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Abstract

Background: Animal-attached devices can be used on cryptic species to measure their movement and behaviour,
enabling unprecedented insights into fundamental aspects of animal ecology and behaviour. However, direct
observations of subjects are often still necessary to translate biologging data accurately into meaningful behaviours.
As many elusive species cannot easily be observed in the wild, captive or domestic surrogates are typically used to
calibrate data from devices. However, the utility of this approach remains equivocal.

Methods: Here, we assess the validity of using captive conspecifics, and phylogenetically-similar domesticated counterparts
(surrogate species) for calibrating behaviour classification. Tri-axial accelerometers and tri-axial magnetometers were used
with behavioural observations to build random forest models to predict the behaviours. We applied these methods using
captive Alpine ibex (Capra ibex) and a domestic counterpart, pygmy goats (Capra aegagrus hircus), to predict the behaviour
including terrain slope for locomotion behaviours of captive Alpine ibex.

Results: Behavioural classification of captive Alpine ibex and domestic pygmy goats was highly accurate (> 98%). Model
performance was reduced when using data split per individual, i.e., classifying behaviour of individuals not used to train
models (mean ± sd = 56.1 ± 11%). Behavioural classifications using domestic counterparts, i.e., pygmy goat observations to
predict ibex behaviour, however, were not sufficient to predict all behaviours of a phylogenetically similar species accurately
(> 55%).

Conclusions:We demonstrate methods to refine the use of random forest models to classify behaviours of both captive
and free-living animal species. We suggest there are two main reasons for reduced accuracy when using a domestic
counterpart to predict the behaviour of a wild species in captivity; domestication leading to morphological differences and
the terrain of the environment in which the animals were observed. We also identify limitations when behaviour is predicted
in individuals that are not used to train models. Our results demonstrate that biologging device calibration needs to be
conducted using: (i) with similar conspecifics, and (ii) in an area where they can perform behaviours on terrain that reflects
that of species in the wild.
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Introduction
Biologging has transformed what we know about wild
animal behaviour [1–3], with particular value attributed
to tri-axial body acceleration [4–6]. Biologging devices
enable researchers to gain detailed insights into the
movement and behaviour of animals [7, 8]. Specifically,
where data are limited by direct observations [9] or tel-
emetry is constrained (e.g. sampling intervals are low
[10], location is inaccurate [11, 12]), these devices record
body movement of animals at high frequencies. They
can thus provide detailed information on the study sub-
jects, representing a powerful opportunity to study enig-
matic species [6].
Accelerometry data are generally collected at high fre-

quencies (typically tens of hertz), generating large data-
sets. However, the ease with which these data can be
collected is in stark contrast to the difficulties in analys-
ing and interpreting such large data sets (e.g. 40 Hz sam-
pling frequency gives nearly 3.5 million data points per
day for a single channel) [13, 14]. Various computational
approaches can be used to analyse these data for behav-
ioural identification, including machine-learning algo-
rithms such as k-nearest neighbour [15], random forest
models [5], gradient-boosting machines [16], support
vectors machines and artificial neural networks [4, 17].
Random forest models are a commonly used approach
for classification of behaviours from accelerometry data
and provide high accuracy [4, 18].
Whilst the high recording frequencies of the devices are

key to identifying behaviours accurately, the use of lower
recording frequencies can extend deployment time and re-
duce associated computational time [18, 19]. The opti-
misation of sampling frequencies, which will vary with
study subject and aims, is therefore an important issue.
This is amplified for devices recording parameters other
than just acceleration, such as tri-axial magnetometry and
barometric pressure [1], which may also be important keys
to identifying behaviours [20, 21]. Even when using accel-
erometry alone, a large number of variables can be com-
puted to include in models for behaviour classification
(e.g. 25 variables [5]). Thus, it is important to consider the
biological and mechanistic relevance of all variables in-
cluded in behavioural classification.
Despite the potential of computational approaches to

help automate behavioural classification, direct visual
observation of the study individuals remains important
for the development of accurate algorithms [5]. To over-
come the difficulties of observing elusive wild animals, it
has been suggested that captive conspecifics can be used

to identify behaviours [17]. Indeed, this technique has
been shown to have value for measuring behaviour in a
range of species [5, 22–24], and where captive individ-
uals are not available, domestic counterparts have been
suggested as a viable proxy [25]. However, individual
variation [26], including differences in morphology and
body-size [25] and the effect of variation in free-living
animal habitat compared to domestic and captive set-
tings [22, 27], may be critical when applying such
methods. Importantly, it is particularly problematic to
test the value of domestic surrogates for wild animals if
those wild animals cannot be observed for verification.
For example, applying the common method for splitting
data into training and validation data sets overestimates
the accuracy of models when tested on new individuals
because the models are validated on individuals also
used to train the model [28].
While it is well acknowledged that differential environ-

ment use is an important part of the behavioural ecology
of free-living animals [29], it is less appreciated that ter-
rain substrate, superstrate (defined as any material an
animal must push against to move [30]), and gradient,
affect accelerometer signals and, thereby, the ability to
derive behaviours from accelerometry data [27]. For ex-
ample, the gradient of a terrain should be identifiable in
tetrapods because the static acceleration, indicating ani-
mal orientation, will change accordingly [31] and ani-
mals may, in any event, change gait, stride length and
speed according to terrain slope [32, 33], all of which
can be manifest in a tri-axial accelerometer signal.
The Alpine ibex (Capra ibex) is a Caprid that lives at

high altitudes in the central European Alps [34] in popu-
lations that are highly fragmented due to pressure from
land-use change, agriculture, human disturbance and cli-
mate change [35]. Climate change is considered to be
particularly important since this species is sensitive to
heat and avoids heat stress, which reduces the quality of
the food resources they can access [36, 37]. Given on-
going global warming, there is concern that physiological
and behavioural constraints on the Alpine ibex will lead
to severe declines of the species following rapid trunca-
tion of suitable habitat [37]. Research is needed to
understand the species capacity to adapt to changing en-
vironmental conditions, and animal-attached logging
systems are ideal for this purpose. However, the high-
altitude habitat of the ibex makes it implausible to ob-
serve the species in the wild to validate accelerometer
signals for behaviour, so it is appropriate to consider
using captive surrogates for this. Captive populations of
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the Alpine ibex are few and access is limited, so a prag-
matic approach would be to attempt to calibrate behav-
ioural data using a similar but tractable and accessible
species such as the domestic pygmy goat (Capra aega-
grus hircus), which is phylogenetically similar and readily
available in domestic settings [38].
In this study, we tested the validity of this approach by

using loggers that measure tri-axial acceleration and mag-
netic compass heading, on both captive pygmy goats and
captive Alpine ibex to examine behaviours of both species
using a random forest model approach. We hypothesized
that observations of pygmy goat behaviours could be used
to predict the behaviours of captive Alpine ibex thereby
demonstrating that domestic surrogates can serve as suit-
able proxies for helping resolve behaviour based on accel-
eration in rare or difficult-to-handle wild species of
conservation concern. We additionally provide a widely
applicable template for refining the use of random forest
models to predict behaviours including; feature selection
approaches, the addition of tri-axial magnetometry vari-
ables, selecting the optimum sampling frequency, handling
unbalanced observations and data splitting method (ran-
dom vs individual). With these models, we then aimed to
provide behavioural templates for both Alpine ibex and
pygmy goats, including predicting the terrain slope for
locomotion behaviours. Finally, we examine the ability of
our models from one species to predict behaviour in the
other in order to assess the value of using surrogate spe-
cies when captive populations of the focal species are not
available for study.

Methods
Study subjects and enclosure
The study was conducted using collar-attached ‘Daily
Diary’ tags (Wildbyte Technologies Ltd., Swansea, UK
[1];) deployed on African pygmy goats at Belfast Zoo
(Northern Ireland, UK) in November 2017 and May
2018, and captive Alpine ibex at Kolmården Wildlife
Park (Norrköping, Sweden) in November 2018 and No-
vember 2019 (Additional file 1 Table S1). At Belfast Zoo,
‘Daily Diary’ tags were deployed on nine female pygmy
goats (mean body weight = 25.9 kg, age range = 3–10
years) for periods of 5 days over 1 month within each of
two enclosures. Keepers were able to handle the goats to
deploy collars. The first enclosure consisted of a sloping
grass paddock (slope gradient = 18%, area = 2210 m2

[50.1 × 35.3 m]) surrounded by hedges, and the second
enclosure was a flat smaller concrete yard with an area
of wood mulch (area = 163 m2 [16.6 × 7.3 m]).
At Kolmården Wildlife Park, in November 2018,

collar-attached devices were deployed on two male Al-
pine ibex (weight not known, age = 9 years) following a
protocol in which the animals were trained though posi-
tive reinforcement (using feed pellets as a reward) to

wear collars without the need for anaesthesia. Stations
to protect the zoo personnel were constructed from
wood and both individuals were trained incrementally,
over a period of 2 months (Additional file 1 Table S2,
pers comm Pieter Giljam, Zoospenseful and Kolmården
Wildlife Park). Collars were deployed on male Alpine
ibex for two periods of 5 days over a month.
In November 2019, collar-attached devices were also

deployed on four female Alpine ibex (mean body
weight = 45.6 kg, age range = 5–13 years) for a period of
15 days. Female ibex were not compliant to training.
Therefore, each individual was sedated using an intra-
muscular injection of butorphanol (0.009 mg/kg), Etor-
phine (0.009 mg/kg) and Xylazine (0.674 mg/kg). The
collar was deployed, and subject body mass, limb length
and horn length recorded. To reverse the anaesthesia,
individuals were given an intramuscular injection of nal-
trexone (0.674 mg/kg) and atipamezole (0.112 mg/kg).
Sedation was repeated at the end of the data collection
period (after 15 days) to remove the collars. Procedures
were conducted by the Kolmården veterinarians. The
enclosure was a large area (18,342 m2 [202.4 × 80.4 m])
consisting of a mixture of grass and rock surfaces with
multiple slopes (range of slopes = 1.7–87%).

Acceleration data
Tri-axial acceleration was recorded at a frequency of 40
Hz as well as tri-axial magnetometry, temperature, pres-
sure, time and date. Devices were encased in a plastic
housing with a 3.6 V battery (LS 14250, Saft, France; 147
mm× 25mm; 9 g) and sealed with tesa tape (Tesa® tape
4651, Tesa, Germany). Devices were then attached to the
collar using tesa tape and collars were weighted either side
of the device to ensure it remained in position on the ven-
tral side of the animal (weight = 135–235 g; dependant on
the collar size). Collar weight was within 0.8% of individ-
ual body weight and collars were fitted to have a circum-
ference that was 5 cm larger than that of the neck [39]. All
devices were oriented so the z-axis corresponded to
‘heave’ (up-down motion), x-axis to ‘surge’ (forward-back
motion) and y-axis to ‘sway’ (left-right motion) (Fig. 1).
Before deployment, each device was calibrated to the exact
time, orientation of the axes and to correct accelerometer
and magnetometer offsets.

Observation and processing of data
To classify behaviour, observations were conducted
using a video camera (Canon PowerShot SX720 HS;
Canon Inc., Japan). Nine behaviours were distinguished
for each species (Table 1) and were recorded for an
average of 125.9 min (range: Pygmy goats = 1–221.6 min,
Alpine ibex = 2.7–145.2 min). The slope of terrain for
locomotion behaviour was also recorded as flat (− 2.5° to
2.5°), uphill (> 2.5°) or downhill (< − 2.5°: Table 1).
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Fig. 1 Captive Alpine ibex with a collar-attached ‘Daily Diary’ tag, with a tri-axial accelerometer and magnetometer, depicting the three orthogonal
axes (X, Y, Z) recorded at 40 Hz. Pitch and Roll, which are derived from the static acceleration of the X and Y axes [1], respectively, are shown (Photo:
Dickinson, E.R.)

Table 1 Ethogram of recorded behaviours, including descriptions, for both Alpine ibex and pygmy goats, including the total time,
mean time and standard deviation (SD) in seconds observed for each species. Locomotion behaviours were subdivided depending
on the slope of terrain. Alpine ibex were not recorded browsing as all their food available was on the floor e.g. grass, hay or pellets.
Pygmy goats were not observed climbing due to the lack of a climbing aspect in their enclosures

Behaviour Description Alpine ibex Pygmy goat

Total time
(s)

Mean time
(s)

SD (s) Total time
(s)

Mean
time (s)

SD (s)

Standing Stationary in an upright position 8714.1 1452.4 788.9 8665.3 962.8 315.9

Resting Stationary in a laying down position 6165.9 1027.6 648.9 7863.6 982.9 1015.3

Eating Grazing or consuming food from the floor 8104.7 1350.8 640.7 13,295.9 1477.3 756.4

Browsing Consuming food and reaching on hind legs – – – 1953.5 217.2 412.3

Aggression Aggression to or from another individual 590.7 98.5 91.1 296.9 33.0 19.9

Grooming Scratching own body or against another
object

242.7 40.4 43.4 428.5 53.6 61.9

Shaking Moving body vigorously to shake 164.0 27.3 16.4 57.8 6.4 5.3

Walking (Flat,
Uphill, Downhill)

Locomotion in a slow four beat gait 6027.7
(4704.2,
668.4, 655.2)

1004.6
(784.0, 111.4,
109.2)

118.3
(126.9,
49.5, 48.9)

5952.8
(4544.3,
649.0, 759.6)

661.4
(504.9,
81.1, 94.9)

216.1
(158.5,
41.2, 57.0)

Trotting (Flat,
Uphill, Downhill)

Locomotion in a two beat gait 327.1 (264.9,
20.7, 41.4)

54.5 (44.2,
6.9, 13.8)

41.5 (28.9,
8.0, 10.6)

530.1 (433.9,
28.2, 68.1)

58.9 (54.2,
7.0, 13.6)

45.0 (32.2,
3.8, 15.5)

Running (Flat,
Uphill, Downhill)

Locomotion in a canter or gallop gait 332.9 (259.2,
34.0, 39.7)

55.5 (43.2,
6.8, 13.2)

41.1 (38.1,
38.1, 10.7)

254.8 (240.9,
9.2, 4.7)

28.3 (26.8,
3.1, 2.4)

16.8 (14.8,
1.5, 1.5)

Climbing
(Uphill,
Downhill)

Travelling on a steep slope with obstacles
and steps including jumping up or down
steps.

338.4 (160.0,
178.4)

28.2 (26.7,
29.7)

22.55 (21.0,
24.1)

– – –
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Individuals were observed from outside their enclosure.
Pygmy goats were recorded for a total of 654 min
(mean ± sd = 73.5 ± 25.3 min per individual) and Alpine
ibex were observed for a total of 516 min (mean ± sd =
87.0 ± 14.4 min per individual) (see Additional file 1
Table S3). Acceleration data were manually labelled ac-
cording to the observed behaviour for the duration of
the observation period using ‘Daily Diary Multiple Trace’
software (Wildbyte Technologies Ltd., Swansea, UK).
Only data with labelled behaviour observations were in-
cluded in the analysis.

Accelerometry and magnetometry variables
To classify specific behaviours, 39 variables that are
commonly used to detect behaviours from data [1, 5, 21,
26] were extracted or derived from the raw tri-axial ac-
celeration and magnetometry data (Additional file 2
Table S3). From tri-axial acceleration, these variables
were either based on static acceleration (cf. Shepard
et al. [40]), which describes the orientation of the device
relative to gravity and thus the posture of the animal, or
dynamic acceleration, which describes the body move-
ment of the animal [41]. From the tri-axial magnetom-
etry, five variables were included, calculated using each
of the three orthogonal axes independently or by com-
bining all three axes to provide a measurement of full
body motion [20, 21] (Additional file 2 Table S3).

Building random forest models
Random forest models, which are an extension of classi-
fication (decision) trees and are robust and powerful for
this type of analysis [42], were built to predict behaviour
for both the pygmy goat and Alpine ibex data separately,
using accelerometry and magnetometry variables (see
above). All analyses were conducted in R version 3.9
[43] using the package randomForest [44]. Random for-
est models use classification trees to classify the observa-
tions into different behaviours by building a hierarchy of
decision rules based on the variables selected [5, 42].
Our random forest model used 500 iterations (the num-
ber of classification trees sampled), and a random subset
of data was used to build each tree (bootstrapping) to
enable a robust model which limits overfitting and prob-
lems associated with unbalanced datasets, which may be
common in observations of animals that are likely to
spend more time resting than active [5, 26], although
unbalanced observations may lead to bias towards dom-
inant observations classes [22]. If an observation is ran-
domly selected, the Gini index measured the probability
of it being classified incorrectly. At each classification
node, observations were continuously subdivided until
the Gini index did not decrease [5, 26]. The mean Gini
decrease gave the importance of each variable in classify-
ing the behaviours, with higher values indicating higher

importance. The proportionate error of each model
(number of misclassifications/number of observations
according to the number of trees) was checked for each
behaviour and the ‘out-of-bag’ error estimates (observa-
tions not included in the bootstrapped sample or tree)
examined for each model to evaluate model performance
(Additional file 2 Fig. S4).
Models were built with data subsampled at different

sampling frequencies to check the effect on classification
accuracy of behaviours; 40, 20, 10, 5 and 1 Hz [24]. Ran-
dom forest models need variables that are not correlated
and contribute to the power of the model [45, 46]. To
remove correlated features, accelerometry and magnet-
ometry variables were tested for correlation using the
Caret package [47]. Correlated variables (Pearson’s r ≥
0.70) that were the least important according the mean
Gini decrease were excluded. Although a consensus does
not yet exist on the best methods for random forest
model simplification or variable reduction in ecology
[48], we removed redundant features using recursive fea-
ture elimination (RFE) which fits the random forest
models using cross-validation and selects the features to
be retained in the model. Variable reduction was con-
ducted consistently for both species models to ensure
models used the same variables. The importance of in-
cluding magnetometry variables was tested separately by
removing them from the model and comparing the out-
put for each model using model performance metrics. A
general linear model was used to test the effect of sam-
pling frequency and magnetometry variable inclusion on
classification accuracy. Model accuracy was included as
the response variable and sampling frequency, species
and data (accelerometry or accelerometry and magnet-
ometry) included as explanatory variables.
The following steps were conducted with data at

the lowest sampling frequency that resulted in a high
classification accuracy, bearing in mind that unbal-
anced datasets may bias the predictive ability of clas-
sification methods toward the most dominant data
classes [22] and that standing, eating, browsing, walk-
ing and resting had a higher number of observations
than other behaviours (see Table 1). We used a
down-sampling strategy to handle imbalanced data
classes for relevant behaviours to remove instances in
the majority classes. Specifically, behaviour classes
that were observed for longer than the median (560.4
s) were down-sampled randomly using the Caret
package [47]. Another strategy that may improve
model performance is reducing the number of behav-
iour categories. The initial models included all behav-
iours observed in each species, and the effect of
reducing the number of behaviours was tested by re-
moving those assumed to be less relevant to etho-
logical studies: aggression, grooming, and shaking.
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Authors using random forest models to predict behav-
iour from accelerometry generally split data randomly
into 60% training and 40% validation sets (e.g. [5, 26]).
However, the value of using data split per individual
datasets has been highlighted when validating the ability
of models to predict behaviour of unobserved individuals
[28]. In this study, we built two model sets, the first
splitting the data 60/40 randomly, with data from each
individual present in both the training and the validation
models, and the other approximately split 60/40 at the
individual level, with individuals only in either the train-
ing or validation sets. The individual-split models were
repeated for all combinations of individuals in the train-
ing or validation data sets using a k-fold cross-validation
strategy to give average model performance [28] (Table
1). The effect of balancing observations, and reduced
number of behaviour classes on the model performance
metrics was tested for both the random and individual-
split models using one-way ANOVAS and Tukey
pairwise-comparisons for each species.

Random forest model validation
To estimate model performance for each random forest
model used in this study, confusion matrices were pro-
duced for the model on the validation dataset, highlight-
ing true positives, false positives and false negatives [5,
27]. From these, the model accuracy, precision and recall
were calculated using the number of true positives (TP,
correctly classified positive behaviours), false positives
(FP, incorrectly classified positive behaviours), true nega-
tives (TN, correctly classified negative behaviours), false
negatives (FN, incorrectly classified negative behaviours).
Model accuracy was calculated as the percentage of true
positives and true negatives [28]:

Accuracy ¼ TP
TP þ FP þ TN þ FN

ð1Þ

Precision was defined as the proportion of positive clas-
sifications that were true compared to false positives:

Precision ¼ TP
TP þ FP

ð2Þ

Recall was defined as the proportion of positive classi-
fications that were true compared to the false negatives
[15]:

Recall ¼ TP
TP þ FN

ð3Þ

The F1 statistic was then calculated as the harmonic
mean of Precision and Recall used as a metric of the
overall performance for classification of each behaviour
[26]:

F1 ¼ 2
1

Precision
þ 1
Recall

ð4Þ

Predicting across species
To determine whether pygmy goats could be used as a
surrogate species to predict Alpine ibex behaviour, the
model using the pygmy goat dataset was used to predict
Alpine ibex behaviour from the Alpine ibex dataset. Be-
haviours that were not observed across both species
(specifically, climbing and browsing) were excluded.
Models with data at the lowest acceptable sampling fre-
quency were used to predict behaviour and, for locomo-
tory behaviours, behaviour subdivided by slope of terrain
(flat, uphill or downhill; see Table 1). Model perform-
ance was compared with the full initial model to when
data observations classes were balanced and the number
of predicted behaviours was reduced. A sex-specific
model was tested that excluded the male ibex from the
cross-species model. To check model performance com-
pared to a random model, observed behaviours were
randomly generated onto the acceleration data using the
same proportion of actual observations for each behav-
iour and used to build a random forest model.

Results
Refining random forest models
Random forest models were built for the different sam-
pling frequencies using either accelerometry variables
only or both accelerometry and magnetometry variables.
Seven variables were removed due to them being highly
correlated and a further 13 variables were removed in
RFE, with 17 variables included in the final model (Fig. 2;
Additional file 2 Fig. S4). Model accuracy was not sig-
nificantly different between the 40 Hz and the 20 Hz
model (t4,5 = − 0.003, p = 0.71) or the 10 Hz model (t4,5 =
− 0.013, p = 0.21). However, it was significantly lower at
5 Hz (t4,5 = − 0.030, p = 0.025), and 1 Hz (t4,5 = − 0.095,
p < 0.001) (Fig. 3). Thus, a sampling frequency of 10 Hz
was selected as the best model as a compromise between
model performance and ability to process. Overall,
model accuracy was significantly different for Alpine
ibex and pygmy goats (t6,13 = − 0.13, p = 0.001).
Comparing models with a sampling frequency of 10

Hz and higher, model accuracy was higher when mag-
netometry variables were included (t2,9 = 0.008, p = 0.03).
Model accuracy of the final selected models using ran-
domly split data was 98.6% for Alpine ibex with a
mean ± SD F1 statistic of 0.96 ± 0.011 and 97.8% for
pygmy goats with a mean ± SD F1 statistic of 0.96 ±
0.016 (Table 2). Although model accuracy was lower
using balanced data classes (F1,2 = 0.079, p = 0.80), the
precision for separate behaviours was significantly higher
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(F1,2 = 72.9, p = 0.013). Prediction of behaviours using
fewer behaviours enhanced model accuracy (F1,2 = 0.17,
p = 0.72) and the mean F1 statistic (F1,2 = 12.45, p =
0.07). Using data split per individual, the mean model
accuracy was 56.7 ± 0.06% for Alpine ibex with a mean ±
SD F1 statistic of 0.37 ± 0.02 and 57.9 ± 0.05% for pygmy
goats with a mean ± SD F1 statistic of 0.34 ± 0.03 (Table
2; Fig. 4). Model accuracy was significantly lower in bal-
anced data classes (F1,28 = 46.6, p < 0.001) and was im-
proved when the number of behaviour classes was

reduced (F1,28 = 0.70, p = 0.41). Using F1 statistic as a
measure of model performance, model performance was
higher when using balanced observations (F1,28 = 3.71,
p = 0.06) and when the number of behaviours was re-
duced (F1,28 = 25.3, p < 0.001).

Behavioural templates for Alpine ibex and pygmy goats
Random forest models, at a sampling frequency of 10
Hz, were built to predict the slope of the terrain for
locomotion behaviours; flat, uphill or downhill. Overall

Fig. 2 The mean Gini decrease of the variables used to predict behaviour, ordered by importance to the model: (A) Alpine ibex and (B) pygmy
goat, with the reduced variables included in the final model

Fig. 3 Model accuracy of Random Forest models to predict the behaviour of Alpine ibex and pygmy goats, using either accelerometry variables
or accelerometry and magnetometry variables at different sampling frequencies (1, 5, 10, 20 and 40 Hz)
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model accuracy when slope was included was 98.6% for
Alpine ibex with a mean ± SD F1 statistic of 0.96 ± 0.016
and 98.0% for pygmy goats with a mean ± SD F1 statistic
of 0.96 ± 0.016 (Fig. 4; Table 2; Additional file 3 Fig. S6).
Pitch was the most important variable for pygmy goats,
and smoothed VeDBA was the most important variable
for Alpine ibex predicting behaviours. Static X axis
acceleration was the most important variable when
the model predicted Alpine ibex behaviour including
terrain slope.
Three variables were in the top 5 most important vari-

ables, ranked by mean Gini decrease, for both the Alpine
ibex and pygmy goats. These were posture, given by the
surge axis (static X), angle of surge posture (pitch) and
smoothed VeDBA (smVeDBA) (Fig. 5; Additional file 3
Fig. S6 Table S5).

Applying pygmy goat behavioural template to Alpine
ibex
In the investigation examining the extent to which the
model conditioned on the pygmy goat training dataset
could be used to predict behaviours observed in the Al-
pine ibex training dataset, model accuracy was 54.3% for
predicting behaviours. The model reached a mean ± SD
precision of 0.54 ± 0.38, recall of 0.61 ± 0.11 and F1 stat-
istic of 0.47 ± 0.29 (Table 3). The largest errors in the
model were produced from misclassifying resting as
standing, and trotting as either walking or running
(Additional file 3 Table S6). Standing, walking, eating
and running had the highest recall and precision in this
model (Fig. 6). A model using randomly generated ‘ob-
served’ behaviours had a classification accuracy of 15.4%
(Table 3).

Table 2 The overall model accuracy and mean F1 statistic (harmonic mean of the precision and recall) for each 10 Hz model using
different strategies to build the random forest model. *SD not available

Model Pygmy goat Alpine ibex

Accuracy ± SD (%) F1 statistic ± SD Accuracy ± SD (%) F1 statistic ± SD

Random split train and test data 97.8 0.96 ± 0.02 98.6 0.96 ± 0.01

with balanced observations 97.6 0.98 ± 0.02 98.6 0.99 ± 0.01

with reduced behaviours 98.2 0.97 ± 0.02 98.7 0.97 ± 0.01

Data split per individual train and test data 57.8 ± 5.4 0.34 ± 0.03 65.5 ± 5.2 0.40 ± 0.02

with balanced observations 42.1 ± 6.0 0.38 ± 0.05 47.7 ± 7.2 0.43 ± 0.05

with reduced behaviours 59.2 ± 5.7 0.43 ± 0.05 68.6 ± 5.1 0.51 ± 0.02

Fig. 4 Precision and Recall of each behaviour categorised in the models for Alpine ibex and pygmy goats. Terrain slope is predicted for various
locomotion behaviours in the bottom panel

Dickinson et al. Movement Ecology            (2021) 9:28 Page 8 of 14



Model accuracy for predicting behaviours and slope of
terrain for locomotion behaviour was 60.5%. The model
reached a mean ± SD precision of 0.28 ± 0.41, recall of
0.26 ± 0.30 and F1 statistic of 0.24 ± 0.34 (Table 3). Loco-
motion behaviours on a slope had very low precision
and recall (Fig. 6; Additional file 3 Table S7). A model
using randomly generated ‘observed’ behaviours includ-
ing slope for locomotion behaviours had a classification
accuracy of 26.4% (Table 3). For both models, model ac-
curacy improved when using a sex-specific model (pre-
dicting only female Alpine ibex behaviour), however
other model performance metrics did not change.

Discussion
Accurately identifying animal behaviour is key to the
validity of using accelerometers to address important
ecological questions in free-ranging animals. However,
there remains limited information on best practice,

especially when captive or domestic individuals are
used to inform workers on the putative behaviour of
wild species. In this study, behavioural classification
was achieved with high accuracy for both captive Al-
pine ibex and domestic pygmy goats, using observa-
tions of each species respectively and taking steps to
refine the application of random forest models. All
behaviours and the slope of terrain for locomotion
behaviours could be predicted with high accuracy.
However, limitations were identified when the models
were used to predict the behaviour of individuals not
used in model training, whether they were the same
species or not. Domestic or captive surrogates may be
useful to predict the broad behaviours of a captive
wild species but locomotion on terrain with different
slope characteristics remains problematic. Thus, while
captive surrogates may be useful for classifying behav-
iour in some free-ranging animals, the selection of

Fig. 5 The three variables that were in the top 5 most important variables for differentiating Alpine ibex and pygmy goat behaviour: A) static X,
B) pitch and C) maximum amplitude of oscillations of the sway axis over 2 s (PSD1Y)

Table 3 The mean precision, recall and F1 statistic (± SD) for each random forest model predicting behaviour or behaviour
including slope of terrain for Alpine ibex and pygmy goats

Model Classification
accuracy

Mean
precision

Mean
recall

Mean F1
statistic

Random split behaviour 98.3% 0.95 ± 0.05 0.98 ± 0.018 0.96 ± 0.030

Random split behaviour including slope of terrain 98.2% 0.95 ± 0.042 0.98 ± 0.018 0.96 ± 0.024

Data split per individual behaviour 63.0% 0.48 ± 0.32 0.55 ± 0.27 0.46 ± 0.28

Data split per individual behaviour including slope of terrain 68.1% 0.36 ± 0.028 0.42 ± 0.082 0.034 ± 0.046

Pygmy goat predicting Alpine ibex behaviour 55.5% 0.55 ± 0.39 0.62 ± 0.10 0.48 ± 0.30

Pygmy goat predicting female Alpine ibex behaviour 60.2% 0.55 ± 0.39 0.50 ± 0.26 0.49 ± 0.32

Pygmy goat predicting Alpine ibex behaviour including slope of terrain 59.8% 0.29 ± 0.38 0.30 ± 0.29 0.27 ± 0.32

Pygmy goat predicting female Alpine ibex behaviour including slope of
terrain

67.8% 0.28 ± 0.42 0.25 ± 0.34 0.26 ± 0.37

Randomly generated behaviours 15.4% 0.010 ± 0.27 0.058 ± 0.09 0.038 ± 0.08

Randomly generated behaviours with slope of terrain 26.4% 0.068 ± 0.24 0.040 ± 0.11 0.041 ± 0.12
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appropriate counterparts or surrogates must be care-
fully considered for accurately classifying behaviours.
Despite decreased model performance when Alpine

ibex behaviour was predicted from domestic pygmy
goats, the biggest decrease in model performance oc-
curred when individually split data was used instead of
randomly split data. This suggests that the limitations of
predicting the behaviours of individuals that cannot be
observed lies within intraspecific individual differences
rather than inter-specific variation [26]. Behaviours such
as resting were not well identified, which is typically
considered to be an easy behaviour to identify, and a de-
finitive explanation for this remains elusive. Despite this,
broad behaviours were identifiable although some be-
haviours remained problematic in the cross-species
model, particularly as regards the effect of terrain slope
for locomotion- and resting behaviours.
Domestic surrogates, or even captive surrogates of a

different species, have been suggested to have value for
informing behavioural classification and the concept is
certainly logical [22, 25]. Against this though, we ob-
served low classification accuracy, and were unable to
identify the full suite of behaviours observed in the cap-
tive counterparts, using our domestic surrogate. Critic-
ally, the value of using captive or domestic individuals as
surrogates to predict the behaviour of free-living individ-
uals requires that the surrogates and wild animals to
move and behave in a similar way. However, the extent
to which this is true depends critically on the size and
morphology differences between the species dyads. For
example, domestication may change bone structure [49],
thus leading to changes in gait and movement and body
size, which can have a marked effect on stride length
and stride frequency [50], and with it the acceleration
values recorded by animal-attached devices. Pygmy goats
are known for their characteristically short legs (height =

31 and 45 cm [51];) associated with their adaptation to
humid environments [52], whereas the longer legs of Al-
pine ibex facilitate locomotion through their mountain-
ous habitat (female height = 73 to 84 cm, male height =
90 to 101 cm [34]). The high degree of sexual dimorph-
ism in Alpine ibex [34], means that males are more dif-
ferent than females to female pygmy goats. This
disparity may explain the reduced accuracy of models
using pygmy goat observations to predict Alpine ibex be-
haviour. Indeed, model performance was higher when
pygmy goat observations were used to predict the behav-
iour of female ibex, indicating that it is the increased dif-
ference between male Alpine ibex and female pygmy
goats that reduces the ability of the model to predict be-
haviour between them. This suggests that there is value
in using sex specific models when classifying behaviours
sexually dimorphic species.
The environment in which the surrogate individuals

live must replicate, as far as possible, that of their wild
counterparts for them to exhibit the same behavioural
profiles. Our captive Alpine ibex were observed to dis-
play a wider range of behaviours and terrain slopes be-
cause they were kept in a large and varied enclosure
with rocks and small cliffs. So, simplistically, climbing in
ibex could not be predicted using our pygmy goat surro-
gate because, although the goats had slopes within their
enclosure, none were comparable to the rocks that ibex
used. This limitation may be especially important for
measuring behaviour of individuals that may access food
or water in a manner different to that observed in cap-
tivity, a clear case being predators that cannot hunt in
captivity [24, 28]. In fact, animal home ranges can cover
large areas which display habitat and topographical het-
erogeneity, which will presumably produce correspond-
ing heterogeneity in accelerometer signals, particularly
during movement, so it is important to be able to

Fig. 6 Precision and recall for each behaviour for the model trained with pygmy goat behaviour to predict Alpine ibex behaviour (cf. Figure 4,
noting scale differences)
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interpret and account for the gradient, substrate and
superstrate of the terrain during locomotion [1]. Using
surrogates that are in a varied enclosure that mimics the
species natural environment would reduce the issues
linked to environment that arise from using captive or
domestic surrogates.
Orientation on slopes is expected to alter the static

surge acceleration signal as the collar-attached device
abuts the animal’s neck, particularly if the animal is fa-
cing, or moving, up an appreciable slope. Indeed, the ex-
tent to which the device on the collar can swing should
prove an important issue in defining behaviours; the
more it can swing, the more it will act like a gimble and
be less likely to be constrained to a particular angle by
abutting the neck. Against this, loose collars may intro-
duce unwanted variability during movement [39]. Ter-
rain will also affect the acceleration profiles measured
for different behaviours because animals often respond
to terrain by changing gait, stride length and speed [53],
so enclosures used for captive calibration of behaviours
from logging devices should display the entire range of
topographies available to the free-ranging animals of
interest.
A perennial issue for biologgers is the trade-off be-

tween high resolution data (both in terms of time and
bits) and required battery power [19, 54]. Lower fre-
quencies can extend deployment time and reduce bat-
tery power, memory on internal storage devices and
required processing power. In this study, we found that
highest classification accuracy was achieved using a sam-
pling rate of 10 Hz or above and, even when sampling
rate was reduced to 1 Hz, it still resulted in 87.4% cor-
rectly classified behaviours, which is deemed acceptable
by other studies [18, 24, 55].
The ease with which biologger data can be analysed

to highlight behaviour using random forests [5] belies
a few important considerations. Firstly, there is a ten-
dency to include a large number of variables from tri-
axial accelerometers for random forest models even
though many have not been tested for the benefit of
their inclusion. Although random forest models can
handle noisy variables and can be robust to overfit-
ting [48], 20 variables were not included in the data-
set, either due to being correlated or deemed
redundant using recursive feature selection. This sug-
gests that there is value in selecting variables that are
biologically and mechanistically important in describ-
ing the behaviours and therefore important to the
model. This, in turn, necessitates proper understand-
ing of what the various acceleration metrics mean
and how they are changed by both the different be-
haviours and the environment (topography etc.).
Other steps that have been suggested to improve ran-
dom forest model performance were also taken.

Although using balanced observation classes did not
significantly improve model performance, steps to re-
duce the number of behaviours predicted (removing
less relevant behaviours) did improve model perform-
ance. The behaviours included when classifying be-
haviours should be carefully selected, as including
behaviours that are not relevant for the study may re-
duce the accuracy of relevant behaviours. Further-
more, when applying behaviour templates to
unobserved data, steps to reduce the chance of pre-
dicting the wrong behaviour should be taken such as
setting a threshold accuracy (see Ferdinandy et al.,
[28]).
Finally, many biologgers have accelerometers within

inertial measurement units (IMUs), which also have tri-
axial magnetometers built in although few studies have
included tri-axial magnetometry in behavioural classifi-
cation despite the potential for it to be useful [20, 21].
Our work showed that by including (limited) variables
derived from tri-axial magnetometry, classification ac-
curacy was significantly improved. This may prove par-
ticularly valuable in the future, since magnetometers
may be able to elucidate patterns of movement in a
manner different to accelerometers, thus potentially pro-
viding important additional information for behavioural
classification [17].

Conclusions
A template for applying methods to identify the behav-
iours of wild or captive Caprids using captive and do-
mestic counterparts using tri-axial accelerometry and
magnetometry is provided, highlighting the need the cre-
ate standardised methodologies, including data process-
ing steps, especially when selecting variables and using
random forest models. High model performance could
be achieved for two caprid species using video observa-
tions with a relatively low sampling frequency (10 Hz),
including predicting the slope of terrain for locomotion
behaviours. Tri-axial magnetometry is a useful tool to
aid behavioural classification and slope of terrain for
locomotion behaviours could be accurately predicted.
We demonstrate the importance of using sex-split train-
ing datasets in sexually dimorphic species. While we
show that model performance is reduced when predict-
ing the behaviours of individuals not included in the
training data, it is comparable when predicting for the
same or a similar species. The use of an individual-split
cross-validation approach better demonstrates the appli-
cation of these methods to individuals of the same or
similar species. For prediction of the behaviours of a dif-
ferent species, all efforts should be made to maximise
the similarities between surrogate and study species, in-
cluding their respective environments.
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Additional file 1: Table S1. Details of the individuals and training the
male Alpine ibex to have collars put on and taken off. Table S2.
Description of training protocol. Figure S1. A male ibex being rewarded
standing in the protective feeding station (step 3). Figure S3. Three
target male ibex rewarded in their designated protective stations (step 4,
only two were successfully trained beyond this step). Figure S4. Holding
the collar around a male ibex neck while he stands in the protective
station, one trainer holds the collar while the second provides the reward
(step 7). Table S3. Total time observed of each behaviour for each
individual pygmy goat (G) or Alpine ibex (IB) in seconds.

Additional file 2 Methods for building and refining random forest
models to predict the behaviour of Alpine ibex and pygmy goats. Table
S4. A list of the accelerometry and magnetometry variables that are used
or calculated for the random forest model. Including the name, and label,
the description of the variable and its calculation. Figure S4. Recursive
feature elimination plots showing the cross-validated model accuracy
when a different number of acceleration and magnetometry variables are
included in the random forest models for classifying the behaviours of (a)
Alpine ibex and (b) pygmy goat. Figure S5. Random forest error plots
across 500 trees for classifying each of the nine behavioural states (Ag-
gression, Browsing (pygmy goats only), Climbing (Alpine ibex only), Graz-
ing, Grooming, Lying down, Running, Shaking, Standing, Trotting and
Walking) and Out-of-bag (OOB) error estimates for each different model
at 10 Hz for both species (a,b) including the models with: (c,d) balanced
observations and (e,f) reduced behaviour classes. Figure S6. Random for-
est error plots across 500 trees for classifying each of the nine behavioural
states including terrain slope for locomotion behaviours (Aggression,
Browsing (pygmy goats only), Climbing (Alpine ibex only), Grazing,
Grooming, Lying down, Running, Shaking, Standing, Trotting and Walk-
ing) and Out-of-bag (OOB) error estimates, for (A) Alpine ibex and (B)
pygmy goats. Table S5. The variable reduction process to reach the final
selected model.

Additional file 3: Random forest model results. Figure S6. The
importance of each variable retained in the models predicting behaviour
and behaviours including terrain slope. Table S5. The median and 1st
and 3rd quantile of acceleration, for each behaviour and species, for
three variables. Table S6. Confusion matrix showing the observed
behaviours and predicted behaviours (in seconds) when training the
random forest model built using the pygmy goat training dataset. Table
S7. Confusion matrix showing the observed behaviours and predicted
behaviours (in seconds) when using a random forest model built using
pygmy goat training dataset and tested on the Alpine ibex training data
set. Table S8. Confusion matrix showing the observed behaviours and
predicted behaviours, including the gradient of terrain for locomotion
behaviours, when training the random forest model built using the
pygmy goat training dataset. Table S9. Confusion matrix showing the
observed behaviours and predicted behaviours, including the gradient of
terrain for locomotion behaviours, when using a random forest model
built using pygmy goat training dataset and tested on the Alpine ibex
training data set.

Additional file 4: Figure S6. The importance of each variable ordered
by mean Gini decrease for the model predicting behaviours including
slope of terrain; (a Pygmy goats with ‘Pitch’ as the most important
variable and (b) Alpine ibex with ‘Static X’ as the most important variable.
Table S5. The median and 1st and 3rd quantile of acceleration, for each
behaviour and species, for the three variables that are in the top 5 most
important variables for predicting behaviour of both pygmy goats and
Alpine ibex. Table S6. Confusion matrix showing the observed
behaviours and predicted behaviours when using a random forest model
built using pygmy goat training dataset and tested on the Alpine ibex
training data set. Italicised cells are the true positives where the
behaviour has been correctly predicted. Table S7. Confusion matrix
showing the observed behaviours and predicted behaviours, including
the gradient of terrain for locomotion behaviours, when using a random
forest model built using pygmy goat training dataset and tested on the

Alpine ibex training data set. Italicised cells are the true positives where
the behaviour has been correctly predicted. (Downhill = D, Flat = F,
Uphill = U).
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