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ABSTRACT: Controlling charge transport through molecular wires by utilizing
quantum interference (QI) is a growing topic in single-molecular electronics. In
this article, scanning tunneling microscopy-break junction techniques and density
functional theory calculations are employed to investigate the single-molecule
conductance properties of four molecules that have been specifically designed to
test extended curly arrow rules (ECARs) for predicting QI in molecular junctions.
Specifically, for two new isomeric 1-phenylpyrrole derivatives, the conductance
pathway between the gold electrodes must pass through a nitrogen atom: this
novel feature is designed to maximize the influence of the heteroatom on
conductance properties and has not been the subject of prior investigations of QI.
It is shown, experimentally and computationally, that the presence of a nitrogen atom in the conductance pathway increases the
effect of changing the position of the anchoring group on the phenyl ring from para to meta, in comparison with biphenyl analogues.
This effect is explained in terms of destructive QI (DQI) for the meta-connected pyrrole and shifted DQI for the para-connected
isomer. These results demonstrate modulation of antiresonances by molecular design and verify the validity of ECARs as a simple
“pen-and-paper” method for predicting QI behavior. The principles offer new fundamental insights into structure−property
relationships in molecular junctions and can now be exploited in a range of different heterocycles for molecular electronic
applications, such as switches based on external gating, or in thermoelectric devices.

■ INTRODUCTION

Single-molecule conductance values have been determined for
a diverse array of molecular wires trapped between metal
electrodes since the development of specialized measurement
techniques in the late 1990s and early 2000s.1−3 These
methods include mechanically controlled break junction4 and
scanning tunneling microscopy-break junction (STM-BJ)5

experiments. By combining these techniques with the power
of organic synthesis, it has been widely demonstrated that
substantial variation in the conductance of molecular wires can
be achieved by small structural modifications, such as structural
isomerism and/or the presence of heteroatoms.6−13 Partic-
ularly, in the case of π-conjugated systems, much of this
behavior can be attributed to quantum interference (QI)
effects,14−16 which are readily visualized in transmission
functions derived from charge-transport simulations.2,17−20

The transmission function T(E) of a molecular junction is a
plot of the probability of electrons with energy E passing from
one electrode to the other through the molecule and is
proportional to molecular conductance. E is usually considered
relative to the system’s Fermi energy, EF. Calculated trans-
mission functions from first-principles simulations reliably
show qualitative agreement with experimental conductance
studies.2 Quantitative agreement is more challenging due to
difficulties such as the accurate determination of EF using

density functional theory (DFT).17,21 Sharp resonances
coincident with the energies of molecular orbitals (e.g. the
highest occupied and lowest unoccupied molecular orbitals,
HOMO and LUMO, respectively) are key features of a typical
transmission function. In low-bias conductance studies, EF
usually lies near the center of the HOMO−LUMO gap.
Furthermore, the low-bias QI behavior of a molecular junction
relates to the characteristics of the transmission function in the
HOMO−LUMO gap. QI can be constructive (CQI) or
destructive (DQI). Where CQI occurs, a smooth, featureless
transmission curve is usually seen between the HOMO and
LUMO resonances. A characteristic feature of DQI is a sharp
antiresonance in the transmission curve where T(E)
approaches zero.
This work considers two subcategories of DQI, based on the

energy at which an antiresonance appears in the transmission
function of a molecular junction. DQI refers to cases where an
antiresonance occurs close to EF, and significantly reduced low-
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bias conductance would be expected relative to a similar
system without an antiresonance. Shifted DQI (SDQI) refers
to systems where an antiresonance occurs in the transmission
function but does not lie close to EF and so the conductance of
the junction remains high in the low-bias regime.19,20 Where
SDQI occurs, an antiresonance can even be shifted beyond the
HOMO−LUMO gap,20 meaning that SDQI is not always
readily distinguishable from CQI.
In addition to computationally demanding charge-transport

simulations, many simpler methods exist to predict and
rationalize the QI behavior of molecular wires. Some methods
are based on structural considerations alone, such as “curly
arrow” rules (CARs)22−24 and graphical or topological
methods.15,25,26 Other methods require a mathematical or
computational input, such as orbital symmetry approaches,27,28

QI maps,29 and magic ratio rules.18,30−33 These more
straightforward methods necessarily have limitations to their
scope compared to charge-transport simulations. They
generally work well for bipartite hydrocarbon lattices but can
be less accurate for molecular wires that incorporate more
elaborate structural features, such as (i) deviation from a
framework of fused six-membered rings; (ii) the inclusion of
heteroatoms, either as substituents or within the lattice; or (iii)
cross-conjugation.
Two of the present authors recently presented an extension

to predictive CARs for QI behavior [extended curly arrow
rules (ECARs)].24 This was in part inspired by work from
another two of the present authors which showed that simple

CARs as widely applied in molecular electronics22 “broke
down” when applied to cross-conjugated anthraquinone
derivatives.8 ECARs are a “pen-and-paper” method that can
predict whether a given molecule will exhibit CQI, DQI, or
SDQI. ECARs account for previously reported QI behavior of
molecular wires containing heteroatoms, nonbipartite struc-
tures, and cross-conjugation.24 However, ECARs cannot
predict the relative conductance of wires with respect to one
another. Despite this, the conductance of structurally similar
materials would usually be expected to follow the trend CQI ≥
SDQI > DQI. The rules24 are as follows:

ECAR-1. Identify the two anchoring units of a molecular
wire and replace one with a donor group (D) and the other
with an acceptor group (A). If the D lone pair can be
delocalized onto A using curly arrows, CQI is expected; if not,
DQI is expected.

ECAR-2. If DQI is expected, identify any electron-
withdrawing groups (EWGs) or electron-donating groups
(EDGs) present in the molecular wire. If EWGs are present,
replace each anchor with D. If a lone pair from each D can be
independently delocalized to the same EWG, SDQI is
expected. If EDGs are present, replace each contact with A.
If a lone pair (or negative charge) from the same EDG can be
independently delocalized to each A, SDQI is expected.
Otherwise, DQI is expected around EF.
To further test the validity of ECARs, we have designed and

synthesized new heteroatom-containing molecular wires that
differ structurally from those considered in the development of

Figure 1. (a) Structures of the studied 1-phenylpyrrole (1 and 2) and biphenyl (3 and 4) wires; (b) application of ECAR-1 to the four wiresnote
that the choice of which anchor is replaced with D and which with A has no impact on the result of ECAR-1 and that it is not possible to delocalize
a D lone pair onto the pyrrole nitrogen as no vacant orbitals are available; (c) application of ECAR-2 to wires 1 and 2, for which the nitrogen lone
pair can be used as an EDG. Different colored curly arrows represent different delocalization pathways indicated by correspondingly colored
resonance arrows.
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the rules. Specifically, the novel feature of these molecules is
that when they are held between gold electrodes, the
conductance pathway through these molecules must pass
through a nitrogen atom. In contrast, a pathway comprising
only carbon atoms existed in all of the examples used in the
conception of ECARs.24 To our knowledge, this is the first
study of QI effects in organic molecules where an all-carbon
conductance pathway is not available between the anchoring
groups. The predictions made by ECARs for these new wires
have been tested experimentally using the STM-BJ technique
and investigated computationally by calculating transmission
functions using a simple tight-binding method and DFT-based
material-specific charge-transport simulations.

■ METHODS

Full details of the synthesis and characterization of molecules
1−4 are given in the Supporting Information. In brief, the 1-
phenylpyrrole derivatives 1 and 2 were prepared from 3-
bromo-1-(triisopropylsilyl)pyrrole. The thiomethyl anchor was
first installed through lithiation followed by treatment with
dimethyl disulfide.34 The TIPS protecting group was then
removed before forming the aryl−aryl C−N bond via Ullmann
coupling35 with the appropriate bromothioanisole. The
biphenyl species 3 and 4 were prepared based on a reported
synthesis of 436 using a Suzuki cross-coupling reaction between
3-(methylthio)phenylboronic acid and the appropriate bro-
mothioanisole.
Molecular conductance measurements were performed using

the lab-built STM-BJ technique, which has been reported in
previous publications.5,37 In brief, molecular junctions were
repeatedly formed by driving the gold tip in and out of contact
with a gold substrate. Conductance was measured as a function
of the gold tip-substrate displacement, which is mainly
controlled by a piezo stack during the repeated formation of
junctions (see Supporting Information for more details). All
experiments were carried out in a solution of the target
molecules (0.1 mM) in mesitylene under ambient conditions
with a 0.1 V bias voltage. Logarithmically binned one-
dimensional (1D) conductance histograms and two-dimen-
sional (2D) conductance-displacement histograms were
plotted by compiling at least 2000 molecular conductance-
displacement traces. Statistical analysis was performed using
the methods we reported previously.37

The molecular conductance behavior of molecules 1−4 was
investigated computationally using DFT combined with
quantum transport calculations.21 From the optimized
geometry of each molecule in the gas phase and between
two gold electrodes, we obtained a ground-state Hamiltonian
from the Siesta38 implementation of DFT and combined it
with the Gollum21,39 transport code to obtain a transmission
coefficient T(E) for electrons with energy E passing from one
electrode to the other (see Computational Methods in the
Supporting Information for further details). The low-bias
electrical conductance was then calculated from the Landauer
formula G = G0T(EF), where G0 is the conductance quantum
and EF is the Fermi energy of the electrodes. The room
temperature electrical conductance was obtained from the
thermal averaging of T(E) (see Computational Methods in the
Supporting Information).

■ RESULTS AND DISCUSSION

Molecular Design. We set out to design molecules that
could be used to test the validity of ECARs via investigation of
their conductance behavior, both computationally and in break
junction studies. To test the breadth of applicability of ECARs,
we targeted molecules with a clear structural difference to
those used in prior studies of QI. The isomeric 1-phenylpyrrole
(i.e. N-phenylpyrrole) derivatives 1 and 2 (Figure 1a) contain
a nitrogen atom that lies directly in the conductance pathway
of the molecules, with no alternative through-bond route
between the anchoring groups by which the nitrogen can be
avoided. This is in contrast to the species studied previously to
which ECARs were applied24 and should maximize the
influence of the heteroatom on conductance properties. Past
studies of QI effects in molecular junctions have only
considered molecular backbones where a heteroatom-contain-
ing pathway exists in parallel to an all-carbon pathway10−13 or
organometallic systems.40,41 Studies of molecular junctions
where the conductance pathway must pass through one or
more heteroatoms in the molecular backbone have been
reported,35,42 for example, using oligophenyleneimines.43

However, to our knowledge, QI effects have not been
investigated in such systems.
Each 1-phenylpyrrole isomer has a thiomethyl anchoring

group in the pyrrole 3-position and a second thiomethyl
anchor on the benzene ring, either para (1) or meta (2) to the
pyrrole ring. As shown in Figure 1b, when applying ECAR-1, it
is not possible to delocalize electrons from a D group at either
anchoring position to an A group at the other for either isomer.
However, the nitrogen lone pair can be used as an EDG for
ECAR-2 (Figure 1c). For 1, it is possible to independently
delocalize the nitrogen lone pair to an A group in either
anchoring position, so ECARs predict SDQI. For 2, it is only
possible to delocalize the nitrogen lone pair to an A group in
the pyrrole-anchoring position (the anchoring group on the
benzene ring is meta to the EDG, so delocalization is not
possible); therefore, DQI is expected.
For comparison, the analogous biphenyl derivatives 3 and 4

(Figure 1a), in which the pyrrole ring is replaced by a benzene
ring with the anchor in the meta-position, were investigated.
Similar to 1 and 2, this means that when applying ECAR-1, it is
not possible to delocalize electrons from a D group at either
anchoring position to an A group at the other position for
either 3 or 4 (Figure 1b). As no EDGs or EWGs are present in
3 or 4, ECAR-2 is not applicable and DQI is expected for both
systems. As the four biaryl systems 1−4 form relatively short
molecular wires, it was expected that their molecular
conductance would be sufficiently high to measure exper-
imentally despite the expected occurrence of DQI in three of
the systems. The thiomethyl anchoring groups were selected
for their proven and effective anchoring properties44−47 and
good compatibility with the synthetic route.
It was anticipated that direct comparison between the 1-

phenylpyrrole (1 and 2) and biphenyl (3 and 4) species could
be complicated by differences in the torsional angle (θ)
between the connected rings. The angle θ was not expected to
vary significantly within each isomer pair, as the steric
environment around the aryl−aryl bond remains the same.
We, therefore, reasoned that any influence of θ would be
overshadowed by comparing the relative effect of changing the
position of the second anchoring group (i.e. that on the right
of the structures in Figure 1a) from para to meta for the two
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isomeric pairs. If the prediction of ECARs is correct and 1
shows SDQI (and therefore higher low-bias conductance),
while the other three species show DQI, then, the following
relationship between molecular conductances GX (where X is
the molecule number) should hold around EF:

G
G

G
G

1

2

3

4
>

This means that a larger decrease in conductance is expected
for the 1-phenylpyrrole backbone than the biphenyl backbone
as the second anchor is changed from the para- to meta-
position. In practice, the DFT-minimized conformations of 1−
4 (see below, and Figure S13 and Table S1 in the Supporting
Information) showed that θ was similar for all four species in
the gas phase. In the DFT-minimized molecular junction
conformations, θ differed by 6° in the 1-phenylpyrrole isomer
pair and 8° in the biphenyl pair. We emphasize that these
values relate only to the energy-minimized junction con-
formation. Experimental conductance measurements sample a
broad range of conformations, where θ is likely to vary
similarly for a given isomer pair. As the barrier to rotation is
low at room temperature, we, therefore, anticipated that the
proposed conductance relationship would remain valid.
Molecular Conductance Studies. The STM-BJ techni-

que5,37 was used to investigate the molecular conductance of
the four molecules (see Methods and the Supporting
Information). 1D conductance histograms are shown in Figure
2a, with 2D histograms in Figures 2b and S11 in the

Supporting Information and example conductance traces in
Figure 2c. The most probable molecular conductances for the
four molecules follow the trend 1 (10−3.05 G0) > 3 (10−3.50 G0)
> 2 (10−3.85 G0) > 4 (10−4.05 G0). The broader conductance
histograms observed for 2 and 4 (and to a lesser extent 3) in
comparison to 1 can be related to a wider range of possible
junction configurations.45 A small shoulder is visible in the 1D
histogram of 4 (Figure 2a). This minor feature may be caused
by Au-π, rather than Au−S electronic coupling of a meta-
anchored phenyl ring.48 However, previous examples of such
behavior were observed only when the other anchor was para-
connected, and a similar feature is not observed for 2 or 3. The

small peaks visible between 10−1 and 100 G0 in Figure 2a are
attributed to the conductance of single molecules of
mesitylene, which was used as the solvent in the measure-
ments.49

The hypothesized relationship between the molecular
conductances based on ECARs holds: the ratio between the
most probable conductances of molecules 1 and 2 is 100.80 (ca.
6.3), whereas that between 3 and 4 is only 100.55 (ca. 3.5).
Changing the position of the second anchoring group from
para to meta has nearly double the effect for the 1-
phenylpyrrole species 1 and 2 than it has for the biphenyl
wires 3 and 4. The higher conductance of 1 relative to 3 (and 2
relative to 4) indicates that the 1-substituted 3-(methylthio)-
pyrrole unit affords improved conductance relative to a meta-
linked benzene ring. Indeed, the conductance of 1 is
comparable to that of the para-linked biphenyl species 4,4′-
bis(methylsulfide)biphenyl,37 5, which was determined to be
10−3.10 G0 under the same experimental conditions used for 1−
4 (Figure S10).
A similar trend is observed if the relative conductances of

molecules 2, 3, and 4 are compared. Each has a meta-anchored
benzene bound to a second aromatic system, respectively, 3-
(methylthio)pyrrole (via the pyrrole 1-position), para-
(methylthio)benzene, or meta-(methylthio)benzene. As mo-
lecular conductance increases in the sequence 4 < 2 < 3, 1-
linked 3-(methylthio)pyrrole can be considered an intermedi-
ate between para- and meta-(methylthio)benzene. This trend
in relative conductance is notably compatible with the QI
behavior that ECARs predict for wires comprising only a meta-
benzene (DQI), 1,3-difunctionalised pyrrole (SDQI), or para-
benzene (CQI).

Charge-Transport Simulations. Figure 3a,b shows the
calculated conductance for molecules 1−4 between gold
electrodes based on DFT material-specific Hamiltonians. The
conductance of 1 is higher than 2 for a wide range of EF
around the DFT Fermi energy (EF = 0 eV), and the
conductance of 3 is higher than that of 4 around EF = 0 eV.
This is in qualitative agreement with the experimentally
determined conductance values (Figure 2), as is the trend in
molecular conductance at EF = 0 eV (see Table S2 in the
Supporting Information), which decreases in the sequence 1 >
3 > 2 > 4. (The possibility that the relative conductance was
significantly influenced by different anchoring geometries50 of
different isomers was ruled out as described in the Supporting
Information and Figure S15). Furthermore, Figure 3a,b shows
that for EF < ca. 0.25 eV, G1 > G2 and G3 is similar to or < G4.
This agrees with the ECARs-predicted relationship between
the four molecular conductances. Taking the values at EF = 0
eV as an example, the ratio of the conductances of 1 and 2 is
100.57 (ca. 3.7) and that between 3 and 4 is 100.24 (ca. 1.7).
Similar to the trend observed in the STM-BJ data, the effect of
switching the second anchoring group from para to meta for
the 1-phenylpyrrole species is around twice as large as for the
biphenyl wires. However, the DQI-mediated antiresonance
feature near EF that was predicted using ECARs is not clearly
visible in the transmission function of 2, 3, or 4. We attribute
this to the effect of σ-orbitals on transport.51 Molecules 1−4
are short, and therefore the contribution to transport from σ-
orbitals is higher than that from π-orbitals at energies around
the antiresonance feature, causing it to be masked.
To illustrate this effect, we note that transmission functions

calculated using a simple tight-binding method with a single π-
orbital per atom (Figure 3c,d) show clear antiresonance

Figure 2. (a) Logarithmically binned conductance histograms of
molecules 1−4; (b) 2D conductance-displacement histogram of
molecule 1 under 0.1 V bias voltage (2D histograms of molecules 2−4
are shown in Figure S11 in the Supporting Information), inset: length
distribution; (c) representative conductance traces measured for
molecules 1−4 (trace colors match those used in panel a).
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features in the HOMO−LUMO gap for 2, 3, and 4 but not for
1. Note that additional sharp features can be seen outside the
HOMO−LUMO gap, at E ≈ ± 1 eV for 2−4 and E ≈ −0.6
and +1.6 eV for 1 and 2. The origin of these features was
investigated by calculating the tight-binding energy levels and
corresponding wavefunctions for the 1-phenylpyrrole molec-
ular core of 1 and 2 (Figure S14). A transmission resonance is
usually expected close to the energy levels of a molecule in a
junction. As exemplified in Figure 3e, although an energy level
exists at E = −1 eV for the molecular core (indicated by the
orange line in Figure 3e), no associated resonance is observed
for 1 in the tight-binding transmission function, whereas for 2,
a very narrow resonance can be seen. This can be understood
by examination of the wavefunctions of the molecular core
(Figures 3f,g and S14 in the Supporting Information). The
width of a transmission resonance is proportional to the sum of
the density of states [local density of state (LDOS), i.e.,
modulus squared of wavefunctions] at the connection points to
electrodes.21 When both LDOSs are zero, a resonance with

zero width (a “vanishing resonance”) is expected, as seen for 1
in Figure 3f. In contrast, when only one LDOS is non-zero, as
seen for 2 in Figure 3g, a resonance or Fano resonance is
expected. A Fano resonance is normally due to a localized state
(e.g. that shown in Figure 3f,g) that interacts weakly with
continuum states. The feature observed for 2 close to E = −1
eV is, therefore, a Fano resonance (a resonance attached to an
antiresonance), but the amplitude of the resonance is small
because of a large asymmetry in the self-energies due to the
coupling to the left and right electrodes.
To further demonstrate that the absence of antiresonance

features in the DFT calculations is due to conduction through
the σ-orbitals,51 the electrical conductance of extended
analogues of molecules 1 and 2 (molecules 6 and 7 in Figure
S12 in the Supporting Information) was calculated. Phenyl-
acetylene units were added between the molecular core and
the anchoring groups to lengthen the conductance pathway
and weaken the effect of σ-channels on total transport. The
resulting calculations (see Figure S12 of the Supporting
Information) show that the antiresonance feature predicted by
ECARs is present for 7 (i.e., it is no longer masked by σ-orbital
contributions), whereas no antiresonance feature is observed in
the HOMO−LUMO gap for 6. The observed QI behavior
agrees with the predictions of ECARs and the simple tight-
binding study.

■ CONCLUSIONS
Molecular wires 1 and 2, based on 1-phenylpyrrole, were
designed and synthesized to test recently reported ECARs for
predicting QI behavior.24 By comparison with analogous
biphenyl wires 3 and 4, it was shown using STM-BJ studies
that the presence of an unavoidable nitrogen atom in the
through-bond conductance pathway increases the effect of
changing the position of the anchoring group on the phenyl
ring from para (1) to meta (2). This agrees with ECARs which
predict DQI near EF for 2−4 (i.e. a low low-bias conductance)
and SDQI for 1 (i.e. a higher low-bias conductance due to a
shifted antiresonance). The experimental results are supported
by charge-transport simulations of the measured molecules and
extended analogues. This work verifies the validity of ECARs
as a “pen-and-paper” method for predicting QI behavior and
will, therefore, have an impact on the design criteria of new
molecular wires.
Despite the absence of an alternating pathway of single and

double bonds between the anchoring units, the conductance of
1 is comparable to that of linearly conjugated 4,4′-bis-
(methylsulfide)biphenyl, 5. 1,3-Disubstituted pyrroles there-
fore represent a prototype of heteroaromatic units that can be
used to add SDQI behavior to a molecular wire without
significantly reducing low-bias conductance. These results offer
new fundamental understanding of structure−property rela-
tionships in molecular junctions which can now be exploited in
a range of molecular electronic applications such as switches
based on external gating or in thermoelectric devices.
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