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Abstract: The Standard Model Effective Field Theory (SMEFT) is an established theo-
retical framework that parametrises the impact a UV theory has on low-energy observables.
Such parametrization is achieved by studying the interactions of SM fields encapsulated
within higher mass dimensional (≥ 5) operators. Through judicious employment of the
tools of EFTs, SMEFT has become a source of new predictions as well as a platform for
conducting a coherent comparison of new physics (beyond Standard Model) scenarios. We,
for the first time, are proposing a diagrammatic approach to establish selection criteria for
the allowed heavy field representations corresponding to each SMEFT operator. We have
elucidated the links of a chain connecting specific CP conserving dimension-6 SMEFT oper-
ators with unique sets of heavy field representations. The contact interactions representing
each effective operator have been unfolded into tree- and (or) one-loop-level diagrams to
reveal unique embeddings of heavy fields within them. For each case, the renormalizable
vertices of a UV model serve as the building blocks for all possible unfolded diagrams.
Based on this, we have laid the groundwork to construct observable-driven new physics
models. This in turn also prevents us from making redundant analyses of similar models.
While we have taken a predominantly minimalistic approach, we have also highlighted the
necessity for non-minimal interactions for certain operators.

Keywords: Beyond Standard Model, Effective Field Theories

ArXiv ePrint: 2103.11593

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2021)033

mailto:sdbakshi@iitk.ac.in
mailto:joydeep@iitk.ac.in
mailto:surajprk@iitk.ac.in
mailto:shakel@iitk.ac.in
mailto:michael.spannowsky@durham.ac.uk
https://arxiv.org/abs/2103.11593
https://doi.org/10.1007/JHEP06(2021)033


J
H
E
P
0
6
(
2
0
2
1
)
0
3
3

Contents

1 Introduction 1

2 Unfolding effective operators into Lorentz invariant vertices 3

3 Identifying heavy fields corresponding to dimension-6 SMEFT operators 6
3.1 φ6 13
3.2 φ4D2 13
3.3 ψ2φ3 15
3.4 ψ2φ2D 18
3.5 φ2X2 18
3.6 ψ4 20
3.7 X3 31

4 Departure from minimality 31
4.1 Diagrams with multiple fundamental vertices 32
4.2 Heavy-heavy mixing in the loops 32
4.3 Multi-loop diagrams 32

5 Operator driven BSM construction: validation and illustration through
examples 33
5.1 Validating the diagrammatic method 33
5.2 The minimal extension of the SM as root of CP even D6 SMEFT operators 34
5.3 Role of observables on the choice of BSMs 35

6 Conclusion and remarks 37

A The Standard model field content 38

B Products of lower dimensional SU(N) representations 38

1 Introduction

The contemporary paradigm for conducting phenomenological analyses in particle physics
is based on Effective Field Theories (EFTs). EFT are a natural choice considering the
proliferation of scales in subatomic physics. A popular EFT paradigm is the so-called
bottom-up approach, first introduced in [1–3], which not only attempts to encapsulate the
effects of unknown high energy theories but also provides useful contributions to the ob-
servables defined by the renormalizable Lagrangian. This method involves the construction
of higher mass dimension operator bases, and the parameter space is defined by the Wilson
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coefficients corresponding to these operators. A number of computational tools have been
developed that automate the procedure of operator construction [4–8]. Standard Model
Effective Field Theory (SMEFT) is the bottom-up extension of the Standard Model which
consists of 59 operators at dimension-6 considering only a single flavour of fermions1 and
brings to light several interesting features not encountered at the renormalizable level.
The only downside of this approach is that it is oblivious to the exact UV roots of each
of the operators and the associated phenomenology. Hence, the Wilson coefficients remain
without origin and independent [16].

The other face of the coin, popularly known as the top-down approach, starts at a
higher scale where one constructs the Lagrangian for a particular model and identifies
certain degrees of freedom as heavy and systematically integrates them out to obtain a
set of higher mass dimension operators composed entirely of the lighter fields [17–27]. To
affirm the predictions of a UV theory against the SM observables, the field content of the
chosen UV theory must first be brought down to the SM field content and this is where the
top-down approach finds great utility. This procedure ultimately leads to various subsets
of the 59 SMEFT operators, constructed via the bottom-up approach. These may or may
not overlap for different UV models. Various computational packages have been developed
to automate the procedure for certain cases [28–31].

Also, from the point of view of symmetries, there is no restriction on the choice of
field as well as symmetry extensions of the SM that can be treated as a UV theory. The
only means of eliminating candidate models is through phenomenological analyses. But,
even then a large number of models still appear to be viable as they all contribute to some
observable or another [32–39]. Conducting a comparative analysis of every single one of
them becomes tedious and impractical, more so for non-minimal scenarios with multiple
heavy fields. In such cases, we encounter a multitude of scales which implies that a cascade
of EFTs may be required to determine the relations among SMEFT Wilson coefficients and
BSM parameters, and a systematic procedure must be developed to address this.

It is desirable to have a more structured method of cataloguing the UV models that lead
to specific SMEFT operators, which in turn can be correlated with observables. Clearly,
instead of starting with a different BSM Lagrangian each time and comparing the various
subsets of SMEFT each of them leads to, it is more economical if we approach this issue
in a retrograde manner, where based on the observables under study we first identify
the necessary operators and then attempt to enumerate the specific list of heavy fields
that can generate the particular operator(s). This allows us to conduct our analysis in a
minimal sense and also highlights which combinations of heavy fields may lead to redundant
contributions.

This operator-driven BSM model building is what we have addressed in this work, i.e.,
our primary aim has been to identify the possible UV roots of each SMEFT operator when
considering 1-particle-irreducible (1PI) diagrams up to one-loop-level built of interactions

1This counting does not include hermitian conjugates of the operators, nor does it include operators
that violate accidental symmetries of the renormalizable Lagrangian. Taking those into account, we get 2
operators at dimension-5 [9, 10], 84 at dimension-6 [3], 30 at dimension-7 [11], 993 at dimension-8 [12, 13]
and 560 operators at dimension-9 [14, 15] for SMEFT.
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involving the SM as well as heavy fields. We must emphasize that we have only considered
extensions to the SM particle content by addition of spin-0 and spin-1/2 particles,2 and
the internal symmetry has been kept fixed at SU(3)C ⊗ SU(2)L ⊗ U(1)Y . Also, we realise
that the SMEFT operators may receive radiative corrections of the SM as well as heavy
fields but accounting for such corrections would require us to delve deeper into the incor-
poration of a renormalization prescription which is beyond the scope of the current work
and such analysis will form a part of our future objectives. We have started by delineating
a schematic unfolding of the set of independent operator classes of mass dimension-6 in
section 2. The external legs of the contact operators have been judiciously segregated and
internal lines have been added suitably while ensuring Lorentz invariance at each vertex
to obtain a representative set of tree- and one-loop-level diagrams for each operator class
and the corresponding subclasses if any. In section 3, we have first prepared an exhaus-
tive list of heavy field representations which can appear at various renormalizable vertices
when the internal symmetry of the SM is imposed in addition to Lorentz invariance. Then
using these interactions as fundamental building blocks we have carefully outlined how
each SMEFT operator of mass dimension-6 can be unfolded to reveal these heavy fields
within tree-level diagrams with heavy propagators and one-loop-level diagrams involving
pure-heavy or light-heavy-mixed loops. We must remark that the analysis here is by no
means exhaustive and conforms to a notion of minimality which has been described in the
paper. As a matter of fact, in section 4, we have addressed a few ways in which our set can
be extended by accounting for non-minimal cases. We have also emphasized special cases of
certain operators where this non-minimality is unavoidable. In section 5, we have validated
our results by focussing on a single heavy scalar representation and showing that the vari-
ous SMEFT operators whose unfolding incorporates it are precisely the same as the ones
obtained when the UV theory containing the particular heavy scalar is subjected to the
top-down analysis [40–45]. We have also described how an extension of the SM containing
a second Higgs doublet along with a scalar with a non-trivial color quantum number can
be seen to account for all the operators that are significant in the context of electroweak
precision observables (EWPO) and Higgs signal strength measurements [43, 44, 46–51]. In
addition, we have emphasized the need for non-minimal extensions, analyses at the level
of higher loops, as well as the necessity of developing novel observables to account for the
remaining SMEFT operators.

2 Unfolding effective operators into Lorentz invariant vertices

We intend to highlight a generalizable procedure using which, provided a complete and
independent set of operators, we can trace the origin of each operator from candidate UV
theories containing specific heavy fields. This indeed is the opposite of conventional analyses
where one starts with a UV theory, identifies certain degrees of freedom as heavy and after

2It is possible that the internal symmetry of SM may be a subset of some larger symmetry which is
manifested at an as yet undetermined higher energy scale. Hence, it is fair to consider SM extensions
involving heavy spin-1 particles associated with the breaking of the higher symmetry. But we have opted
to exclude such scenarios in order to keep our analysis simple.
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Symbol Stands for Symbol Stands for Symbol Stands for

Scalar Fermion
SM Gauge

Boson

Light (SM) Light (SM)
( · )Dµ( · · )Dµ( · )

scalar (φ) fermion (ψ)

Heavy Heavy
(·)γµ(· ·)Dµ( · )

scalar (Φ) fermion (Ψ)

Dµ γµ � ≡ D2

Table 1. The symbols used throughout the paper and their meaning.

suitably integrating out obtains a subset of the effective Lagrangian, i.e., higher mass
dimension operator basis, of a low energy theory [52–56]. The following points emphasize
the salient aspects of this reverse-engineering procedure:

• The building blocks of our analysis are Feynman diagrams which in turn are consti-
tuted of certain well-defined symbols. For instance, dashed, solid, and wiggly lines
indicate scalars, fermions, and gauge bosons respectively. Different colours differen-
tiate between heavy, light, and general fields. These along with additional symbols
for Dµ, γµ, and their combinations have been listed in table 1.

• At the intermediate step between these symbols and Feynman diagrams lie the ver-
tices obtained from the renormalizable Lagrangian.3 The most general collection of
vertices, which includes trilinear and quartic self-interactions of scalars and gauge
bosons, Yukawa terms connecting a pair of fermions with a scalar and the kinetic
terms of scalars and fermions, have been depicted in figure 1. One can see how these
vertices incorporate the symbols defined in table 1.

• Though our method is generic and applicable for any effective field theory, in this
work, we restrict ourselves to the effective Lagrangians of mass dimension-6. In
figure 2, we have collected schematic representations of Lorentz invariant operator
classes that constitute a complete and independent set at dimension-6, popularly
dubbed as the Warsaw basis in the context of SMEFT [3].

• It must be noted that when Lorentz invariance is the only constraint, the contents
of figure 2 are not the only possible operator classes of dimension-6 that can be
constructed out of scalars, spinors, vector bosons and their derivatives. For instance,

3It must be kept in mind that we are working in 3+1 space-time dimensions, therefore a renormalizable
Lagrangian consists of terms with mass dimension 4 and individual components, i.e., bosons, fermions,
derivatives and field strength tensors have mass dimensions of 1, 3

2 , 1 and 2 respectively.
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Φk

Φj

Φi

(i) [Φ]3.

Φi

Φj Φk

Φl

(ii) [Φ]4.

Ψi

Ψj

Φ

(iii) [Ψ]2 Φ.

Ab
µ

Aa
µ

Ac
µ

(iv) [Aµ]3.

Aa
µ Ab

µ

Ac
µ

Ad
µ

(v) [Aµ]4. (vi) [Ψ]2D.

Φi Φj

(vii) Φ�Φ.

Figure 1. Lorentz invariant vertices obtained from terms of the renormalizable Lagrangian.

(i) φ6. (ii) ψ4. (iii) ψ2φ3. (iv) ψ2φ2D.

(v) φ2X2. (vi) φ4D2.

(vii) ψ2φX. (viii) X3.

Figure 2. Schematic representation of SMEFT operator classes at mass dimension-6 in the Warsaw
basis. The dotted red line indicates the contraction of Lorentz indices as mentioned in table 1.
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classes such as D2X2, ψ2φD2 etc., are often taken into account to describe specific
phenomenological processes but these can be expressed as linear combinations of
elements of the Warsaw-like basis as shown below [3, 57]:

(DµXµν)2︸ ︷︷ ︸
D2X2

∼ c1 (ψ̄ γνψ) (ψ̄ γνψ)︸ ︷︷ ︸
ψ4

+ c2 (ψ̄ γνψ) (φ†i←→Dν φ)︸ ︷︷ ︸
ψ2φ2D

+ c3 (φ†i←→D ν φ) (φ†i←→Dν φ)︸ ︷︷ ︸
φ4D2

,

(ψ̄L ψR)D2φ︸ ︷︷ ︸
ψ2φD2

∼ c′0 (ψ̄L ψR φ)︸ ︷︷ ︸
renorm. term

+ c′1 (ψ̄L ψR φ)φ†φ︸ ︷︷ ︸
ψ2φ3

+ c′2 (ψ̄L ψR) (ψ̄L ψR)︸ ︷︷ ︸
ψ4

.

(2.1)
These relations can be established through the equations of motion (EOMs) of

the constituent fields:

DµXµν = ψγνψ + φ†
←→
D νφ, D2φ = c′0 φ + c′1 (φ†φ)φ + c′2 ψ1 ψ2. (2.2)

• In addition to the EOMs of the fields, operators may also be related to each other
through Integration by Parts (IBPs) and certain Fierz identities. But these relations
only appear when we consider individual operators, not at the level of operator class.
Hence, the implications of such relations have only been discussed once we probe into
the structures of specific operators.

• One can see that multiple diagrams have been drawn corresponding to the classes
containing X in figure 2. The reason is that each X which denotes a field strength
tensor can contain up to two gauge bosons within it. Thus, the multiple diagrams
hint at how several effective vertices can be obtained from the same effective operator.

• The next important step is the “unfolding” of the effective operators, shown in fig-
ure 2, using the renormalizable vertices depicted in figure 1, through tree- and one-
loop-level diagrams. This has been done for each class and the results have been
shown in figures 3–10.

• We must comment at this stage that the diagrams for individual classes need not be
exhaustive but care has been taken to include the ones which are relevant for the
most general analysis.

• Also, the unfolding at this stage has been done with only Lorentz invariance in mind.
So, within the loops, we have kept open the possibility of having light as well as
heavy propagators, but it must be understood that there is at least one heavy field.

3 Identifying heavy fields corresponding to dimension-6 SMEFT op-
erators

In this section, we have substantiated the general ideas presented in the previous one using
the CP even dimension-6 SMEFT operators as the backdrop, i.e., henceforth the light fields
have been restricted to be Standard Model fields, described in appendix A. The sequence
of steps involved can be described under two main headings:

– 6 –
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(i) (ii) (iii) (iv) (v) (vi) (vii)

Figure 3. Tree- (i)–(iv) and one-loop-level (v)–(viii) diagrams built of Lorentz invariant renormal-
izable interactions of the UV theory that lead to effective operators of φ6 class.

(i) (ii) (iii) (iv) (v) (vi) (vii)

Figure 4. Tree- (i)–(ii) and one-loop-level (iii)–(v) diagrams built of Lorentz invariant renormal-
izable interactions of the UV theory that lead to effective operators of φ4D2 class.

(i) (ii) (iii) (iv) (v) (vi)

Figure 5. Tree- (i)–(iii) and one-loop-level (iv)–(vii) diagrams built of Lorentz invariant renormal-
izable interactions of the UV theory that lead to effective operators of ψ2φ3 class.

(i) (ii)

Figure 6. One-loop diagrams built of Lorentz invariant renormalizable interactions of the UV
theory that lead to effective operators of ψ2φ2D class.

(i) Cataloguing an exhaustive list of heavy field representations.

• Based on figure 1, we have listed all possible combinations of light and heavy fields
that lead to a particular vertex. In the rest of this paper, these have been referred
to as “fundamental vertices”.

• For each vertex and its sub-cases, based on the fixed light fields, we have identified all
possible representations of the heavy fields. The necessary group-theoretic multipli-
cations have been described in appendix B. We have presented the results for vertices
composed of scalars, fermions, gauge bosons and their combinations in tables 2–4.

– 7 –



J
H
E
P
0
6
(
2
0
2
1
)
0
3
3

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

Figure 7. Tree- (i)–(ii) and one-loop-level (iii)–(viii) diagrams built of Lorentz invariant renormal-
izable interactions of the UV theory that lead to effective operators of φ2X2 class.

(i) (ii)

Figure 8. (i) Tree- and (ii) one-loop-level diagrams built of Lorentz invariant renormalizable
interactions of the UV theory that lead to effective operators of ψ4 class.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 9. One-loop diagrams built of Lorentz invariant renormalizable interactions of the UV
theory that lead to effective operators of X3 class.

(i) (ii) (iii) (iv) (v) (vi)

Figure 10. Tree- (i)–(iv) and one-loop-level (v)–(ix) diagrams built of Lorentz invariant renormal-
izable interactions of the UV theory that lead to effective operators of ψ2φX class.
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Vertex S. No. Light fields Heavy field(s)

Φ3

φ2

φ1 V1-(i) φ1 = φ2 = H(1,2, 12) or H†(1,2,− 1
2) Φ3 ∈ {(1, 3,±1), (1, 1,±1)}

V1-(ii) φ1 = H, φ2 = H† Φ3 ∈ {(1, 3, 0), (1, 1, 0)}

φ1

Φ3

Φ2

V2 φ1 = H or H†

Φ2 ∈ (RC2 , RL2 , Y2), Φ3 ∈ (RC3 , RL3 , Y3)

with RC2 ⊗RC3 ≡ 1, RL2 ⊗RL3 ≡ 2

and Y2 + Y3 = ±1
2 .

φ1

φ2 φ3

Φ4 V3-(i) φ1 = φ2 = φ3 = H or H† Φ4 ∈
{(

1, 4,±3
2

)
,
(
1, 2,±3

2

)}

V3-(ii) φ1 = φ2 = H, φ3 = H† Φ4 ∈
{(

1, 4,±1
2

)
,
(
1, 2,±1

2

)}

φ1

φ2 Φ3

Φ4

V4-(i) φ1 = H, φ2 = H† Φ3 ∈ ({1, RC}, {1, RL}, {0, Y }), Φ4 = Φ†3

V4-(ii) φ1 = φ2 = H or H†

Φ3 ∈ (RC3 , RL3 , Y3), Φ4 ∈ (RC4 , RL4 , Y4)

with RC3 ⊗RC4 ≡ 1, RL3 ⊗RL4 ≡ 1 or 3

and Y3 + Y4 = ±1.

Table 2. Allowed heavy field representations when the light degrees of freedom are the Standard
Model ones. Here, φi denote the SM Higgs and Φi the various heavy scalars. RC and RL denote
representations under SU(3)C and SU(2)L gauge groups and Y refers to the U(1)Y hypercharge
of the field. Their appearance describes the cases where the vertex is not constituted by a unique
heavy field representation but can involve a plethora of them.

(ii) Unfolding effective operators in terms of UV diagrams.
Having obtained an exhaustive list of heavy field representations based on the renor-

malizable vertices, we can focus our attention on ascertaining the correspondence between
these heavy fields and the dimension-6 CP as well as B-, L- conserving SMEFT operators.
We have accomplished this through the following steps.

• We have unfolded the operators, on a case-by-case basis, into tree- and one-loop-
level diagrams describing processes of the UV theory and revealing various vertices
of tables 2–4 as the constituents of those diagrams for different cases.

• However, we must emphasize that instead of conducting the unfolding exhaustively
by drawing the whole myriad of diagrams shown in figures 3–6 relevant for each
operator and then tracing the possible heavy fields within those diagrams, we have
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Vertex S. No. Light fields Heavy field(s)

ψ1

ψ2

Φ

V5-(i) ψ1 = ψ2 = e(1,1,−1) Φ ∈ (1, 1, 2)

V5-(ii) ψ1 = ψ2 = l(1,2,− 1
2) Φ ∈ {(1, 1, 1), (1, 3, 1)}

V5-(iii) ψ1 = ψ2 = d(3,1,− 1
3) Φ ∈

{(
3, 1, 2

3

)
,
(
6̄, 1, 2

3

)}
V5-(iv) ψ1 = ψ2 = u(3,1, 23) Φ ∈

{(
3, 1,−4

3

)
,
(
6̄, 1,−4

3

)}
V5-(v) ψ1 = ψ2 = q(3,2, 16) Φ ∈

{(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
,
(
6̄, 1,−1

3

)
,
(
6̄, 3,−1

3

)}
V5-(vi) (ψ1, ψ2) = (l̄, e) Φ ∈

(
1, 2, 1

2

)
V5-(vii) (ψ1, ψ2) = (q̄, d) Φ ∈

{(
1, 2, 1

2

)
,
(
8, 2, 1

2

)}
V5-(viii) (ψ1, ψ2) = (ū, q) Φ ∈

{(
1, 2, 1

2

)
,
(
8, 2, 1

2

)}
V5-(ix) (ψ1, ψ2) = (q, l) Φ ∈

{(
3̄, 1, 1

3

)
,
(
3̄, 3, 1

3

)}
V5-(x) (ψ1, ψ2) = (u, d) Φ ∈

{(
3, 1,−1

3

)
,
(
6̄, 1,−1

3

)}
V5-(xi) (ψ1, ψ2) = (u, e) Φ ∈

(
3̄, 1, 1

3

)
V5-(xii) (ψ1, ψ2) = (d, e) Φ ∈

(
3̄, 1, 4

3

)
V5-(xiii) (ψ1, ψ2) = (q̄, e) Φ ∈

(
3, 2, 7

6

)
V5-(xiv) (ψ1, ψ2) = (l̄, u) Φ ∈

(
3̄, 2,−7

6

)
V5-(xv) (ψ1, ψ2) = (l̄, d) Φ ∈

(
3̄, 2,−1

6

)

ψ

φ

Ψ

V6-(i) φ = H(1,2, 12), ψ = l Ψ ∈ {(1, 1, 0), (1, 3, 0)}

V6-(ii) φ = H, ψ = e Ψ ∈
(
1, 2, 1

2

)
V6-(iii) φ = H, ψ = q Ψ ∈

{(
3̄, 1,−2

3

)
,
(
3̄, 3,−2

3

)}
V6-(iv) φ = H, ψ = u Ψ ∈

(
3̄, 2,−7

6

)
V6-(v) φ = H, ψ = d Ψ ∈

(
3̄, 2,−1

6

)
V6-(vi) φ = H†, ψ = l Ψ ∈ {(1, 1, 1), (1, 3, 1)}

V6-(vii) φ = H†, ψ = e Ψ ∈
(
1, 2, 3

2

)
V6-(viii) φ = H†, ψ = q Ψ ∈

{(
3̄, 1, 1

3

)
,
(
3̄, 3, 1

3

)}
V6-(ix) φ = H†, ψ = u Ψ ∈

(
3̄, 2,−1

6

)
V6-(x) φ = H†, ψ = d Ψ ∈

(
3̄, 2, 5

6

)
Table 3. Table 2 continued. Here, φi and ψi denote the SM Higgs and the SM fermions respectively,
whereas Φi and Ψi denote the various heavy scalars and heavy fermions.
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Vertex S. No. Light fields Heavy field(s)

ψ

Ψ

Φ

V7-(i) ψ = e(1,1,−1)
Φ ∈ (RC1 , RL1 , Y1), Ψ ∈ (RC2 , RL2 , Y2) with

RC1 ⊗RC2 ≡ 1, RL1 ⊗RL2 ≡ 1 and Y1 + Y2 = 1,

V7-(ii) ψ = l(1,2,− 1
2)

Φ ∈ (RC1 , RL1 , Y1), Ψ ∈ (RC2 , RL2 , Y2) with

RC1 ⊗RC2 ≡ 1, RL1 ⊗RL2 ≡ 2 and Y1 + Y2 = 1
2 ,

V7-(iii) ψ = d(3,1,− 1
3)

Φ ∈ (RC1 , RL1 , Y1), Ψ ∈ (RC2 , RL2 , Y2) with

RC1 ⊗RC2 ≡ 3̄, RL1 ⊗RL2 ≡ 1 and Y1 + Y2 = 1
3 ,

V7-(iv) ψ = u(3,1, 23)
Φ ∈ (RC1 , RL1 , Y1), Ψ ∈ (RC2 , RL2 , Y2) with

RC1 ⊗RC2 ≡ 3̄, RL1 ⊗RL2 ≡ 1 and Y1 + Y2 = −2
3 ,

V7-(v) ψ = q(3,2, 16)
Φ ∈ (RC1 , RL1 , Y1), Ψ ∈ (RC2 , RL2 , Y2) with

RC1 ⊗RC2 ≡ 3̄, RL1 ⊗RL2 ≡ 2 and Y1 + Y2 = −1
6 ,

Ψ2

Ψ1

φ V8 φ = H or H†

Ψ1 ∈ (RC1 , RL1 , Y1), Ψ2 ∈ (RC2 , RL2 , Y2)

with RC1 ⊗RC2 ≡ 1, RL1 ⊗RL2 ≡ 2

and Y1 + Y2 = ±1
2 ,

V9-(i) V = B(1,1,0) Ψ ∈ ({1, RC}, {1, RL}, Y )

V9-(ii) V = W(1,3,0) Ψ ∈ ({1, RC}, RL, {0, Y })

V9-(iii) V = G(8,1,0) Ψ ∈ (RC , {1, RL}, {0, Y })

Φ

Φ

V

V10-(i) V = B Φ ∈ ({1, RC}, {1, RL}, Y )

V10-(ii) V = W Φ ∈ ({1, RC}, RL, {0, Y })

V10-(iii) V = G Φ ∈ (RC , {1, RL}, {0, Y })

Φ

Φ

V

V

V11-(i) V = B Φ ∈ ({1, RC}, {1, RL}, Y )

V11-(ii) V = W Φ ∈ ({1, RC}, RL, {0, Y })

V11-(iii) V = G Φ ∈ (RC , {1, RL}, {0, Y })

Table 4. Table 3 continued. Here, φi, ψi and V denote the SM Higgs, the SM fermions and the SM
gauge bosons respectively, whereas Φi and Ψi denote the various heavy scalars and heavy fermions.
RC and RL denote SU(3)C and SU(2)L quantum numbers respectively and Y refers to the U(1)Y

hypercharge of the field.
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followed a well defined and economical approach. We have searched for the most
minimal way in which it can be shown that a particular operator receives non-zero
contributions from a single heavy field.

• Noting the fact that a particular heavy field can very well contribute to the same
operator through multiple channels, we have included only one relevant diagram4

exhibiting the connection between the two for every combination of heavy field and
effective operator.

• For individual operators, we have included diagrams built of only one kind of fun-
damental vertex and containing a single type of heavy field propagator among the
internal lines.

• While we have found this prescription to work for operator classes which are composed
of one type of fields, e.g., the φ6, X3 classes and certain operators of the ψ4 class,
we have been forced to relax the strict minimality criteria once we start examining
operator classes of non-trivial constitution. The shift from our notion of minimality
is necessary for the following scenarios:

– In situations where the number of heavy fields is still one but due to the appear-
ance of different SM fields as the external legs and the variety of ways in which
these legs can be permuted, the number of fundamental vertices involved in the
diagram is more than one. This has also been observed to lead to light-heavy
mixing in the loop.

– Situations where in a particular diagram a single vertex demands multiple heavy
field representations simultaneously. This mostly corresponds to those entries
of tables 2–4 that lead to Φi,Ψi ∈ (RCi , RLi , Yi) with strict conditions imposed
on these quantum numbers depending on the vertex.

– More dramatic departures where not only multiple heavy fields but sometimes
multi-loop diagrams also become necessary. Such cases have been addressed in
section 4.

• In passing, it must be mentioned that we have excluded the cases involving heavy
gauge bosons. This is because our focus is on minimal extensions of the SM and we
are not including scenarios that involve the breaking of some higher symmetry.

• We must emphasize that the results of tables 2–4 are necessary in order to understand
the results collected in tables 5–22.

– Each of these tables contains a list of heavy fields that can be back-traced from
a particular operator.

– Next to each operator we have attached the diagram it originates from. The
diagrams can denote pure heavy propagators at tree- or one-loop-level, as well
as light-heavy mixing in the loops

4Here, relevant refers to diagrams that yield non-zero contributions. Also, it must be noted that since we
have not discussed the relative strengths of the coupling constants that may appear at particular vertices,
all diagrams at a certain order have been treated on an equal footing.
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– Corresponding to each heavy field appearing from a diagram we have also listed
the vertex or the group of vertices constituting the diagram that involves the
particular heavy field.

– For ease of readability we have established hyperlinks to the entries of tables 2–4,
so that one can suitably verify the appearance of the heavy field.

3.1 φ6

Being consistent with our idea of minimality, we have tried to identify heavy fields that
can lead to QH = (H†H)3 through tree- and one-loop-level diagrams built of the smallest
number of fundamental vertices listed in table 2. We have collected our results in table 5
and the following are salient points related to the results:

• Our notion of minimality restricts us to the following diagrams:
1. Figure 3i — a tree-level diagram containing only quartic scalar vertices joined

by a heavy propagator.
2. Figure 3vi — one-loop-level diagram containing only trilinear scalar vertices.

This presents two distinct sub-cases involving
(a) light-heavy mixing in the loop between the SM scalar and the heavy scalar.
(b) mixing between two distinct heavy fields in the loop. This corresponds to

the case where the UV theory has a degenerate spectrum. We have mostly
avoided such cases in the remainder of this paper.

3. Figure 3vii — one-loop-level diagram containing only quartic scalar vertices.
This contains both heavy-heavy mixing as well as a single heavy field in the loop.

• A simple inspection reveals that the heavy field representations obtained from fig-
ure 3vi do in fact appear at tree-level through figure 3ii but this has not been included
here as it contains both trilinear as well as quartic scalar vertices, therefore not being
a minimal option.

• Specific heavy field representations are fixed using the contents of table 2 as well as by
noting the permutations of the external legs of the effective operator in the unfolded
diagrams. For instance, if we consider the tree-level diagram in table 5, then different
heavy fields emerge based on whether we have H3 or H2H† on one of the vertices.
To highlight these differences we have separated the multiple heavy fields embedded
in the same diagram through a dashed line in the tables and we have also referenced
the specific vertices involved next to them.

• It must be noted that in each diagram in tables 5–22, the black and pink lines
represent light and heavy fields respectively.

3.2 φ4D2

This class contains two operators QH� and QHD. In both cases, the external states contain
4 scalars and 2 derivatives. The difference is that in the first case the derivatives are Lorentz
contracted together to form the D2 operator, whereas in the second case the derivatives
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QH : (H†H)3

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(1, 3, 1), (1, 1, 1)
φ4

φ5

φ6φ3

φ1

φ2

V1-(i)
(
1, 4, 3

2

)
,
(
1, 2, 3

2

)
φ1

φ2

φ3

φ6

φ5

φ4

V3-(i)

(1, 3, 0), (1, 1, 0) V1-(ii)
(
1, 4, 1

2

)
,
(
1, 2, 1

2

)
V3-(ii)

(RC2 , RL2 , Y2)⊕
φ4

φ5

φ6φ3

φ1

φ2 V2

({1, RC}, {1, RL}, {0, Y })

φ2 φ5

φ3

φ1 φ4

φ6

V4-(i)

(RC3 , RL3 , Y3)

(RC3 , RL3 , Y3)⊕
V4-(ii)

(RC4 , RL4 , Y4)

Table 5. Heavy field representations that are obtained by unfolding the φ6 operator into non-trivial
tree- and (or) one-loop-level diagrams and the corresponding vertices.

act on separate fields. Due to this, we get an extra diagram for QHD with heavy-heavy
mixing of fermions in the loop. Tree level diagrams with a heavy scalar propagator and
one-loop-level diagrams with heavy scalar as well as heavy-heavy mixing are common to
both operators. Specifically, looking at figure 4, the following diagrams appear:

1. Tree-level diagrams: figures 4i and 4ii — Both diagrams contain trilinear scalar
vertices and a scalar propagator but in the first case the derivatives are contracted
together whereas in the second case they act on separate fields.

2. One-loop diagrams

(a) Figure 4iii — This diagram contains trilinear scalar vertices and a scalar loop
with the derivatives contracted together.

(b) Figure 4iv — This diagram contains quartic scalar vertices and a scalar loop
with the derivatives contracted together.

(c) Figure 4v — This diagram contains trilinear scalar vertices and a scalar loop
with the derivatives acting on separate fields.

(d) Figure 4vi — This diagram contains quartic scalar vertices and a scalar loop
with the derivatives acting on separate fields.

(e) Figure 4vii — This diagram contains Yukawa-like vertices and a fermion loop
with the derivatives acting on separate fields.
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QH� : (H†H)�(H†H) QHD : (H†DµH)(H†DµH)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(1, 3, 1), (1, 1, 1)

φ1

φ2 φ3

φ4

V1-(i) (1, 3, 1), (1, 1, 1)

φ1

φ2 φ3

φ4

V1-(i)

(1, 3, 0), (1, 1, 0) V1-(ii) (1, 3, 0), (1, 1, 0) V1-(ii)

(RC2 , RL2 , Y2)⊕

φ4

φ3φ2

φ1

V2

(RC2 , RL2 , Y2)⊕ φ2

φ1 φ4

φ3

V2(RC3 , RL3 , Y3) (RC3 , RL3 , Y3)

({1, RC}, {1, RL}, {0, Y })

φ1

φ2

φ4

φ3
V4-(i) ({1, RC}, {1, RL}, {0, Y })

φ1

φ2 φ3

φ4

V4-(i)

(RC3 , RL3 , Y3)⊕
V4-(ii)

(RC3 , RL3 , Y3)⊕
V4-(ii)

(RC4 , RL4 , Y4) (RC4 , RL4 , Y4)

φ4

φ3φ2

φ1

V8
No allowed heavy fermion representation(s)

(RC1 , RL1 , Y1)⊕
in this case, unlike QHD

(RC2 , RL2 , Y2)

Table 6. Heavy field representations that are obtained by unfolding the φ4D2 operators into non-
trivial tree- and (or) one-loop-level diagrams and the corresponding vertices. The entries for the
operators QH� and QHD have been presented side by side to allow for an easy comparison between
the two.

Figures 4i, 4iii and 4iv contribute to QH�, while figures 4ii, 4v, 4vi and 4vii contribute
to QHD. Representations of the heavy fields are once again fixed using the contents of
tables 2 and 4. The detailed results have been collected in table 6.

3.3 ψ2φ3

This class contains 3 operators — QdH , QuH and QeH . Following the scheme of unfolding
operators into tree and (or) loop-level diagrams constituted of invariant renormalizable,
the emergence of heavy fields is minimally described by the following diagrams:

1. Figure 5i — It appears in all three operators and in all 3 cases furnishes a heavy scalar
with identical quantum numbers as the SM Higgs, or in other words, the heavy scalar
corresponds to the two-Higgs-doublet Model [58, 59]. The vertices involved are the
Yukawa vertex and the quartic scalar vertex.

2. Figure 5v — This loop diagram appears in 3 different variations:
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φ4 φ2

φ1

ψ2

φ1

φ2 φ4

φ3

Figure 11. Implementing the equation of motion of the scalar field to relate (H†H) (H†D2H) to
operators of the ψ2 φ3 class.

(a) With a heavy scalar coupling with the SM fermions,
(b) With a single heavy fermion propagator in the loop coupling with the SM

fermions as well as the SM scalar, and
(c) With 2 heavy fermion propagators in the loop, both having the same represen-

tations.

Specific results have been described in table 7.

Taking equations of motion into account: the schematic effective operators for φ4D2

shown in figure 2vi can be interpreted in different ways. We have already discussed the cases
where the individual derivatives, as well as the D2 operator, act on the heavy field. If we fo-
cus on the case where D2 acts on an external SM scalar, i.e., the operator (H†H) (H†D2H),
then based on the equation of motion [3, 60]:

D2H ⊃ ypre lp er + yprd qp dr + ypru up qr, (3.1)

we can establish a connection between this operator and operators of the ψ2φ3 class. Fig-
ure 11 shows this connection schematically.

Due to this EOM, the heavy fields emerging from the unfolding of (H†H) (H†D2H)
into tree and loop level diagrams can, in fact, be connected to QeH , QdH and QuH . There
are a couple of noteworthy points:

• The heavy fields which have now been connected to the ψ2φ3 class are different from
the ones obtained when individual operators of this class were unfolded into diagrams
using renormalizable vertices.

• Heavy field representations discussed previously in table 7 involve certain cases which
correspond to only one of the three operators QeH , QdH or QuH but heavy fields
obtained from the unfolding of (H†H) (H†D2H) relate simultaneously to all three
ψ2φ3 operators.

In table 8, we have listed the heavy fields appearing through the following diagrams:

1. Tree level diagram with a single heavy propagator between trilinear scalar vertices.

2. One-loop diagram comprised only of trilinear scalar vertices and involving light-heavy
mixing in the loop.
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QdH : (H†H) (qp drH) QuH : (H†H) (qp ur H̃)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
1, 2, 1

2

) ψ1

ψ2

φ1

φ2

φ3

V5-(vii), V3-(ii)
(
1, 2, 1

2

) ψ1

ψ2

φ1

φ2

φ3

V5-(viii), V3-(ii)

(
6, 1, 1

3

)
,

ψ1 ψ2

φ1

φ2

φ3

V5-(v), V5-(x)

(
3, 2, 7

6

)
ψ1 ψ2

φ1

φ2

φ3

V5-(xiii), V5-(xiv)

(
3, 1,−1

3

) (
3, 1,−1

3

)
,

V5-(v), V5-(x)(
6, 1, 1

3

)
(
3, 2, 7

6

)
ψ1 ψ2

φ1

φ2

φ3

V6-(iv) (
3, 2,−5

6

) ψ1 ψ2

φ1

φ2

φ3

V6-(x)(
3, 3,−1

3

)
V6-(viii)

(
3, 2,−5

6

)
ψ1 ψ2

φ1

φ2

φ3

V6-(x) (
3, 1,−1

3

)
,

ψ1 ψ2

φ1

φ2

φ3

V6-(viii)(
3, 1,−2

3

)
,

V6-(iii)

(
3, 3,−1

3

)
(
3, 3,−2

3

)

QeH : (H†H) (lp erH)

Heavy fields Diagram Vertices

(
1, 2, 1

2

) ψ1

ψ2

φ1

φ2

φ3

V5-(vi), V3-(ii)

(
3, 2, 7

6

) ψ1 ψ2

φ1

φ2

φ3

V5-(xiii), V5-(xiv)

(1, 1, 0), (1, 3, 0)

ψ1 ψ2

φ1

φ2

φ3

V6-(i)

Table 7. Heavy field representations that are obtained by unfolding the ψ2φ3 operators into non-
trivial tree- and (or) one-loop-level diagrams and the corresponding vertices.
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3. One-loop diagram comprised only of Yukawa vertices and involving light-heavy mix-
ing among fermions in the loop.

4. One-loop diagram comprised of quartic scalar vertices and a heavy loop.

3.4 ψ2φ2D

The presence of Dµ and γµ within the effective operators of this class, see figure 2iv,
indicates that the diagrams leading to these operators must involve vector bosons. Since
we are not taking into account scenarios involving heavy gauge bosons, the heavy scalar or
fermion appears in a loop and couples to the SM gauge bosons which in turn couple with
the external states, see figures 6i and 6ii. Representations of the heavy field are fixed as
follows:

• Choice of the external fermion in the effective operator determines the intermediate
vector boson. SU(2) singlet fermions couple only with Bµ, whereas SU(2) doublets
couple with both Bµ and W I

µ . Since the SM scalar is SU(3) singlet, GAµ does not
appear.

• Fixing the gauge boson ultimately sets the heavy field representations in accordance
with the results of table 4.

Results have been collected in table 9.

3.5 φ2X2

Given the external legs of the effective operator, see figure 2v, and keeping in mind that
there is no mixing in the kinetic sector of the renormalizable Lagrangian, heavy fields
emerge only through one-loop-level diagrams, more specifically:

• Figure 7iv, which involves trilinear scalar vertices and vertices that couple scalars
with gauge bosons. Heavy fields appear through light-heavy mixing within the loop,
and the vector bosons coupling with the light field.

• Figure 7vii involves Yukawa like vertices connecting the SM scalar with two fermions
and vertices emerging from fermion kinetic terms. Heavy fields once again emerge
through light-heavy mixing but we encounter two distinct cases:

1. Vector bosons coupling with the light (SM) fermion.
2. Vector bosons coupling with the heavy fermion.

• Figure 7x contains quartic scalar interaction as well as coupling between scalars and
gauge bosons. The heavy field appears in the loop (with no mixing).

In each case, the choice of the vector bosons, as well as the light SM fields in the loop,
dictates the allowed representations of the heavy fields. We have collected our results in
tables 10 and 11.
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QeH : (H†H)(lp erH), QuH : (H†H)(qp ur H̃), QdH : (H†H)(qp drH)

Heavy fields Diagram Vertices

(1,3,1)
φ1

φ2 φ4

φ3

≡
φ1

φ4 φ2

V1-(i)

(1,3,0) V1-(ii)

(1,1,1)
φ1

φ2 φ4

φ3

≡

φ4 φ2

φ1
ψ2

V1-(i)

(1,1,0) V1-(ii)

(1,1,0), (1,3,0)
φ1

φ2 φ4

φ3

≡

φ4 φ2

φ1
ψ2

V6-(i)

(1,1,1), (1,3,1) V6-(vi)

({1, RC}, RL, {0, Y })

φ1

φ2 φ4

φ3

≡

φ4 φ2

φ1
ψ2

V4-(i)

Table 8. Heavy field representations that indirectly provide non-zero contributions to the ψ2φ3

operators when the equation of motion of the SM Higgs is implemented, in the process of unfolding
φ4D2 class of operators. Also, listed are the vertices corresponding to the diagrams.
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QHψ/Q
(1)
Hψ : (H† i←→DµH)(ψ γµ ψ)

ψ Heavy fields Diagram Vertices ψ Heavy fields Diagram Vertices

q

({1, RC}, {1, RL}, Y )

φ2

V9-(i)

q

({1, RC}, {1, RL}, Y )

φ2

V10-(i)

u u

d d

l l

e e

Q(3)
Hψ : (H†i

←→
DIµH)(ψ γµ τ I ψ)

ψ Heavy fields Diagram Vertices ψ Heavy fields Diagram Vertices

q

({1, RC}, RL, {0, Y })

φ2

V9-(ii)

q

({1, RC}, RL, {0, Y })

φ2

V10-(ii)

l l

Table 9. Heavy field representations that are obtained by unfolding the ψ2φ2D operators into
non-trivial one-loop-level diagrams and the corresponding vertices. In each sub-table, operators
with different fermions as external legs but leading to identical heavy field representations through
similar diagrams have been grouped together. The headers schematically describe the covariant
forms of the operators.

3.6 ψ4

Restricting ourselves to only baryon and lepton number conserving operators, we can sub-
divide the ψ4 operators into several sub-categories based on the chirality of the fields
constituting the individual operators. The representations of the heavy fields from which
the origin of these operators can be retraced also vary based on the kind of fermion bilinears
that can be identified within each operator.

(i) (LL̄) (LL̄): this subclass contains operators constituted solely of the isospin doublet
fermions l, q and their conjugates, i.e., the operators — Qll, Q(1)

lq , Q(3)
lq , Q(1)

qq , Q(3)
qq . In the

Warsaw basis [3], these operators are expressed as the Lorentz contraction of two 4-vectors
each of them being fermion bilinears of the form ψ γµ ψ. This also indicates that unfolding
these operators must incorporate the SM vector bosons and heavy fields appear in the form
of scalar or fermion loops coupling to these vector bosons.
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QHG : (H†H) (GAµν GAµν)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
3, 1, 2

3

)
,
(
3, 3, 2

3

)
φ1 φ2

X X

V6-(iii)

(RC , {1, RL}, {0, Y })

φ1

φ2

X

X

V1-(ii),

(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)

V10-(iii)

(
3, 2, 7

6

)
V6-(iv)

(
3, 2, 1

6

)
V6-(v), V6-(ix)

(
3, 2,−5

6

)
V6-(x)

QHW : (H†H) (W I
µνW

Iµν)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(1, 3, 1), (1, 1, 1)
φ1 φ2

X X

V1-(i)

(
3, 1, 2

3

)
,
(
3, 3, 2

3

)
φ1 φ2

X X

V6-(iii)

(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)

(1, 3, 0), (1, 1, 0) V1-(ii)
(1, 3, 0), (1, 1, 0) V6-(i)

(1, 3, 1), (1, 1, 1) V6-(vi)

(
3, 2, 7

6

)
φ1 φ2

X X

V6-(iv)

({1, RC}, RL, {0, Y })

φ1

φ2

X

X

V1-(ii),

(
3, 2, 1

6

)
V6-(v), V6-(ix)

V10-(ii)

(
3, 2,−5

6

)
V6-(x)

(
1, 2, 1

2

)
V6-(ii)

(
1, 2, 3

2

)
V6-(vii)

QHB : (H†H) (Bµν Bµν)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
3, 1, 2

3

)
,
(
3, 3, 2

3

)

φ1 φ2

X X

V6-(iii)
(1, 3, 1), (1, 1, 1)

φ1 φ2

X X

V1-(i)(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)

(
3, 2, 7

6

)
V6-(iv)

(1, 3, 0), (1, 1, 0) V1-(ii)(
3, 2, 1

6

)
V6-(v), V6-(ix)

(
3, 2,−5

6

)
V6-(x)

({1, RC}, {1, RL}, Y )

φ1

φ2

X

X

V1-(ii),

(
1, 2, 1

2

)
V6-(ii)

V10-(i)

(
1, 2, 3

2

)
V6-(vii)

(1, 3, 0), (1, 1, 0) V6-(i)

(1, 3, 1), (1, 1, 1) V6-(vi)

Table 10. Heavy field representations that are obtained by unfolding the φ2X2 operators into
non-trivial one-loop-level diagrams and the corresponding vertices.
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QHWB : (H† τ I H) (W I
µν B

µν)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(1, 3, 1), (1, 1, 1)
φ1 φ2

X X

V1-(i)

(
3, 1, 2

3

)
,
(
3, 3, 2

3

)
φ1 φ2

X X

V6-(iii)

(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)

(1, 3, 0), (1, 1, 0) V1-(ii)
(1, 3, 0), (1, 1, 0) V6-(i)

(1, 3, 1), (1, 1, 1) V6-(vi)

(
3, 2, 7

6

)
φ1 φ2

X X

V6-(iv)

({1, RC}, RL, Y )

φ1

φ2

X

X

V1-(ii),(
3, 2, 1

6

)
V6-(v), V6-(ix)

V10-(i),(
3, 2,−5

6

)
V6-(x)

V10-(ii)(
1, 2, 1

2

)
V6-(ii)

(
1, 2, 3

2

)
V6-(vii)

Table 11. Table 10 continued.

The choice of the vector boson is based on whether the fermion bilinears in the partic-
ular operator transform as singlets or as triplets under weak isospin SU(2). Therefore, Qll,
Q(1)
lq and Q(1)

qq involve Bµ whereas Q(3)
lq and Q(3)

qq (whose constituent fermion bilinears have
the form ψ γµ τ

I ψ) involve W I
µ in their respective unfolded diagrams. Fixing the vector

boson ultimately fixes the representations in accordance with the results of table 4. The
presence of an SM vector boson at each vertex also enforces the conservation of fermion
flavour.

One can note the absence of an operator Q(3)
ll of the form (lp γµ τ I lr) (ls γµ τ I lt) by

examining the following equations:

(lp γµ τ I lr) (ls γµ τ I lt) = (lp γµ lt) (ls γµ lr)−
1
2(lp γµ lr) (ls γµ lt),

(lp γµ τ I lr) (qs γµ τ I qt) = (lp γµ qt) (qs γµ lr)−
1
2(lp γµ lr) (qs γµ qt). (3.2)

Here, we have used the Fierz relations for the SU(2) generators (τ I)ij(τ I)kl = δil δ
k
j−

1
2δ
i
j δ

k
l. In the first equation, both terms on the right are identical with just the flavour

indices shuffled. Thus, the first equation only relates two quantities so the operator basis
can only include one of these. On the other hand, the second equation connects three
different quantities, hence the operator basis can only include two of these. This explains
why there are two operators Q(1),(3)

lq with the same external states but only one operator
Qll. And consequently, the absence of W I

µ in the diagrams with l and l as external lines
on both vertices is explained. A similar argument explains the absence of an operator of
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J
H
E
P
0
6
(
2
0
2
1
)
0
3
3

Qψ1ψ2/Q
(1)
ψ1ψ2

: (ψ1 γ
µ ψ1) (ψ2 γµ ψ2)

ψ1 ψ2 Heavy fields Diagram Vertices Heavy fields Diagram Vertices

q q

({1, RC}, {1, RL}, Y )
ψ2

V9-(i) ({1, RC}, {1, RL}, Y )
ψ2

V10-(i)l l

q l

Q(3)
ψ1ψ2

: (ψ1 γ
µ τ I ψ1) (ψ2 γµ τ

I ψ2)

ψ1 ψ2 Heavy fields Diagram Vertices Heavy fields Diagram Vertices

q l

({1, RC}, RL, {0, Y })

ψ2

V9-(ii) ({1, RC}, RL, {0, Y })

ψ2

V10-(ii)

q q

Table 12. Heavy field representations that are obtained by unfolding the ψ4 operators, composed
of the left chiral SM fermions q and l, into non-trivial one-loop-level diagrams and the corresponding
vertices. In each sub-table, operators with different fermions as external legs but leading to identical
heavy field representations through similar diagrams have been grouped together. The headers
schematically describe the covariant forms of the operators.

the form (qp γµ TA qr)(qs γµ TA qt) and consequently the lack of a diagram involving GAµ .
Complete results for these operators have been presented in a condensed form in table 12.

The form in which these operators appear within the SMEFT dimension-6 operator
basis can only allow vector boson propagators in the unfolded diagrams but the “external
states” corresponding to these same operators can also be obtained from tree-level processes
involving a scalar propagator. The corresponding results have been highlighted in table 13.

(ii) (RR̄) (RR̄): this subclass contains operators constituted solely of the isospin singlet
fermions u, d, e and their conjugates, i.e., the operators — Qee, Quu, Qdd, Qeu, Qed, Q(1)

ud ,
Q(8)
ud . These operators are also expressed as the Lorentz contraction of two 4-vectors each of

them being fermion bilinears of the form ψ γµ ψ. Therefore their unfolding incorporate the
SM vector bosons and heavy fields appear in the form of scalar or fermion loops coupling
to these vector bosons.

The diagrams corresponding to Q(8)
ud incorporate GAµ , while those for the rest of the

operators incorporate Bµ. Since all these fermions are isospin singlets, W I
µ does not appear

in any diagram. The results have been succinctly collected in table 14.
Additionally, “the external states” corresponding to these same operators can also be

obtained from tree-level processes involving a scalar propagator. The corresponding results
have been collected in table 13.
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0
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(
2
0
2
1
)
0
3
3

Qψ1ψ2ψ3ψ4 : (ψ1C ψ2) (ψ3C ψ4) / (ψ1C τ
I ψ)2 (ψ3C τ

I ψ4)

(ψ1, ψ2) (ψ3, ψ4) Heavy fields Diagram Vertices

(l, l) (l, l) (1, 1, 1), (1, 3, 1)

ψ1 ψ2

ψ3 ψ4

V5-(ii)

(l, q) (l, q)
(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V5-(ix)

(q, q) (q, q)

(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
,

V5-(v)(
6, 1,−1

3

)
,
(
6, 3,−1

3

)
Table 13. Heavy field representations that are obtained by unfolding the ψ4 operators, composed
of the left chiral SM fermions q and l, into a tree-level diagram yielding non-zero contributions and
the corresponding vertices that constitute the diagram for individual cases. The operators have
different fermions as external legs but they unfold through similar diagrams. The table header
schematically describes the covariant forms of the operators.

(iii) (LL̄) (RR̄): there are two different ways of expressing the operators of this subclass
as products of fermion bilinears:

1. The first one is similar to the previous two cases with bilinears of the form ψ γµ ψ

and with the SM vector bosons in the diagrams. The diagrams corresponding to
Q(8)
qu and Q(8)

qd incorporate GAµ , while those for the rest of the operators incorporate
Bµ. Since in each operator two fermions are isospin singlets, W I

µ does not appear in
any diagram. Once again these diagrams have flavour conservation imposed at each
vertex. The corresponding results are collected in table 16.

2. For operators of this subclass, instead of forming fermion bilinears of the form
ψ γµ ψ which transform as 4-vectors under Lorentz transformations, we can con-
struct Lorentz scalars of the form ψ1 ψ2, where ψ1 and ψ2 have opposite chirality. As
a result of this, in the unfolded diagram we can have the vertex ψ1 ψ2 φ instead of
ψ γµ ψ V

µ. This brings into light a few interesting points:

• The presence of a Yukawa like vertex allows for the possibility of flavour vio-
lation.

• This rearrangement of external legs also allows the appearance of certain heavy
scalars at the tree-level itself.

• Even though operators of the form (ψ1 ψ2) (ψ2 ψ1) may appear to be unique
with respect to those of the form (ψ1 γµ ψ1) (ψ2 γ

µ ψ2), they are actually inter-
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3
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Qψ1ψ2/Q
(1)
ψ1ψ2

: (ψ1 γ
µ ψ1) (ψ2 γµ ψ2)

ψ1 ψ2 Heavy fields Diagram Vertices Heavy fields Diagram Vertices

e e

({1, RC}, {1, RL}, Y )

ψ2

V9-(i) ({1, RC}, {1, RL}, Y )

ψ2

V10-(i)

u u

d d

e u

e d

u d

Q(8)
ψ1ψ2

: (ψ1 γ
µ TA ψ1) (ψ2 γµ T

A ψ2)

ψ1 ψ2 Heavy fields Diagram Vertices Heavy fields Diagram Vertices

u d (RC , {1, RL}, {0, Y })
ψ2

V9-(iii) (RC , {1, RL}, {0, Y })
ψ2

V10-(iii)

Table 14. Heavy field representations that are obtained by unfolding the ψ4 operators, composed
of the right chiral SM fermions e, u and d, into non-trivial one-loop-level diagrams and the corre-
sponding vertices. In each sub-table, operators with different fermions as external legs but leading
to identical heavy field representations through similar diagrams have been grouped together. The
headers schematically describe the covariant forms of the operators.

related through the Fierz relations of the γµ-matrices or more appropriately5

the relations of the σµ (≡ (12×2, ~σ)) as shown below:

(σµ)αα̇ (σµ)ββ̇ = 2 εαβ εα̇β̇ , (σµ)αα̇ (σµ)β̇β = 2 δβα δ
β̇
α̇, (σµ)α̇α (σµ)β̇β = 2 εαβ εα̇β̇ .

(3.3)
Using these we can show, for instance:

(d γµ d)(q γµ q) = (dα σµαα̇ dα̇) (qβ̇ σ
µβ̇β qβ) = 2 (dα qβ qβ̇ d

α̇) δβα δ
β̇
α̇ = 2 (d q) (q d),

(d γµ TA d)(q γµ TA q) = (dα σµαα̇ TA dα̇) (qβ̇ T
A σµβ̇β qβ) = 2 dα TA qβ qβ̇ T

Adα̇ δβα δ
β̇
α̇

= 2 (d TA q) (q TA d).
(3.4)

5It must be kept in mind that when we are speaking of σµ and γµ in the same sentence, it is implied
that we are working in the Weyl basis, where γµ =

(
0 σµ

σµ 0

)
and for conveniently going between 2- and 4-

component notation of fermions, we can understand a 4-component left-chiral fermion as one with the last
two entries 0. Similarly, a 4-component right chiral fermion would have its first two entries as 0.
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Qψ1ψ2ψ3ψ4 : (ψ1C ψ2) (ψ3C ψ4) / (ψ1C T
A ψ2) (ψ3C T

A ψ4)

(ψ1, ψ2) (ψ3, ψ4) Heavy fields Diagram Vertices

(e, e) (e, e) (1, 1, 2)

ψ1 ψ2

ψ3 ψ4

V5-(i)

(e, u) (e, u)
(
3, 1, 1

3

)
V5-(xi)

(e, d) (e, d)
(
3, 1, 4

3

)
V5-(xii)

(d, d) (d, d)
(
3, 1, 2

3

)
,
(
6, 1, 2

3

)
V5-(iii)

(u, u) (u, u)
(
3, 1,−4

3

)
,
(
6, 1,−4

3

)
V5-(iv)

(u, d) (u, d)
(
3, 1,−1

3

)
,
(
6, 1,−1

3

)
V5-(x)

Table 15. Heavy field representations that are obtained by unfolding the ψ4 operators, composed of
the right chiral SM fermions e, u and d, into a non-trivial tree-level diagram and the corresponding
vertices for individual cases. The operators have different fermions as external legs but they unfold
through similar diagrams. The table header schematically describes the covariant forms of the
operators.

Hence, we can easily modify the form of the operators while staying within the
confines of the complete and independent Warsaw basis [3].

In table 16, the heavy field representations obtained were common for the operators
Qle, Qlu, Qld, Qqe, Q(1)

qu and Q(1)
qd , and similarly for the operators Q(8)

qu and Q(8)
qd but

after rearranging each operator in the manner suggested in eq. (3.4), we observe that
there are heavy field representations which are common to some operators and other
representations which are unique to certain operators. The specific results for each
case have been catalogued in tables 17 and 18. In a minimal setting, the following
diagrams appear for each case:
(a) Figure 8i which is a tree level diagram containing a heavy scalar propagator.
(b) Figure 8ii with light-heavy mixing in the loop involving a single heavy fermion

propagator along with the SM scalar and an SM fermion.
(c) Figure 8ii with light-heavy mixing in the loop involving heavy scalar propagators

and light SM fermion propagators.

(iv) (LR̄) (RL̄), (L̄R) (L̄R): the first of these two subclasses contains a single operator
Qledq and it allows heavy scalars with specific quantum numbers to appear through tree
as well as loop diagrams.
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Qψ1ψ2/Q
(1)
ψ1ψ2

: (ψ1 γ
µ ψ1) (ψ2 γµ ψ2)

ψ1 ψ2 Heavy fields Diagram Vertices Heavy fields Diagram Vertices

l e

({1, RC}, {1, RL}, Y )

ψ2

V9-(i) ({1, RC}, {1, RL}, Y )

ψ2

V10-(i)

l u

l d

q e

q u

q d

Q(8)
ψ1ψ2

: (ψ1 γ
µ TA ψ1) (ψ2 γµ T

A ψ2)

ψ1 ψ2 Heavy fields Diagram Vertices Heavy fields Diagram Vertices

q u

(RC , {1, RL}, {0, Y })

ψ2

V9-(iii) (RC , {1, RL}, {0, Y })

ψ2

V10-(iii)

q d

Table 16. Heavy field representations that are obtained by unfolding the ψ4 operators, composed
of both left and the right chiral SM fermions, into non-trivial one-loop-level diagrams and the
corresponding vertices. Each of the processes highlighted here are flavour conserving. In each
sub-table, operators with different fermions as external legs but leading to identical heavy field
representations through similar diagrams have been grouped together. The headers schematically
describe the covariant forms of the operators.

The other subclass contains four operators Q(1)
quqd, Q

(8)
quqd, Q

(1)
lequ, Q

(3)
lequ. The first three

of these admit heavy scalars through tree-level processes. Different representations are
obtained by permuting the external legs suitably. Q(3)

lequ is built of non-trivial tensor struc-
tures and therefore requires special attention. The results corresponding to Qledq, Q(1)

quqd,
Q(8)
quqd and Q(1)

lequ have been collected in table 19.

One can observe that Q(3)
lequ ≡ (ljp σµν er) εjk (qks σµν ut) contains the same external

states as Q(1)
lequ ≡ (ljp er) εjk (qks ut) and the operator (ljp ur) εjk (qks et). Also, Q

(3)
lequ is related

to these 2 operators as shown below:

(l̄j σµν e) εjk (q̄k σµν u) = [(l̄j)α (σµν)βα (e)β ] εjk [(q̄k)ρ (σµν)θρ (u)θ]

= [(l̄j)α (σµ)αβ̇ (σν)β̇β (e)β ] εjk [(q̄k)ρ (σµ)ρθ̇ (σν)θ̇θ (u)θ]

= 4 (l̄j e) εjk (q̄k u)− 8 (l̄j u) εjk (q̄k e) . (3.5)
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(
2
0
2
1
)
0
3
3

Qle : (lp γµ lr)(es γµ et) Qld : (lp γµ lr)(ds γµ dt)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
1, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(vi)
(
3, 2, 1

6

) ψ1 ψ2

ψ3 ψ4

V5-(xvi)

(1, 3, 0), (1, 1, 0)
ψ1 ψ3

ψ2 ψ4

V6-(i) (1, 3, 0), (1, 1, 0)
ψ1 ψ3

ψ2 ψ4

V6-(i)

(1, 3, 1), (1, 1, 1) V6-(vi) (1, 3, 1), (1, 1, 1) V6-(vi)(
1, 2, 1

2

)
V6-(ii)

(
3, 2, 1

6

)
V6-(v)(

1, 2, 3
2

)
V6-(vii)

(
3, 2,−5

6

)
V6-(x)

(
3, 2, 7

6

)
ψ1 ψ3

ψ2 ψ4

V5-(xiii), V5-(xiv) (
3, 1,−1

3

) ψ1 ψ3

ψ2 ψ4

V5-(ix), V5-(x)(
3, 1,−1

3

)
V5-(ix), V5-(xi)

Qlu : (lp γµ lr)(us γµ ut) Qqe : (qp γµ qr)(es γµ et)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
3, 2, 7

6

) ψ1 ψ2

ψ3 ψ4

V5-(xiv)
(
3, 2, 7

6

) ψ1 ψ2

ψ3 ψ4

V5-(xiv)

(1, 3, 0), (1, 1, 0)
ψ1 ψ3

ψ2 ψ4

V6-(i)
(
3, 1, 2

3

)
,
(
3, 3, 2

3

)
ψ1 ψ3

ψ2 ψ4

V6-(iii)

(1, 3, 1), (1, 1, 1) V6-(vi)
(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)(

3, 2, 7
6

)
V6-(iv)

(
1, 2, 1

2

)
V6-(ii)(

3, 2, 1
6

)
V6-(ix)

(
1, 2, 3

2

)
V6-(vii)

(
3, 1,−1

3

) ψ1 ψ3

ψ2 ψ4

V5-(ix), V5-(x) (
3, 1,−1

3

) ψ1 ψ3

ψ2 ψ4

V5-(ix), V5-(xi)

V5-(ix), V5-(xi) V5-(v), V5-(xi)

Table 17. Heavy field representations that are obtained by unfolding the ψ4 operators, composed
of both left and right chiral SM fermions, into non-trivial tree- and (or) one-loop-level diagrams and
the corresponding vertices. These diagrams are obtained after the form of the operators have been
modified using Fierz identities. The processes highlighted here can allow for flavour violation. Each
sub-table within the 2 × 2 grid corresponds to a different operator as mentioned in the respective
headers.
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Q(1)
qu : (qp γµ qr)(us γµ ut) Q(1)

qd : (qp γµ qr)(ds γµ dt)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
1, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(viii)
(
1, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(vii)

(
3, 1, 2

3

)
,
(
3, 3, 2

3

)
ψ1 ψ3

ψ2 ψ4

V6-(iii)
(
3, 1, 2

3

)
,
(
3, 3, 2

3

)
ψ1 ψ3

ψ2 ψ4

V6-(iii)

(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)

(
3, 1,−1

3

)
,
(
3, 3,−1

3

)
V6-(viii)

(
3, 2, 7

6

)
V6-(iv)

(
3, 2, 1

6

)
V6-(v)

(
3, 2, 1

6

)
V6-(ix)

(
3, 2,−5

6

)
V6-(x)

(
3, 1,−1

3

)
ψ1 ψ3

ψ2 ψ4

V5-(ix), V5-(x) (
3, 1,−1

3

)
ψ1 ψ3

ψ2 ψ4

V5-(ix), V5-(x)

V5-(v), V5-(x) V5-(v), V5-(x)

V5-(ix), V5-(xi)

V5-(v), V5-(xi) (
6, 1, 1

3

)
V5-(v), V5-(x)(

6, 1, 1
3

)
V5-(v), V5-(x)

(
3, 2, 7

6

)
V5-(xiii), V5-(xiv)

Q(8)
qu : (qp γµ TA qr)(us γµ TA ut) Q(8)

qd : (qp γµ TA qr)(ds γµ TA dt)

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(
8, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(viii)
(
8, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(vii)

Table 18. Table 17 continued. A side by side comparison displays the similarities as well as the
differences between the heavy field representations that can be obtained from operators that differ
only with respect to the substitution of the up-quark for the down-quark.
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Qledq : (ljp er)(ds qtj)

Heavy fields Diagram Vertices

(
1, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(vi), V5-(vii)

(
3, 1,−1

3

) ψ1 ψ3

ψ2 ψ4

V5-(v), V5-(ix), V5-(x), V5-(xi)

Q(1)
quqd : (qjp ur)εjk(qks dt)

Heavy fields Diagram Vertices

(
1, 2, 1

2

)
ψ1 ψ2

ψ3 ψ4

V5-(vii), V5-(viii)

(
3, 1,−1

3

)
,
(
6, 1,−1

3

)
V5-(v), V5-(x)

Q(8)
quqd : (qjp TA ur)εjk(qks TA dt)

Heavy fields Diagram Vertices

(
8, 2, 1

2

) ψ1 ψ2

ψ3 ψ4

V5-(vii), V5-(viii)

Q(1)
lequ : (ljp er) εjk (qks ut) / (ljp urα) εjk (qkαs et)

Heavy fields Diagram Vertices

(
1, 2, 1

2

)
ψ1 ψ2

ψ3 ψ4

V5-(vi), V5-(viii)

(
3, 1,−1

3

)
V5-(ix), V5-(xi)

(
3, 2, 7

6

)
V5-(xiii), V5-(xiv)

Table 19. Heavy field representations that are obtained by unfolding the ψ4 operators, composed
of both left and right chiral SM fermions, into non-trivial tree- and (or) one-loop-level diagrams
and the corresponding vertices. These operators contain atleast 3 unique fields as their constituents
and they do not permit a vector boson propagators when we restrict to minimal scenarios. The
operator highlighted in green color is constituted of the same external states as a SMEFT operator
but leads to unique heavy field representations, see eq. (3.5).
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QG : fABC GAνµ GBρν GCµρ QW : εIJKW Iν
µ W Jρ

ν WKµ
ρ

Heavy fields Diagram Vertices Heavy fields Diagram Vertices

(RC , {1, RL}, {0, Y })

X X

X

V9-(iii) ({1, RC}, RL, {0, Y })

X X

X

V9-(ii)

(RC , {1, RL}, {0, Y })

X X

X

V10-(iii) ({1, RC}, RL, {0, Y })

X X

X

V10-(ii)

Table 20. Heavy field representations that are obtained by unfolding the X3 operators into non-
trivial one-loop-level diagrams and the corresponding vertices. A side by side comparison shows the
subtle yet significant difference between the heavy field representations enveloped in these operators.

Here, we have used (σµν)βα = (σµ)αβ̇(σν)β̇β , (σµν)β̇α̇ = (σµ)β̇β(σν)βα̇ in addition
to eq. (3.3). The last diagram in table 19 describes the unfolding of both Q(1)

lequ and
(ljp er) εjk (qks ut). To highlight this fact we have written the latter operator structure in
colored text in table 19. Therefore, instead of unfolding Q(3)

lequ explicitly, we can indirectly
relate it to the heavy fields that lead to those two operators. However, if we choose to
forego our conditions of minimality then, this operator can be unfolded into a multi-loop
diagram with multiple heavy field propagators within some of the loops. This is discussed
more properly in section 4.3.

3.7 X3

This class contains only two operators — QG and QW . Heavy scalars, as well as heavy
fermions, appear through one-loop-level diagrams, and the minimal choice corresponds to
figures 9i and 9v. QG only encapsulates color non-singlets and QW only isospin non-singlet
representations, with no restrictions on the other quantum numbers in each case. These
results have been summarized in table 20.

4 Departure from minimality

While one can always study scenarios that depart radically from the notion of minimality
described here, we have discussed a few cases that are necessary for the sake of completeness
in the context of SMEFT.
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Operator Heavy fields Diagram Vertices involved

(l̄p σµν er)H Bµν ({1, RC1}, {1, RL1}, Y1)Ψ⊕

φ ψ1

ψ2 X

V2, V7-(i), V7-(ii), V9-(i)

(q̄p σµν dr)H Bµν (RC2 , RL2 , Y2)Φ ⊕ (RC3 , RL3 , Y3)Φ V2, V7-(iii), V7-(v), V9-(i)

(q̄p σµν ur) H̃ Bµν V2, V7-(iv), V7-(v), V9-(i)

(l̄p σµν er) τ I HW I
µν ({1, RC1}, RL1 , {0, Y1})Ψ⊕ V2, V7-(i), V7-(ii), V9-(ii)

(q̄p σµν dr) τ I HW I
µν (RC2 , RL2 , Y2)Φ ⊕ (RC3 , RL3 , Y3)Φ V2, V7-(iii), V7-(v), V9-(ii)

(q̄p σµν ur) τ I H̃ W I
µν V2, V7-(iv), V7-(v), V9-(ii)

(q̄p σµν TA dr)H GAµν (RC1 , {1, RL1}, {0, Y1})Ψ⊕ V2, V7-(iii), V7-(v), V9-(iii)

(q̄p σµν TA ur) H̃ GAµν (RC2 , RL2 , Y2)Φ ⊕ (RC3 , RL3 , Y3)Φ V2, V7-(iv), V7-(v), V9-(iii)

Table 21. Combinations of heavy field representations that are required to unfold the ψ2φX

operators into non-trivial one-loop-level diagrams and the corresponding vertices for individual
cases.

4.1 Diagrams with multiple fundamental vertices

As already discussed previously, the most straightforward departure from our notion of
minimality occurs if we include diagrams such as figure 3ii, which includes both trilinear
and quartic scalar vertices.

4.2 Heavy-heavy mixing in the loops

To depict the simultaneous appearance of multiple heavy fields in the loop, we consider
operators of the ψ2φX class. For this class, no heavy field emerges through tree- or “simple”
one-loop-level diagrams when the light fields are fixed to be the SM degrees of freedom.
We have listed the general representations allowed for each operator in table 21. These
must satisfy equations corresponding to the conservation of symmetries at each vertex.

4.3 Multi-loop diagrams

As discussed previously, to confine ourselves within a minimal analysis we can relate Q(3)
lequ

indirectly with the heavy fields embedded in the diagrams corresponding to Q(1)
lequ and

(ljp er) εjk (qks ut). But, if we relax the restriction of being minimal we can unfold Q(3)
lequ into a

three loop diagram having heavy-heavy-light mixing between two of the loops. The explicit
combinations of heavy field representations for different permutations of the external legs
have been described in table 22.
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Q(3)
lequ : (ljp σµν er) εjk (qks σµν ut)

(ψ1, ψ2) loop1 loop2
X Corresponding diagram Vertices involved

(ψ3, ψ4) Φ1 Ψ1 Φ2 Ψ2

(l, e)

(1, 1, 0) (
1, 2, -1

2

) (1, 1, 0)
(
3, 1, 2

3

)
B

ψ1

ψ2

X

ψ3

ψ4

loop1 loop2

Φ1

Ψ1

Ψ2

Φ2

V1-(ii), V6-(ii), V6-(iii)

(q, u)

(1, 3, 0) (1, 3, 0)
(
3, 3, 2

3

)
B/W

(1, 1, 1) (
1, 2, 3

2

) (1, 1, 1)
(
3̄, 1, 1

3

)
B

V1-(i), V6-(vii), V6-(viii)
(1, 3, 1) (1, 3, 1)

(
3̄, 3, 1

3

)
B/W

(e, l)
(1, 1, 0) (1, 1, 1) (1, 1, 0)

(
3̄, 2, 1

6

)
B/W V1-(ii), V6-(vi), V6-(ix)

(u, q) (1, 3, 1) (1, 3, 0)
(1, 1, 1) (

3, 2, 5
6

)
W V1-(i), V6-(i), V6-(iv)

(1, 3, 1)

Table 22. Combinations of heavy field representations that appear within the loops when the
operator Q(3)

lequ is unfolded into a multi-loop diagram. The different orientations of the external legs
and the choice of the intermediate vector boson have been considered separately and the vertices
have been listed for individual cases.

Operator Table Operator Table Operator Table Operator Table

QH 5 QH�, QHD 6 QeH ,QuH ,QdH 8 QHWB 11

Q(1)
Hl ,QHe,Q

(3)
Hl ,

9
Q(1)
qq ,Q(1)

lq ,Qll
12

Qee,Quu,Qdd
14

Qle,Qlu,Qqe,
16

Q(1)
Hq,QHu,QHd,Q

(3)
Hq Q(3)

lq ,Q
(3)
qq Qeu,Qed,Q

(1)
ud ,Q

(8)
ud Q(1)

qu ,Q(8)
qu ,Q(1)

qd ,Q
(8)
qd

QG,QW 20 Qld 18 QHG,QHW ,QHB 10

Table 23. List of dimension-6 SMEFT operators which receive non-zero contributions from the
scalar lepto-quark

(
3, 2, 1

6
)
based on the diagrammatic unfolding of the operators. Also listed are

the tables where the unfolding has explicitly been demonstrated for each operator.

5 Operator driven BSM construction: validation and illustration through
examples

5.1 Validating the diagrammatic method

The analysis thus far has centred on unfolding the dimension-6 effective operators of
SMEFT diagrammatically and obtaining BSM fields that can offer non-zero contributions
to them. Here, we have demonstrated the consistency of our results with those of a top-
down analysis. Focussing on a single heavy scalar, here the lepto-quark Θ with quantum
numbers

(
3, 2, 1

6

)
, we have first collected the effective operators that have been found to

receive contributions from it based on our diagrammatic approach, in table 23.
To test the validity of our method and our results, we first build the most general UV

Lagrangian for a model where the SM field content is extended by a lepto-quark scalar Θ
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with gauge quantum numbers
(
3, 2, 1

6

)
under the SM gauge groups using GrIP [7], which

is shown in the covariant form below:

LΘ = LSM + |Dµ Θ|2 −m2
Θ|Θ|2 − η1 (H†H)(Θ†Θ)− η2 (Θ†τ IΘ)(H†τ IH)

− λ1 (Θ†Θ)2 − λ2(Θ†τ IΘ)2 − (εij yprΘ Θαi dpα l
j
r + h.c.). (5.1)

Here, LSM represents the Standard Model Lagrangian. We have used CoDEx [28] to
integrate-out the heavy scalar Θ and determine the SMEFT dimension-6 effective op-
erators. The output from CoDEx exhibit non-zero Wilson coefficients for the following
operators at the matching scale:

QHD,Qll,QHu,QHd,QHe,Q
(1)
Hq,Q

(1)
Hl ,Q

(3)
Hl ,Q

(3)
Hq,QHWB,QH�,QHB,QHW ,QH ,QG,QHG,

QeH ,QuH ,QdH ,Q(1)
qq ,Q(3)

qq ,Quu,Qdd,Q
(1)
ud ,Q

(1)
lq ,Qee,Qeu,Qed,Qle,Qlu,Qld,Qqe,Q

(1)
qu ,Q

(1)
qd ,

Q(3)
lq ,QW ,Q

(8)
ud ,Q

(8)
qd ,Q

(8)
qu .

These operators are completely in agreement with the results of table 23. This shows that
results obtained using the techniques outlined in this paper are consistent with the results
available in the literature [41, 42, 51].

5.2 The minimal extension of the SM as root of CP even D6 SMEFT operators

As the first application of our method, we have discussed how one can extend the SM de-
grees of freedom in the most minimal way so as to explain the origin of as many dimension-6
CP and B-, L- conserving operators as possible. Out of the 59 operators6 that constitute
a complete and independent basis for SMEFT at dimension-6 only 52 are found to be CP
conserving.

Since our aim is to build minimal extensions of the SM, based on the list of heavy field
representations that have already been tabulated corresponding to every single operator,
one must first identify the representations which are common to the largest subset of
operators. We have found that the scalar field Θ(3,2, 16) provides non-zero contributions to
39 operators, while H(1,2, 12) (which constitutes the Two Higgs Doublet Model [61–63]) leads
to 37 operators. The latter of the two is more minimal on account of it being an SU(3)
singlet. Therefore we include it as the first extension to our degrees of freedom. Next, one
can see that the operators involving gluons — QG, QHG and those that are products of
fermion bilinears transforming as SU(3) octets — Q(8)

ud ,Q
(8)
qd ,Q

(8)
qu can only be generated by

scalars with non-trivial SU(3) quantum numbers. This motivates us to include a second
heavy field. We have chosen ϕ(3,1,− 1

3) which being a color triplet SU(2) singlet so as to
ensure minimality.

In table 24, we have listed all 42 operators that receive non-zero contributions from a
color-singlet, isospin-doublet scalar H and (or) a color-triplet, isospin-singlet scalar ϕ. The
entries in black colour are only generated by H, those in pink are generated by ϕ alone,
while the ones in green receive contributions from both these fields. For easy reference,
adjacent to each operator (or a collection of operators) we have also specified the table
where it has been shown how unfolding the operator yields H and (or) ϕ.

6All these conserve baryon and lepton numbers.
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Operator Table Operator Table Operator Table Operator Table

QH 5 QH�, QHD 6 QeH ,QuH ,QdH 7 Q(1)
quqd, Q

(1)
lequ, Qledq 19

Q(1)
Hl ,QHe,Q

(3)
Hl ,

9
Q(1)
qq ,Q(1)

lq ,Qll
12

Qee,Quu,Qdd
14

Qle,Qlu,Qqe,
16

Q(1)
Hq,QHu,QHd,Q

(3)
Hq Q(3)

lq ,Q
(3)
qq Qeu,Qed,Q

(1)
ud ,Q

(8)
ud Q(1)

qu ,Q(1)
qd ,Q

(8)
qd , Q

(8)
qu

QW ,QG 20 Qld 16, 17 QHW ,QHB,QHG 10 QHWB 11

Table 24. SMEFT dimension-6 effective operators unfolded by minimal extension. The operators
in black are generated by the H(1,2, 1

2 ) extension alone. Further extension by the ϕ(3,1,− 1
3 ) generates

the extra operators highlighted in pink color. The ones shown in green are common to both these
new fields.

Of the remaining 10 operators, 8 belong to the ψ2φX class and these can only be
generated using models containing both scalar and fermion extensions, i.e., we are required
to forego the notion of minimality, see table 21, as long as one only considers 1-particle-
irreducible (1PI) diagrams. The last two operators are Q(8)

quqd, Q
(3)
lequ which belong to the

ψ4 class and require special attention. The first of these Q(8)
quqd can be directly generated by

only a color-octet scalar extension or indirectly by a color-sextet scalar if one takes Fierz
identities into account. Similarly, Q(3)

lequ can be shown to receive contributions from H and
ϕ after employing certain Fierz identities, see eq. (3.5) and table 19. But its unfolding can
only be conducted at the level of multi-loop diagrams, see table 22.

5.3 Role of observables on the choice of BSMs

The analyses based on SMEFT start with the construction of a UV Lagrangian, followed
by integrating out heavy fields to obtain effective operators and ultimately connecting
those operators to well-defined observables. The prevalence of a large number of candidate
scenarios that appear to be distinct makes conducting comparative analyses and verifying
claims of one model being more vital than others, an arduous task.

This is where our techniques truly shine. Based on the particular observable we are
interested in, we can readily obtain the set of relevant operators. Then, using the results
of this paper as a dictionary, i.e., by looking at the unfolding of these operators catalogued
here, one can easily arrive at the list of heavy field representations which are actually
relevant for such observables. To illustrate this point, we have considered the operators
contributing to the electroweak precision observables at leading order (EWPO-LO) [43],
listed below:

{Qll, QHD, QHWB, Q(3)
Hq, Q

(3)
Hl , Q

(1)
Hq, Q

(1)
Hl , QHe, QHu, QHd}.

We have followed two separate routes, first, where the SM extension is a scalar and
second where it is a fermion. The procedure has been elucidated in table 25.

For the case of scalar extensions, the operator QHD allows all possible representations
(trivial as well as non-trivial). Taking the operators {Qll, Q(1)

Hq, Q
(1)
Hl , QHe, QHu, QHd} into
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Scalar extension

Operators Heavy Fields Table

{QHD} ({1, RC}, {1, RL}, {0, Y }) 6

+ ↓

{Qll, Q
(1)
Hq, Q

(1)
Hl ,QHe, QHu, QHd} ({1, RC}, {1, RL}, Y ) 9, 12

+ ↓

{Q(3)
Hq, Q

(3)
Hl , QHWB} ({1, RC}, RL, Y ) 9, 11

Fermion extension

Operators Heavy Fields Table

{Qll, Q
(1)
Hq, Q

(1)
Hl ,QHe, QHu, QHd} ({1, RC}, {1, RL}, Y ) 9, 12

+ ↓

{Q(3)
Hq, Q

(3)
Hl} ({1, RC}, RL, Y ) 9

+ ↓

{QHWB}
(RC , RL, Y ) ∈

{(
3, 3,−1

3

)
,
(
3, 3, 2

3

)
,
(
1, 2, 3

2

)
,
(
1, 2, 1

2

)
,

11
(1, 3, 1),

(
3, 2, 7

6

)
,
(
3, 2, 1

6

)
,
(
3, 2,−5

6

)}
+ ↓

{QHD}
Necessitates the inclusion of a second heavy fermion (RC′ , RL′ , Y ′)

6 (last entry)
such that (RC , RL, Y )⊕ (RC′ , RL′ , Y ′) =

(
1, 2,±1

2

)
, see V8

Table 25. Restrictions imposed on the heavy field representation as we take into account more
and more operators relevant to electroweak precision observables. The “+” sign indicates that more
operators are being added and “↓” shows how the permitted representations get modified gradually.
For each step we have also referred to the tables where the relevant diagrams have been catalogued.
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account it is evident that only fields with non-zero hypercharge can be included. Finally,
bringing QHWB, Q(3)

Hq, and Q
(3)
Hl into the picture we get another constraint that the SU(2)

quantum number must also be non-singlet. For the fermion case the procedure takes a
different shape. Starting with {Qll, Q(1)

Hq, Q
(1)
Hl , QHe, QHu, QHd}, restriction is set on the

U(1) charge and including Q(3)
Hq, Q

(3)
Hl constrains the SU(2) quantum number. Then, adding

QHWB we get well-defined heavy fermion representations as shown in table 25. Lastly,
adding QHD to the list suggests that we require more than a single fermion extension of
the SM corresponding to each of the eight representations listed before.

Thus we have seen how, by progressively enlarging the operator set, we can be led to
well-defined heavy field representations that actually contribute to the observables under
consideration.

6 Conclusion and remarks

In this work, we have highlighted the principles and salient features of an operator driven
prescription for UV model building. Starting from the bottom-up extension of a low energy
theory, we have described how to catalogue heavy field representations that provide non-
zero contributions to specific processes and observables of the low-energy theory. The main
procedure involves the identification of Lorentz invariant renormalizable vertices followed
by fixing some of the legs of those vertices to be the low energy quantum fields and inves-
tigating the heavy field representations (or their combinations in some cases) which can be
assigned to the remaining leg(s) while ensuring the conservation of the internal symmetries
of the theory. Thereafter, it has been described how the higher mass dimension effective
operators of the low energy theory can be “unfolded” into tree- and loop-level processes
using these vertices involving light as well as heavy fields.

Following a general discussion using schematic diagrams, we have made our ideas
concrete by using the example of the Standard Model as the low energy theory and by
exhibiting how to unfold each operator belonging to the dimension-6 basis of SMEFT. We
have kept our analysis minimal by only considering such UV theories that do not extend
the SM gauge group. Also, the notion of minimality is reflected in the choice of tree and
one-level diagrams included for specific cases. We have briefly described how non-minimal
scenarios can be approached. Using appropriate examples, we have demonstrated how our
results agree with those obtained using the conventional top-down approach of EFT.

The discussion underlines the economy as well as the systematic nature of our ap-
proach where the most significant heavy field extension(s) can be arrived at by examining
the effective operators of the low energy theory alone. This is in contrast to the strenu-
ous endeavour of building numerous plausible UV Lagrangians, integrating out the heavy
fields to obtain subsets of the low energy effective Lagrangian and conducting multiple
comparative analyses to adjudge the significance of the candidate UV models.
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Field SU(3)C SU(2)L U(1)Y Baryon No. Lepton No. Spin

H 1 2 1/2 0 0 0

qpL 3 2 1/6 1/3 0 1/2

upR 3 1 2/3 1/3 0 1/2

dpR 3 1 −1/3 1/3 0 1/2

lpL 1 2 −1/2 0 −1 1/2

epR 1 1 −1 0 −1 1/2

GAµ 8 1 0 0 0 1

W I
µ 1 3 0 0 0 1

Bµ 1 1 0 0 0 1

Table 26. Standard Model: gauge and global quantum numbers and spins of the fields. Here,
A = 1, 2, · · · , 8; I = 1, 2, 3; p = 1, 2, 3 and µ = 0, 1, 2, 3 refer to the SU(3), SU(2), flavour and
Lorentz indices respectively.
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A The Standard model field content

The Standard Model degrees of freedom and their quantum numbers under space-time and
internal symmetry groups have been listed in table 26.

B Products of lower dimensional SU(N) representations

Each vertex involving the light SM degrees of freedom and the candidate heavy fields must
be invariant under Lorentz as well as the SM internal symmetry SU(3)C×SU(2)L×U(1)Y .
We have already indicated how Lorentz invariance serves as a guiding principle to obtain
the different categories of renormalizable vertices composed of scalars, spinors and vector
bosons. The invariance with respect to the SM gauge group implies that each vertex must
be an overall singlet with respect to both SU(3) and SU(2) and must posses zero U(1)
charge. While the case of U(1) can be easily understood through the addition of the
charges, we have discussed how invariants are constructed for the other two groups below:
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SU(2): the SM fields belong to either the singlet, the fundamental or the adjoint, i.e.,
the 1-, 2- or 3-dimensional representations of SU(2). The tensor products of these lower
dimensional representations (elucidated by means of Young diagrams) that are useful for
obtaining the results of tables 2–4 are following [64–66]:

i.) 2⊗ 2 = 3⊕ 1, ︸︷︷︸
2

⊗ ︸︷︷︸
2

= ︸ ︷︷ ︸
3

⊕ ︸︷︷︸
1

.

ii.) 3⊗ 2 = 4⊕ 2, ︸ ︷︷ ︸
3

⊗ ︸︷︷︸
2

= ︸ ︷︷ ︸
4

⊕ ︸︷︷︸
2

.

iii.) 3⊗ 3 = 1⊕ 3⊕ 5, ︸ ︷︷ ︸
3

⊗ ︸ ︷︷ ︸
3

= ︸ ︷︷ ︸
1

⊕ ︸ ︷︷ ︸
3

⊕ ︸ ︷︷ ︸
5

.

iv.) 4⊗ 4 = 1⊕ 3⊕ 5⊕ 7,

︸ ︷︷ ︸
4

⊗ ︸ ︷︷ ︸
4

= ︸ ︷︷ ︸
1

⊕ ︸ ︷︷ ︸
3

⊕ ︸ ︷︷ ︸
5

⊕ ︸ ︷︷ ︸
7

.

v.) In general the product of any non-trivial representation (RL) of SU(2) with itself
contains both the singlet as well as the triplet (adjoint) representations: RL ⊗RL =
1⊕ 3⊕ · · · ⊕ (2RL − 1).

vi.) Similarly, some other general products which contain the doublet and triplet repre-
sentations are:

RL⊗ (RL−1) = 2⊕4⊕· · ·⊕ (2RL−2) and RL⊗ (RL−2) = 3⊕5⊕· · ·⊕ (2RL−3) .

Based on these it can be understood why, for instance in the vertices V1-(i) and V1-
(ii) from table 2, which are trilinear scalar vertices with two SM Higgs (SU(2) doublets),
the heavy field should either be a singlet (1-dimensional) or triplet (3-dimensional) under
SU(2), since both 2⊗2⊗1 and 2⊗2⊗3 can lead to an overall singlet. Similarly, in the case
of the vertices V3-(i) and V3-(ii), which are quartic scalar vertices with three SM Higgs, the
heavy field must either be an SU(2) doublet (2-dimensional) or quadruplet (4-dimensional),
on account of the fact that (2⊗ 2)⊗ (2⊗ 2) ⊃ (1⊗ 1) = 1 or (2⊗ 2)⊗ (2⊗ 2) ⊃ (3⊗ 3) ⊃ 1
and (2⊗ 2)⊗ 2⊗ 4 ⊃ (3⊗ 2)⊗ 4 ⊃ (4⊗ 4) ⊃ 1.

On the other hand, in the case of vertices such as V2 with one SM Higgs and two
possible heavy fields, the representation cannot be fixed since we have one equation in
two unknowns but we can demand that a constraint of the form RL1 ⊗ RL2 ⊃ 2 be sat-
isfied. Here, RC1,2 are the SU(2) representations of the two heavy fields. As for V9-(ii)
and similar vertices containing the SU(2)L gauge boson (which transforms as the adjoint
representation), the unknown heavy field can belong to any non-trivial representation.

SU(3): the SM fields belong to either the singlet (1), fundamental (3), anti-fundamental
(3̄) or the adjoint (8) representations of SU(3). The relevant tensor products have been
enumerated below [64–66]:
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i.) 3⊗ 3 = 8⊕ 1, ︸︷︷︸
3

⊗ ︸︷︷︸
3

= ︸ ︷︷ ︸
8

⊕

︸︷︷︸
1

.

ii.) 3⊗ 3 = 6⊕ 3, ︸︷︷︸
3

⊗ ︸︷︷︸
3

= ︸ ︷︷ ︸
6

⊕ ︸︷︷︸
3

.

iii.) 6⊗ 3 = 10⊕ 8, ︸ ︷︷ ︸
6

⊗ ︸︷︷︸
3

= ︸ ︷︷ ︸
10

⊕ ︸ ︷︷ ︸
8

.

iv.) 6⊗ 3 = 15⊕ 3, ︸ ︷︷ ︸
6

⊗ ︸︷︷︸
3

= ︸ ︷︷ ︸
15

⊕ ︸︷︷︸
3

.

v.) 6⊗ 6 = 1⊕ 8⊕ 27, ︸ ︷︷ ︸
6

⊗ ︸ ︷︷ ︸
6

=

︸ ︷︷ ︸
1

⊕ ︸ ︷︷ ︸
8

⊕ ︸ ︷︷ ︸
27

.

vi.) 8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27,

︸ ︷︷ ︸
8

⊗ ︸ ︷︷ ︸
8

=

︸ ︷︷ ︸
1

⊕ ︸ ︷︷ ︸
8

⊕ ︸ ︷︷ ︸
8

⊕ ︸ ︷︷ ︸
10

⊕ ︸ ︷︷ ︸
1̄0

⊕ ︸ ︷︷ ︸
27

.

vii.) In general the product of any non-trivial representation (RC) of SU(3) and its con-
jugate contains both the singlet as well as the adjoint representations: RC ⊗ RC =
1⊕ 8⊕ · · · .

Only the SM quarks and the gluons are non-trivially charged under SU(3). The vertices
involving these fields and the choice of heavy field representations belong to the following
categories:

• For the Yukawa-like vertices, e.g., V6-(iii)–V6-(v) from table 3 involving a quark (an
SU(3) triplet) and the SM Higgs (an SU(3) singlet), the heavy fermion can only be
a 3 under SU(3). The same also holds for the vertices V6-(viii)-V6-(x)

• For vertices such as V5-(iii)–V5-(v) and V5-(x) involving 2 quarks, the heavy scalar
can either be a 3 or 6 under SU(3), on account of the fact that (3⊗3)⊗3 ⊃ (3⊗3) ⊃ 1
and (3⊗ 3)⊗ 6 ⊃ (6⊗ 6) ⊃ 1.

• Similarly, for vertices such as V5-(vii) and V5-(viii), involving a quark and an anti-
quark, the heavy scalar can only be a singlet (1) or octet (8) under SU(3).

• The vertices V7-(iii)–V7-(v), on the other hand, contain only one SM quark and
requires a heavy scalar as well as a heavy fermion. In this case, we cannot fix the
exact representations to which these fields belong but we can impose a constraint
that in each case RC1 ⊗ RC2 ⊃ 3 must hold in each case, where RC1,2 are the SU(3)
representations of the two heavy fields.
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• For V9-(iii) and similar vertices containing the SU(3) gauge bosons, i.e., gluons which
transforms as the adjoint representation, the unknown heavy field can belong to any
non-trivial representation of SU(3).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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