/JHEP11(2013)165
https://doi.org/10.1007/JHEP11(2013)165
https://arxiv.org/abs/1308.6676
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.6676
https://doi.org/10.1103/PhysRevD.98.025023
https://doi.org/10.1103/PhysRevD.98.025023
https://arxiv.org/abs/1712.09737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09737
https://doi.org/10.1007/JHEP09(2018)024
https://arxiv.org/abs/1805.01873
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.01873
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4513
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01902
https://doi.org/10.1088/1742-6596/368/1/012049
https://arxiv.org/abs/1111.0868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.0868


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[74] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar
Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002
[arXiv:1812.04586] [INSPIRE].

[75] M. Heller and A. von Manteuffel, MultivariateApart: Generalized Partial Fractions,
arXiv:2101.08283 [INSPIRE].

[76] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-2 — A computer
algebra system for polynomial computations, http://www.singular.uni-kl.de (2019).

[77] J. Boehm, M. Wittmann, Z. Wu, Y. Xu and Y. Zhang, IBP reduction coefficients made
simple, JHEP 12 (2020) 054 [arXiv:2008.13194] [INSPIRE].

[78] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams
calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[79] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110
(1997) 1435 [hep-th/9711188] [INSPIRE].

[80] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions,
Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[81] M. Argeri and P. Mastrolia, Feynman Diagrams and Differential Equations, Int. J. Mod.
Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].

[82] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[83] M. Heller, A. von Manteuffel and R.M. Schabinger, Multiple polylogarithms with algebraic
arguments and the two-loop EW-QCD Drell-Yan master integrals, Phys. Rev. D 102 (2020)
016025 [arXiv:1907.00491] [INSPIRE].

[84] J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the
production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090
[arXiv:1402.7078] [INSPIRE].

[85] F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the
production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014)
043 [arXiv:1404.5590] [INSPIRE].

[86] R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov,
Two-loop planar master integrals for Higgs→ 3 partons with full heavy-quark mass
dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].

[87] A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond
multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].

[88] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic symbol calculus: from
elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP 08 (2018) 014
[arXiv:1803.10256] [INSPIRE].

[89] L. Adams, E. Chaubey and S. Weinzierl, Analytic results for the planar double box integral
relevant to top-pair production with a closed top loop, JHEP 10 (2018) 206
[arXiv:1806.04981] [INSPIRE].

[90] R.N. Lee, Symmetric ε- and (ε+ 1/2)-forms and quadratic constraints in “elliptic” sectors,
JHEP 10 (2018) 176 [arXiv:1806.04846] [INSPIRE].

– 37 –

https://doi.org/10.1103/PhysRevLett.122.082002
https://arxiv.org/abs/1812.04586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04586
https://arxiv.org/abs/2101.08283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.08283
http://www.singular.uni-kl.de
https://doi.org/10.1007/JHEP12(2020)054
https://arxiv.org/abs/2008.13194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.13194
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB254%2C158%22
https://arxiv.org/abs/hep-th/9711188
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711188
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9912329
https://doi.org/10.1142/S0217751X07037147
https://doi.org/10.1142/S0217751X07037147
https://arxiv.org/abs/0707.4037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.4037
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.1806
https://doi.org/10.1103/PhysRevD.102.016025
https://doi.org/10.1103/PhysRevD.102.016025
https://arxiv.org/abs/1907.00491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.00491
https://doi.org/10.1007/JHEP05(2014)090
https://arxiv.org/abs/1402.7078
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.7078
https://doi.org/10.1007/JHEP09(2014)043
https://doi.org/10.1007/JHEP09(2014)043
https://arxiv.org/abs/1404.5590
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.5590
https://doi.org/10.1007/JHEP12(2016)096
https://arxiv.org/abs/1609.06685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.06685
https://doi.org/10.1007/JHEP06(2017)127
https://arxiv.org/abs/1701.05905
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.05905
https://doi.org/10.1007/JHEP08(2018)014
https://arxiv.org/abs/1803.10256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10256
https://doi.org/10.1007/JHEP10(2018)206
https://arxiv.org/abs/1806.04981
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.04981
https://doi.org/10.1007/JHEP10(2018)176
https://arxiv.org/abs/1806.04846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.04846


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[91] M. Walden and S. Weinzierl, Numerical evaluation of iterated integrals related to elliptic
Feynman integrals, Comput. Phys. Commun. 265 (2021) 108020 [arXiv:2010.05271]
[INSPIRE].

[92] U. Aglietti, R. Bonciani, L. Grassi and E. Remiddi, The Two loop crossed ladder vertex
diagram with two massive exchanges, Nucl. Phys. B 789 (2008) 45 [arXiv:0705.2616]
[INSPIRE].

[93] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Solving differential equations for Feynman
integrals by expansions near singular points, JHEP 03 (2018) 008 [arXiv:1709.07525]
[INSPIRE].

[94] F. Moriello, Generalised power series expansions for the elliptic planar families of Higgs +
jet production at two loops, JHEP 01 (2020) 150 [arXiv:1907.13234] [INSPIRE].

[95] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of
one-dimensional series expansions, arXiv:2006.05510 [INSPIRE].

[96] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent
multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

[97] C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Comput.
Phys. Commun. 178 (2008) 596 [arXiv:0709.4092] [INSPIRE].

[98] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner and J. Schlenk, A GPU compatible
quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun. 240 (2019)
120 [arXiv:1811.11720] [INSPIRE].

[99] A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support,
Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

[100] S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO,
JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

[101] L. Chen, G. Heinrich, S.P. Jones, M. Kerner, J. Klappert and J. Schlenk, ZH production in
gluon fusion: two-loop amplitudes with full top quark mass dependence, JHEP 03 (2021)
125 [arXiv:2011.12325] [INSPIRE].

[102] A. von Manteuffel and R.M. Schabinger, Numerical Multi-Loop Calculations via Finite
Integrals and One-Mass EW-QCD Drell-Yan Master Integrals, JHEP 04 (2017) 129
[arXiv:1701.06583] [INSPIRE].

[103] Z. Bern, L.J. Dixon and D.A. Kosower, The Five gluon amplitude and one loop integrals, in
The Fermilab Meeting DPF 92. Proceedings of 7th Meeting of the APS Division of Particles
Fields, Batavia U.S.A. (1992), pg. 901 [hep-ph/9212237] [INSPIRE].

[104] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales,
JHEP 03 (2014) 071 [arXiv:1401.4361] [INSPIRE].

[105] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop
Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].

[106] B. Agarwal and A. Von Manteuffel, On the two-loop amplitude for gg → ZZ production
with full top-mass dependence, PoS(RADCOR2019)008 (2019) [arXiv:1912.08794] [INSPIRE].

[107] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1.

[108] G. Heinrich, Collider Physics at the Precision Frontier, arXiv:2009.00516 [INSPIRE].

– 38 –

https://doi.org/10.1016/j.cpc.2021.108020
https://arxiv.org/abs/2010.05271
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.05271
https://doi.org/10.1016/j.nuclphysb.2007.07.019
https://arxiv.org/abs/0705.2616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.2616
https://doi.org/10.1007/JHEP03(2018)008
https://arxiv.org/abs/1709.07525
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.07525
https://doi.org/10.1007/JHEP01(2020)150
https://arxiv.org/abs/1907.13234
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.13234
https://arxiv.org/abs/2006.05510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.05510
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004013
https://doi.org/10.1016/j.cpc.2007.11.012
https://doi.org/10.1016/j.cpc.2007.11.012
https://arxiv.org/abs/0709.4092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.4092
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1016/j.cpc.2019.02.015
https://arxiv.org/abs/1811.11720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11720
https://doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/1511.03614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.03614
https://doi.org/10.1007/JHEP10(2016)107
https://arxiv.org/abs/1608.04798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.04798
https://doi.org/10.1007/JHEP03(2021)125
https://doi.org/10.1007/JHEP03(2021)125
https://arxiv.org/abs/2011.12325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.12325
https://doi.org/10.1007/JHEP04(2017)129
https://arxiv.org/abs/1701.06583
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.06583
https://arxiv.org/abs/hep-ph/9212237
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9212237
https://doi.org/10.1007/JHEP03(2014)071
https://arxiv.org/abs/1401.4361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.4361
https://doi.org/10.1007/JHEP02(2015)120
https://arxiv.org/abs/1411.7392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.7392
https://doi.org/10.22323/1.375.0008
https://arxiv.org/abs/1912.08794
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.08794
https://arxiv.org/abs/2009.00516
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.00516


J
H
E
P
0
5
(
2
0
2
1
)
2
5
6

[109] V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012)
1.

[110] S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0:
numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196
(2015) 470 [arXiv:1502.06595] [INSPIRE].

[111] E. Panzer, On the analytic computation of massless propagators in dimensional
regularization, Nucl. Phys. B 874 (2013) 567 [arXiv:1305.2161] [INSPIRE].

[112] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk et al., pySecDec: a
toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222
(2018) 313 [arXiv:1703.09692] [INSPIRE].

[113] Z. Li, J. Wang, Q.-S. Yan and X. Zhao, Efficient numerical evaluation of Feynman
integrals, Chin. Phys. C 40 (2016) 033103 [arXiv:1508.02512] [INSPIRE].

[114] A.V. Smirnov and V.A. Smirnov, How to choose master integrals, Nucl. Phys. B 960 (2020)
115213 [arXiv:2002.08042] [INSPIRE].

[115] J. Usovitsch, Factorization of denominators in integration-by-parts reductions,
arXiv:2002.08173 [INSPIRE].

[116] W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO
QCD corrections to tt̄H production in hadron collisions, Nucl. Phys. B 653 (2003) 151
[hep-ph/0211352] [INSPIRE].

[117] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427
(1998) 161 [hep-ph/9802439] [INSPIRE].

[118] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of
transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881
(2014) 414 [arXiv:1311.1654] [INSPIRE].

[119] S.A. Larin and J.A.M. Vermaseren, The alpha-S3 corrections to the Bjorken sum rule for
polarized electroproduction and to the Gross-Llewellyn Smith sum rule, Phys. Lett. B 259
(1991) 345 [INSPIRE].

[120] S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys.
Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].

[121] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01 [INSPIRE].

[122] J. Dick, F.Y. Kuo and I.H. Sloan, High-dimensional integration: The quasi-monte carlo
way, Acta Numer. 22 (2013) 133.

[123] C. Brønnum-Hansen and C.-Y. Wang, Top quark contribution to two-loop helicity
amplitudes for Z boson pair production in gluon fusion, arXiv:2101.12095 [INSPIRE].

[124] D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman
diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

[125] J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].

– 39 –

https://doi.org/10.1016/j.cpc.2015.05.022
https://doi.org/10.1016/j.cpc.2015.05.022
https://arxiv.org/abs/1502.06595
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.06595
https://doi.org/10.1016/j.nuclphysb.2013.05.025
https://arxiv.org/abs/1305.2161
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.2161
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.09692
https://doi.org/10.1088/1674-1137/40/3/033103
https://arxiv.org/abs/1508.02512
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.02512
https://doi.org/10.1016/j.nuclphysb.2020.115213
https://doi.org/10.1016/j.nuclphysb.2020.115213
https://arxiv.org/abs/2002.08042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08042
https://arxiv.org/abs/2002.08173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08173
https://doi.org/10.1016/S0550-3213(03)00044-0
https://arxiv.org/abs/hep-ph/0211352
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0211352
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9802439
https://doi.org/10.1016/j.nuclphysb.2014.02.011
https://doi.org/10.1016/j.nuclphysb.2014.02.011
https://arxiv.org/abs/1311.1654
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.1654
https://doi.org/10.1016/0370-2693(91)90839-I
https://doi.org/10.1016/0370-2693(91)90839-I
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB259%2C345%22
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1016/0370-2693(93)90053-K
https://arxiv.org/abs/hep-ph/9302240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9302240
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://inspirehep.net/search?p=find+J%20%22PTEP%2C2020%2C083C01%22
https://doi.org/10.1017/S0962492913000044
https://arxiv.org/abs/2101.12095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.12095
https://doi.org/10.1016/j.cpc.2004.05.001
https://arxiv.org/abs/hep-ph/0309015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0309015
https://doi.org/10.1016/0010-4655(94)90034-5
https://inspirehep.net/search?p=find+J%20%22Comput.Phys.Commun.%2C83%2C45%22

	Introduction
	Setup of the calculation
	Form factors and helicity amplitudes
	Diagrams and electroweak coupling structure

	Reduction of Feynman integrals
	Linear relations from syzygies
	Constructing syzygies with linear algebra
	Inserting the reductions into the amplitude

	Finite basis integrals
	Dimension shifts and dots
	Constructing finite linear combinations
	Numerical performance

	Renormalisation and checks
	UV renormalisation and IR subtraction
	Checks

	Results
	Conclusions
	Numerical checks
	Subtraction scheme dependence

