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Abstract 25 

Background: Animal-attached devices can be used on cryptic species to measure their movement and 26 

behaviour, enabling unprecedented insights into fundamental aspects of animal ecology and behaviour. 27 

However, direct observations of subjects are often still necessary to translate biologging data accurately 28 

into meaningful behaviours. As many elusive species cannot easily be observed in the wild, captive or 29 

domestic surrogates are typically used to calibrate data from devices. However, the utility of this 30 

approach remains equivocal. 31 

Methods: Here, we assess the validity of using captive conspecifics, and phylogenetically-similar 32 

domesticated counterparts (surrogate species) for calibrating behaviour classification. Tri-axial 33 

accelerometers and tri-axial magnetometers were used with behavioural observations to build random 34 

forest models to predict the behaviours. We applied these methods using captive Alpine ibex (Capra 35 

ibex) and a domestic counterpart, pygmy goats (Capra aegagrus hircus), to predict the behaviour 36 

including terrain slope for locomotion behaviours of captive Alpine ibex.  37 

Results: Behavioural classification of captive Alpine ibex and domestic pygmy goats was highly 38 

accurate (> 98%). Model performance was reduced when using data split per individual, i.e., classifying 39 

behaviour of individuals not used to train models (mean ± sd= 56.1 ± 11%). Behavioural classifications 40 

using domestic counterparts, i.e., pygmy goat observations to predict ibex behaviour, however, were 41 

not sufficient to predict all behaviours of a phylogenetically similar species accurately (> 55%).  42 

Conclusions: We demonstrate methods to refine the use of random forest models to classify behaviours 43 

of both captive and free-living animal species. We suggest there are two main reasons for reduced 44 

accuracy when using a domestic counterpart to predict the behaviour of a wild species in captivity; 45 

domestication leading to morphological differences and the terrain of the environment in which the 46 

animals were observed. We also identify limitations when behaviour is predicted in individuals that are 47 

not used to train models. Our results demonstrate that biologging device calibration needs to be 48 

conducted using: (i) with similar conspecifics, and (ii) in an area where they can perform behaviours on 49 

terrain that reflects that of species in the wild. 50 
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Introduction  51 

Biologging has transformed what we know about wild animal behaviour [1–3], with particular value 52 

attributed to tri-axial body acceleration [4–6]. Biologging devices enable researchers to gain detailed 53 

insights into the movement and behaviour of animals [7,8]. Specifically, where data are limited by direct 54 

observations [9] or telemetry is constrained (e.g. sampling intervals are low [10], location is inaccurate 55 

[11,12]), these devices record body movement of animals at high frequencies. They can thus provide 56 

detailed information on the study subjects, representing a powerful opportunity to study enigmatic 57 

species [6]. 58 

Accelerometry data are generally collected at high frequencies (typically tens of hertz), generating large 59 

datasets. However, the ease with which these data can be collected is in stark contrast to the difficulties 60 

in analysing and interpreting such large data sets (e.g. 40 Hz sampling frequency gives nearly 3.5 61 

million data points per day for a single channel) [13,14]. Various computational approaches can be used 62 

to analyse these data for behavioural identification, including machine-learning algorithms such as k-63 

nearest neighbour [15], random forest models [5], gradient-boosting machines [16], support vectors 64 

machines and artificial neural networks [4,17]. Random forest models are a commonly used approach 65 

for classification of behaviours from accelerometry data and provide high accuracy [4,18]. 66 

Whilst the high recording frequencies of the devices are key to identifying behaviours accurately, the 67 

use of lower recording frequencies can extend deployment time and reduce associated computational 68 

time [18,19]. The optimisation of sampling frequencies, which will vary with study subject and aims, 69 

is therefore an important issue. This is amplified for devices recording parameters other than just 70 

acceleration, such as tri-axial magnetometry and barometric pressure [1], which may also be important 71 

keys to identifying behaviours [20,21]. Even when using accelerometry alone, a large number of 72 

variables can be computed to include in models for behaviour classification (e.g. 25 variables [5] ). 73 

Thus, it is important to consider the biological and mechanistic relevance of all variables included in 74 

behavioural classification. 75 
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Despite the potential of computational approaches to help automate behavioural classification, direct 76 

visual observation of the study individuals remains important for the development of accurate 77 

algorithms [5]. To overcome the difficulties of observing elusive wild animals, it has been suggested 78 

that captive conspecifics can be used to identify behaviours [17]. Indeed, this technique has been shown 79 

to have value for measuring behaviour in a range of species [5,22-24], and where captive individuals 80 

are not available, domestic counterparts have been suggested as a viable proxy [25]. However, 81 

individual variation [26], including differences in morphology and body-size [25] and the effect of 82 

variation in free-living animal habitat compared to domestic and captive settings [22,27], may be critical 83 

when applying such methods. Importantly, it is particularly problematic to test the value of domestic 84 

surrogates for wild animals if those wild animals cannot be observed for verification. For example, 85 

applying the common method for splitting data into training and validation data sets overestimates the 86 

accuracy of models when tested on new individuals because the models are validated on individuals 87 

also used to train the model [28]. 88 

While it is well acknowledged that differential environment use is an important part of the behavioural 89 

ecology of free-living animals [29], it is less appreciated that terrain substrate, superstrate (defined as 90 

any material an animal must push against to move [30]), and gradient, affect accelerometer signals and, 91 

thereby, the ability to derive behaviours from accelerometry data [27]. For example, the gradient of a 92 

terrain should be identifiable in tetrapods because the static acceleration, indicating animal orientation, 93 

will change accordingly [31] and animals may, in any event, change gait, stride length and speed 94 

according to terrain slope [32,33], all of which can be manifest in a tri-axial accelerometer signal. 95 

The Alpine ibex (Capra ibex) is a Caprid that lives at high altitudes in the central European Alps [34] 96 

in populations that are highly fragmented due to pressure from land-use change, agriculture, human 97 

disturbance and climate change [35]. Climate change is considered to be particularly important since 98 

this species is sensitive to heat and avoids heat stress, which reduces the quality of the food resources 99 

they can access [36,37]. Given on-going global warming, there is concern that physiological and 100 

behavioural constraints on the Alpine ibex will lead to severe declines of the species following rapid 101 

truncation of suitable habitat [37]. Research is needed to understand the species capacity to adapt to 102 
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changing environmental conditions, and animal-attached logging systems are ideal for this purpose. 103 

However, the high-altitude habitat of the ibex makes it implausible to observe the species in the wild to 104 

validate accelerometer signals for behaviour, so it is appropriate to consider using captive surrogates 105 

for this. Captive populations of the Alpine ibex are few and access is limited, so a pragmatic approach 106 

would be to attempt to calibrate behavioural data using a similar but tractable and accessible species 107 

such as the domestic pygmy goat (Capra aegagrus hircus), which is phylogenetically similar and 108 

readily available in domestic settings [38]. 109 

In this study, we tested the validity of this approach by using loggers that measure tri-axial acceleration 110 

and magnetic compass heading, on both captive pygmy goats and captive Alpine ibex to examine 111 

behaviours of both species using a random forest model approach. We hypothesized that observations 112 

of pygmy goat behaviours could be used to predict the behaviours of captive Alpine ibex thereby 113 

demonstrating that domestic surrogates can serve as suitable proxies for helping resolve behaviour 114 

based on acceleration in rare or difficult-to-handle wild species of conservation concern. We 115 

additionally provide a widely applicable template for refining the use of random forest models to predict 116 

behaviours including; feature selection approaches, the addition of tri-axial magnetometry variables, 117 

selecting the optimum sampling frequency, handling unbalanced observations and data splitting method 118 

(random vs individual). With these models, we then aimed to provide behavioural templates for both 119 

Alpine ibex and pygmy goats, including predicting the terrain slope for locomotion behaviours. Finally, 120 

we examine the ability of our models from one species to predict behaviour in the other in order to 121 

assess the value of using surrogate species when captive populations of the focal species are not 122 

available for study. 123 

 124 

Methods 125 

Study subjects and enclosure 126 

The study was conducted using collar-attached ‘Daily Diary’ tags (Wildbyte Technologies Ltd, 127 

Swansea, UK; [1]) deployed on African pygmy goats at Belfast Zoo (Northern Ireland, UK) in 128 
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November 2017 and May 2018, and captive Alpine ibex at Kolmården Wildlife Park (Norrköping, 129 

Sweden) in November 2018 and November 2019 (Additional file 1 Table S1). At Belfast Zoo, ‘Daily 130 

Diary’ tags were deployed on nine female pygmy goats (mean body weight = 25.9 kg, age range = 3-131 

10 years) for periods of five days over one month within each of two enclosures. Keepers were able to 132 

handle the goats to deploy collars. The first enclosure consisted of a sloping grass paddock (slope 133 

gradient = 18%, area = 2210 m2 [50.1 x 35.3 m]) surrounded by hedges, and the second enclosure was 134 

a flat smaller concrete yard with an area of wood mulch (area = 163 m2 [16.6 x 7.3 m]).  135 

At Kolmården Wildlife Park, in November 2018, collar-attached devices were deployed on two male 136 

Alpine ibex (weight not known, age = 9 years) following a protocol in which the animals were trained 137 

though positive reinforcement (using feed pellets as a reward) to wear collars without the need for 138 

anaesthesia. Stations to protect the zoo personnel were constructed from wood and both individuals 139 

were trained incrementally, over a period of two months (Additional file 1 Table S2, pers comm Pieter 140 

Giljam, Zoospenseful and Kolmården Wildlife Park). Collars were deployed on male Alpine ibex for 141 

two periods of five days over a month.  142 

In November 2019, collar-attached devices were also deployed on four female Alpine ibex (mean body 143 

weight = 45.6 kg, age range = 5 – 13 years) for a period of 15 days. Female ibex were not compliant to 144 

training. Therefore, each individual was sedated using an intramuscular injection of butorphanol (0.009 145 

mg/kg), Etorphine (0.009 mg/kg) and Xylazine (0.674 mg/kg). The collar was deployed, and subject 146 

body mass, limb length and horn length recorded. To reverse the anaesthesia, individuals were given an 147 

intramuscular injection of naltrexone (0.674 mg/kg) and atipamezole (0.112 mg/kg). Sedation was 148 

repeated at the end of the data collection period (after 15 days) to remove the collars. Procedures were 149 

conducted by the Kolmården veterinarians. The enclosure was a large area (18342 m2 [202.4 x 80.4 m]) 150 

consisting of a mixture of grass and rock surfaces with multiple slopes (range of slopes = 1.7 – 87%).  151 

 152 

Acceleration data 153 
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Tri-axial acceleration was recorded at a frequency of 40 Hz as well as tri-axial magnetometry, 154 

temperature, pressure, time and date. Devices were encased in a plastic housing with a 3.6 V battery 155 

(LS 14250, Saft, France; 147 mm x 25mm; 9 g) and sealed with tesa tape (Tesa® tape 4651, Tesa, 156 

Germany). Devices were then attached to the collar using tesa tape and collars were weighted either 157 

side of the device to ensure it remained in position on the ventral side of the animal (weight = 135 – 158 

235 g; dependant on the collar size). Collar weight was within 0.8% of individual body weight and 159 

collars were fitted to have a circumference that was 5 cm larger than that of the neck [39]. All devices 160 

were oriented so the z-axis corresponded to ‘heave’ (up-down motion), x-axis to ‘surge’ (forward-back 161 

motion) and y-axis to ‘sway’ (left-right motion) (Figure 1). Before deployment, each device was 162 

calibrated to the exact time, orientation of the axes and to correct accelerometer and magnetometer 163 

offsets. 164 

 165 

Figure 1: Captive Alpine ibex with a collar-attached ‘Daily Diary’ tag, with a tri-axial accelerometer 166 

and magnetometer, depicting the three orthogonal axes (X, Y, Z) recorded at 40 Hz. Pitch and Roll, 167 

which are derived from the static acceleration of the X and Y axes [1], respectively, are shown (Photo: 168 

Dickinson, E.R.). 169 

 170 

Observation and processing of data 171 

To classify behaviour, observations were conducted using a video camera (Canon PowerShot SX720 172 

HS; Canon Inc, Japan). Nine behaviours were distinguished for each species (Table 1) and were 173 

recorded for an average of 125.9 minutes (range: Pygmy goats = 1 – 221.6 min, Alpine ibex = 2.7 – 174 

145.2 min). The slope of terrain for locomotion behaviour was also recorded as flat (-2.5˚ to 2.5˚), uphill 175 

(> 2.5˚) or downhill (< -2.5˚: Table 1). Individuals were observed from outside their enclosure. Pygmy 176 

goats were recorded for a total of 654 min (mean ± sd = 73.5 ± 25.3 min per individual) and Alpine 177 

ibex were observed for a total of 516 min (mean ± sd = 87.0 ± 14.4 min per individual) (see Additional 178 

file 1 Table S3). Acceleration data were manually labelled according to the observed behaviour for the 179 
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duration of the observation period using ‘Daily Diary Multiple Trace’ software (Wildbyte Technologies 180 

Ltd, Swansea, UK). Only data with labelled behaviour observations were included in the analysis. 181 

 182 

Accelerometry and magnetometry variables 183 

To classify specific behaviours, 39 variables that are commonly used to detect behaviours from data 184 

[1,5,21,26] were extracted or derived from the raw tri-axial acceleration and magnetometry data 185 

(Additional file 2 Table S3). From tri-axial acceleration, these variables were either based on static 186 

acceleration (cf. Shepard et al. [40]), which describes the orientation of the device relative to gravity 187 

and thus the posture of the animal, or dynamic acceleration, which describes the body movement of the 188 

animal [41]. From the tri-axial magnetometry, five variables were included, calculated using each of 189 

the three orthogonal axes independently or by combining all three axes to provide a measurement of 190 

full body motion [20,21] (Additional file 2 Table S3). 191 

 192 

Building random forest models 193 

Random forest models, which are an extension of classification (decision) trees and are robust and 194 

powerful for this type of analysis [42], were built to predict behaviour for both the pygmy goat and 195 

Alpine ibex data separately, using accelerometry and magnetometry variables (see above). All analyses 196 

were conducted in R version 3.9 [43] using the package randomForest [44]. Random forest models use 197 

classification trees to classify the observations into different behaviours by building a hierarchy of 198 

decision rules based on the variables selected [5,42]. Our random forest model used 500 iterations (the 199 

number of classification trees sampled), and a random subset of data was used to build each tree 200 

(bootstrapping) to enable a robust model which limits overfitting and problems associated with 201 

unbalanced datasets, which may be common in observations of animals that are likely to spend more 202 

time resting than active [5,26], although unbalanced observations may lead to bias towards dominant 203 

observations classes [22]. If an observation is randomly selected, the Gini index measured the 204 

probability of it being classified incorrectly. At each classification node, observations were 205 
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continuously subdivided until the Gini index did not decrease [5,26]. The mean Gini decrease gave the 206 

importance of each variable in classifying the behaviours, with higher values indicating higher 207 

importance. The proportionate error of each model (number of misclassifications/number of 208 

observations according to the number of trees) was checked for each behaviour and the ‘out-of-bag’ 209 

error estimates (observations not included in the bootstrapped sample or tree) examined for each model 210 

to evaluate model performance (Additional file 2 Figure S4). 211 

Models were built with data subsampled at different sampling frequencies to check the effect on 212 

classification accuracy of behaviours; 40, 20, 10, 5 and 1 Hz [24]. Random forest models need variables 213 

that are not correlated and contribute to the power of the model [45,46]. To remove correlated features, 214 

accelerometry and magnetometry variables were tested for correlation using the Caret package [47]. 215 

Correlated variables (Pearson’s r ≥ 0.70) that were the least important according the mean Gini decrease 216 

were excluded. Although a consensus does not yet exist on the best methods for random forest model 217 

simplification or variable reduction in ecology [48], we removed redundant features using recursive 218 

feature elimination (RFE) which fits the random forest models using cross-validation and selects the 219 

features to be retained in the model. Variable reduction was conducted consistently for both species 220 

models to ensure models used the same variables. The importance of including magnetometry variables 221 

was tested separately by removing them from the model and comparing the output for each model using 222 

model performance metrics. A general linear model was used to test the effect of sampling frequency 223 

and magnetometry variable inclusion on classification accuracy. Model accuracy was included as the 224 

response variable and sampling frequency, species and data (accelerometry or accelerometry and 225 

magnetometry) included as explanatory variables.  226 

The following steps were conducted with data at the lowest sampling frequency that resulted in a high 227 

classification accuracy, bearing in mind that unbalanced datasets may bias the predictive ability of 228 

classification methods toward the most dominant data classes [22] and that standing, eating, browsing, 229 

walking and resting had a higher number of observations than other behaviours (see Table 1). We used 230 

a down-sampling strategy to handle imbalanced data classes for relevant behaviours to remove instances 231 

in the majority classes. Specifically, behaviour classes that were observed for longer than the median 232 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 
 

(560.4 secs) were down-sampled randomly using the Caret package [47]. Another strategy that may 233 

improve model performance is reducing the number of behaviour categories. The initial models 234 

included all behaviours observed in each species, and the effect of reducing the number of behaviours 235 

was tested by removing those assumed to be less relevant to ethological studies: aggression, grooming, 236 

and shaking. 237 

Authors using random forest models to predict behaviour from accelerometry generally split data 238 

randomly into 60% training and 40% validation sets (e.g. [5,26]). However, the value of using data split 239 

per individual datasets has been highlighted when validating the ability of models to predict behaviour 240 

of unobserved individuals [28]. In this study, we built two model sets, the first splitting the data 60/40 241 

randomly, with data from each individual present in both the training and the validation models, and 242 

the other approximately split 60/40 at the individual level, with individuals only in either the training 243 

or validation sets. The individual-split models were repeated for all combinations of individuals in the 244 

training or validation data sets using a k-fold cross-validation strategy to give average model 245 

performance [28] (Table 1). The effect of balancing observations, and reduced number of behaviour 246 

classes on the model performance metrics was tested for both the random and individual-split models 247 

using one-way ANOVAS and Tukey pairwise-comparisons for each species.  248 

 249 

Random forest model validation 250 

To estimate model performance for each random forest model used in this study, confusion matrices 251 

were produced for the model on the validation dataset, highlighting true positives, false positives and 252 

false negatives [5,27]. From these, the model accuracy, precision and recall were calculated using the 253 

number of true positives (TP, correctly classified positive behaviours), false positives (FP, incorrectly 254 

classified positive behaviours), true negatives (TN, correctly classified negative behaviours), false 255 

negatives (FN, incorrectly classified negative behaviours). Model accuracy was calculated as the 256 

percentage of true positives and true negatives [28]: 257 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

     (1) 258 
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Precision was defined as the proportion of positive classifications that were true compared to false 259 

positives: 260 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

   (2) 261 

 262 

Recall was defined as the proportion of positive classifications that were true compared to the false 263 

negatives [15]: 264 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

   (3) 265 

The F1 statistic was then calculated as the harmonic mean of Precision and Recall used as a metric of 266 

the overall performance for classification of each behaviour [26]: 267 

𝐹1 =  2
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 1
𝑅𝑒𝑐𝑎𝑙𝑙

   (4) 268 

 269 

Predicting across species 270 

To determine whether pygmy goats could be used as a surrogate species to predict Alpine ibex 271 

behaviour, the model using the pygmy goat dataset was used to predict Alpine ibex behaviour from the 272 

Alpine ibex dataset. Behaviours that were not observed across both species (specifically, climbing and 273 

browsing) were excluded. Models with data at the lowest acceptable sampling frequency were used to 274 

predict behaviour and, for locomotory behaviours, behaviour subdivided by slope of terrain (flat, uphill 275 

or downhill; see Table 1). Model performance was compared with the full initial model to when data 276 

observations classes were balanced and the number of predicted behaviours was reduced. A sex-specific 277 

model was tested that excluded the male ibex from the cross-species model. To check model 278 

performance compared to a random model, observed behaviours were randomly generated onto the 279 

acceleration data using the same proportion of actual observations for each behaviour and used to build 280 

a random forest model. 281 

 282 
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Results 283 

Refining random forest models 284 

Random forest models were built for the different sampling frequencies using either accelerometry 285 

variables only or both accelerometry and magnetometry variables. Seven variables were removed due 286 

to them being highly correlated and a further 13 variables were removed in RFE, with 17 variables 287 

included in the final model (Figure 2; Additional file 2 Figure S4). Model accuracy was not significantly 288 

different between the 40 Hz and the 20 Hz model (t4,5 = -0.003, p = 0.71) or the 10 Hz model (t4,5= -289 

0.013, p = 0.21). However, it was significantly lower at 5 Hz (t4,5 = -0.030, p =0.025), and 1 Hz (t4,5 =-290 

0.095, p < 0.001) (Figure 3). Thus, a sampling frequency of 10 Hz was selected as the best model as a 291 

compromise between model performance and ability to process. Overall, model accuracy was 292 

significantly different for Alpine ibex and pygmy goats (t6,13 = -0.13, p = 0.001).  293 

Comparing models with a sampling frequency of 10 Hz and higher, model accuracy was higher when 294 

magnetometry variables were included (t2,9 = 0.008, p = 0.03). Model accuracy of the final selected 295 

models using randomly split data was 98.6% for Alpine ibex with a mean ± SD F1 statistic of 0.96 ± 296 

0.011 and 97.8% for pygmy goats with a mean ± SD F1 statistic of 0.96 ± 0.016 (Table 2). Although 297 

model accuracy was lower using balanced data classes (F1,2 = 0.079, p = 0.80), the precision for separate 298 

behaviours was significantly higher (F1,2 = 72.9, p = 0.013). Prediction of behaviours using fewer 299 

behaviours enhanced model accuracy (F1,2 = 0.17, p = 0.72) and the mean F1 statistic (F1,2 = 12.45, p = 300 

0.07). Using data split per individual, the mean model accuracy was 56.7 ± 0.06% for Alpine ibex with 301 

a mean ± SD F1 statistic of 0.37 ± 0.02 and 57.9 ± 0.05 % for pygmy goats with a mean± SD F1 statistic 302 

of 0.34 ± 0.03 (Table 2; Figure 4). Model accuracy was significantly lower in balanced data classes 303 

(F1,28 = 46.6, p < 0.001) and was improved when the number of behaviour classes was reduced (F1,28 = 304 

0.70, p = 0.41). Using F1 statistic as a measure of model performance, model performance was higher 305 

when using balanced observations (F1,28 = 3.71, p = 0.06) and when the number of behaviours was 306 

reduced (F1,28 = 25.3, p < 0.001).  307 

 308 
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Figure 2: The mean Gini decrease of the variables used to predict behaviour, ordered by importance to 309 

the model: (A) Alpine ibex and (B) pygmy goat, with the reduced variables included in the final model. 310 

 311 

Table 2: The overall model accuracy and mean F1 statistic (harmonic mean of the precision 

and recall) for each 10 Hz model using different strategies to build the random forest model. 

*SD not available 

Model  Pygmy goat Alpine ibex 

Accuracy ± 

SD (%) 

F1 statistic ± 

SD 

Accuracy ± 

SD (%) 

F1 statistic ± 

SD 

Random split train and 

test data 

97.8 0.96 ± 0.02 98.6 0.96 ± 0.01 

 with balanced 

observations 

97.6 0.98 ± 0.02 98.6 0.99 ± 0.01 

 with reduced behaviours 98.2 0.97 ± 0.02 98.7 0.97 ± 0.01 

Data split per individual 

train and test data 

57.8 ± 5.4 0.34 ± 0.03 65.5 ± 5.2 0.40 ± 0.02 

 with balanced 

observations 

42.1 ± 6.0 0.38 ± 0.05 47.7 ± 7.2 0.43 ± 0.05 

 with reduced behaviours 59.2 ± 5.7 0.43 ± 0.05 68.6 ± 5.1 0.51 ± 0.02 

 312 

Figure 3: Model accuracy of Random Forest models to predict the behaviour of Alpine ibex and pygmy 313 

goats, using either accelerometry variables or accelerometry and magnetometry variables at different 314 

sampling frequencies (1, 5, 10, 20 and 40 Hz). 315 

 316 

Behavioural templates for Alpine ibex and pygmy goats  317 

Random forest models, at a sampling frequency of 10 Hz, were built to predict the slope of the terrain 318 

for locomotion behaviours; flat, uphill or downhill. Overall model accuracy when slope was included 319 

was 98.6% for Alpine ibex with a mean ± SD F1 statistic of 0.96 ± 0.016 and 98.0% for pygmy goats 320 

with a mean ± SD F1 statistic of 0.96 ± 0.016 (Figure 4; Table 2; Additional file 3 Figure S6). Pitch 321 

was the most important variable for pygmy goats, and smoothed VeDBA was the most important 322 
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variable for Alpine ibex predicting behaviours. Static X axis acceleration was the most important 323 

variable when the model predicted Alpine ibex behaviour including terrain slope. 324 

  325 

Figure 4: Precision and Recall of each behaviour categorised in the models for Alpine ibex and pygmy 326 

goats. Terrain slope is predicted for various locomotion behaviours in the bottom panel.  327 

 328 

Three variables were in the top 5 most important variables, ranked by mean Gini decrease, for both the 329 

Alpine ibex and pygmy goats. These were posture, given by the surge axis (static X), angle of surge 330 

posture (pitch) and smoothed VeDBA (smVeDBA) (Figure 5; Additional file 3 Figure S6 Table S5). 331 

 332 

Figure 5: The three variables that were in the top 5 most important variables for differentiating Alpine 333 

ibex and pygmy goat behaviour: A) static X, B) pitch and C) maximum amplitude of oscillations of the 334 

sway axis over 2 seconds (PSD1Y).  335 

 336 

Applying pygmy goat behavioural template to Alpine ibex  337 

In the investigation examining the extent to which the model conditioned on the pygmy goat training 338 

dataset could be used to predict behaviours observed in the Alpine ibex training dataset, model accuracy 339 

was 54.3% for predicting behaviours. The model reached a mean ± SD precision of 0.54 ± 0.38, recall 340 

of 0.61 ± 0.11 and F1 statistic of 0.47 ± 0.29 (Table 3). The largest errors in the model were produced 341 

from misclassifying resting as standing, and trotting as either walking or running (Additional file 3 342 

Table S6). Standing, walking, eating and running had the highest recall and precision in this model 343 

(Figure 6). A model using randomly generated ‘observed’ behaviours had a classification accuracy of 344 

15.4% (Table 3). 345 
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Model accuracy for predicting behaviours and slope of terrain for locomotion behaviour was 60.5%. 346 

The model reached a mean ± SD precision of 0.28 ± 0.41, recall of 0.26 ± 0.30 and F1 statistic of 0.24 347 

± 0.34 (Table 3). Locomotion behaviours on a slope had very low precision and recall (Figure 6; 348 

Additional file 3 Table S7). A model using randomly generated ‘observed’ behaviours including slope 349 

for locomotion behaviours had a classification accuracy of 26.4% (Table 3). For both models, model 350 

accuracy improved when using a sex-specific model (predicting only female Alpine ibex behaviour), 351 

however other model performance metrics did not change. 352 

 353 

Figure 6: Precision and recall for each behaviour for the model trained with pygmy goat behaviour to 354 

predict Alpine ibex behaviour (cf. Fig. 4, noting scale differences). 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 
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Table 2: The mean precision, recall and F1 statistic (± SD) for each random forest model predicting 368 

behaviour or behaviour including slope of terrain for Alpine ibex and pygmy goats. 369 

Model Classification 
accuracy 

 Mean precision  Mean recall  Mean F1 
statistic 

Random split 
behaviour 98.3% 0.95 ± 0.05 0.98 ± 0.018 0.96 ± 0.030 

Random split 
behaviour including 
slope of terrain 

98.2% 0.95 ± 0.042 0.98 ± 0.018 0.96 ± 0.024 

Data split per 
individual behaviour 63.0% 0.48 ± 0.32 0.55 ± 0.27 0.46 ± 0.28 

Data split per 
individual behaviour 
including slope of 
terrain 

68.1% 0.36 ± 0.028 0.42 ± 0.082 0.034 ± 0.046 

Pygmy goat predicting 
Alpine ibex behaviour 55.5% 0.55 ± 0.39 0.62 ± 0.10 0.48 ± 0.30 

Pygmy goat predicting 
female Alpine ibex 
behaviour 

60.2% 0.55 ± 0.39 0.50 ± 0.26 0.49 ± 0.32 

Pygmy goat predicting 
Alpine ibex behaviour 
including slope of 
terrain 

59.8% 0.29 ± 0.38 0.30 ± 0.29 0.27 ± 0.32 

Pygmy goat predicting 
female Alpine ibex 
behaviour including 
slope of terrain 

67.8% 0.28 ± 0.42 0.25 ±0.34 0.26 ± 0.37 

Randomly generated 
behaviours 15.4% 0.010 ± 0.27 0.058 ± 0.09 0.038 ± 0.08 

Randomly generated 
behaviours with slope 
of terrain 

26.4% 0.068 ± 0.24 0.040 ± 0.11 0.041 ± 0.12 

 370 

 371 

Discussion 372 

Accurately identifying animal behaviour is key to the validity of using accelerometers to address 373 

important ecological questions in free-ranging animals. However, there remains limited information on 374 

best practice, especially when captive or domestic individuals are used to inform workers on the putative 375 

behaviour of wild species. In this study, behavioural classification was achieved with high accuracy for 376 
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both captive Alpine ibex and domestic pygmy goats, using observations of each species respectively 377 

and taking steps to refine the application of random forest models. All behaviours and the slope of 378 

terrain for locomotion behaviours could be predicted with high accuracy. However, limitations were 379 

identified when the models were used to predict the behaviour of individuals not used in model training, 380 

whether they were the same species or not. Domestic or captive surrogates may be useful to predict the 381 

broad behaviours of a captive wild species but locomotion on terrain with different slope characteristics 382 

remains problematic. Thus, while captive surrogates may be useful for classifying behaviour in some 383 

free-ranging animals, the selection of appropriate counterparts or surrogates must be carefully 384 

considered for accurately classifying behaviours.  385 

Despite decreased model performance when Alpine ibex behaviour was predicted from 386 

domestic pygmy goats, the biggest decrease in model performance occurred when individually split 387 

data was used instead of randomly split data. This suggests that the limitations of predicting the 388 

behaviours of individuals that cannot be observed lies within intraspecific individual differences rather 389 

than inter-specific variation [26]. Behaviours such as resting were not well identified, which is typically 390 

considered to be an easy behaviour to identify, and a definitive explanation for this remains elusive. 391 

Despite this, broad behaviours were identifiable although some behaviours remained problematic in the 392 

cross-species model, particularly as regards the effect of terrain slope for locomotion- and resting 393 

behaviours.  394 

Domestic surrogates, or even captive surrogates of a different species, have been suggested to 395 

have value for informing behavioural classification and the concept is certainly logical [22,25]. Against 396 

this though, we observed low classification accuracy, and were unable to identify the full suite of 397 

behaviours observed in the captive counterparts, using our domestic surrogate. Critically, the value of 398 

using captive or domestic individuals as surrogates to predict the behaviour of free-living individuals 399 

requires that the surrogates and wild animals to move and behave in a similar way. However, the extent 400 

to which this is true depends critically on the size and morphology differences between the species 401 

dyads. For example, domestication may change bone structure [49], thus leading to changes in gait and 402 

movement and body size, which can have a marked effect on stride length and stride frequency [50], 403 
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and with it the acceleration values recorded by animal-attached devices. Pygmy goats are known for 404 

their characteristically short legs (height = 31 and 45 cm; [51]) associated with their adaptation to humid 405 

environments [52], whereas the longer legs of Alpine ibex facilitate locomotion through their 406 

mountainous habitat (female height = 73 to 84 cm, male height = 90 to 101 cm [34]). The high degree 407 

of sexual dimorphism in Alpine ibex [34], means that males are more different than females to female 408 

pygmy goats. This disparity may explain the reduced accuracy of models using pygmy goat 409 

observations to predict Alpine ibex behaviour. Indeed, model performance was higher when pygmy 410 

goat observations were used to predict the behaviour of female ibex, indicating that it is the increased 411 

difference between male Alpine ibex and female pygmy goats that reduces the ability of the model to 412 

predict behaviour between them. This suggests that there is value in using sex specific models when 413 

classifying behaviours sexually dimorphic species. 414 

The environment in which the surrogate individuals live must replicate, as far as possible, that 415 

of their wild counterparts for them to exhibit the same behavioural profiles. Our captive Alpine ibex 416 

were observed to display a wider range of behaviours and terrain slopes because they were kept in a 417 

large and varied enclosure with rocks and small cliffs. So, simplistically, climbing in ibex could not be 418 

predicted using our pygmy goat surrogate because, although the goats had slopes within their enclosure, 419 

none were comparable to the rocks that ibex used. This limitation may be especially important for 420 

measuring behaviour of individuals that may access food or water in a manner different to that observed 421 

in captivity, a clear case being predators that cannot hunt in captivity [24,28]. In fact, animal home 422 

ranges can cover large areas which display habitat and topographical heterogeneity, which will 423 

presumably produce corresponding heterogeneity in accelerometer signals, particularly during 424 

movement, so it is important to be able to interpret and account for the gradient, substrate and superstrate 425 

of the terrain during locomotion [1]. Using surrogates that are in a varied enclosure that mimics the 426 

species natural environment would reduce the issues linked to environment that arise from using captive 427 

or domestic surrogates.  428 

Orientation on slopes is expected to alter the static surge acceleration signal as the collar-429 

attached device abuts the animal’s neck, particularly if the animal is facing, or moving, up an 430 
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appreciable slope. Indeed, the extent to which the device on the collar can swing should prove an 431 

important issue in defining behaviours; the more it can swing, the more it will act like a gimble and be 432 

less likely to be constrained to a particular angle by abutting the neck. Against this, loose collars may 433 

introduce unwanted variability during movement [39]. Terrain will also affect the acceleration profiles 434 

measured for different behaviours because animals often respond to terrain by changing gait, stride 435 

length and speed [53], so enclosures used for captive calibration of behaviours from logging devices 436 

should display the entire range of topographies available to the free-ranging animals of interest. 437 

A perennial issue for biologgers is the trade-off between high resolution data (both in terms of 438 

time and bits) and required battery power [19,54]. Lower frequencies can extend deployment time and 439 

reduce battery power, memory on internal storage devices and required processing power. In this study, 440 

we found that highest classification accuracy was achieved using a sampling rate of 10 Hz or above 441 

and, even when sampling rate was reduced to 1 Hz, it still resulted in 87.4% correctly classified 442 

behaviours, which is deemed acceptable by other studies [18,24,45].  443 

The ease with which biologger data can be analysed to highlight behaviour using random 444 

forests [5] belies a few important considerations. Firstly, there is a tendency to include a large number 445 

of variables from tri-axial accelerometers for random forest models even though many have not been 446 

tested for the benefit of their inclusion. Although random forest models can handle noisy variables 447 

and can be robust to overfitting [48], 20 variables were not included in the dataset, either due to being 448 

correlated or deemed redundant using recursive feature selection. This suggests that there is value in 449 

selecting variables that are biologically and mechanistically important in describing the behaviours 450 

and therefore important to the model. This, in turn, necessitates proper understanding of what the 451 

various acceleration metrics mean and how they are changed by both the different behaviours and the 452 

environment (topography etc.). Other steps that have been suggested to improve random forest model 453 

performance were also taken. Although using balanced observation classes did not significantly 454 

improve model performance, steps to reduce the number of behaviours predicted (removing less 455 

relevant behaviours) did improve model performance. The behaviours included when classifying 456 

behaviours should be carefully selected, as including behaviours that are not relevant for the study 457 
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may reduce the accuracy of relevant behaviours. Furthermore, when applying behaviour templates to 458 

unobserved data, steps to reduce the chance of predicting the wrong behaviour should be taken such 459 

as setting a threshold accuracy (see Ferdinandy et al., [28]). 460 

Finally, many biologgers have accelerometers within inertial measurement units (IMUs), 461 

which also have tri-axial magnetometers built in although few studies have included tri-axial 462 

magnetometry in behavioural classification despite the potential for it to be useful [20,21]. Our work 463 

showed that by including (limited) variables derived from tri-axial magnetometry, classification 464 

accuracy was significantly improved. This may prove particularly valuable in the future, since 465 

magnetometers may be able to elucidate patterns of movement in a manner different to 466 

accelerometers, thus potentially providing important additional information for behavioural 467 

classification [17].  468 

 469 

Conclusions 470 

A template for applying methods to identify the behaviours of wild or captive Caprids using captive 471 

and domestic counterparts using tri-axial accelerometry and magnetometry is provided, highlighting the 472 

need the create standardised methodologies, including data processing steps, especially when selecting 473 

variables and using random forest models. High model performance could be achieved for two caprid 474 

species using video observations with a relatively low sampling frequency (10 Hz), including predicting 475 

the slope of terrain for locomotion behaviours. Tri-axial magnetometry is a useful tool to aid 476 

behavioural classification and slope of terrain for locomotion behaviours could be accurately predicted. 477 

We demonstrate the importance of using sex-split training datasets in sexually dimorphic species. While 478 

we show that model performance is reduced when predicting the behaviours of individuals not included 479 

in the training data, it is comparable when predicting for the same or a similar species. The use of an 480 

individual-split cross-validation approach better demonstrates the application of these methods to 481 

individuals of the same or similar species.  For prediction of the behaviours of a different species, all 482 
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efforts should be made to maximise the similarities between surrogate and study species, including their 483 

respective environments. 484 

 485 

Additional files 486 

Additional file 1: Table S1: Details of the individuals and training the male Alpine ibex to have collars 487 

put on and taken off Table S2: Description of training protocol Figure S1: A male ibex being rewarded 488 

standing in the protective feeding station (step 3) Figure S3: Three target male ibex rewarded in their 489 

designated protective stations (step 4, only two were successfully trained beyond this step) Figure S4: 490 

Holding the collar around a male ibex neck while he stands in the protective station, one trainer holds 491 

the collar while the second provides the reward (step 7). Table S3: Total time observed of each 492 

behaviour for each individual pygmy goat (G) or Alpine ibex (IB) in seconds. 493 

Additional file 2: Methods for building and refining random forest models to predict the behaviour of 494 

Alpine ibex and pygmy goats Table S4: A list of the accelerometry and magnetometry variables that 495 

are used or calculated for the random forest model. Including the name, and label, the description of the 496 

variable and its calculation. Figure S4: Recursive feature elimination plots showing the cross-validated 497 

model accuracy when a different number of acceleration and magnetometry variables are included in 498 

the random forest models for classifying the behaviours of (a) Alpine ibex and (b) pygmy goat. Figure 499 

S5: Random forest error plots across 500 trees for classifying each of the nine behavioural states 500 

(Aggression, Browsing (pygmy goats only), Climbing (Alpine ibex only), Grazing, Grooming, Lying 501 

down, Running, Shaking, Standing, Trotting and Walking) and Out-of-bag (OOB) error estimates for 502 

each different model at 10Hz for both species (a,b) including the models with: (c,d) balanced 503 

observations and (e,f) reduced behaviour classes.. Figure S6: Random forest error plots across 500 trees 504 

for classifying each of the nine behavioural states including terrain slope for locomotion behaviours 505 

(Aggression, Browsing (pygmy goats only), Climbing (Alpine ibex only), Grazing, Grooming, Lying 506 

down, Running, Shaking, Standing, Trotting and Walking) and Out-of-bag (OOB) error estimates, for 507 
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(A) Alpine ibex and (B) pygmy goats. Table S5: The variable reduction process to reach the final 508 

selected model 509 

Additional file 3: Random forest model results Figure S6: The importance of each variable retained in 510 

the models predicting behaviour and behaviours including terrain slope Table S5: The median and 1st 511 

and 3rd quantile of acceleration, for each behaviour and species, for three variables. Table S6: Confusion 512 

matrix showing the observed behaviours and predicted behaviours (in seconds) when training the 513 

random forest model built using the pygmy goat training dataset. Table S7: Confusion matrix showing 514 

the observed behaviours and predicted behaviours (in seconds) when using a random forest model built 515 

using pygmy goat training dataset and tested on the Alpine ibex training data set. Table S8: Confusion 516 

matrix showing the observed behaviours and predicted behaviours, including the gradient of terrain for 517 

locomotion behaviours, when training the random forest model built using the pygmy goat training 518 

dataset. Table S9: Confusion matrix showing the observed behaviours and predicted behaviours, 519 

including the gradient of terrain for locomotion behaviours, when using a random forest model built 520 

using pygmy goat training dataset and tested on the Alpine ibex training data set. 521 
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Table 1: Ethogram of recorded behaviours, including descriptions, for both Alpine ibex and pygmy goats, including the total time, mean time and standard deviation 

(SD) in seconds observed for each species. Locomotion behaviours were subdivided depending on the slope of terrain. Alpine ibex were not recorded browsing as all 

their food available was on the floor e.g. grass, hay or pellets. Pygmy goats were not observed climbing due to the lack of a climbing aspect in their enclosures. 

Behaviour Description 
Alpine ibex Pygmy goat 

Total time (s) Mean time (s) SD (s) Total time (s) Mean time 
(s) 

SD (s) 

Standing Stationary in an upright position 8714.1 1452.4 788.9 8665.3 962.8 315.9 

Resting Stationary in a laying down position 6165.9 1027.6 648.9 7863.6 982.9 1015.3 

Eating Grazing or consuming food from the 
floor 8104.7 1350.8 640.7 13295.9 1477.3 756.4 

Browsing Consuming food and reaching on hind 
legs - - - 1953.5 217.2 412.3 

Aggression Aggression to or from another 
individual  590.7 98.5 91.1 296.9 33.0 19.9 

Grooming Scratching own body or against another 
object 242.7 40.4 43.4 428.5 53.6 61.9 

Shaking Moving body vigorously to shake 164.0 27.3 16.4 57.8 6.4 5.3 

Walking (Flat, 
Uphill, Downhill) Locomotion in a slow four beat gait 6027.7 (4704.2, 

668.4, 655.2) 
1004.6 (784.0, 
111.4, 109.2) 

118.3 (126.9, 
49.5, 48.9) 

5952.8 (4544.3, 
649.0, 759.6) 

661.4 (504.9, 
81.1, 94.9) 

216.1 (158.5, 
41.2, 57.0) 

Trotting (Flat, 
Uphill, Downhill) Locomotion in a two beat gait  327.1 (264.9, 

20.7, 41.4) 
54.5 (44.2, 
6.9, 13.8) 

41.5 (28.9, 
8.0, 10.6) 

530.1 (433.9, 
28.2, 68.1) 

58.9 (54.2, 
7.0, 13.6) 

45.0 (32.2, 
3.8, 15.5) 

Running (Flat, 
Uphill, Downhill) Locomotion in a canter or gallop gait 332.9 (259.2, 

34.0, 39.7) 
55.5 (43.2, 
6.8, 13.2) 

41.1 (38.1, 
38.1, 10.7) 

254.8 (240.9, 
9.2, 4.7) 

28.3 (26.8, 
3.1, 2.4) 

16.8 (14.8, 
1.5, 1.5) 

Climbing (Uphill, 
Downhill) 

Travelling on a steep slope with 
obstacles and steps including jumping 
up or down steps. 

338.4 (160.0, 
178.4) 

28.2 (26.7, 
29.7) 

22.55 (21.0, 
24.1) - - - 
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