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Abstract
For a continuous map on the unit interval or circle, we define the bifurcation
set to be the collection of those interval holes whose surviving set is sensi-
tive to arbitrarily small changes of (some of) their endpoints. By assuming
a global perspective and focusing on the geometric and topological proper-
ties of this collection rather than the surviving sets of individual holes, we
obtain a novel topological invariant for one-dimensional dynamics. We pro-
vide a detailed description of this invariant in the realm of transitive maps and
observe that it carries fundamental dynamical information. In particular, for
transitive non-minimal piecewise monotone maps, the bifurcation set encodes
the topological entropy and strongly depends on the behavior of the critical
points.
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1. Introduction

Given some dynamical system on a topological space and an open subset (called hole in the
following), it is natural to study the associated surviving set, that is, the collection of all
points which never enter this subset under forward iteration. In this framework, the theory
of open dynamical systems is, for instance, concerned with escape rates, conditionally invari-
ant measures and other closely related concepts, see for example [4, 10, 11, 17–19, 27, 32]
for more information and further references. Recently, there has been an increased interest in
understanding families of suitably parametrized interval holes of one-dimensional maps whose
surviving sets fulfill certain properties, see for instance [1, 6, 12, 13, 20, 22, 23, 25, 26, 30, 35].
As a matter of fact, this thread of research goes back to the classical work by Urbański
[36, 37].

In this spirit, we propose to study the family of all interval holes representing distinct sur-
viving dynamics as a source of topological invariants. To be more precise, for a continuous
map f on the interval [0, 1] or the circle T, we consider the bifurcation set B f which is given
by all those intervals whose surviving set can change under arbitrarily small perturbations. To
get a first impression of the bifurcation set, see figure 1 below, where an approximation of B f

for the doubling map on the circle is depicted.
Before we state our main results, let us introduce some basic definitions. Throughout this

work, I refers to [0, 1] (in which case we set ∂I = {0, 1}) or T (in which case ∂I = ∅). If
I = [0, 1], a hole is given by an open interval (a, b) with a, b ∈ I\∂I. 4 In this case, the collection
of holes is naturally parametrized by

Δ := {(a, b) ∈ I× I : a < b, a, b /∈ ∂I}.

If I = T, then a hole is an open interval of positive orientation from a to b. In this case, the
interval holes are naturally parametrized by the set

Δ := {(a, b) ∈ I× I : a �= b}.

We denote the diagonal in I× I by Δ0 := {(a, a) : a ∈ I}. Observe that Δ0 is explicitly not
included in Δ. If not stated otherwise, we consider Δ equipped with the subspace topology of
the product topology on I× I.

Now, consider a continuous map f : I→ I. The surviving set of f with respect to (a, b) ∈ Δ
is defined as

S f (a, b) := {x ∈ I : f n(x) /∈ (a, b) for all n � 0}.

Our main object of interest is the bifurcation set of f

B f := {(a, b) ∈ Δ : (x, y) �→ S f (x, y) is not locally constant in (a, b)}. (1)

The geometric structure of B f in Δ is constituted by a configuration of vertical and horizontal
segments. Let us introduce some notation in order to describe it.

Given a closed subset X ⊆ Δ, we define H(X) to be the family of non-trivial maximal hor-
izontal line segments in X, and V(X) to be the family of non-trivial maximal vertical line

4 The assumption that a and b avoid the boundary points {0, 1} simply reduces certain technicalities and is not of any
further importance. For an explicit study of general continuous maps on [0, 1] with interval holes of the form [0, t) and
(t, 1] where t ∈ [0, 1], see [22].
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Figure 1. The left figure represents an approximation of the bifurcation set of the dou-
bling map on the circle. The right figure shows the stairs of this bifurcation set corre-
sponding to periodic orbits of period at most three. Moreover, let us point out that there
is a natural relation between the description of all possible kneading sequences of expan-
sive Lorentz maps and the bifurcation set of the doubling map, see [21, 24]. In particular,
[24, figure 3] is also visible in the lower right corner of the left figure (after some minor
adaptations).

segments in X. We define the set of double points D(X) to be the collection of points in X
which are in the intersection of an element of H(X) and an element of V(X). The set of corner
points C(X) ⊂ D(X) is given by those double points which are endpoints of an element ofH(X)
and of an element of V(X). Last, given x ∈

⋃
H∈H(X) H (x ∈

⋃
V∈V(X)V) we denote the element

of H(X) (V(X)) containing x by Hx (Vx).
Double points will play an important part in retrieving dynamical information from the

bifurcation set. In particular, this holds for corner points x = (a1, a2) ∈ X whose coordinates
are links, that is, there is an element in H(X) whose second coordinate coincides with a1 and an
element in V(X) whose first coordinate equals a2. We refer to such an x as a step. Given a step
x = (a1, a2) ∈ X, we call the maximal collection of steps Fx = {. . . , (a1, a2), (a2, a3), . . .} ⊆
C(X), where for each element y ∈ Fx there is a finite sequence y = y1, . . . , yn = x ∈ Fx such
that yi shares a link with yi+1 (i = 1, . . . , n − 1), a stair. Note that Fx is well defined and
uniquely determined by x. Given Fx = {(a1, a2), . . . , (ap−1, ap)} is finite and I = [0, 1], we
also refer to a1 and ap as terminal links. The length of a stair is the cardinality of its links. Let
us point out that the above terminology originates from the situation described in theorem A
(b): for any step x ∈ D(B f ) the segments Hx and Vx accumulate at the diagonal, so that the set⋃

y∈Fx
(Hy ∪ Vy) resembles the shape of a stair (see also figure 1).

We can now state the first main assertion which is proven in section 3.

Theorem A. Assume that f : I→ I is continuous, transitive and not minimal. Then B f is
closed and the following hold.

(a) B f �= ∅ and int(B f ) = ∅.
(b) All elements of H(B f ) and V(B f ) accumulate at Δ0 and B f =

⋃
H∈H(B f ) H ∪

⋃
V∈V(B f )V.

(c) D(B f ) is closed and totally disconnected.
(d) Each endpoint of an element of H(B f ) or V(B f ) is in D(B f ).
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(e) B f is path-connected.
( f ) If ( fn)n∈N is a sequence of continuous functions on I converging uniformly to f, then every

accumulation point of B fn (w.r.t. the Hausdorff metric) is contained in B f .
(g) Every stair of length p in B f corresponds to a unique periodic orbit of period p.

Furthermore, all but finitely many periodic orbits correspond to a stair.

Observe that point (g) yields the important fact that periodic points and their periods can
be identified in the bifurcation set. This in particular implies that the topological entropy for
transitive non-minimal piecewise monotone maps can be deduced from the bifurcation set (see
section 2.1 for more details).

Notice further that the second part of point (b) implies that the bifurcation set is a collection
of horizontal and vertical segments, while the first part of (b) gives-together with point (d)-that
these segments can essentially be obtained by drawing a horizontal and vertical line from the
double points to the diagonal5. This observation emphasizes the importance of double points
which is even more prominent due to their close relation to kneading sequences of expansive
Lorentz maps (see the caption of figure 1) as well as of nice points introduced in [28] (see also
remark 3.3).

As we will see, natural representatives of double points originate from the periodic points
Per( f ) and the preperiodic points of f (see proposition 3.8 below). It turns out that periodic
and preperiodic orbits are of general importance also beyond the associated double points.
With theorem B, our second main result, we obtain assumptions which guarantee that already
by drawing vertical and horizontal lines from points in the bifurcation set with one periodic or
preperiodic coordinate and taking the closure of the respective union of segments inΔ recovers
the bifurcation set (see remark 4.4 for more details).

In order to state theorem B, we need to introduce some further notation. Let x = (a, b) be
a corner point of B f . We say that x is isolated in B f whenever for some neighborhood U of x
in Δ it holds

U ∩ B f = U ∩ (Hx ∪ Vx).

Moreover, we call x isolated from below whenever for some neighborhood U of x in Δ it holds
for every (a′, b′) ∈ B f ∩ U\(Hx ∪ Vx) that

a′ ∈ I\(a, b) or b′ ∈ I\(a, b).

Otherwise we call x accumulated from below.
The next statement yields the sensitivity of B f on the dynamical behavior of the criti-

cal points Cri( f ) of f . We would like to remark that an essential ingredient of its proof are
shadowing and stability properties of the surviving sets (see section 4).

Theorem B. Suppose f : I→ I is a continuous, transitive, not minimal and piecewise
monotone map. Then the following hold.

(a) If Per( f ) ∩ Cri( f ) = ∅, then every step is isolated from below. Moreover, in case Cri( f )
is empty or contains only transitive points, we have that f is a continuity point6 of the
bifurcation set and that B f can be recovered from periodic and preperiodic points.

5 For I = T, this is true for all segments. For I = [0, 1], this is true for all but those lines in B f with arbitrarily small
first or second coordinate, see also the previous footnote.
6 As in theorem A (f), we consider the space of all continuous maps f : I→ I equipped with the uniform topology,
and the space of all non-empty closed subsets of Δ endowed with the Hausdorff metric.
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(b) If Per( f ) ∩ Cri( f ) �= ∅, then there is at least one step accumulated from below or f is a
discontinuity point for the bifurcation set.

Our last statement is an application of the above theorems and existing results concerning
the family of restricted tent maps (see section 5 for the details). The presentation here is a
simplified version of theorem 5.2.

Theorem C. Let (Ts)s∈[
√

2,2] be the family of restricted tent maps. Then there exist two dis-
joint and dense subsets of parameters, denoted by I and J where I has full measure, such
that:

(a) For s ∈ I every step is isolated from below and s is a continuity point of s �→ BTs .
(b) For s ∈ J some step is accumulated from below and s is a discontinuity point of s �→ BTs .

We close the introduction noting that although the bifurcation set itself is clearly not a
dynamical invariant, we can easily introduce an induced invariant, see section 2.1. By means
of this idea, each topological property of the bifurcation set turns into a topological invariant.
This aspect as well as the relation with periodic orbits, topological entropy, and some measure
theoretic aspects are further explained in section 2.

2. Interpretation of Bf and induced invariants

Consider a continuous map f : I→ I. Recall that the surviving set of f with respect to the hole
(a, b) ∈ Δ is given by

S f (a, b) = {x ∈ I : f n(x) /∈ (a, b) for all n � 0} =
∞⋂

n=0

f −n(I\(a, b))

=

( ∞⋃
n=0

f −n(a, b)

)c

.

Observe that surviving sets are forward invariant under f . We define the bifurcation set of f by

B f := {(a, b) ∈ Δ : a ∈ S f (a, b) or b ∈ S f (a, b)}. (2)

Note that if (a, b) ∈ B f , both a and b may belong to S f (a, b). Before proposition 2.2, we will
comment on the difference between the above definition and (1).

We omit the obvious proof of the next statement (which was formulated for transitive maps
in theorem A, already).

Proposition 2.1. Let f be a continuous self-map on I. Then B f is closed in Δ.

Clearly, if (a, b) ∈ B f as defined in (2), then the surviving set of any hole containing [a, b]
does not contain a and b so that (x, y) �→ Sf (x, y) is not locally constant in (a, b). Accordingly,
B f as defined in (2) is clearly contained in the collection given by (1). On the other hand,
the collection from (1) is also contained in (and hence coincides with) that of (2), as the next
proposition shows.

Proposition 2.2. Suppose (a, b) and (a′, b′) are points in Δ belonging to the same
connected component of Bc

f . Then S f (a, b) = S f (a′, b′).

The proof of proposition 2.2 is a consequence of the next lemma. In what follows we set
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SN
f (a, b) :=

N⋂
n=0

f −n(I\(a, b))

and note that S f (a, b) =
⋂

N∈NSN
f (a, b).

Lemma 2.3. Suppose (a, b) ∈ Bc
f . Then there is ε > 0 and M ∈ N such that

SN+2M
f (a, b) ⊆ SN+M

f (a′, b′) ⊆ SN
f (a, b),

for all (a′, b′) ∈ Bε(a, b) and all N ∈ N.

Proof. Note that for (a, b) as in the assumptions, there is ε > 0 with Bε(a, b) ⊆ Bc
f such that

there are �a and �b in N with f �a(Bε(a)), f �b(Bε(b)) ⊆ (a + ε, b − ε). Let M := max{�a, �b}.
Consider (a′, b′) ∈ Bε(a, b) and suppose a′ ∈ (a, b) and b′ /∈ (a, b) (the other cases work

similarly). Trivially, SN+2M
f (a, b) ⊆ SN+2M

f (a′, b). Next, observe that if x ∈ (a′, b′)\(a′, b),

then by definition of �b, we have f �b(x) ∈ (a′, b) and hence SN+2M
f (a′, b) ⊆ SN+2M−�b

f (a′, b′)

⊆ SN+M
f (a′, b′). Likewise, we see that SN+M

f (a′, b′) ⊆ SN
f (a, b′) which clearly yields

SN+M
f (a′, b′) ⊆ SN

f (a, b). This finishes the proof. �
Observe that with ε and M as above, we hence have for all (a0, b0) and (a1, b1) in Bε(a, b)

⊆ Bc
f and all N ∈ N that SN+4M

f (a0, b0) ⊆ SN+2M
f (a1, b1) ⊆ SN

f (a0, b0). This immediately
yields proposition 2.2.

It is immediate that B f = ∅ for f : I→ I minimal. Notice that proposition 2.2 offers the
converse of this statement7. This also yields the first part of point (a) of theorem A.

Corollary 2.4. B f = ∅ if and only if f is minimal.

Recall that given a probability measure μ on I, the (exponential) escape rate of a hole (a, b)
with respect to μ is defined as

ρ(μ, (a, b)) := − lim
N→∞

1
N

log μ(SN
f (a, b)).

If the above limit does not exist, we may likewise consider the upper and lower escape rate by
considering the lim sup and liminf, respectively. For more information about escape rates and
related concepts, see the references at the beginning of the introduction.

Another dynamical characterization of the bifurcation set is the following which is again a
consequence of lemma 2.3.

Corollary 2.5. For every probability measure μ on I, the lower and upper escape rate are
constant on each connected component of the complement of B f .

Clearly, this result remains true when we consider non-exponential escape rates, too.

2.1. The bifurcation set as a strict invariant and deduced invariants

In the following, we discuss different dynamical invariants involved with the bifurcation set
and pose some naturally related questions.

7 More precisely, in the interval case, proposition 2.2 yields transitivity for all points except 0 and 1. Yet, denseness
of periodic points for transitive maps implies minimality of f , see the remark before proposition 3.12. Further, recall
that there are no minimal continuous maps on [0, 1], i.e., B f is always non-empty for I = [0, 1].
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First, let us assume that f and g are conjugate, i.e., π ◦ f = g ◦ π where π : I→ I is a
homeomorphism. Then Bg = {(π(a), π(b)) ∈ Δ : (a, b) ∈ B f } if π is order preserving and
Bg = {(π(b), π(a)) ∈ Δ : (a, b) ∈ B f } otherwise. Hence, the bifurcation sets of conjugate
maps are homeomorphic via a uniformly continuous self-homeomorphism on Δ, where the
uniform continuity is inherited from π. Now, for subsets X, Y ⊆ Δ we can define an equiva-
lence relation by setting X ∼ Y if there is a uniformly continuous homeomorphism p : Δ→Δ
with p(X) = Y. Then the equivalence class [B f ] defines a topological dynamical invariant for
f.

Question 1. Are there natural families of maps where the bifurcation set is a com-
plete topological invariant, that is, where homeomorphic bifurcation sets imply topological
conjugacy?

Clearly, any topological property of B f which is preserved under uniformly continuous
homeomorphisms is a dynamical invariant of f . In a spirit similar to question 1, one may ask.

Question 2. Which dynamical invariants of transitive non-minimal one-dimensional
dynamics can be obtained from the bifurcation set?

For example, if we start from [B f ], we can easily index the stairs and their lengths in B f .
Accordingly, in the light of point (g) of theorem A, we can index the periodic orbits (all but
finitely many if I = [0, 1]) and their periods by an inspection of [B f ] for transitive maps. In
particular, we can deduce for a transitive non-minimal piecewise monotone map f : I→ I that
its topological entropy h( f ) can be recovered from B f . For this recall that a continuous map
f : I→ I is called piecewise monotone if there are finitely many intervals I1, . . . , In in I with
I ⊆

⋃n
�=1 I� such that f is monotone on each I� (recall that f is monotone on an interval I ⊂ I

if f |−1
I (x) is connected for every x ∈ I). For this kind of maps we have that

h( f ) � lim sup
n→∞

1
n

log #{x ∈ I : f n(x) = x},

see [29, corollaries 3 and 3’]. Moreover, in remark 4.12 we explain that every transitive non-
minimal piecewise monotone map is conjugate to a map with constant slope. This in turn
implies that each monotone piece of f intersects the diagonal at most once. Accordingly, we
get h( f ) = lim supn→∞1/n log #{x ∈ I : f n(x) = x} (see for example [2, p 218] for more
details) and we obtain

h( f ) = lim sup
n→∞

1
n

log #{stairs of length n inB f }.

Another dynamical invariant visible in B f for a continuous self-map f on I is the group
of automorphisms Aut( f ). These are all homeomorphisms π : I→ I commuting with f , i.e.,
f ◦ π = π ◦ f. Each π ∈ Aut( f ) defines a map π̂ : Δ→Δ mapping (a, b) to (π(a), π(b)) or
(π(b), π(a)) depending on whether π is order preserving or reversing, respectively. Accord-
ingly, we get that B f is invariant under π̂ and this means π represents a certain symmetry of
the bifurcation set. For an example of this observation, see figure 1, where the automorphism
π = −Id of the doubling map is visible in the symmetry along the off-diagonal.

Question 3. Which symmetries of B f originate from an automorphism of f?

While topological properties of B f are preserved under conjugacy, we may still ask

Question 4. Is it possible to detect the existence of an infinite ergodic measure in B f ?
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The reader may recall that the Farey map is conjugate to the tent map where the former has
an infinite absolutely continuous ergodic measure and the latter a finite one.

Discussing ergodic properties, let us briefly come back to the so-called nice points from [28]
which were introduced to study possible ergodic behavior of S-unimodal maps on the interval.
In particular, it is known that every S-unimodal map without periodic attractors has the weak-
Markov property, which implies the non-existence of positive Lebesgue measure attracting
Cantor sets. Nice points are essential for proving this assertion and a simple inspection of their
definition shows that they can be derived from the bifurcation set.

We close this section with the following questions regarding possible generalizations of our
main results:

Question 5. Does there exist a reasonable decomposition of B f for continuous maps f :
I→ I which are not transitive?

Question 6. How do (finitely many) discontinuity points of f affect the structure of B f ?

Question 7. What is the effect of infinitely many critical points on the bifurcation set?

3. Proof of theorem A

In this section, we study the topology of the bifurcation set in general and for transitive systems
in particular. We will obtain theorem A as a combination of several smaller propositions and
lemmas proven in this part.

3.1. General properties of the bifurcation set

This section aims at a first understanding of basic topological properties of the bifurcation set.
For the sake of completeness, let us start by briefly recalling some standard notions from

the theory of dynamical systems. For f : I→ I and x ∈ I we refer to O(x) := { f n(x) : n ∈ N0}
as the orbit of x. If O(x) is finite, we call x and likewise its orbit preperiodic. If f n(x) = x for
some n ∈ N, then x as well as its orbit are referred to as periodic and we call n a period of x.
If O(x) = I, that is, if O(x) is dense in I, we say x is transitive. We denote the collection of
all periodic and transitive points of f by Per( f ) and Tra( f ), respectively. If Tra( f ) �= ∅, then
we call f transitive and if Tra( f ) = I, we say f is minimal. It is well known and easy to see
that Tra( f ) is dense in I (residual, in fact) if f is transitive. Finally, we call a subset A ⊆ I

f-invariant if A is closed and if f(A) ⊆ A. In case A ⊆ I is f-invariant and if there is an x ∈ A
with O(x) = A, we say A is a transitive set.

Observe that the next statement yields point (f) of theorem A. In the following, we denote
by d the standard metric on I and by d∞ the supremum metric on the space of continuous
self-maps on I.

Proposition 3.1. Suppose ( fn)n∈N is a sequence of continuous maps fn : I→ I which
converges uniformly to f : I→ I. Then

⋂
n∈N

⋃
k�nB fk ⊆ B f .

Proof. Suppose (a, b) /∈ B f . Then there is ε > 0 and n, m ∈ N with f n(a), f m(b) ∈ (a
+ 3ε, b − 3ε). Choose n0 sufficiently large so that d∞( f n

k , f n), d∞( f m
k , f m) < ε for all k �

n0. By the triangle inequality and continuity of f , there is δ > 0 such that f n
k (x) ∈

B2ε( f n(a)) and f m
k (y) ∈ B2ε( f m(b)) if x ∈ Bδ(a) and y ∈ Bδ(b). We may assume without loss

of generality that δ < ε. We have hence shown (Bδ(a) × Bδ(b)) ∩
⋃

k�n0
B fk = ∅. Therefore,

Bc
f ⊆

(⋂
n∈N

⋃
k�nB fk

)c
. �
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We next turn to point (b) of theorem A. In the following, we say a set V ⊆ Δ accumulates
at the diagonal Δ0 if inf(a,b)∈V d(a, b) = 0.

Proposition 3.2. Let f be a continuous self-map on I. For every point x ∈ B f there exists an
element Hx ∈ H(B f ) with x ∈ Hx or an element Vx ∈ V(B f ) with x ∈ Vx which accumulates
at the diagonal Δ0.

Moreover, if f is transitive and (a, b) is contained in an element of V(B f ) (H(B f )), then a ∈
S f (a, b) (b ∈ S f (a, b)). In particular, each non-trivial maximal vertical or horizontal segment
in B f accumulates at Δ0.

Proof. For the first part, suppose x = (a, b) ∈ B f and assume without loss of generality that
a ∈ S f (a, b). Clearly, a ∈ S f (a, b′) for every b′ ∈ (a, b] which proves that there is a vertical
segment in B f which accumulates at Δ0 and contains x.

For the second part, we may assume without loss of generality to be given an element
V ∈ V(B f ). Denote by π2 : Δ→ I the canonical projection to the second
coordinate. Given (a, b) ∈ V , let us assume for a contradiction that a /∈ S f (a, b). Then
there is n ∈ N such that f n(a) ∈ (a, b). Now, there clearly is a transitive point c ∈ π2(V) with
c ∈ ( f n(a), b) or b ∈ ( f n(a), c) and which-as its orbit is dense and thus hits (a, c)—is not in
S f (a, c). Therefore, (a, c) /∈ B f contradicting the assumption that V ⊆ B f . This proves the
statement. �

Remark 3.3. Observe that the previous statement implies that if f is transitive, we have that
a, b ∈ S f (a, b) if and only if (a, b) ∈ D(B f ).

Corollary 3.4. Let f be a continuous transitive self-map on I. Then
⋃

V∈V(B f )V and⋃
H∈H(B f )H (and therefore D(B f )) are closed.

Proof. Let (an, bn)n∈N be a sequence of points in
⋃

V∈V(B f )V (the case of
⋃

H∈H(B f )H works
similarly) converging to some (a, b) ∈ Δ. By proposition 3.2, we know (an, bn) is contained in
a vertical segment which accumulates at Δ0. Hence, for each b′ ∈ (a, b] we have a sequence
(an, b′

n)n∈N in
⋃

V∈V(B f )V with (an, b′
n) → (a, b′) as n →∞. Since B f is closed (by proposition

2.1), we get {(a, b′) : b′ ∈ (a, b]} ⊆ B f , i.e., (a, b) ∈
⋃

V∈V(B f )V which finishes the proof. �

The second part of point (a) of theorem A is provided by

Proposition 3.5. If f : I→ I is transitive, then int(B f ) = ∅.

Proof. Given (a, b) ∈ B f , we find arbitrarily close (a′, b′) such that a′ and b′ are transitive
points and hence a′, b′ /∈ S f (a′, b′). �

Note that transitivity is not necessary in order to have int(B f ) = ∅. For example, on I =
[0, 1], we may consider
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Here, [0, 1/2] and [1/2, 1] are transitive f-invariant subsets and we see, similarly as in the
proof of proposition 3.5, that int(B f ) = ∅.

Recall that the set of non-wandering points of f is defined by

NW( f ) := {x ∈ I : ∀ ε > 0 ∃n ∈ N such that f n(Bε(x)) ∩ Bε(x) �= ∅}.

We straightforwardly obtain

Proposition 3.6. Let f be a continuous self-map on I. If int(B f ) = ∅, then NW( f ) = I.

Clearly, NW( f ) = I is not sufficient in order to have int(B f ) = ∅ as can be seen by
considering the identity, for example.

3.2. Transitive case

The statements of the previous section suggest that the additional assumption of transitivity
allows for a substantially more detailed description of the bifurcation set. With this observation
in mind, we are now taking a closer look at the transitive case.

Lemma 3.7. If f : I→ I is continuous and transitive, then D(B f ) is totally disconnected.

Proof. Observe that since D(B f ) is locally compact (see corollary 3.4), D(B f ) is totally
disconnected if and only if its topological dimensional is zero. For a contradiction, we assume
that D(B f ) is not zero dimensional so that there is (a, b) ∈ D(B f ) such that (a, b) does not
have arbitrarily small clopen neighborhoods in D(B f ). Then there is ε0 > 0 such that for all
ε ∈ [0, ε0] we have that the boundary of the rectangle [a − ε, a + ε] × [b − ε, b + ε] intersects
D(B f ) (note that we may assume without loss of generality that ε0 < 1/2 · d(a, b)). Observe
that ifD(B f ) intersects one of the vertical sides of this boundary, this gives vε ⊆ B f or vε ⊆ B f ,
where vε and vε are the vertical line segments vε = {a − ε} × (a − ε, b − ε0] and vε = {a
+ ε} × (a + ε, b − ε0], respectively. Likewise, if D(B f ) intersects one of the horizontal sides,
this implies hε ⊆ B f or hε ⊆ B f , where hε = [a + ε0, b − ε) × {b − ε} and hε = [a + ε0, b +
ε) × {b + ε}. Hence,

[0, ε0] =
⋃

ε∈[0,ε0]
vε⊆B f

ε ∪
⋃

ε∈[0,ε0]
vε⊆B f

ε ∪
⋃

ε∈[0,ε0]
hε⊆B f

ε ∪
⋃

ε∈[0,ε0]
hε⊆B f

ε.

According to corollary 3.4, the sets⋃
ε∈[0,ε0]
vε⊆B f

ε,
⋃

ε∈[0,ε0]
vε⊆B f

ε, . . .

are closed. Hence by Baire’s category theorem, we may assume without loss of generality that
there is a non-degenerate interval I ⊆

⋃
ε∈[0,ε0]
vε⊆B f

ε. But then (a − I) × (a, b − ε0] ⊆ B f so that

int(B f ) �= ∅, contradicting proposition 3.5. �
Together with corollary 3.4, the previous statement proves point (c) of theorem A. We next

consider point (d).

Proposition 3.8. Suppose f : I→ I is continuous and transitive. If (a, b) is an endpoint
of an element of H(B f ), then (a, b) ∈ D(B f ) and the orbit of b comes arbitrarily close to a.
Likewise, if (a, b) is an endpoint of an element of V(B f ), then (a, b) ∈ D(B f ) and the orbit of
a comes arbitrarily close to b.
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Proof. We only consider (a, b) ∈ H(B f ), the other case is similar. By the second part of
proposition 3.2, we have to show that a ∈ S f (a, b). Since (a, b) is an endpoint of a maxi-
mal horizontal segment, the set {x ∈ I\[a, b] : (x, b) ∈ Bc

f } accumulates at a. By definition,
for all x in the previous set, there are positive integers nx and mx , so that f nx (b) ∈ (x, b)
and f mx (x) ∈ (x, b). As b ∈ S f (a, b) (see proposition 3.2), this gives f nx (b) ∈ (x, a] and
hence infn∈Nd( f n(b), a) = 0. Thus, if there was n ∈ N with f n(a) ∈ (a, b) we would have
that f m(b) ∈ (a, b) for some m ∈ N contradicting the fact that b ∈ S f (a, b). Therefore,
a ∈ S f (a, b). �

Recall the definition of steps, links and stairs from the introduction. Given a transitive
self-map on I, it is easy to see that if {x1, x2, . . . , xp} is a periodic orbit, then each pair of
adjacent points (xi0 , xi1) (where the interval (xi0 , xi1 ) does not intersect the respective orbit)
with xi0 , xi1 /∈ ∂I is a step and all elements in {x1, x2, . . . , xp}\∂I are links. In this way, each
periodic orbit with at least two elements not contained in ∂I is naturally associated to a stair in
B f . In fact, we have the following

Proposition 3.9. Given f : I→ I is continuous and transitive, every stair of B f is of finite
length and realized by a unique periodic orbit.

Proof. Assume we are given a stair of length p ∈ N ∪ {∞}. By definition, each element
(xi, xi+1) of the stair is a corner point so that xi, xi+1 ∈ S f (xi, xi+1), due to proposition 3.8.
Further, as xi is a link, there is an element of H(B f ) which accumulates at (xi, xi) ∈ Δ0, so that
proposition 3.2 yields that xi ∈ S f (c, xi) for some c < xi. Hence, the orbit of xi does not hit
the set (c, xi) ∪ (xi, xi+1) and can therefore not accumulate at xi. Likewise, we obtain that the
orbit of xi+1 cannot accumulate at xi+1. However, due to proposition 3.8, the orbit of xi comes
arbitrarily close to xi+1 and the orbit of xi+1 comes arbitrarily close to xi. This clearly yields
that xi is an iterate of xi+1 and vice versa. Hence, xi and xi+1 are elements of a periodic orbit.
We conclude that all links associated to a stair come from one and the same periodic orbit of
period not bigger than p+ 2. This proves thestatement. �

Corollary 3.10. Let f : I→ I be continuous and transitive. Then, for all but finitely many
p � 2, there is a one-to-one correspondence between periodic orbits of minimal period p and
stairs of length p.

Proof. By the above, there is a one-to-one correspondence between stairs and periodic orbits
which contain at least two elements within I\∂I. Further, unless a given periodic orbit hits ∂I,
its period obviously coincides with the length of the associated stair. As there are at most two
periodic orbits which hit ∂I, the statement follows. �

Remark 3.11. We would like to stress that in case of I = T, it is straightforward to see that
the above one-to-one correspondence holds true for all periods p � 2, in fact.

Slightly abusing notation, given a step x, we may also refer to the point-set Sx = Vx ∪ Hx

⊆ B f as a step. In a similar fashion, given a stair Fx , we may also refer to the union of all maxi-
mal vertical and horizontal segments whose first and second coordinate, respectively, coincides
with a link of Fx as the stair Fx . Notice that for I = [0, 1], this union not only includes all
respective steps (considered as point-sets) but also the horizontal and vertical segments asso-
ciated to terminal links. We may refer to these segments as terminal segments of Fx . Observe
that since each stair is realized by a periodic orbit, the terminal segments accumulate at {0} × I

and I× {1}.
By a path in B f , we refer to a continuous map γ : [0, 1] →Δ with γ([0, 1]) ⊆ B f . Recall

thatB f is path-connected if for all x, y ∈ B f there is a path γ inB f from x to y, that is, γ(0) = x
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Figure 2. Stairs illustrated for maps on the circle (left) and on the interval (right). The
left figure also depicts a path (bold line) as discussed in proposition 3.12.

and γ(1) = y. In order to prove the path-connectedness of B f , we make use of the following
observation whose proof is based on the classical fact that a continuous transitive and non-
minimal self-map on I has a dense set of periodic points (for interval maps, see [33] and also
[7, lemma 41 on p 156]; for maps on the circle, this follows from [15, theorem A] together
with [5, corollary 2]).

Proposition 3.12. Suppose f : I→ I is continuous and transitive. Given two points (a, b)
and (a′, b′) on a stair Fx (considered as the above union of segments), there is a continuous
path in B f from (a, b) to (a′, b′).

Proof. We may assume without loss of generality that (a, b) and (a′, b′) lie on neighboring
steps, that is, (a, b) ∈ S(y1,y2) and (a′, b′) ∈ S(y2,y3) for some (y1, y2), (y2, y3) ∈ Fx (note that if
(a, b) or (a′, b′) lies on a terminal segment, the following proof works exactly the same). As
f is transitive, there is a transitive point y ∈ (y1, y2). By transitivity of y, there is n ∈ N such
that f n(y) ∈ (y2, y3). Clearly, for a small enough interval J ⊆ (y1, y2) containing y, we have
f n(J) ⊆ (y2, y3). By denseness of periodic points, there is a periodic point z ∈ J. Let z1 and z2

be those points in the orbit of z which are the furthest to the right in O(z) ∩ (y1, y2) and the
furthest to the left in O(z) ∩ (y2, y3), respectively. Clearly, (z1, z2) is a step and S(z1,z2) intersects
both S(y1,y2) and S(y2,y3). Let γ1 be some path in S(y1,y2) from (a, b) to the unique intersection
point (c, d) of S(y1,y2) and S(z1,z2); let γ2 be a path in S(z1,z2) from (c, d) to the unique intersection
point (c′, d′) of S(z1,z2) and S(y2,y3); let γ3 be a path in S(y2,y3) from (c′, d′) to (a′, b′). Clearly, the
concatenation of γ1, γ2 and γ3 is a path in B f from (a, b) to (a′, b′). �

We next obtain point (e) of theorem A.

Lemma 3.13. If f : I→ I is continuous and transitive, then B f is path-connected.

Proof. We first observe that given two points x and y on stairs Fx and Fy, respectively, there
is a path in B f from x to y. To see this, it suffices—due to the previous statement—to show that
there is a non-empty intersection between some segment associated to Fx and some segment
associated to Fy. This, however, follows immediately from the fact that on I = T1, each stair
wraps aroundΔ0 while on I = [0, 1], the horizontal and vertical terminal segment of each stair
accumulates at {0} × I and I× {1}, respectively (see figure 2).

Now, suppose we are given arbitrary points x, y ∈ B f . Due to proposition 3.2, we may
assume without loss of generality that x = (a, b) lies on a non-trivial horizontal segment H.
Due to the denseness of periodic points, we find a periodic point c ∈ I with c ∈ (a, b). Without
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loss of generality, we may assume that O(c) contains at least two points in I\∂I. Choose c′ to
be the right-most point in O(c) ∩ (a, b). Then, the vertical segment (terminal or not) of the stair
associated to O(c) which accumulates at (c′, c′) clearly intersects H. Hence, there is a path γ1

from x to a point zx on a stair Fzx in B f . Likewise, we obtain a path γ2 from y to a point zy on
a stair Fzy in B f whose inverse (from zy to y) we denote by γ2. By the above observation, there
is a path γ3 in B f from zx to zy. Altogether, the concatenation γ2 · γ3 · γ1 is a path in B f from
x to y which proves the statement. �

4. Proof of theorem B

In this section, we turn to the problem of identifying critical points and their dynamical behav-
ior by means of the bifurcation set. For this recall that given a continuous map f : I→ I, x ∈ I

is referred to as a critical point (alternatively turning point) if there is no neighborhood of x on
which f is monotone. The collection of all critical points of f is denoted by Cri( f ). Observe
that Cri( f ) is obviously closed.

Let us point out that theorem B follows from theorem 4.11 (the main result of this section),
see remark 4.12.

4.1. Implications of hyperbolicity

Besides transitivity, we will impose additional assumptions on the map f . In particular, we will
assume certain forms of hyperbolicity. As we are dealing with results of a topological flavor,
we consider the following definition of hyperbolicity: an f-invariant set A ⊆ I is referred to as
hyperbolic for a continuous map f : I→ I and a compatible metric d if there exist ε > 0 and
λ > 1 and an open neighborhood U of A such that d( f(x), f(y)) > λ · d(x, y) for all x, y ∈ U
with d(x, y) < ε. In this case, we may also say that f is ε-locally λ-expanding on U (with
respect to d). Note that a smooth map f : I→ I which is hyperbolic on an invariant set A in the
classical sense is also hyperbolic in the above sense with respect to some metric d equivalent
to the usual one (see for instance the proof of theorem 2.3 in chapter 3 of [16]). Henceforth,
all metrics are considered to be equivalent to the standard metric on I and throughout denoted
by d.

We call x ∈ I hyperbolic if O(x) is hyperbolic in the above sense. Notions like hyperbolic
steps or hyperbolic double points are defined in the natural way.

Suppose x ∈ I is a periodic point of f : I→ Iwith minimal period p. We say that f preserves
orientation at a ∈ O(x) whenever f p|J preserves orientation in some neighborhood J of a.
Otherwise, we say that f reverses orientation at a. Given a, b ∈ O(x), we denote by na,b the
minimum time for going from a to b by iteration of f . We say that f preserves orientation from
a to b whenever f na,b |J preserves orientation in some neighborhood J of a. Otherwise, we say
that f reverses orientation from a to b.

Concerning the next statement, recall that due to proposition 3.9 every step is associated to
a periodic point. We may hence refer to the period of this periodic point also as the period of
the respective step.

Lemma 4.1. Let f : I→ I be continuous and transitive. Suppose (a, b) ∈ B f is a hyperbolic
step of period p. The following holds.

(a) If f reverses orientation at a or b, then (a, b) is an isolated corner point of B f .
(b) If f preserves orientation both at a and b, then (a, b) is isolated from below.
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Proof. We start by proving (a). For a contradiction, suppose there is (a′, b′) ∈ B f \(V(a,b) ∪
H(a,b)) arbitrarily close to (a, b). Without loss of generality, we may assume a′ ∈ S f (a′, b′).

First, consider a′ = a. Then we necessarily have b′ ∈ [a, b]c (since otherwise we had
(a′, b′) ∈ V (a,b)) and thus (a′, b′) � (a′, b). As the orbit of a′ = a accumulates at b (see
proposition 3.8), this gives a′ /∈ S f (a′, b′).

Now, consider a′ �= a and assume without loss of generality that a′ ∈ (a, b) (the other case
can be dealt with similarly). Assuming that (a′, b′) is sufficiently close to (a, b), we have
f2p(a′) ∈ (a′, b′) since f is expanding in a neighborhood of O(a) (as it is hyperbolic on O(a))
and f2p is order-preserving in a neighborhood of a. Hence, a′ /∈ S f (a′, b′). This contradicts the
assumptions on a′ and finishes the proof of the first part.

Let us now turn to part (b). Assume for a contradiction that there is (a′, b′) ∈ B f arbitrarily
close to (a, b) with [a′, b′] ⊆ (a, b). As f p is expanding and order preserving both in a and b,
we have f p(a′), f p(b′) ∈ (a′, b′) if a′ and b′ are sufficiently close to a and b. Hence, a′, b′ /∈
S f (a′, b′) which contradicts the assumptions. �

Remark 4.2. Assume the situation of the previous statement. It is not hard to see that if f
preserves orientation at a and b and additionally preserves orientation from a to b, then (a, b)
is actually isolated. In particular, if f is uniformly expanding, every step is isolated.

Recall that given x ∈ I, its ω-limit set ω f(x) is defined to be the collection of all accumu-
lation points of O(x). It is well known and easy to see that ω f(x) is non-empty, compact and
contains recurrent points, that is, there is y ∈ ω f(x) such that y ∈ ω f(y).

We call a double point (a, b) ∈ B f (pre)periodic, if both a and b are (pre)periodic. The proof
of the next statement makes use of standard shadowing arguments.

Lemma 4.3. Let f : I→ I be continuous and transitive. Consider (a, b) ∈ B f with a
∈ S f (a, b) and b /∈ S f (a, b) and suppose the orbit of a is hyperbolic. If a is not preperiodic,
then (a, b) is accumulated by points of the form (ã, b) ∈ B f with ã preperiodic,O(ã) hyperbolic
and ã ∈ S f (ã, b). A similar statement holds if we interchange the roles of a and b.

Moreover, if (a, b) ∈ B f is a double point which is not preperiodic and the orbits of a and
b are hyperbolic, then (a, b) is accumulated by hyperbolic preperiodic double points.

Proof. Let a ∈ S f (a, b) (the other case is similar) and assume a is not preperiodic. Due to the
assumptions, there is an open set U (and a compatible metric d) with O(a) ∪ ω f (a) ⊆ U such
that f is δ-locally λ-expanding on U. Without loss of generality, we may assume that δ > 0 is
such that Bδ(x) ⊆ U for all x ∈ O(a) ∪ ω f (a).

Choose some ε < δ/2 and let c ∈ ω f(a) be a recurrent point. Pick n ∈ N with
d( f n(c), c) < ε. Since f is δ-locally λ-expanding on U, we may assume without loss of gener-
ality that n is large enough to ensure that f n(Bε(c)) ⊇ B2ε( f n(c)). Choose I to be the connected
component of

⋂n
�=1 f −�

(
B2ε( f �(c))

)
∩ Bε(c) which contains c.

By the assumptions on n, we have f n(I) = B2ε( f n(c)) ⊇ Bε(c) ⊇ I. Hence, there is a periodic
point d ∈ I of period n whose orbit is 2ε-close to ω f(a) (by definition of I). Since f is δ-
locally λ-expanding on U, there further is m ∈ N and a point a′ ∈ I such that f m(a′) = d and
max�=0,...,m−1d( f�(a′), f�(a)) < 2ε. Set ã to be the right-most point of O(a′) ∩ B2ε(a).

Let b /∈ S f (a, b). Then O(a) is at positive distance to b (otherwise a would not survive) and
we may assume ε > 0 to be small enough to ensure that a does not come 2ε-close to b so that
O(ã) ∩ (ã, b) = ∅, i.e., ã ∈ S f (ã, b). As ε can be chosen arbitrarily small, the first part follows.

Next, let us assume b ∈ S f (a, b), that is, (a, b) is a double point. If O(ã) ∩ B2ε(b) �= ∅, set
b̃ to be the left-most point in O(ã) ∩ B2ε(b). Then, (ã, b̃) is preperiodic and moreover a double
point with d(ã, a), d(b̃, b) < 2ε. IfO(ã) ∩ B2ε(b) = ∅, then (ã, b) is a double point. If b is prepe-
riodic, (ã, b) is hence a preperiodic double point 2ε-close to (a, b). If b is not preperiodic and
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O(ã) ∩ B2ε(b) = ∅, repeat the above argument for (ã, b) with the roles of a and b interchanged.
In all cases, we end up with a preperiodic double point (ã, b̃) with d(ã, a), d(b̃, b) < 4ε. Since
ε > 0 can be chosen arbitrarily small, this finishes the proof. �
Remark 4.4. Lemma 4.3 allows us to formulate conditions under which the bifurcation set
can be obtained from (genuinely) smaller subsets. We say R ⊆ B f recovers the bifurcation set
if

B f =
⋃
x∈R

Hx ∪ Vx.

Due to lemma 4.3, in case every transitive subset without critical points is hyperbolic, the set
of points (a, b) ∈ B f with a or b preperiodic recovers B f . In particular, this can be ensured
for a continuous and transitive piecewise uniformly expanding map f : I→ I where Cri( f ) is
empty or consists of transitive points only.

Given (a, b) ∈ B f , we call {a, b} ∩ S f (a, b) the surviving endpoints of (a, b).

Theorem 4.5. Let f : I→ I be continuous and transitive and suppose every critical point of
f is transitive. Assume further that every transitive invariant subset of I which does not contain
a critical point is hyperbolic. Then the mapping g �→ Bg ∈ 2Δ is continuous at f with respect
to the uniform topology on the space of continuous self-maps on I and the Hausdorff metric
on 2Δ.

Proof. According to proposition 3.1, given a sequence ( fn)n∈N of continuous maps fn : I→ I

with fn → f uniformly as n →∞, it suffices to show that for each ε > 0 there is n0 such that
for all n � n0 we have Bε

(
B fn

)
⊇ B f .

Pick ε > 0. Observe that due to proposition 2.1, B f is precompact so that there are finitely
many (a1, b1), . . . , (aM, bM) ∈ B f with B f ⊆

⋃M
j=1 Bε

(
(a j, b j)

)
. As the elements of Cri( f ) are

transitive, we further have that the surviving endpoints of (a1, b1), . . . , (aM , bM) are not critical
and hence, at a positive distance to Cri( f ) due to the compactness of Cri( f ).

By the assumptions, this yields that the orbits of the surviving endpoints are hyperbolic.

Hence, by lemma 4.3, there are (ã1, b̃1), . . . , (ãM , b̃M) ∈ B f with B f ⊆
⋃M

j=1 B2ε

(
(ã j, b̃ j)

)
and

such that at least one of the surviving endpoints of each pair among (ã1, b̃1), . . . , (ãM , b̃M)
is preperiodic and hyperbolic. We denote these surviving endpoints by y1, . . . , yN (where
M � N � 2M).

Let p be bigger than max�=1,...,N#O(y�) and such that y� (� = 1, . . . , N) is eventually p-
periodic. Observe that f p maps the points y1, . . . , yN to fixed points of f p. By possibly going
over to multiples of p, we may assume without loss of generality that there is δ > 0 such that
f p is (2δ)-locally 3-expanding in a neighborhood of

⋃N
�=1 O(y�). We may further assume δ to

be small enough such that

d( f m(x), f m(y�)) < 1/2 · min

{
M

min
j=1

d(ã j, b̃ j), ε

}
= :ε0 (m = 0, . . . , 2p)

whenever d(x, y�) < δ with � ∈ {1, . . . , N}. Choose n0 such that for all k � n0 we have
d∞( f m

k , f m) < δ for all m = 1, . . . , p.
Now, f p(Bδ(y�)) ⊇ B3δ( f p(y�)) so that f p

k (Bδ(y�)) ⊇ B2δ( f p(y�)) for � = 1, . . . , N and
k � n0. Similarly, we have f p

k (Bδ( f p(y�))) ⊇ B2δ( f p(y�)). Altogether, this shows that for all
k � n0 there is xk

� ∈ Bδ(y�) with f p
k (xk

�) ∈ Bδ( f p(y�)) and f p
k ( f p

k (xk
�)) = f p

k (xk
�).

For j = 1, . . . , M, we define (ak
j, bk

j) as follows: if ã j = y� (for some �) is a surviving
endpoint, we set ak

j to be the right-most point in O(xk
�) ∩ Bε0 (ã j) and bk

j the left-most point
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in
(
O(xk

�) ∪ {b̃ j}
)
∩ Bε0(b̃ j). If ã j is not a surviving endpoint, then b̃ j is necessarily sur-

viving and we proceed similarly. Note that (ak
j, bk

j) ∈ B fk and d(ak
j, ã j), d(bk

j, b̃ j) < ε0 � ε/2

( j = 1 . . . , N) and hence B f ⊆
⋃�

j=1 B3ε((ak
j, bk

j)). Since ε > 0 can be chosen arbitrarily small,
this proves the desired statement. �

4.2. Critical steps

Throughout this section, we consider continuous self-maps f on I which are piecewise uni-
formly expanding (for the relation to piecewise monotone maps, see remark 4.12). Recall that
f is referred to as piecewise uniformly expanding, if there are finitely many intervals I1, . . . , In

with I ⊆
⋃n

�=1 I� such that f is uniformly expanding on each such interval, that is, there is
λ > 1 such that d( f(x), f(y)) > λ · d(x, y) whenever there is � with x, y ∈ I�. Given these inter-
vals are maximal, the corresponding boundary points which do not lie in ∂I coincide with the
critical points of f.

Recall that a double point (a, b) ∈ B f is referred to as periodic, if both a and b are peri-
odic. Our goal is to take a close look at periodic corner points (where O(a) = O(b)) with
Cri( f ) ∩ O(a) �= ∅. We call this kind of periodic corner points (and hence steps, according to
the previous section) critical. Given a critical step (a, b) of period p, we say that f is positive
at a whenever the image under f p of arbitrary small closed segments containing a is given by
[ f p(a), c] where I � c �= f p(a) = a. Clearly, if f is not positive at a, then the image under f p

of an arbitrary small enough closed interval is given by [c, f p(a)] for some c �= f p(a) = a in I.
In this situation, we say that f is negative at a. For a periodic step (a, b) ∈ B f we say that f
is positive from a to b if f preserves orientation from a to b or if for some small enough seg-
ment J containing a in its interior, we have f na,b(J) = [b, c] where I � c �= f na,b(a) = b. In the
complementary situation, we have that f either reverses orientation from a to b or we have that
for an arbitrary small enough segment J containing a in its interior it holds f na,b(J) = [c, b] for
some c �= f na,b(a) = b in I. In either case we say that f is negative from a to b. The following
statement shows that in several situationsB f detects the periodicity of critical points explicitly.

Lemma 4.6. Let (a, b) ∈ B f be a critical step of a transitive piecewise uniformly expanding
map f : I→ I. If f is negative at a and positive at b, (a, b) is accumulated from below.

Proof. We first show that for every ε > 0 we have that there is n ∈ N and two distinct points
x, y ∈ [a, a + ε] = I with f n(x), f n(y) ∈ O(a) (note that possibly f n(x) = f n(y) = a). To that
end, we may assume without loss of generality that ε > 0 is small enough to guarantee that
(a + ε, b′) is a non-empty subinterval of (a, b), where b′ is the left-most point of (a, b) ∩
( f na,b(I) ∪ {b}). As f is transitive, there clearly exists a transitive point z ∈ I. In particu-
lar, there must be n � 1 such that f n(z) ∈ (a + ε, b′). Note that this necessarily gives {a} ⊆
f n(I) ∩ O(a) or {b} ⊆ f n(I) ∩O(a). In the first case, if n is not a multiple of the minimal
period p of a, we are done since f n(a) obviously lies in O(a) which would hence give two
points in O(a). If, however, n is a multiple of p, we must have another point besides a whose
nth image coincides with a as f is assumed to be negative at a. The second case can be dealt
with similarly.

Now, assume n ∈ N to be minimal with the discussed property and observe that the above
argument also gives

f j(I) ∩ (a, b) = ∅ for j = 1, . . . , na,b − 1, na,b + 1, . . . , n − 1. (3)

By definition of n, we hence have x0 ∈ I\{a} with f n(x0) ∈ O(a) and such that f j(x0) ∈
I\(a, b) for every j = 1, . . . , na,b − 1, na,b + 1, . . . , n − 1, due to (3). Clearly, given δ > 0 we
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can further guarantee that y0 = f na,b(x0) is δ-close to b by choosing the above ε small enough.
Then (x0, y0) is a double point 2δ-close to (a, b) and below (a, b). Since δ > 0 was arbitrary,
this proves the statement. �
Corollary 4.7. Let f : I→ I be continuous, transitive and piecewise uniformly expanding.
Then B f has a step (a, b) accumulated from below if and only if (a, b) is a critical step and f
is negative at a and positive at b.

Proof. The ‘if’-part is given by the previous statement. For the other direction consider a
periodic corner point (a, b) ∈ B f accumulated from below. If it is hyperbolic, then it cannot be
accumulated from below due to lemma 4.1. Hence, it must be a critical periodic corner point.
For a contradiction, suppose f is negative at a and negative at b (the other cases can be dealt with
similarly) and assume there is (a′, b′) ∈ B f with a < a′ < a + δ and b − δ < b′ < b for arbi-
trarily small δ > 0. We denote by p the minimal period of a and b. For small enough δ > 0,
the negativity at b implies that f p(b′) ∈ (a′, b′) and that there is � ∈ N such that f na,b+�·p(a′)
∈ (a′, b′) since f is piecewise uniformly expanding. For such δ we have (a, a + δ) × (b −
δ, b) ⊆ Bc

f which finishes the proof. �
If I = T, we clearly have that if b is the second coordinate of a step, then it also is the first

coordinate of the neighboring step of the associated stair. In this way, we obtain the follow-
ing statement where the term negative slope region of a piecewise uniformly expanding map
refers to a maximal interval in the complement of the critical points on which the map reverses
orientation. The straightforward proof is left to the reader.

Corollary 4.8. Suppose f : T→ T is a transitive piecewise uniformly expanding map. Then
there is a step (a, b) in B f which is accumulated from below if and only if f has a critical
periodic point which meets a negative slope region or it has a critical periodic point with an
orbit supporting both a local maximum and a local minimum of f.

It remains to study the case when (a, b) ∈ B f is a critical periodic corner point not fulfilling
the conditions of lemma 4.6. In this case, we obtain the following

Lemma 4.9. Let f : I→ I be continuous, transitive and piecewise uniformly expanding.
Suppose (a, b) ∈ B f is a critical periodic corner point such that f is positive at a. Then there
is a neighborhood U ⊆ Δ of (a, b) and a sequence of maps ( fn)n∈N converging uniformly to f
so that B fn ∩ U = ∅ for every n ∈ N. The same holds true if f is negative at b.

Proof. Let f be positive at a (the proof of the other case works similarly) and let p denote
the minimal period of a. As f is piecewise uniformly expanding and positive at a, there are
ε1, ε2, δ > 0 such that for I = (a − ε1, a + ε2), I− = (a − ε1, a) and I+ = (a, a + ε2)

(a) f p(I−) = f p(I+) = (a, a + δ),
(b) f p is uniformly expanding on I+,
(c) f j(I) ∩ [a − ε1 − δ, a + ε2 + δ] = ∅ for j = 1, . . . , p− 1.

Observe the following: given t ∈ (0, ε2), for every x ∈ I there exit mx ∈ N such that
( f p + t)mx (x) ∈ [a + ε2, a + ε2 + δ) = J.

To see this, note that for x ∈ I with y = ( f p + t)(x) /∈ J we have y ∈ I+, due to (a). Since
f p + t is uniformly expanding on I+ (by (b)), the existence of the above mx follows.

Now, for big enough n ∈ N, there is an orientation preserving homeomorphism
gn with gn = Id on I\[a − ε1 − δ, a + ε2 + δ], gn(x) = x + 1/n on (a − ε1, a + δ) and
d∞(gn, Id) = 1/n. Set fn = gn ◦ f . On the interval I, we have (gn ◦ f )p = ( f p + 1/n), due to
(a) and (c). If 1/n < ε2, the above observation implies that for every x ∈ I we have mx ∈ N

such that (gn ◦ f )p·mx (x) = ( f p + 1/n)mx (x) ∈ J.
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Consider now a neighborhood U of (a, b) ∈ Δ such that for (a′, b′) ∈ U we have a′ ∈ I,
(a′, b′) ⊃ J, and f nb,a(b′) ∈ I. Then, given (a′, b′) ∈ U we have for large enough n
that (gn ◦ f )p·ma′ (a′) ∈ (a′, b′) and (gn ◦ f )p·mz (z) ∈ (a′, b′) where z = f nb,a(b′). Hence, U ⊆
Δ\Bgn◦ f for big enough n which proves the statement. �

For the next statement, we consider the space of continuous self-maps on I equipped with
the supremum metric d∞ and the space of non-empty closed subsets of Δ endowed with the
Hausdorff metric.

Corollary 4.10. Let f : I→ I be a continuous transitive piecewise uniformly expanding
map and (a, b) ∈ B f a critical periodic corner point such that f is positive at a or negative at
b. Then the map g �→ Bg is not continuous at f.

Summing-up,we obtain the following statement concerning the sensitivity of the bifurcation
set to different dynamical behavior of the critical points.

Theorem 4.11. Assume that f : I→ I is a continuous transitive piecewise uniformly
expanding map. The following holds.

(a) If Per( f ) ∩ Cri( f ) = ∅, then every step is isolated from below. Further, in case Cri( f ) is
empty or only consists of transitive points, we get that f is a continuity point of the map
g �→ Bg.

(b) If Per( f ) ∩ Cri( f ) �= ∅, then there is at least one step accumulated from below or f is a
discontinuity point of g �→ Bg.

Remark 4.12. According to a classical result of Parry [31, corollary 3], a transitive piecewise
monotone map f : [0, 1] → [0, 1] is conjugate to a map of constant slope ±β where logβ is the
topological entropy of f . Further, it is well known that transitive continuous interval maps have
positive entropy, see for instance [8, corollary 3.6]. Therefore, we can use theorem 4.11 to infer
theorem B for interval maps because topological properties of the bifurcation set are preserved
under conjugation, see section 2.1. Concerning maps on the circle, [3, theorem C] provides the
analogue statement of Parry’s result. Moreover, for the fact that transitive non-minimal circle
maps have positive entropy, see for example [2, p 267].

5. Proof of theorem C

In order to emphasize the applicability of our results, we now make use of the statements and
techniques of the previous sections to describe the dependence of the bifurcation set on the
parameter of a particular family of interval maps. The specific family we are interested in is
given by the collection of restricted tent maps (Ts)s∈(1,2] which are defined via

The above figure depicts Ts for s = 1.6. It is not difficult to show that each Ts is conjugate
to the tent map ts : [0, 1] → [0, 1] given by x �→ s(1/2 − |x − 1/2|) restricted to the interval
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[t2
s (1/2), ts(1/2)] for s ∈ (1, 2]. Moreover, it is well known that Ts is transitive if and only if

s ∈ [
√

2, 2], see e.g. [34, lemma 8.1]. Using the relation between Ts and ts, the following holds.

Theorem 5.1 ([9, theorem 7] and [14, lemma 5.5]). For almost every s ∈ [
√

2, 2] we
have that the critical point cs is transitive. Further, cs is a periodic point for a dense set of
parameters.

By means of this result, we will obtain

Theorem 5.2. Consider the family of restricted tent maps (Ts)s∈[
√

2,2]. Then

(a) If cs0 is transitive, the steps of BTs0
are isolated from below and the map s �→ BTs is

continuous at s0.
(b) If cs0 is periodic, the map s �→ BTs is not continuous at s0.
(c) There exists a dense set of parameters J ⊆ [

√
2, 2] so that cs is periodic and there are

steps of BTs which are accumulated from below whenever s ∈ J .

We devote the rest of the section to the proof of this statement. Clearly, point (a) follows
from theorem 4.11. In view of lemma 4.6, point (c) can be deduced from the next proposition.

Proposition 5.3. There is a dense set of parameters J ⊂ [
√

2, 2] such that for every s ∈ J
we have a step (a, b) ∈ BTs where Ts is negative at a and positive at b.

Proof. Observe that for all s ∈ (1, 2] the point xs = 1 − 1/s − 1/s2 + 1/s3 verifies
xs ∈ (0, cs), Ts(xs) ∈ (cs, 1) and T2

s (xs) = cs. By choosing ys sufficiently close and to the right
of xs, we can guarantee that 0 < ys < T2

s (ys) < cs < Ts(ys) < T3
s (ys) < 1. In particular, Ts is

order preserving in ys as well as in T2
s (ys) and order reversing in Ts(ys) as well as in T3

s (ys).
Given s ∈ [

√
2, 2], by theorem 5.1 there is an arbitrarily close s′ such that cs′ is transitive.

Observe that there is n ∈ N with 0 < Tn
s′ (cs′) < Tn+2

s′ (cs′) < cs′ < Tn+1
s′ (cs′) < Tn+3

s′ (cs′ ) < 1
(pick n such that Tn

s′ (cs′) is sufficiently close to ys′). Now, theorem 5.1 allows to pick s′′ such that
cs′′ is periodic and such that s′′ is sufficiently close to s′ to guarantee 0 < Tn

s′′ (cs′′) < Tn+2
s′′ (cs′′)

< cs′′ < Tn+1
s′′ (cs′′) < Tn+3

s′′ (cs′′) < 1. Hence, at s′′ we have a′ < b′ < c′ < d′ where a′ =

Tn
s′′ (cs′′), b′ = Tn+2

s′′ (cs′′), c′ = Tn+1
s′′ (cs′′) and d′ = Tn+3

s′′ (cs′′). Note that either Ts′′ is negative
at a′, positive at b′, negative at c′ and positive at d′ or the other way around, that is, Ts′′ is
positive at a′, negative at b′, positive at c′ and negative at d′.

In the first case, choose a ∈ O(cs′′ ) ∩ [a′, b′] to be such that Ts′′ is negative at a and Ts′′

is positive at each element of (a, b′] ∩ O(cs′′ ). Choose b to be the smallest element of (a, b′]
∩ O(cs′′). Then (a, b) is a periodic corner point with Ts′′ negative at a and positive at b. In the
second case (when Ts′′ is positive at a etc), we obtain a similar statement by dealing with b′

instead of a′ and c′ instead of b′.
As s ∈ [

√
2, 2] is arbitrary and s′′ can be chosen arbitrarily close to s, the statement

follows. �
With regards to point (b) of theorem 5.2, observe that if cs is periodic, then 0 = T2

s (cs) is
periodic, too. Therefore, as Ts is clearly positive at 0, lemma 4.9 yields that Ts is a disconti-
nuity point of the mapping f �→ B f .8 In proposition 5.5 (see below), we will show that this
discontinuity is already visible within the family (Ts)s∈[

√
2,2]. To see this, we first make some

simple technical observations.

8 Note that formally speaking, as our present definition of B f excludes points with coordinate entries equal to zero, we
could not apply lemma 4.9. However, this issue is of a rather formal nature (see also the remark in the introduction)
and will further not play a role in the discussion of the discontinuity of s �→ BTs as this discussion has to be carried
out explicitly anyway.
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Note that for all x ∈ [0, 1] and all � ∈ Nwith T j
s (x) �= cs ( j = 0, . . . , �), we have that T�+1

s (x)
is differentiable with respect to s (as well as x) and

d
ds

T�+1
s (x) =

(
∂

∂s
Ts

)(
T�

s (x)
)
+ T ′

s

(
T�

s (x)
)
· d

ds
T�

s (x).

As

T ′
s(x) =

{
s if x ∈ [0, cs)

−s if x ∈ (cs, 1]
and

∂

∂s
Ts(x) =

{
−1 + x if x ∈ [0, cs)

1 − x if x ∈ (cs, 1]
, (4)

we hence have

d
ds

T�+1
s (x) =

⎧⎪⎨
⎪⎩
−1 + T�

s (x) + s · d
ds

T�
s (x) if T�

s (x) ∈ [0, cs)

1 − T�
s (x) − s · d

ds
T�

s (x) if T�
s (x) ∈ (cs, 1]

. (5)

Proposition 5.4. Consider the family of restricted tent maps (Ts)s∈[
√

2,2]. If cs0 is periodic,

then d
ds (T

n0,cs0
s (0) − cs) �= 0 at s = s0.

Moreover, if d
ds (T

n0,cs0
s (0) − cs) > 0, then

(
T

n0,cs0
s

)′
(0) = −sn0,cs0 . Otherwise

(
T

n0,cs0
s

)′

(0) = sn0,cs0 .

Proof. First, note that T j
s0

(0) �= cs0 for all j = 0, . . . , n0,cs0
− 1 so that the above expressions

are indeed differentiable. For the first part, we have to consider three cases.
Case 1: s0 = (1 +

√
5)/2. This is the only case in which n0,cs0

= 1. By (4), we have
d
ds (Ts(0) − cs) = −1 − 1/s2 < 0. In the remaining cases, we will show that, in fact,

∣∣∣∣ d
ds

T
n0,cs0
s (0)

∣∣∣∣ � 1/(s − 1) >

∣∣∣∣ d
ds

cs

∣∣∣∣ = 1/s2 (6)

at s = s0. To that end, note that (5) yields that if

∣∣∣∣ d
ds

T j
s (0)

∣∣∣∣ � 1/(s − 1) (7)

for some j = j0 < n0,cs0
, then (7) also holds for j = j0 + 1. Hence, it suffices to show that

there is some j � n0,cs0
for which (7) holds in order to prove (6) and hence the first part of the

statement.
Case 2: s0 ∈ [3/2, 2]\{(1+

√
5)/2}. By an immediate computation, we have

∣∣ d
ds T2

s (0)
∣∣

= 2s − 1 at all s ∈ [
√

2, 2] and hence
∣∣ d

ds T2
s (0)

∣∣ � 1/(s − 1) for all s � 3/2.
Case 3: s0 < 3/2. Observe that in this case we have Ts0 (0), T2

s0
(0), T3

s0
(0) ∈ (cs0 , 1]. It hence

suffices to show (7) for j = 4. Now, if Ts(0), T2
s (0), T3

s (0) ∈ (cs, 1], we have T4
s (0) = s4 − s3

− s2 + s. Therefore, d
ds T4

s (0) = 4s3 − 3s2 − 2s + 1. By elementary means, we see that this
indeed gives d

ds T4
s (0) � 1/(s − 1) for all s < 3/2 which finishes the proof of the first part.

For the second part, notice that if
∣∣ d

ds T j
s (0)

∣∣ � 1/(s − 1) for some j < n0,cs and d
ds T j

s (0)
is positive (negative), then (5) gives that d

ds T j+1
s (0) is positive (negative) if and only if
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T j
s (0) ∈ [0, cs). With this in mind, an inspection of the above cases shows that whenever we

have d
ds (T

n0,cs0
s (0) − cs) < 0 it holds that #{ j ∈ {0, . . . , n0,cs0

− 1} : T j
s0

(0) ∈ (cs0 , 1]} is even.

Hence, in this case we obtain by the chain rule that
(

T
n0,cs0
s

)′
(0) = T ′

s

(
T

n0,cs0
−1

s (0)
)
· . . . ·

T ′
s(0) = sn0,cs0 . The other case is similar. �

Proposition 5.5. Consider the family of restricted tent maps (Ts)s∈[
√

2,2]. If cs0 is periodic,
then the map s �→ BTs is not continuous at s0.

Proof. Let p be the minimal period of 0 under Ts0 and let b be the element in O(0)\{0}
which is the closest to 0. Note that the horizontal segment H = {(a, b) : 0 < a < b} is entirely
contained inBTs0

. Our goal is to show that there is some ε0 > 0 such that (0, ε0) × Bε0 (b) ⊆ Bc
Ts

for s sufficiently close to s0. This clearly proves the statement.

By proposition 5.4, we either have d
ds (T

n0,cs0
s (0) − cs) > 0 and

(
T

n0,cs0
s

)′
(0) = −sn0,cs0

or d
ds (T

n0,cs0
s (0) − cs) < 0 and

(
T

n0,cs0
s

)′
(0) = sn0,cs0 . Set I′ = (s0 − δ, s0) for some δ > 0.9

Observe that T j
s (x) �= cs (x ∈ [0, ε], s ∈ I′, j = 0, . . . , p) and hence, in fact, T p

s (x)
− T p

s (y) = sp(x − y) for all x, y ∈ [0, ε] and each s ∈ I′ whenever ε > 0 and δ are sufficiently
small.

W.l.o.g. we may assume ε < b/(4sp) as well as T p
s (0), T

nb,0
s (b) < ε/2 (s ∈ I′), where

nb,0 < p is such that T
nb,0
s0 (b) = 0. Clearly, T p

s (x) = T p
s (0) + spx < ε+ spε/2 < b/2 whenever

x ∈ [0, ε].
Altogether, the above shows that for each x ∈ (0, ε] and every s ∈ I′ we have some � ∈ N

with T�p
s (x) ∈ (ε, b/2). Accordingly, if |x| < ε and |b − y| < ε/(2s

nb,0
0 ), we have some �x, �y ∈

N such that T�x p
s (x), T

�y p
s (y) ∈ (ε, b/2) and hence (x, y) ∈ Bc

Ts
for every s ∈ I′. Therefore,BTs ∩(

(0, ε) × B
ε/(2s

nb,0
0 )

(b)
)
= ∅ for each s ∈ I′. �
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