
 1 

Tempo and mode of morphological evolution are decoupled from latitude in birds 1 

Drury, J.*1, Clavel, J.2,3, Tobias, J.A.4, Rolland, J.5, Sheard, C.6, & Morlon H.7 2 

 3 

1Department of Biosciences, Durham University, Stockton Road, Durham, United Kingdom 4 

2Natural History Museum, Cromwell Road, London, United Kingdom  5 

3Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, LEHNA, F-6 

69622, Villeurbanne, France 7 

4Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United 8 

Kingdom 9 

5Zoology Department, University of British Columbia, Vancouver, Canada 10 

6School of Earth Sciences, University of Bristol, Bristol, United Kingdom 11 

7Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Paris, France 12 

*correspondence: jonathan.p.drury@durham.ac.uk, +44 (0) 191 33 41348, Durham 13 

University, Department of Biosciences, Stockton Road, Durham DH1 3LE  14 

 15 

Short title: No effect of latitude on avian morphological evolution 16 

Author contributions: JPD & HM designed the study. JC & JPD developed phylogenetic 17 

models. JR contributed tools for analyses of historical biogeography. JAT & CS contributed 18 

phenotypic datasets. JPD conducted all analyses. JPD & HM wrote the first draft of the 19 

manuscript. All authors contributed to revising the manuscript. 20 

Data accessibility statement: All datasets used will be submitted to a public repository (e.g., 21 

Dryad) upon initial acceptance. All scripts for fitting models are currently available at 22 

https://github.com/jonathanpdrury/two_regime_models and will be submitted to the R 23 

package RPANDA upon acceptance.  24 

mailto:jonathan.p.drury@durham.ac.uk
https://github.com/jonathanpdrury/two_regime_models


 2 

Abstract 25 

The latitudinal diversity gradient is one of the most striking patterns in nature yet its 26 

implications for morphological evolution are poorly understood. In particular, it has been 27 

proposed that an increased intensity of species interactions in tropical biota may either 28 

promote or constrain trait evolution, but which of these outcomes predominates remains 29 

uncertain. Here, we develop tools for fitting phylogenetic models of phenotypic evolution in 30 

which the impact of species interactions—namely, competition—can vary across lineages. 31 

Deploying these models on a global avian trait dataset to explore differences in trait 32 

divergence between tropical and temperate lineages, we find that the effect of latitude on the 33 

mode and tempo of morphological evolution is weak and clade- or trait-dependent. Our 34 

results indicate that species interactions do not disproportionately impact morphological 35 

evolution in tropical bird families and question the validity of previously reported patterns of 36 

slower trait evolution in the tropics. 37 

Keywords: latitudinal diversity gradient, phylogenetic comparative methods, Aves, trait 38 

evolution, matching competition, diversity-dependence  39 
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Introduction 40 

In many groups of organisms, species richness increases toward lower latitudes—a 41 

pattern known as the latitudinal diversity gradient⎯inspiring generations of biologists to 42 

search for the causes and consequences of this gradient [1]. One hypothesis posits that 43 

species interactions are stronger in the tropics and therefore play a more important role in 44 

many processes (e.g., diversification) in tropical lineages [2–6] (but see [7]). Previous tests of 45 

this ‘biotic interactions hypothesis’ have generally focused on latitudinal gradients in the 46 

strength of ecological interactions between predator and prey, herbivore and plant, or 47 

pathogen and host [8–11]. Latitudinal gradients in the strength of competition between 48 

members of the same trophic level have been less explored, although they have been 49 

highlighted as one of the most important research directions for testing the biotic interaction 50 

hypothesis [5]. Competition among closely related species, such as those from the same 51 

taxonomic family, are often assumed to be strong since their ecological and phenotypic 52 

similarity increases the likelihood of competition for access to resources or space [12–16]. 53 

Such interactions can influence selection on traits that mediate access to resources, 54 

influencing trait evolution either by promoting divergence between lineages via character 55 

displacement [17,18] or, alternatively, by imposing constraints on geographical range overlap 56 

and ecological opportunity, reducing trait diversification as niches fill [19–21].  57 

Whether competition predominantly drives or constrains divergence, the impacts on 58 

trait evolution should leave a detectable phylogenetic signature [22–25]. In addition, this 59 

signature should be most prevalent in the tropics, where each lineage interacts with far larger 60 

numbers of potential competitors. As such, the biotic interactions hypothesis predicts 61 

differences between tropical and temperate taxa in the pace of evolution (the ‘tempo’, in the 62 

parlance of comparative studies) and/or the processes that drive trait diversification (the 63 

‘mode’). In comparison with the wealth of studies that have investigated latitudinal gradients 64 
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in rates of species diversification [26–30], relatively few have tested for latitudinal gradients 65 

in the dynamics of phenotypic evolution and have mainly focused on tempo rather than 66 

mode. Their results so far suggest a potentially complex relationship between trait 67 

diversification and latitude. On the one hand, some studies have found greater divergence 68 

between sympatric sister taxa in body mass [31] and in plumage coloration [32] in the 69 

tropics, supporting the hypothesis that increased competition at lower latitudes drives 70 

character displacement [5]. On the other hand, some studies have found that species attain 71 

secondary sympatry after speciation more slowly in tropical regions [33], or that evolutionary 72 

rates are lower in the tropics for climatic niches [34], body-size [34,35] or social signalling 73 

traits [34,36–39], implying that competition may limit ecological opportunity and therefore 74 

constrain trait divergence in tropical regions.  75 

  Disentangling these opposing effects is challenging because previous 76 

macroecological studies have generally been restricted to either relatively few traits or 77 

limited samples of species. In addition, previous studies have been impeded by the lack of 78 

suitable methods for detecting the impact of species interactions on trait evolution [40–42], 79 

although recent progress has been made in developing such methods for use in standard 80 

comparative analyses [20,22,24,43,44]. By incorporating species interactions directly into 81 

phylogenetic models of trait evolution, these developments overcome some of the issues 82 

faced by phylogenetic and trait approaches for studying community assembly that rely on 83 

overly simplistic comparisons to randomly assembled communities [43,45,46]. However, 84 

these developments have not yet been deployed in the context of latitudinal sampling and 85 

thus the key prediction of a latitudinal gradient in trait diversification has yet to be tested. 86 

Here, we begin by expanding existing phylogenetic models of phenotypic evolution, 87 

including models that incorporate competition between species — namely, diversity-88 

dependent models [19,20] and the matching competition model [22,43] — such that the 89 
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impact of interactions between co-occurring lineages on trait evolution can be estimated 90 

separately in lineages belonging to different, pre-defined competitive regimes (e.g., tropical 91 

and temperate).  We note that we use ‘competition’ to encompass all processes (both direct 92 

and indirect) whereby trait evolution is impacted by co-occurring lineages. The models we 93 

develop are designed to account for known intraspecific variability and unknown, nuisance 94 

measurement error, both of which can strongly bias model support and parameter estimates 95 

[47]. In particular, it has been suggested that intraspecific variability is lower in the tropics 96 

[48], which could inflate estimates of evolutionary rates in the temperate biome. Next, we 97 

conduct a comprehensive test of the biotic interactions hypothesis using these new 98 

phylogenetic tools to model the effect of interspecific competition on the tempo and mode of 99 

morphological evolution based on seven morphological characters describing variation in 100 

body size, bill size and shape, and locomotory strategies sampled from ~9400 species 101 

representing more than 100 avian families worldwide. These morphological characters have 102 

been demonstrated to predict diet and foraging behaviour in birds [49], indicating that they 103 

are well suited as proxies for analysing the dynamics of ecological divergence. 104 

 105 

Results 106 

Latitudinal variation in mode of phenotypic evolution 107 

We tested whether modes of phenotypic evolution varied with latitude using two 108 

types of models. First, we tested whether support for various ‘single-regime’ models that 109 

estimate a single set of parameters on the entire avian phylogeny [26] varied according to a 110 

clade-level index of tropicality. Second, we developed and used ‘two-regime’ models with 111 

distinct sets of parameters for tropical and temperate species and tested whether these 112 

latitudinal models were better supported than single-regime models. 113 
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 Across single-regime fits, we found no evidence for a latitudinal trend in the overall 114 

support for any model of phenotypic evolution (Fig. 1a-f, S4 Table), with one exception: 115 

there was an increase in model support for the matching competition model in tropical 116 

lineages for the locomotion pPC3 (Fig. 1f, S4 Table). Similarly, there was no evidence that 117 

the overall support for models incorporating competition (i.e., matching competition or 118 

diversity dependent models) is higher in tropical clades (Fig. 1g, S4 Table). Models with 119 

latitude (i.e., two-regime models) were not consistently better supported than models without 120 

latitude, for any model or trait (S5 Table). Indeed single-regime models were the best fit 121 

models across 86% of individual clade-by-trait fits (S7 Fig.).   122 

  123 
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 125 

Figure 1. Model support for single-regime models reveal little impact of latitude on the mode 126 

of phenotypic evolution in birds (66 clades with  50 species, with data from 7163 species). 127 

There is no relationship between the proportion of taxa in a clade that breed in the tropics and 128 

statistical support (measured as the Akaike weight) for (a) Brownian motion, (b) Ornstein-129 

Uhlenbeck, (c) early burst models, (d) exponential diversity-dependent models or (e) linear 130 

diversity-dependent models. In matching competition models (f), there is an increase in 131 

model support for locomotion pPC3 (solid line). The relative support for a model 132 

incorporating competition (i.e., matching competition or diversity dependent models) does 133 

not vary latitudinally for any trait (S4 Table). Each point represents the mean Akaike weight 134 

across clade-by-trait fits to stochastic maps of biogeography (i.e., each clade contributes a 135 

point for each of seven traits, see S2 Data, S3 Data). 136 

 137 

Latitudinal variation in the effect of interactions on phenotypic evolution  138 

We found no evidence for a latitudinal trend in the slope estimated from single-139 

regime diversity-dependent models (Fig. 2c,d, S6 Table). However, the strength of repulsion 140 

estimated from single-regime matching competition models increased in more tropical 141 

families for locomotion pPC3 (Fig. 2b, S6 Table). Parameter estimates from two-regime 142 

models with competition (i.e., matching competition or diversity dependent models) do not 143 

support a stronger effect of biotic interactions on phenotypic evolution in the tropics (Fig. 3b-144 

d)—in most traits, there is no consistent difference between estimates of the impact of 145 

competition on tropical and temperate lineages, and in one case (bill pPC2), there is evidence 146 

that competition impacts temperate lineages to a larger degree than tropical lineages (Fig. 3b-147 
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d, S7 Table). In all cases, there was substantial variation in the fits, and the overall magnitude 148 

of differences between tropical and temperate regions was rather small (Fig. 3b-d).  149 

 150 

Impact of assuming continental-scale sympatry 151 

Phylogenetic models of competitively driven trait evolution rely on reconstructions of 152 

ancestral ranges to delimit the pool of potential species interaction at each point in the 153 

evolutionary history of a clade. Given the scale of our analyses and the computational limits 154 

of existing models of ancestral range estimation, we assumed that species occurring on the 155 

same continent were able to interact with one another. On average, species in our analyses are 156 

sympatric with 50% of clade members at the continental level, although there are differences 157 

across continents (mean range 34% - 74%; S5 Fig., S9 Table, S10 Table). Notably, we also 158 

found that temperate species are more likely to coexist in sympatry with family members 159 

than tropical species (S11 Table). To determine the impact of assuming continental-scale 160 

sympatry, we investigated whether we would detect a latitudinal difference in the effect of 161 

competition on phenotypic evolution if it existed, even if competition occurs among only 162 

truly sympatric species rather than among all species occurring on the same continent. 163 

Simulations examining the impact of the continental-scale sympatry assumption on the 164 

statistical power of two-regime MC models demonstrate that, even for relatively small clades, 165 

large but biologically plausible latitudinal differences in the effect of competition should be 166 

detectable, even when sympatry is overestimated (S8 Fig.). Nevertheless, there is evidence 167 

that this assumption can impact the power to detect subtle differences between regions, and 168 

for smaller trees, the estimated direction of the difference (S8 Fig.). However, restricting our 169 

empirical analyses to large clades (N  100), we still find no support for a consistently 170 

stronger impact of competition on phenotypic evolution in tropical lineages (S8 Table). 171 

  172 
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 174 

Figure 2. Parameter estimates from single-regime models reveal varying impacts of latitude. 175 

There is no impact of latitude on the effect of competition on trait evolution as measured by 176 

the slope of (a) exponential diversity-dependent models, or (b) linear diversity-dependent 177 

models. (c) The effect of competition on trait evolution as measured by the repulsion 178 

parameter (‘S’) from the matching competition models increases with the index of tropicality 179 

(the proportion of species in the clade with exclusively tropical breeding distributions) for 180 

locomotion pPC3 but not for other traits. (d) There is no relationship between the proportion 181 

of taxa in a clade that breed in the tropics and the estimated rate of trait evolution from 182 

Brownian motion models. Solid lines represent statistically significant relationships (S6 183 

Table, S13 Table). For (a-c), each point represents the mean across clade-by-trait fits to 184 

stochastic maps of biogeography (for all families with at least 50 species), and for (d), each 185 

point represents the maximum likelihood estimate for each clade-by-trait fit (see S2 Data, S3 186 

Data). 187 

 188 

 189 

Figure 3. Parameter estimates from two-regime models reveal varying impacts of latitude. 190 

Estimates of slopes from (a) exponential diversity-dependent models and (b) linear diversity 191 

dependent models are not consistently different in tropical regions in any trait. (c) Matching 192 

competition models estimated a decreased effect of competition in the tropics on bill pPC2. 193 

(d) Estimates of evolutionary rates from Brownian motion models show accelerated rates of 194 

locomotion pPC3, but not other functional traits, in temperate regions. Asterisks indicate 195 

statistical significance (S7 Table, S14 Table). For (a-c), each point represents the mean 196 

across clade-by-trait fits to stochastic maps of biogeography and of tropical/temperate 197 
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membership (for all families with at least 50 species), and for (d), each point represents the 198 

mean across stochastic maps of tropical/temperate membership maximum (see S4 Data, S5 199 

Data). 200 

 201 

Latitudinal variation in tempo of phenotypic evolution 202 

 Evolutionary rates estimated from single-rate models did not vary according to clade-203 

level index of tropicality (Fig. 2, S9 Fig., S13 Table). Similarly, estimates of rates from 204 

latitudinal models were neither consistently lower nor higher in tropical regions (Fig. 3d, S10 205 

Fig, S14 Table). We did find lower rates of locomotion pPC3 (Fig. 3d, S10 Fig., S14 Table) 206 

and bill pPC2 evolution in tropical lineages (S10 Fig., S14 Table), but the difference between 207 

regions was small and the overall strength of this relationship was weak. Observational error 208 

contributed to these patterns: we found a significant negative correlation between 209 

observational error and the clade-level index of tropicality for body mass (S11 Fig., S15 210 

Table); we also found that there was a correlation between rates of body mass and 211 

locomotion pPC3 evolution in standard single-regime BM models excluding error (S12 Fig., 212 

S16 Table), and that the magnitude of the difference between tropical and temperate rates of 213 

trait evolution was higher in analyses of two-regime fits excluding error (S12 Fig., S17 214 

Table).  215 

 216 

Predictors of support for models with an effect of competition on phenotypic evolution 217 

We found no evidence that territoriality or diet specialization are useful predictors of 218 

support for models that incorporate the impact of co-occurring species on phenotypic 219 

evolution (S18 Table). We did, however, find that the maximum proportion of species co-220 

occurring on a continent (i.e., the maximum number of extant lineages on a single continent 221 

divided by the total clade size) had a pronounced impact on model selection—clades with a 222 
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high proportion of lineages occurring on the same continent were more likely to be best-fit by 223 

the matching competition model, whereas clades with a low proportion of co-occurring 224 

lineages were more likely to be best-fit by the exponential diversity dependent model (S13-225 

S14 Figs., S18 Table). In addition, we found that the matching competition model was less 226 

likely to be favoured in clades with many members living in single-strata habitats (S18 227 

Table). 228 

 229 

Discussion 230 

Contrary to what would be expected if the effect of competition on phenotypic 231 

evolution was stronger in the tropics, we did not find a consistent latitudinal gradient in the 232 

dynamics of phenotypic evolution across the entire avian radiation. Using novel methods for 233 

examining macroevolutionary signatures of the effect of competition on phenotypic 234 

evolution, we show that patterns of trait evolution across many clades are consistent with 235 

competition between clade members acting as an important driver of trait evolution. 236 

Nevertheless, we found no evidence that such competition has impacted the dynamics of trait 237 

diversification more in the tropics than in temperate regions. This lack of consistent 238 

latitudinal effect applied both to the support for specific models of phenotypic evolution and 239 

the parameters of these models. Our results contrast with several previous studies that have 240 

found a consistent signature of faster rates in the temperate biome [34,36–39,50].  241 

The apparent absence of latitudinal patterns in support of phenotypic models with 242 

competition and estimates of competition strength did not arise from overall weak support for 243 

competition models, confirming previous findings that competition does leave a detectable 244 

signal in comparative, neontological datasets [22–25,51,52]. Indeed, models incorporating 245 

species interactions were the best fit models in 25% of clade-by-trait combinations for single-246 

regime fits. In sunbirds (Nectariniidae), for instance, the matching competition model was the 247 
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best fit model for body mass and two pPC axes describing variation in bill shape, suggesting 248 

that competition has driven trait divergence in this diverse clade. In owls (Strigidae), the 249 

exponential diversity-dependent model was the best fit model for body mass and several pPC 250 

axes describing bill shape and locomotory traits, suggesting that the rate of evolution in owls 251 

responds to changing ecological opportunity. The finding that interactions with co-occurring 252 

species commonly leave a signature on extant phenotypes in birds is echoed by a recent study 253 

showing that traits in a similar proportion of clades are best fit by competition models [51].   254 

For both single-regime models and two-regime models, we detected no systematic 255 

effect of latitude on the impact of competition on trait diversification. One possible 256 

explanation for this is that our approach was highly conservative since we assumed that 257 

species occurring on the same continent are likely to interact with one another whereas they 258 

may be allopatric (with non-overlapping geographical ranges) or exhibit low levels of 259 

syntopy within areas of sympatry [53]. However, previous work [23] and simulations 260 

exploring the impacts of assuming competition between potentially allopatric lineages 261 

suggest that the MC model is robust to some misspecification of geographic overlap (e.g., 262 

allopatric species scored as sympatric). This robustness is likely explained by both the 263 

imprint of competition on ancestral, coexisting lineages and a formulation of competition 264 

where divergence occurs respective to mean phenotypic values across interacting species (the 265 

mean across all species within each continent may be a relatively good proxy for the mean 266 

across sympatric species). Nevertheless, the possibility remains that, if differences between 267 

regions in the impact of competition are sufficiently small, the two-regime models may not 268 

have detected them. In aggregate, however, our results consistently point to a conspicuous 269 

absence of a latitudinal gradient in the effect of competition on trait diversification.  270 

One plausible explanation for discrepancies between our results and other studies that 271 

examine gradients in the tempo of morphological trait evolution is that our study accounted 272 



 13 

for observational error. Indeed, we found that overall observational error for body mass 273 

increased with latitude; and when we intentionally ignored observational error, Brownian 274 

motion models were more likely to pick up faster rates of trait evolution at high latitudes. 275 

This result makes sense in the light of previously reported higher trait variance for temperate 276 

taxa [48] and a positive correlation between such variance and rate estimates [54]. Our 277 

analyses demonstrate that accounting for observational error when testing for latitudinal 278 

trends in evolutionary rates is crucial and also suggest that previous analyses overlooking 279 

error may have detected spurious latitudinal gradients in trait evolution. 280 

Another potential explanation for the discrepancy between this and previous studies is 281 

that many previous studies examined gradients in rapidly evolving plumage and song traits, 282 

which may vary latitudinally if sexual or social selection is more pronounced in temperate 283 

regions [55]. In contrast, divergence in ecological traits is likely more constrained, as they 284 

tend to evolve relatively slowly [56,57]. 285 

A third explanation for the discrepancy is that many previous studies used sister-taxa 286 

approaches to estimate gradients in trait evolution [34,36,37,50]. Yet, avian sister taxa are 287 

younger in temperate regions [33,50], and how these age differences influence rate estimates 288 

if trait evolution has proceeded in a non-Brownian fashion is not clear. Analyses on sister 289 

taxa of different ages can recover different rates even though these rates are not 290 

representative of any process unique to any particular region. For example, given that rates of 291 

trait evolution have accelerated toward the present [58], we may expect sister taxa to recover 292 

a signature of faster rates in temperate regions (where sister taxa are younger), even if there 293 

are no clade-wide latitudinal differences in the overall tempo and mode of evolution.  294 

Within the competition models, the matching competition model was more likely to 295 

be chosen as the best-fit model than diversity-dependent models, which is consistent with the 296 

notion that competition promotes divergence (e.g., via character displacement [17,18]) more 297 
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often than it constrains divergence (e.g., via niche saturation [19]) at relatively shallow 298 

taxonomic scales [15,42,59]. Nevertheless, the possibility remains that other processes might 299 

generate patterns that are picked up by the matching competition and diversity dependent 300 

models. For instance,  although the models we fit are designed to estimate the dynamics of 301 

trait evolution, competition can also generate patterns of divergence via its impacts on range 302 

dynamics (i.e., ecological sorting) when secondary sympatry is delayed by competitive 303 

interactions [21,60,61]. Therefore, although recent evidence suggests that the effects of 304 

competitive exclusion on community assembly is distinguishable from the action of character 305 

displacement in comparative datasets [25], the possibility remains that the matching 306 

competition model may detect a signal of ecological sorting of morphologically distinct 307 

lineages [21,62]—a process that is also fundamentally governed by competition—in addition 308 

to or instead of evolutionary divergence [25].  Further development of phylogenetic models 309 

that incorporate biotic interactions and simulation studies may help to clarify the processes 310 

that generate trait distributions which matching competition and diversity dependent models 311 

fit well. 312 

In our analyses, we focused within clades, where we would expect competition to be 313 

strongest owing to the phenotypic and ecological similarity of recently diverged taxa [16]. 314 

Nevertheless, in doing so, we excluded other competitors (e.g., non-family members with 315 

similar diets) that impose constraints on niche divergence. Such competitors have been 316 

shown to impact rates of trait evolution across clades of birds [54]. Future research could 317 

extend our approach by examining the impact of interactions between competitors from a 318 

wider diversity of clades.  319 

We found evidence that support for the matching competition model was greater in 320 

clades with a higher proportion of lineages occurring on the same continent, suggesting that 321 

trait divergence may make coexistence possible [15,18]. The exponential diversity-dependent 322 
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model, on the other hand, was more likely to be the best-fit model in clades with relatively 323 

low levels of continental overlap, which may indicate that in these clades, niche saturation 324 

negatively impacts coexistence [63,64]. In addition, we found that model fits on clades with a 325 

high proportion of species living in single-strata habitats were less likely to favour the 326 

matching competition model, suggesting that opportunity for divergence may be limited in 327 

such habitats [65]. These relationships between ecological opportunity, trait evolution, and 328 

coexistence highlight the need for models that can jointly estimate the effects of 329 

diversification, range dynamics, and trait evolution [25,59]. Such models may identify an 330 

impact of competition on processes other than trait evolution, such as competitive exclusion, 331 

which may themselves vary latitudinally [21,33].  332 

By including a suite of traits that capture functional variation in niches [49], we were 333 

able to identify patterns that would have been highly biased, or that we would have missed, 334 

by focusing on one specific trait, in particular body mass. Model support was distributed 335 

evenly across different traits, suggesting that the impact of competition varies both across 336 

clades and across different functionalities. For instance, while 31% (42/135) of clades exhibit 337 

some signature of competition acting on body size evolution in single-regime fits, 68% 338 

(92/135) of them exhibit some signature of competition acting on at least one of the seven 339 

functional traits (body-size, bill pPC axes and locomotion pPC axes). These results further 340 

strengthen the notion that multiple trait axes are necessary to robustly test hypotheses about 341 

ecological variation [49,51,66]. 342 

We have extended various phylogenetic models of phenotypic evolution, including 343 

models with competition, to allow model parameters to vary across lineages (see also [52]) 344 

and to account for biogeography and sources of observational error. We then applied them to 345 

the case of latitudinal gradients, but they could be used to study other types of geographic 346 

(e.g. elevation), ecological (e.g. habitat, diet), behavioural (e.g. migratory strategy) or 347 
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morphological (e.g. body size) gradients. Studies of gradients in evolutionary rates are often 348 

performed using sister-taxa analyses, assuming BM or OU processes [67]. These analyses are 349 

useful because they enable quantitative estimates of the impact of continuous gradients on 350 

rate parameters. However, by limiting analyses to sister taxa datasets (and therefore ignoring 351 

interactions with other coexisting lineages), they are unable to reliably detect signatures of 352 

species interactions [68] and so cannot be used to study competition. In addition, these 353 

approaches are not well-suited to differentiating between different evolutionary modes. 354 

Applying process-based models of phenotypic evolution that incorporate interspecific 355 

competition and biogeography allow for such tests of evolutionary hypotheses about the 356 

mode of trait evolution across entire clades.  357 

 Focusing on the effect of competition between closely related species on phenotypic 358 

evolution, we did not find support for the biotic interactions hypothesis. Biotic interactions 359 

are multifarious; individuals face selective pressures arising from competition, but also from 360 

other types of interactions such as predator-prey and host-parasite interactions. Perhaps as a 361 

result of this complexity, pinning down clear empirical relationships between latitude and 362 

biotic interactions has yielded a complex and often inconsistent set of results [7], with 363 

empirical evidence ranging from stronger interactions in the tropics [8,10] to stronger 364 

interactions in temperate regions [9]. A challenge for future research on the biotic 365 

interactions hypothesis is therefore to more precisely identify the mechanisms that lead to 366 

latitudinal gradients in interactions and, consequently, better predict the kinds of interactions 367 

that may shape latitudinal gradients in diversification. 368 

 369 

Materials and methods 370 

Two-regime phylogenetic models of phenotypic evolution 371 
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 One approach to analyse gradients in phenotypic evolution is to fit phylogenetic 372 

models of phenotypic evolution that allow model parameters (e.g., evolutionary rates) to vary 373 

across the phylogeny; such models are already available for the simplest models of trait 374 

evolution such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models [69,70]. To 375 

explore effects of species interactions, we developed further extensions to early burst (EB), 376 

diversity-dependent (DD) and matching competition (MC) models allowing parameters to be 377 

estimated separately in two mutually exclusive groups of lineages in a clade. Generalizing 378 

these new models to estimate parameters on more than two groups, or on non-mutually 379 

exclusive groups, is straightforward.  380 

 We began by developing a two-regime version of the early burst (EB) model in which 381 

rates of trait evolution decline according to an exponential function of time passed since the 382 

root of the tree [71]. We used this model here to ensure that the diversity-dependent models, 383 

which incorporate changes in the number of reconstructed lineages through time, are not 384 

erroneously favoured because they accommodate an overall pattern of declining rates through 385 

time. To estimate rates of decline separately for mutually exclusive groups, we formulated a 386 

two-regime EB model with four parameters (Table 1): z0 (the state at the root), σ0
2 (the 387 

evolutionary rate parameter at the root of the tree), rA (controlling the time dependence on the 388 

rate of trait evolution in regime “A”), and rB (time dependence in regime “B”). This model 389 

can be written as: 390 

                   391 

𝑑𝑋𝑡
(𝑗)
= {

𝜎0𝑒
1

2
𝑟𝐴𝑡𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

𝜎0𝑒
1

2
𝑟𝐵𝑡𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡

 ,  (Eq. 1) 392 

 393 
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where 𝑋𝑡
(𝑗)

 is the trait value of lineage j at time t, and dWt represents the Brownian motion 394 

process (S1 Fig.). This model is the two-regime equivalent of the EB model where σ2(t) = 395 

σ0
2ert; the (1/2) factor in Eq.1 comes from taking the square root of the rate.  396 

 397 

Table 1. Parameters of models used in analyses. The subscripts ‘trop’ and ‘temp’ in the 398 

two-regime versions of each model refer to parameters estimated separately for lineages with 399 

exclusively tropical breeding ranges and lineages with breeding ranges that include the 400 

temperate region. k indicates the number of free parameters estimated in each model, σ2 401 

indicates the rate parameter describing the tempo of trait evolution, z0 indicates the trait value 402 

at the root of the clade, and  describes the strength of the pull toward a stable optimum in 403 

the Ornstein-Uhlenbeck model. For descriptions of other parameters, see the main text. 404 

 405 

model k σ2 z0 other 

BM_single 2 σ2 z0 — 

BM_two 3 σ2
trop; σ

2
temp z0 — 

OU_single 3 σ2 z0  

OU_two 4 σ2 z0trop; z0temp  

EB_single 3 σ2 z0 r (slope) 

EB_two 4 σ2 z0 rtrop; rtemp 

DDexp_single 3 σ2 z0 r (slope) 

DDexp_two 4 σ2 z0 rtrop; rtemp 

DDlin_single 3 σ2 z0 b (slope) 

DDlin_two 4 σ2 z0 btrop; btemp 

MC_single 3 σ2 z0 S 
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MC_two 4 σ2 z0 Strop; Stemp 

 406 

Diversity-dependent (DD) models represent a process where rates of trait evolution 407 

respond to changes in ecological opportunity that result from the emergence of related 408 

lineages [19,20]. When the slope of these models is negative, this is interpreted as a niche-409 

filling process where rates of trait evolution slow down with the accumulation of lineages. 410 

We considered two versions of DD models, with either exponential (DDexp) or linear (DDlin) 411 

dependencies of rates to the number of extant lineages. The two-regime model has four free 412 

parameters (Table 1): z0 (the state at the root), σ2 (the evolutionary rate parameter), rA (the 413 

dependence of the rate of trait evolution on lineage diversity in regime “A”), and rB (diversity 414 

dependence in regime “B”). For the exponential case, this model can be written as: 415 

                  416 

𝑑𝑋𝑡
(𝑗)
= {

𝜎0𝑒
1

2
𝑟𝐴𝑛𝑡

(𝐴)

𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

𝜎0𝑒
1

2
𝑟𝐵𝑛𝑡

(𝐵)

𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡
,  (Eq. 2) 417 

 418 

for the exponential case, where 𝑛𝑡
(𝐴)

 and 𝑛𝑡
(𝐵)

 are the number of lineages in regime A and B at 419 

time t. This model is the two-regime equivalent of the DDexp model where σ2(t) = σ0
2ern(t); the 420 

(1/2) factor in Eq.2 comes from taking the square root of the rate. For the linear case, this can 421 

be written as: 422 

 423 

𝑑𝑋𝑡
(𝑗)
= 

{
 

 √𝜎02+ 𝑏𝐴𝑛𝑡
(𝐴)
𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

√𝜎02+ 𝑏𝐵𝑛𝑡
(𝐵)
𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡

,  (Eq. 3) 424 

 425 
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This model is the two-regime equivalent of the DDlin model where σ2(t) = σ0
2 + bnt and b 426 

denotes the slope in the linear model. Standard DD models ignore whether lineages coexist, 427 

yet only those lineages likely to encounter one another in sympatry are able to compete with 428 

one another. Thus, we extended our model to incorporate ancestral biogeographic 429 

reconstructions to identify which species interactions are possible at any given point in time 430 

(i.e., which species co-occur [23]). With biogeography, these become: 431 

           432 

𝑑𝑋𝑡
(𝑗)
= {

𝜎0𝑒
1

2
𝑟𝐴∑ 𝐀𝑗,𝑙 

𝑛𝑡
(𝐴)

𝑙=1 𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

𝜎0𝑒
1

2
𝑟𝐴∑ 𝐀𝑗,𝑙 

𝑛𝑡
(𝐵)

𝑙=1 𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡

, (Eq. 4) 433 

 434 

for the exponential case, and: 435 

          436 

𝑑𝑋𝑡
(𝑗)
= 

{
 

 √𝜎02 + 𝑏𝐴∑ 𝐀𝑗,𝑙 
𝑛𝑡
(𝐴)

𝑙=1 𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

√𝜎02 + 𝑏𝐵 ∑ 𝐀𝑗,𝑙 
𝑛𝑡
(𝐵)

𝑙=1 𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡

, (Eq. 5) 437 

 438 

for the linear case, where A is a matrix denoting biogeographical overlap, such that 𝐀𝑗,𝑙 = 1 if 439 

lineages j and l coexist in sympatry at time t, and 0 otherwise (S1 Fig.).  440 

 The matching competition (MC) model is a model of competitive divergence [22,43], 441 

wherein sympatric lineages are repelled away from one another in trait space. We formulated 442 

the two-regime matching competition model, which has four parameters (Table 1): z0 (the 443 

state at the root), σ2 (the evolutionary rate parameter), SA (the strength of repulsion in regime 444 

“A”), and SB (the strength of repulsion in regime “B”). This model can be written: 445 

         446 
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𝑑𝑋𝑡
(𝑗)
= 

{
 
 

 
 
𝑆𝐴 (

∑ 𝑋𝑡
(𝑙)𝑛𝑡

(𝐴)

𝑙=1

𝑛𝑡
(𝐴) − 𝑋𝑡

(𝑗)
) +  𝜎𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

𝑆𝐵 (
∑ 𝑋𝑡

(𝑙)𝑛𝑡
(𝐵)

𝑙=1

𝑛𝑡
(𝐵) − 𝑋𝑡

(𝑗)
) +  𝜎𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡

, (Eq. 6) 447 

 448 

Incorporating biogeography, this becomes: 449 

 450 

𝑑𝑋𝑡
(𝑗)
= 

{
  
 

  
 
𝑆𝐴 (

∑ 𝐀𝑗,𝑙𝑋𝑡
(𝑙)𝑛𝑡

(𝐴)

𝑙=1

∑ 𝐀𝑗,𝑙
𝑛𝑡
(𝐴)

𝑙=1

− 𝑋𝑡
(𝑗)
) +  𝜎𝑑𝑊𝑡   if 𝑗 is in 𝐴 at time 𝑡

𝑆𝐵 (
∑ 𝐀𝑗,𝑙𝑋𝑡

(𝑙)𝑛𝑡
(𝐵)

𝑙=1

∑ 𝐀𝑗,𝑙
𝑛𝑡
(𝐵)

𝑙=1

− 𝑋𝑡
(𝑗)
) +  𝜎𝑑𝑊𝑡   if 𝑗 is in 𝐵 at time 𝑡

,     (Eq. 7) 451 

  452 

We developed inference tools for fitting the two-regime MC and DD models to 453 

comparative trait data, following the numerical integration approach used previously [44,57]. 454 

For the EB model, we developed a branch transformation approach similar to the one used in 455 

mvMORPH [72]. In all model fits, we incorporated the possibility to account for deviations 456 

between measured and modelled mean trait values for each species [73–75] (see S1 Appendix 457 

for details). These deviations are of two types: the ‘known’ deviation associated with 458 

estimating species means from a finite sample, and the ‘unknown’ deviation linked to 459 

intraspecific variability unrelated to the trait model (e.g. instrument errors and phenotypic 460 

plasticity). We follow the common practice of lumping these two sources of deviations (often 461 

called ‘measurement error’) and referring to them as ‘observational error’. A simulation study 462 

demonstrated the reliability of estimates using these tools (S1 Appendix, S7 Data). Functions 463 

to simulate and fit these phenotypic models are available in the R package RPANDA 464 

(Morlon et al. 2016). 465 

 466 
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Phylogeny and trait data  467 

We obtained phylogenies of all available species from birdtree.org [26] and created a 468 

maximum clade credibility tree in TreeAnnotator [76] based on 1000 samples from the 469 

posterior distribution (S13 Data, S14 Data). Since the MC and DD models require highly 470 

sampled clades [43], we used the complete phylogeny including species placed based on 471 

taxonomic data [26] and the backbone provided by Hackett et al. [77]. We then extracted 472 

trees for each terrestrial (i.e., non-pelagic) family with at least 10 members (n = 108). As 473 

island species are generally not sympatric with many other members of their families (median 474 

latitudinal range of insular taxa = 1.28º, non-insular taxa = 15.27º), we further restricted our 475 

analyses to continental taxa, excluding island endemics and species with ranges that are 476 

remote from continental land masses. We gathered data on the contemporary ranges of each 477 

species from shapefiles [78]. 478 

 Mass data were compiled from EltonTraits [79] (n = 9442). In addition, we used a 479 

global dataset based on measurements of live birds and museum specimens [49] to compile 480 

six linear morphological measurements: bill length (culmen length), width, and depth (n = 481 

9388, mean = 4.5 individuals per species), as well as wing, tarsus, and tail length (n = 9393, 482 

mean = 5.0 individuals per species). These linear measurements were transformed into 483 

phylogenetic principal component (pPC) axes describing functionally relevant variation in 484 

bill shape and locomotory strategies (S1 Appendix, S2 Table, S3 Table, S1 Data) 485 

 486 

Biogeographic data and reconstruction 487 

 488 

 Phylogenetic models that account for species interactions require identifying lineages 489 

that are likely to encounter one another [43]. To discretize the contemporary ranges of each 490 

species, we classified them as being present or absent in 11 different global regions [80]: 491 
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Western Palearctic, Eastern Palearctic, Western Nearctic, Eastern Nearctic, Africa, 492 

Madagascar, South America, Central America, India, Southeast Asia, and Papua New 493 

Guinea/Australia/New Zealand. To assign each species to the global region(s) they occupied, 494 

we used several approaches. As a first pass, we used the maximum and minimum longitude 495 

and latitude for species’ (non-breeding) ranges. When the rectangle formed by these values 496 

fell entirely within the limits of a given global region, we assigned that region as the range 497 

for the focal species. Next, for species that did not fall entirely into one region, we compiled 498 

observation data from eBird.org [81] to identify all of the regions that a species occupies 499 

using country-level observations. Finally, for species whose ranges could not be resolved 500 

automatically using these techniques, we manually inspected the ranges. 501 

We incorporated estimates of the presence/absence of each lineage in each range through 502 

time using ancestral range estimation under the DEC model of range evolution [82]. We fit 503 

DEC models to range data and phylogenies for each family with the R package 504 

BioGeoBEARS [82,83]. Since the continents have changed position over the course of the 505 

time period of family appearance (clade age range = 12.84 - 71.88 Mya), we ran a stratified 506 

analysis with adjacency and dispersal matrices defined for every 10 My time slice [80]. Using 507 

the ML parameter estimates for the DEC model, we then created stochastic maps for each 508 

family in BioGeoBEARS, each representing a single hypothesis for which ranges each 509 

lineage occupied from the root to the tip of the tree. 510 

 511 

Tropical and temperate breeding habitats and reconstruction 512 

 513 

To investigate the impact of latitude on trait evolution in two-regime models, we assigned 514 

each species to either the ‘tropical’ or ‘temperate’ regime, based on its breeding range (i.e., a 515 

species that breeds exclusively in the temperate zones but migrates to the tropics when not 516 
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breeding is assigned to the temperate zone). We focused on the breeding ranges of all species 517 

as they are likely to be the arena of strongest competition over territorial space and food. To 518 

do this, we first assigned each species to either ‘tropical’, ‘temperate’, or ‘both’ based on 519 

breeding range limits extracted from range data in shapefiles and defining the tropics as the 520 

region between -23.437º to 23.437º latitude. We then fit a continuous-time reversible Markov 521 

model where transitions between all categories were allowed to occur at different rates, using 522 

make.simmap in phytools [84] on the MCC tree. We then used the maximum likelihood 523 

transition matrix to create a bank of stochastic maps under this model, each indicating a 524 

possible historical reconstruction of tropical vs. temperate habitats through time from the root 525 

to tips (S1 Fig.). In each stochastic map, we collapsed the ‘both’ category & the ‘temperate’ 526 

category to compare lineages with exclusively tropical ranges to lineages with breeding 527 

ranges that include temperate regions. Therefore, our ‘tropical’ category indicates that a 528 

species breeds exclusively in the tropics, and our ‘temperate’ category contains all species 529 

with breeding ranges that include the temperate zone (S4 Fig.). 530 

 We note that this is a relatively simplistic way of categorizing tropical and temperate 531 

membership, and we hope that future methods will enable more sophisticated inferences of 532 

historical biogeography alongside paleolatitude and/or paleoclimate. However, given the 533 

scope of our analyses, and the emerging evidence that many tropical species ranges have 534 

shifted over the timescale of this study [85,86], we opted to keep the results of the historical 535 

biogeographical inference and the latitudinal-regime reconstruction independent. Future 536 

extensions may accommodate the development of more sophisticated paleolatitude models, 537 

as well as interactions between various abiotic (e.g., global climate fluctuation [58]) and 538 

biotic factors. 539 

 540 

Accounting for uncertainty in historical biogeography and latitude 541 
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 542 

We accounted for uncertainty in ancestral reconstructions by fitting phenotypic models on at 543 

least 20 stochastic maps of ancestral tropical/temperate range membership (for all two-regime 544 

models) and/or biogeography (for all models incorporating competition, in both single- and 545 

two-regime versions). For the single-regime model fits that included competition (i.e. DD and 546 

MC models), we computed model support and parameter estimates as means across fits 547 

conducted on stochastic maps of ancestral biogeography. For the two-regime model fits, we 548 

computed model support and parameter estimates as means across fits conducted on 549 

stochastic maps of ancestral tropical/temperate range membership. For the two-regime model 550 

fits with competition, these means also account for variation in estimates of ancestral 551 

biogeography (S1 Fig.).  552 

Given the scope of these analyses, we chose to account for uncertainty in the 553 

biogeographic reconstructions and in the ancestral reconstruction of tropical/temperate living 554 

while keeping the topology fixed under the MCC tree. A previous study with a similar model 555 

fitting approach found that results on MCC trees were highly concordant with results fit to 556 

trees sampled from the posterior distribution [57]. Moreover, there is no reason, to our 557 

knowledge, why basing inferences on the MCC tree would bias conclusions about latitude in 558 

any systematic way.  559 

 560 

Latitudinal variation in mode of phenotypic evolution 561 

We tested whether modes of phenotypic evolution varied with latitude in several 562 

ways. First, we used ‘single-regime’ models (Table 1), that is, models that estimate a single 563 

set of parameters on the entire phylogeny regardless of whether lineages are tropical or 564 

temperate. We tested whether support for each of these single-regime models varied 565 

according to a clade-level index of tropicality (i.e., the proportion of species in each clade 566 
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with exclusively tropical breeding ranges). Second, we used our newly developed ‘two-567 

regime’ models (Table 1) with distinct sets of parameters for tropical and temperate species 568 

and tested whether these latitudinal models were better supported than models without 569 

latitude. 570 

We used maximum likelihood optimization to fit several ‘single-regime’ models of 571 

trait evolution to the seven morphological trait values described above. For all families, we 572 

fitted a set of six previously described models [43] that include three models (BM, OU, and 573 

EB) of independent evolution across lineages, implemented in the R-package mvMORPH 574 

[72], and three further models (DDexp, DDlin, and MC) that incorporate competition and 575 

biogeography, implemented in the R-package RPANDA [87]. For details of reconstruction of 576 

ancestral biogeography, see Appendix S1. In the diversity-dependent models, the slope 577 

parameters can be either positive or negative, meaning that species diversity could itself 578 

accelerate trait evolution (positive diversity-dependence), with increasing species richness 579 

driving an ever-changing adaptive landscape [4,68]; or, alternatively, increasing species 580 

diversity could drive a concomitant decrease in evolutionary rates (negative diversity-581 

dependence), as might be expected if increases in species richness correspond to a decrease in 582 

ecological opportunity [88]. 583 

In cases where families were too large to fit because of computational limits for the 584 

matching competition model (>200 spp., n = 13), we identified subclades to which we could 585 

fit the full set of models using a slicing algorithm to isolate smaller subtrees within large 586 

families. To generate subtrees, we slid from the root of the tree toward the tips, cutting at 587 

each small interval (0.1 Myr) until all resulting clades had fewer than 200 tips. We then 588 

collected all resulting subclades and fitted the models separately for each subclade with 10 or 589 

more species separately, resulting in an additional 28 clades (n = 136 total).  590 
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In addition to this set of models, we fitted a second version of each of these models 591 

where the parameters were estimated separately for lineages with exclusively tropical 592 

distributions and lineages with ranges that include the temperate region (i.e., ‘two-regime’ 593 

models, S1 Appendix, S2 Fig.), limiting our analyses to clades with trait data for more than 594 

10 lineages in each of temperate and tropical regions (S1 Fig., for details of ancestral 595 

reconstruction of tropical and temperate habitats, see S1 Appendix & S4 Fig.). The BM and 596 

OU versions of these latitudinal models were fit using the functions mvBM and mvOU in the 597 

R package mvMORPH [72], and the latitudinal EB, MC, and DD models were fitted with the 598 

newly-developed functions available in RPANDA [87].  599 

We examined model support in two ways. First, we calculated the Akaike weights of 600 

individual models [89], as well as the overall support for any model incorporating species 601 

interactions and overall support for any two-regime model. Second, we identified the best-fit 602 

model as the model with the lowest small-sample corrected AIC (AICc) value, unless a 603 

model with fewer parameters had a ΔAICc value < 2 [89], in which case we considered the 604 

simpler model with the next-lowest AICc value to be the best-fitting model. 605 

 606 

Latitudinal variation in strength of interactions and tempo of phenotypic evolution  607 

We tested for latitudinal variation in the effect of species interactions on trait 608 

evolution using both our single- and two-regime model fits. With the first class of model, we 609 

tested whether parameters that estimate the impact of competition on trait evolution (i.e., the 610 

slope parameters of the DD models and the S parameter from the MC model) estimated from 611 

our single-regime models varied according to the proportion of lineages in each clade that 612 

breed exclusively in the tropics. With the second class of models, we tested whether two-613 

regime models estimated a larger impact of competition on trait evolution in tropical than in 614 

temperate lineages.  615 
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Similarly, we tested whether lineages breeding at low latitudes experience lower or 616 

higher rates of morphological evolution compared to temperate lineages using our two types 617 

of models. First, we tested whether rates of morphological evolution varied according to the 618 

proportion of lineages in each clade that breed exclusively in the tropics. We estimated this 619 

rate directly as the σ2 parameter from the single-regime BM model. For the single-regime EB 620 

and DD models, we calculated estimates of evolutionary rates at the present from estimates of 621 

the rate at the root and the slope parameters. Second, we compared rates estimated separately 622 

for tropical and temperate lineages from the two-regime implementations of the BM, EB, and 623 

DD models. We also examined the impact of observational error on rate estimates by fitting 624 

single-regime and two-regime BM models without accounting for observational error. 625 

 626 

Examining the potential impact of assuming continental-scale sympatry 627 

Our biogeographical reconstructions add important realism into models of species 628 

interactions. Nevertheless, species that occur on the same continent do not necessarily 629 

interact with one another. We conducted a simulation analysis to determine how our ability to 630 

detect the impact of competition on trait evolution may be impacted by the fact that only a 631 

subset of the species occurring in a given continent are actually sympatric. 632 

First, we determined the proportion of species that are sympatric within each 633 

continent. We calculated range-wide overlap for all family members that ever coexist on the 634 

same continent from BirdLife range maps [78] (S6 Data). We defined sympatry as 20% range 635 

overlap according to the Szymkiewicz-Simpson coefficient (i.e., overlap area/min(sp1 area, 636 

sp2 area)). We also determined if overall levels of sympatry vary latitudinally; to do so we 637 

subset pairs of taxa whose latitudinal means are separated by less than 25º latitude [36] and 638 

calculated the midpoint latitude for each pair.  639 
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Next, we conducted a simulation study to determine whether competition unfolding 640 

between ‘truly’ sympatric species only (i.e., at a level finer than the course continental scale 641 

we employed) would systematically impact the fit (i.e., model selection) or performance (i.e., 642 

parameter estimation) of the two-regime competition (MC) models for which we used 643 

continental-level sympatry (as in the empirical analyses). To do this, we selected three clades 644 

spanning the range of tree sizes, each with some traits best-fit by single-regime MC model, 645 

but none best-fit by two-regime MC model (Cracidae.0 [N = 50, Ntropical = 38, Ntemperate =12], 646 

Nectariniidae.0 [N=122, Ntropical = 89, Ntemperate = 33], Picidae.1 [N=190, Ntropical =86, Ntemperate 647 

=104]). For each of these clades, we simulated two biogeographic scenarios reflecting 648 

empirical levels of sympatry (see above). In the first, we downsampled the continental 649 

biogeography such that 50% of tropical and 50% of temperate taxa that were estimated to 650 

occur in the same continent were sympatric (see S1 Appendix for more details). In the second 651 

scenario, to reflect the observed latitudinal variation in sympatry, we downsampled the 652 

continental biogeography such that 33% of tropical and 50% of temperate taxa that were 653 

estimated to occur in the same continent were sympatric (see S1 Appendix for more details).  654 

With these downsampled biogeographic histories, representing hypothetical range 655 

overlap that is more realistic than our continental-level assumption of sympatry, we simulated 656 

trait evolution under the two-regime matching competition model. For each clade, we used 657 

the mean σ2 value estimated under the single-regime MC model in empirical fits of a trait that 658 

was best-fit by the single-regime MC model. We then varied the ratio of the Stropical:Stemperate 659 

within the range of values in other trait-by-clade combinations where the two-regime MC 660 

model was the best-fit model (S12 Table). For each clade, parameter combination, and 661 

downsampled biogeographic scenario, we simulated 100 datasets, for a total of 3000 662 

simulated datasets. Finally, we fit the same twelve models that were used in empirical 663 

analyses. We conducted model selection to identify the best-fit model for each simulated 664 



 30 

dataset and assessed whether the estimated ln(|Stropical|/|Stemperate|) had the sign expected given 665 

the simulated ratio of Stropical:Stemperate (S9 Data). 666 

 667 

Predictors of support for models with competition 668 

 To identify factors other than latitude which influence whether models with 669 

competition were favoured by model selection, we examined the impact of habitat (the 670 

proportion of species in single-strata habitats), territoriality (the proportion of species with 671 

strong territoriality), diet specialization (calculated as the Shannon diversity of diets among 672 

species in a clade), clade age, clade richness, and the maximum proportion of species co-673 

occurring on a continent.  674 

 675 

Statistical approach 676 

 We tested for an impact of the proportion of species in a clade that breed exclusively 677 

in the tropics on model support and parameter estimates in single-regime models by 678 

conducting phylogenetic generalised least squares using the pgls function in the R package 679 

caper [90], estimating phylogenetic signal (λ) using maximum likelihood optimization, 680 

constraining values to 0 ≤ λ ≤ 1. We tested support for the two-regime versions of each 681 

model type (BM, OU, EB, DD and MC) across families for a given trait by fitting intercept-682 

only PGLS models with support for latitudinal models as the response variable. We 683 

conducted similar analyses to test overall support for latitudinal models across families for 684 

each trait and for differences in parameter estimates for tropical and temperate taxa. We 685 

found that statistical support for models incorporating competition was relatively rare in 686 

small clades (Fig. S6). As this pattern could be related to lower statistical power in smaller 687 

datasets [43], we focused all analyses of evolutionary mode (i.e., model support and 688 
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parameter estimates from models incorporating competition) on clades with at least 50 689 

species (n = 66 for single-regime fits, and n = 59 for two-regime fits).  690 

 For analyses of predictors of support for models with competition, we used the R 691 

package MCMCglmm [91] to fit phylogenetic generalised linear mixed models with 692 

categorical response variables indicating whether MC or DDexp models were chosen as the 693 

best-fit model (S12 Data).  694 
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S4 Table. Phylogenetic generalised least-squares (PGLS) models of statistical support as a 954 

function of the latitudinal distribution (measured as the proportion of lineages with 955 

individuals that breed in tropical regions). Statistical support was measured as the mean 956 

Akaike weights of single-regime models (i.e., calculated from pool of single regime models 957 

only), and relative support for a model with competition, (defined as the maximum Akaike 958 

weight for a model with competition divided by the sum of this value and the maximum 959 

Akaike weight for a model without competition [max(MCwi, DDlin_wi, 960 

DDexp_wi)/((max(BMwi,OUwi,EBwi)+max(MCwi, DDlin_wi, DDexp_wi))], limiting analyses to 961 

clades with ≥ 50 tips (n =66). Values indicated in bold are those that are significant after 962 

controlling for multiple testing ( = 0.05/7). λ indicates the maximum likelihood estimate of 963 

the phylogenetic signal. 964 

 965 

S5 Table. Intercept-only PGLS models fit to indices of support for two regimes models for 966 

each trait (for cases where N ≥ 50; n = 59). The index of relative support for any two-regime 967 
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model was calculated using max(two regime Akaike weight)/(max(two regime Akaike 968 

weight)+max(single regime Akaike weight)); other, model specific indices were calculated 969 

using max(two regime Akaike weight for specified model)/ (max(two regime Akaike weight 970 

for specified model) + max(single regime Akaike weight for specified model)). For each 971 

model, this index was transformed by subtracting 0.5 such that negative estimates indicate 972 

support for a single-regime model and positive values equal support for a two-regime model. 973 

Values indicated in bold are those that are significant after controlling for multiple testing ( 974 

= 0.05/7). For all significant cases, the single-regime version of the model was supported 975 

over the two-regime version. λ indicates the maximum likelihood estimate of the 976 

phylogenetic signal. 977 
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S6 Table. PGLS models comparing the observed latitudinal distribution (measured as the 979 

proportion of lineages with individuals that breed in tropical regions) of clade-by-trait level 980 

fits with the mean maximum likelihood estimates (across fits conducted on a bank of 981 

stochastic maps of ancestral biogeography) of the strength of species interactions in single-982 

regime models incorporating competition. All comparisons were conducted on clades with ≥  983 

50 species (n = 66). Note: one outlier was removed from the exponential diversity 984 

dependence analysis of bill pPC2. Values indicated in bold are those that are significant after 985 

controlling for multiple testing ( = 0.05/7). λ indicates the maximum likelihood estimate of 986 

the phylogenetic signal. 987 

 988 

S7 Table. Intercept-only PGLS models linear regressions fit to tropical/temperate 989 

comparisons of maximum likelihood parameter estimates of the strength of species 990 

interactions in two-regime models (for cases where N ≥ 50) (n = 59) for each trait. For each 991 

evolutionary model (a: MC, b: DDexp, c: DDlin), the mean (across fits conducted on a bank of 992 
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stochastic maps of ancestral biogeography and stochastic maps of breeding range) of the log-993 

transformed ratio of the absolute value of parameter estimates for tropical taxa to that of 994 

temperate taxa (ln(|par_tropical|/|par_temperate|)) was the response variable in the intercept-995 

only PGLS model. Negative estimates, therefore, indicate that the impact of competition is 996 

estimated to be higher in temperate regions, whereas positive estimates indicate that 997 

competition is higher in the tropics. Values indicated in bold are those that are significant 998 

after controlling for multiple testing ( = 0.05/7). λ indicates the maximum likelihood 999 

estimate of the phylogenetic signal. 1000 

 1001 

S8 Table. Intercept-only PGLS models linear regressions fit to tropical/temperate 1002 

comparisons of maximum likelihood parameter estimates of the strength of species 1003 

interactions in two-regime models (for cases where N ≥ 100) (n = 34) for each trait. For each 1004 

evolutionary model (a: MC, b: DDexp, c: DDlin), the mean (across fits conducted on a bank of 1005 

stochastic maps of ancestral biogeography and stochastic maps of breeding range) of the log-1006 

transformed ratio of the absolute value of parameter estimates for tropical taxa to that of 1007 

temperate taxa (ln(|par_tropical|/|par_temperate|)) was the response variable in the intercept-1008 

only PGLS model. Negative estimates, therefore, indicate that the impact of competition is 1009 

estimated to be higher in temperate regions, whereas positive estimates indicate that 1010 

competition is higher in the tropics. Values indicated in bold are those that are significant 1011 

after controlling for multiple testing ( = 0.05/7). λ indicates the maximum likelihood 1012 

estimate of the phylogenetic signal. 1013 

 1014 

S9 Table. Zero-intercept mixed-effect linear model with a random effect for clade identity fit 1015 

to the proportion of lineages pairs in each clade that are sympatric in each continent.  1016 

 1017 
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S10 Table. Intercept-only mixed-effect linear model with a random effect for clade identity 1018 

fit to the proportion of lineages pairs that are sympatric in each clade.  1019 

 1020 

S11 Table. Linear model fit to the proportion of lineages pairs that are sympatric as a 1021 

function of the absolute value of midpoint latitude for species pairs.  1022 

 1023 

S12 Table. Simulation parameters used in simulation study to explore the statistical power of 1024 

two-regime MC models under realistic levels of sympatry. Values were chosen based on 1025 

maximum likelihood estimates (MLEs) from single-regime MC models. 1026 

 1027 

S13 Table. PGLS analyses of maximum likelihood estimates of evolutionary rates in single-1028 

regime model fits (n = 135) as a function of the latitudinal distribution (measured as the 1029 

proportion of lineages with individuals that breed in tropical regions). For diversity-1030 

dependent models, parameter estimates are the mean estimates across fits conducted on a 1031 

bank of stochastic maps of ancestral biogeography. λ indicates the maximum likelihood 1032 

estimate of the phylogenetic signal. 1033 

 1034 

S14 Table. Intercept-only PGLS models fit to the difference between tropical and temperate 1035 

maximum likelihood parameter estimates of evolutionary rates in two-regime models, fit 1036 

separately for each trait (n = 71 for ln.mass and n = 70 for other traits). For DD models, the 1037 

rate parameter was calculated as the mean comparisons between parameter estimates across 1038 

fits conducted on a bank of stochastic maps of ancestral biogeography and stochastic maps of 1039 

breeding range. Note: one outlier was removed from the linear diversity dependence analysis 1040 

of locomotion pPC2 as it was > 2 orders of magnitude larger than the next largest value. 1041 
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Values indicated in bold are those that are significant after controlling for multiple testing ( 1042 

= 0.05/7). λ indicates the maximum likelihood estimate of the phylogenetic signal. 1043 

 1044 

S15 Table. PGLS models comparing the observed latitudinal distribution (measured as the 1045 

proportion of lineages with individuals that breed in tropical regions) of clade-by-trait level 1046 

fits (n = 135) with the log-transformed error (calculated as the sum of the maximum 1047 

likelihood estimated error parameter and the clade-level mean squared standard error) in 1048 

single-regime Brownian motion models. Values indicated in bold are those that are 1049 

significant after controlling for multiple testing ( = 0.05/7). λ indicates the maximum 1050 

likelihood estimate of the phylogenetic signal. 1051 

 1052 

S16 Table. PGLS models comparing the observed latitudinal distribution (measured as the 1053 

proportion of lineages with individuals that breed in tropical regions) of clade-by-trait level 1054 

fits (n = 135) with the maximum likelihood parameter estimates of evolutionary rates in 1055 

single-regime Brownian motion models that do not account for observational error. Values 1056 

indicated in bold are those that are significant after controlling for multiple testing ( = 1057 

0.05/7). λ indicates the maximum likelihood estimate of the phylogenetic signal. 1058 

 1059 

S17 Table. Intercept only PGLS models fit to the mean difference (across stochastic maps of 1060 

tropical and temperate living) in MLE estimates of tropical and temperate rates (from two-1061 

rate BM models that do not account for observational error) (n = 71 for log-transformed body 1062 

mass, 70 for other traits). Values indicated in bold are those that are significant after 1063 

controlling for multiple testing ( = 0.05/7). λ indicates the maximum likelihood estimate of 1064 

the phylogenetic signal. 1065 

 1066 
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S18 Table. The factors predicting which clades support models with competition, as revealed 1067 

by Phylogenetic Generalised Linear Mixed Models (PGLMMs) fit to single-regime clade-by-1068 

trait fits (n = 924) with a categorical variable indicating (a) that the matching competition was 1069 

the modal best fit model (i.e., the most common best fit model across fits conducted on a 1070 

bank of stochastic maps of ancestral biogeography) (n = 166) or (b) that the exponential 1071 

diversity dependent model was the model best fit model (n = 66) (S12 Data). The influence of 1072 

the phylogeny was estimated from the random effect component of the PGLMM—the 1073 

phylogenetic intraclass correlation coefficient is analogous to the  parameter (often referred 1074 

to as ‘phylogenetic signal’) estimated from phylogenetic generalized least squares models 1075 

[92]. To facilitate parameter exploration, we rescaled all predictor variables using z-1076 

transformations. We used an uninformative, inverse Wishart distribution as a prior for the 1077 

random effects, a flat prior for the fixed effects, and fixed the residual variance at 1 [93]. To 1078 

fit the models, we ran an MCMC chain for at least 5 x 105 generations, recording model 1079 

results every 100 generations and ignoring the first 5 x 103 generations as burn-in. We fit 1080 

each model four times and merged the four chains after verifying convergence both visually 1081 

and using Gelman-Rubin diagnostics in the R-package coda [94,95]. Estimates and credibility 1082 

intervals are therefore calculated from the pooled posterior distributions. The pMCMC (an 1083 

MCMC derived p-value calculated as two times the proportion of estimates in either the 1084 

positive or negative portion (whichever is smaller) of the posterior distribution) is presented 1085 

from one chain. 1086 

 1087 

S1 Figure. Illustration of our model-fitting approach for clade-level model fits with different 1088 

strengths of competition in tropical and temperate regions. We combine a matrix of the 1089 

presence or absence of each lineage in tropical/temperate regions (‘regime matrix’) with a 1090 

matrix of biogeography (denoted ‘A’) to identify the competitive regime of each lineage and 1091 
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the identity of other lineages with which the focal lineage is able to interact with. Blue and 1092 

red colours in the lower panel denote correspondence between the formula and the 1093 

biogeography matrix (A) and the regime matrix, respectively. 1094 

 1095 

S2 Figure. Results of the simulation study demonstrate the maximum likelihood optimisation 1096 

returns reliable parameter estimates in two-regime models. a-d. exponential time-dependent 1097 

model e-h. exponential diversity-dependent model, i-l.  linear diversity-dependent model, and 1098 

m-p. matching competition model. In all plots, the red lines denote the parameters used to 1099 

generate the simulated data (S7 Data). 1100 

 1101 

S3 Figure. Results of model selection depicting best fitting models for data simulated under 1102 

(a) two-regime Brownian motion, (b) two-regime Ornstein-Uhlenbeck, and (c) two-regime 1103 

Early Burst models across a range of parameter values (S8 Data). 1104 

 1105 

S4 Figure. Clade-level distributions of tropical, temperate, and widespread breeding (a) 1106 

sorted by clade name, (b) sorted by proportion of exclusively tropical breeding species, and 1107 

(c-d) presented as separate histograms. The number following the family name indicates the 1108 

subclade within that family (see Methods, S4 Data, S5 Data). 1109 

 1110 

S5 Figure. Continental variation in the proportion of species that cooccur in sympatry 1111 

(defined as 20% range overlap) (S6 Data). 1112 

 1113 

S6 Figure. Clade size impacts the probability that a model incorporating competition is the 1114 

modal best-fit single-regime model (i.e., the most common best fit model across fits 1115 
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conducted on a bank of stochastic maps of ancestral biogeography and stochastic maps of 1116 

breeding range) (S2 Data, S3 Data). 1117 

 1118 

S7 Figure. Best-fit models for each clade-by-trait combination shows that single-regime 1119 

models generally outperform two-regime models, though some clades (e.g., Meliphagidae, 1120 

Phasianidae) do tend to support models with latitude across several traits. Shown is the modal 1121 

best-fit model (i.e., the most common best fit model across fits conducted on a bank of 1122 

stochastic maps of ancestral biogeography across fits conducted on a bank of stochastic maps 1123 

of ancestral biogeography and stochastic maps of breeding range). The number following the 1124 

family name indicates the subclade within that family (see Methods, S4 Data, S5 Data). 1125 

 1126 

S8 Figure. Results from simulation analyses exploring the impact of assuming continental 1127 

level sympatry for three clades. (a-c) Best-fit models for data generated under downsampled 1128 

biogeographic scenario #1 (i.e., 50% of both tropical and temperate lineages set to allopatric 1129 

at a continental scale). (d-f) Best-fit models for data generated under downsampled 1130 

biogeographic scenario #2 (i.e., 50% of temperate lineages and 66.6% of tropical lineages set 1131 

to allopatric at a continental scale). (g-i) The proportion of simulations for which maximum 1132 

likelihood estimates of the ratio of competition from the two-regime MC model (i.e., 1133 

ln(|Stropical|/|Stemperate|) ) correctly identify the direction of the difference in the strength of 1134 

competition (S9 Data).  1135 

 1136 

S9 Figure. Evolutionary rates in other single-regime models (a: EB, b: DDexp, c: DDlin) do 1137 

not vary as a function of the proportion of lineages that breed in the tropics. For diversity-1138 

dependent models, parameter estimates are the mean estimates across fits conducted on a 1139 

bank of stochastic maps of ancestral biogeography (S2 Data, S3 Data). 1140 
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 1141 

S10 Figure. Differences between rates estimated separately on tropical and temperate taxa in 1142 

two-regime models (a: EB, b:DDexp, c: DDlin). Shown are the mean comparisons between 1143 

parameter estimates across fits conducted on a bank of stochastic maps of ancestral 1144 

biogeography and stochastic maps of breeding range (i.e., tropical or temperate). Asterisks 1145 

indicate statistical significance (S4 Data, S5 Data). 1146 

 1147 

S11 Figure. The relationship between the total error (calculated as the log-transformed sum 1148 

of the maximum likelihood estimated nuisance error parameter from single-regime Brownian 1149 

motion models and the clade-level mean squared standard error) and the proportion of 1150 

tropical breeding lineages in a clade is negative for body mass, but not for other traits. Solid 1151 

lines represent statistically significant relationships (S15 Table, S10 Data). 1152 

 1153 

S12 Figure. Brownian motion models of trait evolution fit at a clade level when not 1154 

accounting for observational error reveal a more pronounced relationship between rate and 1155 

latitude for several traits a. There is a negative relationship between the proportion of taxa in 1156 

a clade that breed in the tropics and the estimated rate of trait evolution from single-rate 1157 

Brownian motion models for body mass and locomotion pPC3, but not other traits. Colour of 1158 

points indicate trait (as in panel b). b. Differences between rates estimated separately on 1159 

tropical and temperate taxa in two-rate Brownian motion models are biased toward faster 1160 

rates in temperate regions for body mass and locomotion pPC3, but not other traits. Shown 1161 

are the mean comparisons between parameter estimates across fits conducted on a bank of 1162 

stochastic maps of ancestral biogeography and stochastic maps of breeding range (i.e., 1163 

tropical or temperate) (S11 Data). 1164 

 1165 
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S13 Figure. Best-fit ‘single-regime’ models for each clade-by-trait combination show that, 1166 

while Brownian motion is most often the best model, several clades show evidence of 1167 

matching competition (e.g., Cotingidae, Formicariidae, Malaconotidae, and Paridae) or 1168 

diversity dependence (e.g., Strigidae, Fringillidae, Columbidae subclade 2) acting on several 1169 

traits. Shown is the modal best-fit model across fits conducted on a bank of stochastic maps 1170 

of ancestral biogeography. The number following the family name indicates the subclade 1171 

within that family (see Methods, S2 Data, S3 Data). 1172 

 1173 

S14 Figure. Best-fit single-regime models (modal best fit across fits conducted on a bank of 1174 

stochastic maps of ancestral biogeography), plotted as a function of total clade size and the 1175 

number of species in each clade that occur on the same continent. A) All models, B) 1176 

Matching competition and exponential diversity-dependent models. Each point represents a 1177 

clade-by-trait combination (i.e., each clade contributes a point for each of seven traits). In 1178 

both panels, points are jittered slightly to aid visualization (S2 Data, S3 Data). 1179 

 1180 

S1 Data. Species-level trait data used in analyses. 1181 

 1182 

S2 Data. Results of all individual single-regime fits. 1183 

 1184 

S3 Data. Results of individual single-regime fits, summarised for each clade-by-trait 1185 

combination. 1186 

 1187 

S4 Data. Results of all individual two-regime fits. 1188 

 1189 
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S5 Data. Results of individual two-regime fits, summarised for each clade-by-trait 1190 

combination. 1191 

 1192 

S6 Data. Species range-wide overlap data calculated from BirdLife shapefiles. 1193 

 1194 

S7 Data. Results from simulation exercise exploring the parameter estimability in newly 1195 

developed two-regime models. 1196 

 1197 

S8 Data. Results from simulation exercise exploring model selection performance of two-1198 

regime BM, OU, and EB models. 1199 

 1200 

S9 Data. Results from simulation exercise exploring the impact of assuming continent-scale 1201 

sympatry on the performance of two-regime matching competition models. 1202 

 1203 

S10 Data. Total error (sum of the maximum likelihood estimated nuisance error parameter 1204 

from single-regime Brownian motion models and the clade-level mean squared standard 1205 

error) for each clade-by-trait combination. 1206 

 1207 

S11 Data. Results of single-regime and two-regime fits of Brownian motion models 1208 

excluding observational error. 1209 

 1210 

S12 Data. Data used for PLMM analyses of predictors for support for either matching 1211 

competition or exponential diversity dependent models in single-regime fits. 1212 

 1213 

S13 Data. Species-level maximum clade credibility tree used during model fitting. 1214 
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 1215 

S14 Data. Clade-level maximum clade credibility tree used for PGLS and PLMM analyses. 1216 


