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Abstract. Let d ≥ 1 be an integer. From a set of d-dimensional vectors, we
obtain a d-dot product graph by letting each vector au correspond to a vertex
u and by adding an edge between two vertices u and v if and only if their dot
product au · av ≥ t, for some fixed, positive threshold t. Dot product graphs
can be used to model social networks. Recognizing a d-dot product graph is
known to be NP-hard for all fixed d ≥ 2. To understand the position of d-dot
product graphs in the landscape of graph classes, we consider the case d = 2,
and investigate how 2-dot product graphs relate to a number of other known
graph classes including a number of well-known classes of intersection graphs.

1 Introduction

Consider a social network in which each individual is friends with zero or more other
individuals. In a vector model of the network, an individual u is described by a d-
dimensional vector au for some integer d ≥ 1 that expresses the extent to which u
has each of a set of d attributes (which might, for example, represent their hobbies,
political opinions or musical tastes). Then two individuals are assumed to be friends if
and only if their attributes are “sufficiently similar”. There are many ways to measure
similarity using a vector model (see, for example, [1, 6, 11, 12, 18]). In this paper, we
use the dot product model: two individuals u and v are friends if and only if the dot
product au ·av ≥ t, for some fixed, positive threshold t. The corresponding graph G, in
which each individual is a vertex and the friendship relation is described by the edge
set, is called a d-dot product graph. We also say that the vector model {au | u ∈ V }
with the threshold t is a d-dot product representation of G.

Dot product graphs have been studied from various perspectives. In particular, the
study of dot product graphs as a model for social networks was initiated in a random-
ized setting [14–16, 19, 20], where the dot product of two vectors gives the probability
that an edge occurs between the corresponding vertices. In a recent paper [7], we
started the study of dot product graphs from an algorithmic perspective by consid-
ering the problems of finding a maximum independent set or a maximum clique in a
d-dot product graph.

Fiduccia et al. [5] initiated a study of dot product graphs from a graph-theoretic
perspective. They showed that every graph on n vertices and m edges has a dot product
representation of dimension at most the minimum of n−1 and m. They also introduced
the natural notion of the dot product dimension of a graph, which is the smallest d such
that the graph has a d-dot product representation. Graphs of dot product dimension 1
are easily understood and can be recognized in polynomial time: they are precisely the
disjoint union of at most two threshold graphs [5]. This situation changes for higher
values of the dot product dimension. Kang and Müller [10] proved that recognizing
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graphs of any fixed dot product dimension d ≥ 2 is NP-hard (whereas membership in
NP is still open for d ≥ 2).

It is well-known (and not difficult to see) that a class of graphs is closed under
vertex deletion if and only if it can be characterised by a set of minimal forbidden
induced subgraphs. Hence, as d-dot product graphs are closed under vertex deletion,
there exists a set Hd of graphs such that a graph is d-dot product if and only if
it contains no induced subgraph isomorphic to Hd. As we will argue later, however,
consistent with the aforementioned NP-hardness of recognising d-dot product graphs,
the set Hd has infinite size even for d = 2, and there is little hope of determining
Hd (or of finding an alternative “easy” characterization of the class of d-dot product
graphs).

1.1 Previous Work

There are few previous studies that considered graphs of small dot product dimension
d ≥ 2. We even lack an in-depth understanding of how 2-dot product graphs fit within
the landscape of known graph classes. For the definitions of standard graph classes,
we refer the reader to the text-book of Brandstädt, Le and Spinrad [3].

We first note that, in some sense, there are only a limited number of 2-dot product
graphs. The speed of a graph class is the function whose domain is the natural numbers,
and, for each n, the value is the number of labelled graphs on n vertices in the class.
The following result will be helpful when relating various graph classes to dot product
graphs, albeit in a non-constructive manner.

Theorem 1 ([17, p. 56]). For any constant d ≥ 1, the speed of the class of d-dot
product graphs is 2O(n logn).

We now consider what explicit results are known, starting with the following result
of Fiduccia et al. on interval graphs.

Theorem 2 ([5]). Every interval graph and every caterpillar is a 2-dot product graph.

Note that not all 2-dot product graphs are interval graphs; for instance, the cycle
on four vertices is a 2-dot product graph but not an interval graph. Every interval
graph is chordal and for chordal graphs the following upper bound is known (ω(G)
denotes the clique number of a graph G).

Theorem 3 ([5, 13]). Every chordal graph G on n vertices has dot product dimension
at most min{ω(G) + 1, n/2}.

Fiduccia et al. [5] also proved that every tree is a 3-dot product graph, and there
exist trees of dot product dimension 3. This implies that neither all outerplanar nor
all planar graphs are 2-dot product graphs. Kang et al. [9] significantly strengthened
this observation and proved that every outerplanar graph is a 3-dot product graph
and every planar graph is a 4-dot product graph. Moreover, Kang et al. showed that
looking at the girth of the graph yields strong insight into the dot product dimension
of planar graphs: every planar graph of girth at least 5 is a 3-dot product graph,
whereas there exist planar graphs of girth 4 with dot product dimension 4. Recall that
the girth of a graph G is the length of a shortest cycle of G.

For cycles, we obtain the following result by combing results of Fiduccia et al. [5]
for cycles of length not equal to 5 and Li and Chang [13] for the cycle of length 5.

Theorem 4 ([5, 13]). Every cycle is a 2-dot product graph.
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A wheel is a graph obtained from a cycle by adding a dominating vertex. Li and
Chang showed the following results for wheels.

Theorem 5 ([13]). Every wheel on six or more vertices has dot product dimension 3.

Fiduccia et al. [5] conjectured that any graph on n vertices has dot product di-
mension at most bn2 c. Note that chordal graphs satisfy this bound due to Theorem 3.
Fiduccia et al. proved that the bound is tight for bipartite graphs. To be precise, they
showed that every bipartite graph on n vertices is an bn2 c-product graph, and the
complete bipartite graph Kbn

2 c,bn
2 c has dot product dimension bn2 c. Li and Chang con-

firmed the conjecture of Fiduccia et al. [5] for two more graph classes, namely graphs
of girth at least 5 and P4-sparse graphs (a graph is P4-sparse if every set of 5 vertices
contains at most one P4 as an induced subgraph).

We observe that, in spite of these results, there are still many graph classes for
which the relation to the class of graphs of small dot product dimension (and of dot
product dimension 2 in particular) is unclear.

1.2 Our Results

We provide a more complete picture of the place of 2-dot product graphs in the
landscape of known graph classes. To this end, we identify several new graph classes
whose members are 2-dot product graphs. We also show that certain graph classes are
neither contained in the class of 2-dot product graphs nor do they contain all 2-dot
product graphs. In particular, our work provides some evidence that no well-known
graph class includes all 2-dot product graphs (however, we note explicitly here that
we neither claim nor conjecture this).

In Section 2 we state several observations on 2-dot product graphs, and relate 2-dot
product graphs to several further known graph classes. In the same section we present
a number of lemmas that we need in the remainder of our paper.

In Section 3 we consider co-bipartite graphs (complements of bipartite graphs). We
prove that a complete graph minus a matching remains a 2-dot product graph. We
complement this result by showing that there exist other co-bipartite graphs with dot
product dimension greater than 2.

In Section 4 we consider several classes of intersection graphs. An intersection graph
of any collection of sets has the sets as its vertex set and its edges represent when pairs
of sets intersect. Motivated by Theorems 2 and 3, we further investigate these classes.
We show that, for every k ≥ 2, the intersection graph of any set of unit caps of the
k-dimensional unit sphere has dot product dimension at most k+ 1. A unit disk graph
is the intersection graph of unit-size disks in the plane. Using our general upper bound
for unit spheres, we prove that unit disk graphs have dot product dimension at most
3. Note that this bound is sharp as the 6-wheel, which has dot product dimension 3 by
Theorem 5, is a unit disk graph (see [4]). A unit circular-arc graph is the intersection
graph of unit-length arcs of a circle. We prove that not all unit circular-arc graphs
have dot product dimension 2. Again, by using our general bound for unit spheres, we
give sufficient conditions for a unit circular-arc graph to have dot product dimension 2.

In Section 5 we consider split graphs; that is, graphs whose vertices can be parti-
tioned into two sets that induce an independent set and a clique. We show the existence
of split graphs with dot product dimension greater than 2.

2 Observations and Supporting Lemmas

Throughout, we assume that the threshold t = 1, unless stated otherwise. As any d-dot
product graph has a representation with threshold 1 by scaling [5], this is no restriction.

3



Furthermore, by scaling (such that no two vectors have dot product exactly 1, see [5])
and rotating the vectors slightly, we may assume that no two vectors are linearly
dependent. For dimension d = 2, this allows us to define a total ordering on the
vectors with respect to a reference vector.

Recall that because the class of 2-dot product graphs is closed under vertex dele-
tion, it can be characterized by a set of forbidden induced subgraphs. However, the
class of 2-dot product graphs is not well-quasi-ordered under the forbidden induced
subgraph relation, that is, it has no finite set of forbidden induced subgraphs, because
every wheel must be in this set of forbidden induced subgraphs by Theorem 5. Indeed,
a wheel minus a vertex is either a cycle or a fan, and thus has dot product dimension 2.

s

Fig. 1. The grid M6.

We now make the following observation to illustrate that a number of well-known
graph classes are not superclasses of 2-dot product graphs. The k × k grid Mk has as
vertex set pairs (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ k, and two vertices (i, j) and (i′, j′) are
joined by an edge if and only if |i− i′|+ |j − j′| = 1; see Figure 1 for an example.

Observation 6 For each of the following graph classes, there are 2-dot product graphs
that do not belong to the class:

(i) triangle-free graphs,
(ii) claw-free graphs,

(iii) for any graph H, the class of H-minor-free graphs,
(iv) each of split graphs, AT-free graphs, even-hole-free graphs and odd-hole-free graphs,
(v) circular-arc graphs,

(vi) disk graphs, and
(vii) circular perfect graphs (which is a superclass of the class of perfect graphs).

Also any grid graph Mk with k ≥ 3 is not a 2-dot product graph.

Proof. To prove (i), we observe that the triangle is a 2-dot product graph, and, for (ii),
we note that the claw has a 2-dot product representation as well (for example, take
t = 3 and vectors (1, 1), (1, 1), (1, 1) and (2, 2)). To prove (iii), we observe that the class
of 2-dot product graphs contains arbitrarily large cliques. Statement (iv) follows from
Theorem 4. Statement (v) is proven by taking, for example, the complete graph on
four vertices and adding a pendant vertex to each vertex. Statement (vi) follows from
taking the bi-4-wheel, which is obtained by taking a wheel on five vertices and adding
a sixth vertex adjacent (only) to the four vertices of the cycle. This graph is not a disk
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Fig. 2. An illustration of the geometric intuition for the notion of betweenness. For example, a
is between c and b and between d and b, but b is not between a and c.

graph, but has a 2-dot product representation: (0, 5), ( 1
5 , 2), ( 1

2 ,
1
2 ), ( 1

2 ,
1
2 ), (2, 15 ), (5, 0)

with t = 1. Because, by Theorem 4, C5 has a 2-dot product representation, we know
that 2-dot product graphs are not circular perfect, which shows (vii). Finally we note
that the graph M3 can easily be shown not to have a 2-dot product representation by
following the proof for wheels in [13]. ut

For the remainder of our paper we need some definitions and four lemmas, some of
which are known already. For 2-dot product graphs, we say that a vertex v is between
vertices u and w if av can be written as a nonnegative linear combination of au and aw,
that is, av = λ1a

u + λ2a
w for some λ1, λ2 ≥ 0. It is important to note the geometric

intuition behind this definition, as we rely on it more frequently than the algebraic
definition. Namely, if u and w are not opposite, then v is between u and w if av lies
within the smaller of the two angles defined by au and aw (see Figure 2).

Lemma 1 ([5]). Let a, b, c and d be vertices in a graph with a 2-dot product repre-
sentation such that ad and bc are edges and ac and bd are not edges. Then b and c are
not both between a and d.

Lemma 2 ([7]). If a, b and c are vertices in a graph with a 2-dot product representa-
tion, and c is between a and b, and ab is an edge but ac is not an edge, then |ab| > |ac|.

Lemma 3. Let a, b, c and d be vertices in a graph with a 2-dot product representation
such that ab and cd are edges, and ac and bd are not edges. If c is between a and b,
then b is not between c and d.

Proof. By Lemma 2 we have that if c is between a and b, then |ab| > |ac|. However,
if b is between c and d, then, using Lemma 2 again considering b, c and d, we have
|ac| > |ab|, or equivalently, |ab| < |ac|, a contradiction. ut

A 4-cycle has a 2-dot product representation. Here is one example: (2, 0), (1
2 ,

1
2 ),

( 1
2 , 1), (−1, 3) with t = 1. We note that if we consider the vertices in anticlockwise

order from the positive x-axis, we find that the first and fourth vertices, and the second
and third vertices, are non-adjacent. The next lemma tells us that this is an example
of a property found in all 2-dot product representations of the 4-cycle.

Lemma 4. If a, b, c and d are vertices in a graph with a 2-dot product representation
that induce a 4-cycle with edges ab, bc, cd and ad, then aa, ab, ac and ad are in a
half-plane whose bounding line goes through the origin. Moreover, either b and d are
between a and c, or vice versa (a and c are between b and d).

Proof. By Lemma 1, b and c are not both between a and d. So we can assume, without
loss of generality, that b is not between a and d. Then, as a is adjacent to both b and d,
ab and ad are both in the half-plane through the origin defined by aa, and thus the
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smallest angles between all pairs among aa,ab,ad are at most π. Hence, either d is
between a and b or a is between b and d.

First assume that d is between a and b. Then, by Lemma 1, c is not between a
and b, and by Lemma 3, a is not between c and d. So b and d are between a and c
and we have the required ordering. Noting also that a and c are first and fourth in the
ordering and have common neighbours implies that the four vectors lie in a half-plane.

Now assume that a is between b and d. Then, by Lemma 1, a and b are not both
between c and d and a and d are not both between b and c. So a and c are both
between b and d and again we have the required ordering. ut

3 Co-Bipartite Graphs

In this section, we discuss some co-bipartite graphs which have a 2-dot product repre-
sentation and some which do not, with the aim of understanding the relation between
co-bipartite graphs and 2-dot product graphs. We first observe the following.

Observation 7 For any constant d ≥ 1, there exist co-bipartite graphs that do not
have a d-dot product representation.

Proof. By a result of Alekseev [2] (see also [17, Theorem 8.3]), the speed of co-bipartite

graphs is 2Θ(n2). Recalling Theorem 1, however, the speed of d-dot product graphs is
only 2O(n logn). ut

As the above result is only existential, we aim for an explicit construction. In fact,
we exhibit two similar classes of co-bipartite graphs of which one has a 2-dot product
representation and the other has not. First, we show that a complete graph minus a
matching is a 2-dot product graph.

Theorem 8. Let G be a graph obtained from a complete graph by removing the edges
of a matching. Then G has a 2-dot product representation.

Proof. Let m be a positive integer. Let {v1, v2, . . . , vm, w1, w2, . . . , wm} denote the
vertex set of K2m, and let Im denote the set of edges {viwi | 1 ≤ i ≤ m} which
form a perfect matching. We will first prove the special case of the theorem where
G = K2m − Im. For a nonnegative integer k, let b(k) = 2k+1 − 1. For 1 ≤ i ≤ m,
let avi = (1/b(i), b(i − 1)), awi = (b(i − 1), 1/b(i)). We show this is a 2-dot product
representation for K2m − Im. First consider pairs vi, wi:

avi · awi =
2b(i− 1)

b(i)
=

2i+1 − 2

2i+1 − 1
< 1.

We must show that all other pairs of distinct vertices have dot product at least 1. As
b(k) ≥ 1 for all k ≥ 0, we have avi · avj ≥ 1 and awi · awj ≥ 1 for all 1 ≤ i < j ≤ m.
Finally, for i 6= j,

avi · awj =
b(j − 1)

b(i)
+
b(i− 1)

b(j)
> 1,

as one of the two quotients is at least 1, and the other is positive.
For the general case, choose the largest value of m such that K2m − Im is an

induced subgraph of G. Then every vertex not in this subgraph is adjacent to every
vertex other than itself. We can obtain a 2-dot product representation of G using
the representation described above for the vertices of K2m − Im and by letting, for
every other vertex u, au = (1, 1) (and by noting that every vertex has two positive
coordinates one of which is at least 1). ut
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We need a definition: for n ≥ 2, an anti-cycle on n vertices is the complement of
the cycle Cn (replace each edge by a non-edge and vice versa) and is denoted Cn. Note
that these graphs are co-bipartite if n is even. In the remainder of the section we will
give an explicit construction of a subclass of co-bipartite graphs consisting of graphs
that are not 2-dot product graphs; this subclass will consist of sufficiently large even
anti-cycles. In fact, we first prove that any graph that contains a sufficiently large
anti-cycle — odd or even — is not a 2-dot product graph.

Lemma 5. If G contains an induced anti-cycle on at least 7 vertices, then G is not a
2-dot product graph.

Proof. Suppose that a 2-dot product representation of G is given. Let A be an induced
anti-cycle inG whose vertices we label v1, v2, . . . , vn, n ≥ 7, such that vi is non-adjacent
to vi+1, 1 ≤ i ≤ n− 1, v1 is non-adjacent to vn and all other pairs of vertices in A are
adjacent. We first show that in the 2-dot product representation of G all the vertices
of A are in a half-plane whose bounding line goes through the origin. Notice that v1
and v4 are adjacent so the angle between them is less than π/2. Every other vertex of
A is adjacent to either v1 or v4 and so lies within less than π/2 of one or the other.
Taken together, this implies that there is a quadrant that contains no vertex of A.
Consider the first vertex u of A that is anticlockwise from the empty quadrant: all but
two vertices of A are adjacent to u and the other two are neighbours of its neighbours.
Thus the anticlockwise angle from au to every other vertex is less than π.

We consider the vertices of A in order of the sizes of the angles moving anticlockwise
from the empty half-plane. This induces a linear ordering ≺. As the vertices lie in a
half-plane, if x ≺ y ≺ z, then y is between x and z; that is, if we say that one vertex is
between another pair in the ordering this is equivalent to the usage of between defined
earlier.

We claim that the first and last vertices in the ordering, denoted a and z, are not
adjacent. Suppose that they are adjacent: then they are not adjacent in the cycle A,
and we can choose vertices b and y such that ab and yz are vertex-disjoint non-adjacent
edges of A. Then a, y, b and z induce a 4-cycle in G and, by Lemma 4, either a and b
must be between y and z or vice versa. This contradiction proves that a and z cannot
be adjacent.

Without loss of generality, we now assume that the first and last vertices in the
ordering are, respectively, v3 and v4. We claim that this implies that the first three
vertices in the ordering are v3 ≺ v5 ≺ v1 and that the last three are v6 ≺ v2 ≺ v4.
The claim proves the lemma since it implies a contradiction: v5, v1, v6 and v2 induce
a 4-cycle in G and, by Lemma 4, either v5 and v6 must be between v1 and v2 or vice
versa. (As an aside, we observe that if G contains an anti-cycle on six vertices, C6,
we can follow this proof and show that the vertices have an ordering isomorphic to
v3 ≺ v5 ≺ v1 ≺ v6 ≺ v2 ≺ v4. In this case, there is no contradiction with G having a
2-dot product representation as the edge v1v6 does not exist in G and v5, v1, v6 and
v2 do not induce a 4-cycle.)

Let us prove our claim step by step. Let the second vertex in the ordering be
vb. Suppose that b 6= 5. Then vb is adjacent to v4 since it is neither of its two non-
neighbours. If b = 2, then, since v3 ≺ v2 ≺ v5 ≺ v4, the edges v4v2 and v5v3 contradict
Lemma 3. So we know b /∈ {2, 3, 4, 5}. Let c ≡ b+ 1 mod n. Thus c /∈ {3, 4, 5, 6} and vc
is a non-neighbour of vb and adjacent to v5. Then the edges vbv4 and v5vc contradict
Lemma 1. Thus we must have that b = 5.

Let the penultimate vertex in the ordering be vy and suppose that y 6= 2. Noting
that y /∈ {2, 3, 4, 5}, we find that vy is adjacent to v3. Let x ≡ y − 1 mod n so x /∈
{1, 2, 3, 4} and vx is adjacent to v2 but not to vy. Then the edges v3vy and vxv2
contradict Lemma 1. Thus y = 2.
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Let vc be the third vertex in the ordering and suppose that c 6= 1. Then vc is
adjacent to v2 since it is neither of its two non-neighbours. If c = 6, then, since
v5 ≺ v6 ≺ v1 ≺ v2, the edges v5v1 and v6v2 contradict Lemma 3. So we know c /∈
{1, 2, 3, 4, 5, 6}. Let d ≡ c−1 mod n. Thus d /∈ {n, 1, 2, 3, 4, 5} and vd is a non-neighbour
of vc and adjacent to v1. Then the edges vcv2 and v1vd contradict Lemma 1. Thus we
must have that c = 1.

Let vx be the antepenultimate vertex in the ordering and suppose that x 6= 6.
Noting that x /∈ {1, 2, 3, 4, 5, 6}, we find that vx is adjacent to v5. Let w ≡ x+1 mod n
so w /∈ {2, 3, 4, 5, 6, 7} and vw is adjacent to v6 but not to vx. Then the edges v5vx and
vwv6 contradict Lemma 1. Thus x = 6. ut

Theorem 9. For n ≤ 6, Cn is a 2-dot product graph. For n > 7, Cn is not a 2-dot
product graph.

Proof. The cases where n ≤ 4 are trivial. Note that C5 = C5, and thus the claim
follows from Theorem 4 for n = 5. We show that C6 is 2-dot product by displaying a
representation:

(5, 0), (3, 1/6), (1/2, 1/4), (1/4, 1/2), (1/6, 3), (0, 5).

(Noting the aside on the case where G contains an induced C6 in the proof of Lemma 5,
this is the only possible representation up to isomorphism.)

For n ≥ 7, the theorem follows from Lemma 5. ut

4 Unit Circular-Arc Graphs and Unit Disk Graphs

For an integer k ≥ 2, consider the unit sphere Sk. Then for some vector c ∈ Sk, a cap
of Sk is the set {x ∈ Sk | c · x ≥ a}, where a is a real number in (0, 1]. We call the
vector c the centre of the cap, and 2 arccos a its angular diameter. Observe that, given
the range of a, the angular diameter of each cap lies in [0, π).

Fiduccia et al. [5] considered the capture graph of caps of Sk: a graph G is a capture
graph if one can assign to each vertex a cap on Sk so that if a pair of vertices are
adjacent the centre of one cap is contained in the other and if they are not adjacent
the caps are disjoint. They showed that such a graph has dot product dimension at
most k + 1. This understanding of cap capture graphs was crucial in the argument
that interval graphs are 2-dot product graphs (see Theorem 2) and trees are 3-dot
product graphs (see Fiduccia et al. [5]). Kang et al. [9] studied the contact graph of
caps: a graph G is a contact graph if one can assign to each vertex a cap on Sk so
that if a pair of vertices are adjacent the caps intersect in a single point and if they
are not adjacent the caps are disjoint. They showed that such a graph has dot product
dimension at most k+ 2. This understanding of cap contact graphs was crucial in the
argument that planar graphs are 4-dot product graphs (as proved by Kang et al. [9]).

We consider unit caps: a set of caps of Sk is unit if all caps in the set have the
same angular diameter θ ∈ [0, π/2). For unit caps we are able to prove the following
general bound.

Theorem 10. For every integer k ≥ 2, the intersection graph of a set of unit caps of
Sk has dot product dimension at most k + 1.

Proof. Let C = {C1, . . . , Cn} denote a set of unit caps of Sk, let ci denote the centre
vector of Ci, and let θ ∈ [0, π/2) denote the common angular diameter of the caps.
Define ai = 1√

cos θ
ci and let A = {a1, . . . ,an}. Since θ ∈ [0, π/2), A is properly

defined.
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Now observe that if Ci and Cj intersect, then the angle between ci and cj is at
most θ. Hence,

ai · aj ≥
(

1√
cos θ

)2

cos θ = 1.

If Ci and Cj do not intersect, then the angle between ci and cj is larger than θ. Hence,

ai · aj <
(

1√
cos θ

)2

cos θ = 1.

It follows that the intersection graph G of C is isomorphic to the dot product graph
of A. Since the vectors in A lie in Rk+1, the dot product dimension of G is at most
k + 1. ut

Corollary 1. Unit disk graphs have dot product dimension at most 3.

Proof. The intuition of our argument is that we map (through an inverse stereographic
projection) the unit disks in the plane to (almost) unit caps in a region of a very large
sphere. The sphere is so large that this region looks almost like a plane, but for a tiny
distortion. We argue that this distortion can be made insignificantly small and thus
the mapping determines a set of unit caps with the same intersecting pairs as the unit
disks.

More formally, consider a set D of unit disks in the plane that represent the unit
disk graph. By scaling (scaling up the radius of all disks slightly, and then scaling
down the entire plane), we may assume that there is an ε > 0 such that the distance
between any two disk centers is at least 1 + ε when the disks do not intersect and at
most 1− ε when the disks do intersect. Then we say that the disks have separation ε.
By translating, we may assume that all unit disks are contained in a box of 2n × 2n
with its bottom-left corner at the origin. By abuse of notation, we denote this set of
unit disks by D as well.

We now apply the inverse of a stereographic projection. Recall that a stereographic
projection considers a sphere of radius r, centered at the origin, and maps a point
p 6= (0, r, 0) on the unit sphere to the point p′ that is the intersection of the plane
y = −r with the straight line through p and the north pole (0, r, 0) of the sphere. This
mapping is bijective, so the inverse is well defined. Moreover, the mapping preserves
object intersections. Note though that a stereographic projection is not isometric.
However, by setting r to be a number depending on n and a number δ < ε, we can
assume that the part of the sphere that projects to the 2n×2n box with its bottom-left
corner at (0,−r, 0) is almost a plane, distorting distances between any two points in
this region by at most (an additive factor) δ. Now place D in the plane y = −r and
perform the inverse mapping on the boundaries of the unit disks in D.

The distortion of the mapping, unfortunately, does not map unit disks to unit caps,
but to ‘oval caps’. Now place a unit cap of maximum possible size inside each ‘oval cap’
and let C be the resulting set of unit caps. By choosing δ significantly less than ε, the
distortion is slight and the ‘oval caps’ closely resemble the unit caps in C. Moreover,
this choice of δ ensures that the separation property of D transfer the intersections
and non-intersections to C. Hence, C indeed represents the same graph as D. The
result then follows from Theorem 10. ut

It would seem that Theorem 10 also implies that all unit circular-arc graphs have
dot product dimension at most 2. However, due to the limited angular diameter allowed
in our definition of unit caps, this implication only holds if the graph has a unit circular-
arc representation using unit caps of S1. This is the case, for example, when the graph
has no maximal independent set of size less than 4.
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Fig. 3. The graph J and its representation as a unit circular-arc graph.

Theorem 11. If G is a unit circular-arc graph with no maximal independent set of
size less than 4, then G is a 2-dot product graph.

Proof. A cap of S1 is essentially equal to an arc of the circle. Our definition of unit
caps limits the angular diameter of unit caps to at most 1

2π, that is, unit arcs that
each cover at most 1

4 of the circle. So in order for the proof to work, we need to ensure
that the unit arcs in a representation of the unit circular-arc graph each cover at most
1
4 of the circle. This is guaranteed to be the case, for example, when the graph has no
maximal independent set of size less than 4 (if the graph has a maximal independent
set of size 4 or more, then necessarily each arc covers less than 1

4 of the circle). ut

Surprisingly, the restriction on the size of a maximal independent set in Theorem 11
is not an artifact of our proof technique, but is actually needed: in Figure 3 is an
example of a graph J that is a unit circular-arc graph and that has dot product
dimension larger than 2 (this will be shown in the proof of Theorem 12). Note that
such an example must have triangles, due to the following proposition.

Proposition 1. Any triangle-free unit circular-arc graph is isomorphic to a path or
a cycle. Therefore it has dot product dimension 2.

Proof. Suppose that G is a triangle-free unit circular-arc graph and is not isomorphic
to a path. Since unit circular-arc graphs are claw-free, G is not a tree and so contains
a cycle. Let C be a shortest induced cycle of G. Since G is triangle-free, |C| ≥ 4. Then
the arcs of C must cover the circle. Since G is claw-free, any arc not on the cycle must
intersect at least two arcs of the cycle, creating a triangle. Hence, G is isomorphic
to C. ut

Theorem 12. There exist unit circular-arc graphs that do not have a 2-dot product
representation.

Proof. It is sufficient to show that the graph J of Figure 3 does not have a 2-dot
product representation. Suppose a representation exists. By Lemma 4, we can assume
that as, at, au and av are in a half-plane and that if ≺ is the linear ordering given
by the size of the angles from one of the half-lines bounding the half-plane, then
s ≺ t ≺ v ≺ u. We can include w, x, y and z in this ordering: if a vertex a is not in the
half-plane, then we say it precedes s in the ordering only if aa is in the quadrant that
precedes s (if, without loss of generality, as lies on the positive horizontal axis and ≺
is a clockwise ordering, then this is the top-left quadrant).

We consider the ordering of t, v, x and z and prove the theorem by showing that
all possible orderings give a contradiction. By Lemma 1, t ≺ v ≺ z ≺ x, is not possible.
By Lemma 3, t ≺ v ≺ x ≺ z, is not possible. Thus v cannot precede both x and z,
and, by the symmetry of J , x and z cannot both precede t.
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Suppose that neither of x and z is between t and v. As, by Lemma 3, z ≺ t ≺ v ≺ x
is impossible, we must have x ≺ t ≺ v ≺ z. But if s ≺ x, then s, x, t and z contradict
Lemma 1; if x ≺ s, then x, s, v, u provide the contradiction.

So one of x and z must be between t and v. Without loss of generality we can assume
t ≺ x ≺ v. If x ≺ z, then s, t, x and z contradict Lemma 1. If t ≺ z ≺ x ≺ v, then
Lemma 3 is contradicted. Finally, if z ≺ t, then z, t, x and v provide the contradiction.

ut

In line with Corollary 1, we note that J does indeed have a 3-dot product repre-
sentation: (2, 0, 1), (0, 2, 1), (−2, 0, 1), (0,−2, 1), (1, 1,−1), (1,−1,−1), (−1,−1,−1),
(−1, 1,−1).

5 Split Graphs

We prove the following result.

Observation 13 For any constant d ≥ 1, there exist split graphs that do not have a
d-dot product representation.

Proof. By a result of Alekseev [2] (see also [17, Theorem 8.3]), the speed of split graphs

is 2Θ(n2). Recalling Theorem 1, however, the speed of d-dot product graphs is only
2O(n logn). ut

a

b

c d

y

x

Fig. 4. The graph K. As the vertices can be partitioned into a clique (red vertices) and an
independent set (blue vertices), K is a split graph.

As the above result is only existential, we aim for an explicit construction. Let K
be the split graph obtained by combining a clique on four vertices {a, b, c, d} with an
independent set on six vertices; for each pair of vertices in the clique, there is a unique
vertex in the independent set that is adjacent exactly to both vertices of the pair (see
Figure 4).

Theorem 14. The split graph K does not have a 2-dot product representation.

Proof. The vector representations of the vertices a, b, c, and d that form a clique must
be contained in a single quadrant. As every other vertex is adjacent to the clique, the
vector representations are contained within three quadrants. So there is some vertex
such that there is no other vector within π/2 moving anticlockwise. Let ≺ be a linear
ordering of the vertices according to their clockwise angle from this “first“ vertex.
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Assume without loss of generality that a ≺ b ≺ c ≺ d. Let x be the unique vertex
of the independent set of K adjacent to a and d. By the symmetry of the graph, we
can assume that b ≺ x. (The cases x ≺ a and a ≺ x ≺ b mirror the cases d ≺ x and
c ≺ x ≺ d.) We now argue that a contradiction arises.

Let y be the unique vertex of the independent set of K adjacent to b and c. We
first show that x ≺ y. Suppose instead that y ≺ x. If y ≺ a, then y ≺ a ≺ b ≺ x
and Lemma 3 is contradicted by yb and ax. Now note that applying Lemma 1 to ax
and by implies that b and y cannot both be between a and x. Thus, as we have, by
assumption, that b is between a and x, we know that y cannot be and so, as a ≺ y,
we must also have that x ≺ y as claimed. This implies that b ≺ x ≺ y.

Now observe that Lemma 1 applied to by and dx implies that d and x cannot both
between b and y. Then, as b ≺ x ≺ y and b ≺ d, it follows that b ≺ x ≺ y ≺ d. But
then by and xd contradict Lemma 3. ut

6 Conclusions

In this paper, we have related 2-dot product graphs to several known graph classes. In
results of note, we shed light on the relationships between 2-dot product graphs and
co-bipartite graphs, unit circular-arc graphs, and split graphs.

We are left with a number of interesting open problems. Although we proved that
unit disk graphs have dot product dimension at most 3, we do not know of an example
that achieves this bound. Moreover, to prove the current bound, we considered inter-
section graphs of unit caps. An intriguing question is whether they are different from
the capture graphs of caps studied by Fiduccia et al. [5]. We believe, but have no proof,
that this is the case. Thinking more generally, bounding the dot product dimension of
disk graphs, where the disks may have arbitrary sizes, is another intriguing question.

Finally, a more detailed analysis of further graph classes (such as subclasses of
split graphs or unit circular-arc graphs) might increase our understanding of 2-dot
product graphs. We have already shown in this work that an unbounded subclass of
co-bipartite graphs has dot product dimension 2. It would be interesting to further
investigate such phenomena.
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