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Abstract
The classical fold bifurcation is a paradigmatic example of a critical transition.
It has been used in a variety of contexts, including in particular ecology and
climate science, to motivate the role of slow recovery rates and increased auto-
correlations as early-warning signals of such transitions. We study the influence
of external forcing on fold bifurcations and the respective early-warning signals.
Thereby, our prime examples are single-species population dynamical models
with Allee effect under the influence of either quasiperiodic forcing or bounded
random noise. We show that the presence of these external factors may lead
to so-called non-smooth fold bifurcations, and thereby has a significant impact
on the behaviour of the Lyapunov exponents (and hence the recovery rates). In
particular, it may lead to the absence of critical slowing down prior to popula-
tion collapse. More precisely, unlike in the unforced case, the question whether
slow recovery rates can be observed or detected prior to the transition crucially
depends on the chosen time-scales and the size of the considered data set.

Keywords: non-autonomous bifurcation theory, strange non-chaotic attractors,
non-smooth bifurcations, Allee effect, finite-time Lyapunov exponents

Mathematics Subject Classification numbers: 92D25, 37C60, 34C23.

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.
Recommended by Dr Hinke M Osinga.

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6544/22/126485+43$33.00 © 2022 IOP Publishing Ltd & London Mathematical Society Printed in the UK 6485

https://doi.org/10.1088/1361-6544/ac98ee
https://orcid.org/0000-0002-0634-0802
https://orcid.org/0000-0001-8457-8392
mailto:flavia.remo@uni-jena.de
mailto:gabriel.fuhrmann@durham.ac.uk
mailto:tobias.jaeger@uni-jena.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/ac98ee&domain=pdf&date_stamp=2022-11-7
https://creativecommons.org/licenses/by/3.0/


Nonlinearity 35 (2022) 6485 F Remo et al

Contents

1. Introduction and overview 6486
1.1. Background and motivation 6487

1.2. The forced Allee model 6488
1.3. The main observation: appearance of a Lyapunov gap 6489
1.4. Mathematical setting and existing results on skew product flows and

non-smooth fold bifurcations 6493
1.4.1. Skew product flows 6493
1.4.2. Non-smooth fold bifurcations 6494

1.5. Presentation and discussion of the main results 6495
1.5.1. Lyapunov gap in non-smooth fold bifurcations 6495
1.5.2. Critical slowing down and finite-time Lyapunov exponents 6496
1.5.3. Numerical analysis 6498
1.5.4. Further remarks 6500
1.5.5. Structure of the article 6501

2. Preliminaries 6501

2.1. Skew product flows and invariant graphs 6501

2.2. Fold bifurcation scenario 6504

2.3. Forcing processes 6506

2.4. Application to the forced Allee model 6507

2.5. A simplified discrete-time model 6509

3. Abundance of nonsmooth fold bifurcations 6513

3.1. Quasiperiodic forcing 6513

3.2. Random forcing 6515

4. Lyapunov exponents in nonsmooth fold bifurcations 6518

4.1. Lyapunov gap in nonsmooth fold bifurcations 6518

4.2. Slope at the bifurcation point 6519

5. Range of finite-time Lyapunov exponents 6523

Acknowledgments 6525

References 6525

1. Introduction and overview

In recent years, the notions of tipping points and critical transitions have received widespread
attention throughout a broad scope of sciences. These terms usually refer to abrupt and dras-
tic changes in a system’s behaviour upon a small and slow variation of the system parameters
[vNS12, Sch09, K11, SCL+12]. In this context, an important issue of immediate practical inter-
est is that of early warning signals, that is, indicators which allow to anticipate an oncoming
transition in a systems qualitative behaviour before it actually occurs.

Our aim here is to perform a mathematically rigorous case study of one paradigmatic
example of a critical transition—namely the classical fold bifurcation—concerning its
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behaviour under the influence of external forcing by quasiperiodic or random processes. It
turns out that such external factors can have a significant impact on possible early warning
signals. In order to demonstrate our findings and to compare them with numerical results, we
focus on the well-known Allee model from population dynamics.

Naturally, a topic of such general interest and possible practical applications like that of
critical transitions can be studied by a variety of different and inter-disciplinary approaches.
Consequently, a wide range of experts, including physicists, biologists, ecologists, climate sci-
entists and many others have made important contributions to the area. For mathematicians,
such as the authors of this article, this poses the particular challenge of presenting results in a
way that is accessible to a wide audience without losing the mathematical precision. In order
to find a hopefully good balance between these two objectives, we will use this introductory
chapter to first give a complete overview of the article, which includes not only the background
and motivation of the main model and key concepts, but also a brief introduction of the math-
ematical setting we use and a discussion of the main results. The mathematical details and the
rigorous proofs of these results are then provided in the later chapters. A short outline of the
overall structure of the article is given at the end of this introduction.

1.1. Background and motivation

A concept that has led to widely recognised advances concerning early warning signals of crit-
ical transitions are slow recovery rates (also referred to as critical slowing down), which often
come along with an increase in autocorrelation [vNS12, SBB+09, Sch09, SCL+12, VFD+12].
Both have been described as possible early warning signals in a variety of contexts, in theo-
retical as well as in experimental settings [DSvN+08, CCP+11, GJT13, vLWC+14, KGB+14,
RDB+16].

Roughly speaking, the recovery rate of a system ‘in equilibrium’ is the speed with which
it returns to this equilibrium after a perturbation. Slow recovery rates or critical slowing down
then refers to the fact that these recovery rates are equal or converge to zero, which may hap-
pen for instance during a critical transition. Autocorrelation is a term that is usually defined in
the context of stationary stochastic processes and time series analysis and refers to the corre-
lation between a time-dependent observable Xt at time t and a lagged version Xt−k. It should
be emphasized, however, that in the context critical transitions all these notions (including the
term ‘critical transition’ itself ) are usually used in a non-mathematical sense and do not have
a precise mathematical definition.3 The reason for this is the fact that on the one hand all these
terms may refer to a variety of different phenomena or situations, and on the other hand even
the same phenomenon or real-world process may be modeled by very different mathemati-
cal methods, ranging from autonomous and non-autonomous dynamical systems to random or
stochastic differential equations, compartmental models and others. This makes it difficult to
provide a common mathematical framework and precise and comprehensive definitions of the
above notions—an issue which is well-known in non-linear dynamics and comes up in simi-
lar form for key concepts like ‘chaos’, ‘fractals’ or ‘strange attractors’ in dynamical systems
theory. However, since we restrict ourselves to the study of one particular model and in this
specific context recovery rates—on which our focus will lie—can be captured by the mathe-
matical concept of (asymptotic or finite-time) Lyapunov exponents, we will not be concerned
with this problem.

3 This even refers to ‘autocorrelation’ whenever this notion used in a non-stationary context, where the extension of
the definition for stationary processes is difficult.
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Figure 1. (a) Bifurcation diagram of a fold bifurcation in the Allee model (1) with param-
eters r = 80, K = 10, S = 0.1 and a bifurcation at a critical parameter βc � 19.978. The
stable non-zero equilibrium is shown in blue, the unstable equilibrium in red. The stable
equilibrium at x = 0 is shown in green. (b) Behaviour of the Lyapunov exponents of the
upper stable and the unstable equilibrium during the fold bifurcation. Note that in this
situation, the Lyapunov exponents coincide with the value of the derivative v′β of the
right-hand side of (1) at the respective equilibria.

1.2. The forced Allee model

The situation we will concentrate on is the classical fold bifurcation, which comprises key fea-
tures of critical transitions and has emerged as a paradigmatic example in this context [Sch09].
As it is well-known, in this type of bifurcation a stable and an unstable equilibrium point of a
parameter-dependent scalar ODE approach each other and eventually merge to form a single
neutral equilibrium point, which then vanishes. Since this leads to the disappearance of all equi-
libria in a certain region, it presents the abrupt change in the system’s qualitative behaviour that
is characteristic of critical transitions. In order to fix ideas, we consider as a specific example
the single-species population model with Allee effect given by the scalar ODE

x′ = rx ·
(

1 − x
K

)
·
(

x
K

− S
K

)
− βx

=
r

K2
· x · (K − x) · (x − S) − βx =: vβ(x)

(1)

Here r > 0 denotes the intrinsic growth factor of the population, K > 0 is the carrying capacity
and S ∈ (0, K) is the threshold value below which the population dies out due to an Allee effect.
The term βx represents an external stress factor that puts additional pressure on the popula-
tion. An increase of the parameter β leads to a fold bifurcation and the subsequent collapse of
the population at some critical value βc > 0.4 The bifurcation pattern is drawn in figure 1(a),
whereas figure 1(b) shows the behaviour of the Lyapunov exponents of the attracting and
repelling equilibria during the bifurcation.

In this setting, one obvious possible mathematical interpretation of recovery rates is to iden-
tify them with the Lyapunov exponents of the stable or neutral equilibria, so that slow recovery

4 In fact, a straightforward calculation yields βc =
(K−S)2 ·r

4K2 .
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rates and critical slowing down correspond exactly to the fact that the Lyapunov exponents in
figure 1(b) (and in particular the one at the stable equilibrium) go to zero as the bifurcation
parameter is approached.

Our main goal is to investigate fold bifurcations in forced versions of the autonomous Allee
model (1), which are given by a non-autonomous scalar ODE of the form

x′(t) =
r

K2
· x(t) · (K − x(t)) · (x(t) − S) − (β + κ · F(t)) · x (2)

Here, time-dependence (or external forcing) of the system (2) is introduced via a forcing term
κ · F(t), with coupling constant κ > 0 and a forcing function F : R→ [0, 1]. We consider two
different types of forcing processes.

Quasiperiodic forcing: this kind of forcing corresponds to the influence of several periodic
external factors with incommensurate frequencies ρ1, . . . , ρd ∈ R. As a specific example, we
choose the forcing function as

F(t) =
d∏

i=1

(
1 + sin(2π(θi + t · ρi))

2

)q

, (3)

with arbitrary initial conditions θ1, . . . , θd ∈ R. Let us note here that due to the periodicity of the
sine function, these initial values may also be viewed as elements of the circle T1 = R/(2πZ)
so that θ = (θ1, . . . , θd) becomes an element of the d-torus Td = R

d/(2πZ)d. The parameter
q ∈ N allows some additional control of the geometry of the forcing function.

Bounded random noise: secondly, we consider the effect of external random perturbations
on the system, given by the forcing function

F(t) =
1 + sin(θ0 + Wt)

2
, (4)

where θ0 ∈ T
1 is again an arbitrary initial condition and Wt denotes a one-dimensional Brow-

nian motion (but higher-dimensional analogues could be considered as well).
We thus arrive at the forced scalar differential equation (2), with the forcing function F

given either by (3) or (4), as basic models on which we put our main focus throughout this
introduction. Thereby, we will refer to the equation (2) with forcing term given by (3) as the
quasiperiodically forced (qpf) Allee model, and to (2) with forcing term (4) as the randomly
forced (rdf) Allee model. Most of the statements we actually prove in the later sections hold in
greater generality, both with respect to the model (2) and to the employed forcing processes (3)
and (4). In some other cases, we will need to replace the Allee model by discrete time systems
with qualitatively similar behaviour in order to obtain rigorous results. These systems should
then be considered as simplified models for the time-one-maps or Poincaré return maps of the
flow induced by (2). However, we refer to the respective later sections for details in order to
avoid too many technicalities at this point.

1.3. The main observation: appearance of a Lyapunov gap

In order to discuss what happens with the fold bifurcation pattern and the corresponding early-
warning signals in the forced Allee model (2), we will first concentrate on the behaviour of the
Lyapunov exponents. Figure 2 shows the behaviour of the Lyapunov exponents of the attractor
and the repeller of (2) throughout the bifurcation, with two different choices of the parameters
κ and q in the case of quasiperiodic forcing in (a) and (b) and different parameters κ in the
random case in (c) and (d).
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Figure 2. (a) and (b) Lyapunov exponents during fold bifurcations in the qpf
Allee model (2) with forcing term (3); (a) smooth bifurcation with r = 80, K = 10,
S = 0.1, q = 1, ν = (2ω, 2π) (where ω is the golden mean) and κ = 4 (bifurcation
at βc � 18.4269); (b) non-smooth bifurcation with r = 80, K = 10, S = 0.1, q = 5,
ν = (2ω, 2π) and κ = 51.2. The bifurcation occurs at βc � 9.628. (c) and (d) Lyapunov
exponents during the fold bifurcation in the rdf Allee model (2) with forcing term (4); (c)
with r = 80, K = 10, S = 0.1, κ = 2 and bifurcation parameter βc = 17.978; (d) with
r = 80, K = 10, S = 0.1,κ = 6 and bifurcation parameter βc = 13.978.

While the behaviour in (a) is in analogy to the unforced case in figure 1(b), the situation in
(b)–(d) is clearly different. Although the Lyapunov exponents of the attractor and the repeller
do approach each other, there remains a clear gap at the bifurcation point, and in particular
the Lyapunov exponents of the attractor (which are the ‘visible’ or ‘physically relevant’ ones)
stay strictly away from zero. Given the significance of zero exponents for the observation of
critical slowing down and slow recovery rates, this is certainly noteworthy and deserves a
closer examination. Moreover, while in figures 2(b)–(d) the Lyapunov exponents do at least
move towards each other as the bifurcation is approached, this actually turns out to depend
just on the precise form of the parameter family. In all cases shown in figure 2, we have only
varied the bifurcation parameter β, while leaving all other constants invariant. In contrast to
this, it seems likely that in real-world situations other system parameters, such as the intrinsic
growth rate r in (2) or the noise amplitude in (4), vary as well as the pressure on the population
increases. The result of such couplings is shown in figure 3. It can be seen that in this case the
Lyapunov exponents may move away from each other all throughout the bifurcation process,
and hence there is no chance at all to anticipate the oncoming transition based only on their
behaviour.
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Figure 3. Lyapunov exponents during fold bifurcations in the forced Allee model with
different variations of parameters. (a) Shows the behaviour in the qpf case as the param-
eter r is decreased, corresponding to the horizontal green line in the two-parameter space
depicted in (c). In contrast, (b) shows the behaviour when β and r are varied simulta-
neously along the black curve in (c). In this case, the Lyapunov exponents move apart
throughout the entire bifurcation process. In (d) and (e), similar plots are shown for the
rdf case. In (d), again only the parameter r is varied and decreases along the horizon-
tal green line in (f). In (e), both parameters β and r are again varied at the same time,
along the black curve in (f). In both (c) and (f), the red line is an interpolation of the
numerically determined critical parameters for different values of β and r. The vertical
blue line in (c) and (f) just connects the intersection point of the black parameter curve
and the red curve of bifurcations parameters with the horizontal axis, showing that the
intersection takes place exactly at r = 80.
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Figure 4. (a)–(d) Smooth fold bifurcation in the qpf Allee model with parameters r =
35, K = 10, S = 0.1, q = 3 and κ = 41 and β = 2 in (a), β = 7.8 in (b) and β = 7.8455
in (c) and (d). The attractor is shown in blue, the repeller in red. The last two figures show
the merged attractor and repeller at the bifurcation point from two different angles. The
rotation vector ρ is ρ = (5ω, 5π) in all cases, where ω is the irrational part of the golden
mean. (e)–(h) Non-smooth fold bifurcation in the qpf Allee model with parameters
r = 80, K = 10, S = 0.1, q = 5 and κ = 51.2 and β = 2 in (e), β = 9 in (f) and
β = 9.6282 in (g) and (h). Again the last two figures show the attractor (blue) and the
repeller (red) at the bifurcation point from two different angles. The rotation vector ρ is
ρ = (2ω, 2π).
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Remark 1.1. We should note that the phenomena that we describe here are known by folklore
in the field of stochastic processes and stochastic differential equations, where the presence of
noise equally prevents the recovery rates from going down all the way to zero before a transition
happens. However, in this context it is much harder to pin this observation down mathemati-
cally, since the presence of unbounded noise immediately ‘destroys’ the fold bifurcation and
leads to the existence of a unique stationary measure in stochastic versions of (2) and similar
models. Moreover, the forcing with bounded noise is arguably quite relevant and intrinsically
motivated from the biological and population dynamical viewpoint, since reproduction rates
are certainly bounded.

1.4. Mathematical setting and existing results on skew product flows and non-smooth fold
bifurcations

1.4.1. Skew product flows. In order to understand and explain these phenomena, it is indis-
pensable to have a look at the mathematical framework that we will use to describe fold
bifurcations in forced systems. To that end, we first concentrate on the case of quasiperi-
odic forcing. The rigorous analysis of non-autonomous ODE’s, such as the one given by (2)
and (3), hinges on the fact that the family of equation (2), with all possible initial conditions
θ = (θ1, . . . , θd) ∈ T

d, defines a skew product flow

Ξ : R×Θ× R→Θ× R, (t, θ, x) �→ Ξt(θ, x) = (ωt(θ), ξt(θ, x)). (5)

Here, the driving space Θ is the d-torus Θ = T
d = R

d/Zd (corresponding to the set of possi-
ble initial conditions). The driving flow ω : R×Θ→Θ is given by the irrational Kronecker
flow ωt(θ) = θ + t · ρ with translation vector5 ρ = (ρ1, . . . , νd), and models the quasiperiodic
dynamics of the external driving factors. The flow Ξ is uniquely determined by the fact that
the mapping t �→ ξt(θ, x) is the solution to (2) with forcing function (3). A similar flow rep-
resentation can be given in the case of random forcing. We will describe this passage from
non-autonomous equations to skew product flows in more detail in section 2.1, but also refer
the mathematically interested reader to standard references such as [Arn98, HY09] for further
reading.

Remark 1.2. We note that the solutions of (2), with forcing terms (3) or (4), are always
defined for all t � 0. The reason for this is the fact that the right side of the differential
equation (2) is cubic in x, with negative leading term −(r/K2) · x3 and the dependence on
t, given by −κF(t) · x, is uniformly bounded since 0 � F(t) � 1. For this reason, all solutions
x(t) eventually enter and remain in a compact interval A ⊆ R. This prevents solutions from
escaping to infinity and ensures their existence for all t ∈ R

+.
For negative times t < 0, this is different. In fact, any solution starting far enough from the

origin (|x0| large) will escape to ±∞ in finite negative time, since for t →−∞ such solutions

will behave qualitatively like the solutions y(t) = 1/
√

2t + y−2
0 of y′ = −y3.

However, as it will turn out in the course of our analysis, for the description of non-smooth
fold bifurcations in models like (2) it suffices to consider those solutions which are globally
defined and remain bounded in the interval [0, K] at all times. The reason is the fact that this
is where the bifurcating objects—which are invariant graphs or random fixed points/equilibria

5 Composed of the d incommensurate frequencies ρi in (3).
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defined below (see also section 2.1)—are located and the actual bifurcations take place. There-
fore, one could modify the right side of (2) on R× (R\[0, K]) in such a way that this function
becomes uniformly bounded, and thus induces a flow with globally defined solutions. This will
not affect any solutions starting on the invariant graphs/random equilibria, since such solutions
remain bounded for all times, and thus has no effect on the bifurcation.

Hence, for the sake of simplicity and an easier notation, we will in general assume that skew
product flows of the form (5) are well-defined on all of R×Θ× R.

The advantage of the skew product setting lies in the fact that the classical notion of equi-
librium points—which does not make sense anymore for time-dependent systems such as
(2)—can be replaced by that of random or non-autonomous equilibria. These are defined
as measurable functions x : Θ→ R, θ �→ x(θ) that satisfy Ξt(θ, x(θ)) = x(ωt(θ)). Hence, a
non-autonomous equilibrium can be thought of as a curve, surface or higher-dimensional sub-
manifold of the product space Θ× R that can be represented as a graph over the base space
Θ, is invariant under the skew product flow Ξ and is composed of solutions of (2) with varying
initial conditions. With this new notion of an equilibrium, fold bifurcations in forced systems
can be described, in analogy to the classical case, as the collision and subsequent extinction of
a stable and an unstable equilibrium [NO07, AJ02]. This process is shown in figures 4(a)–(d)
where two such equilibrium manifolds approach each other and then merge to form a neutral
equilibrium.

1.4.2. Non-smooth fold bifurcations. In contrast to the unforced case, however, there is a
second possibility how such a collision can occur. As the value of the non-autonomous
equilibria depend on the forcing variable θ, the two curves or surfaces can also collide
only for some values of θ, without merging together uniformly. This pattern is shown in
figures 4(e)–(h). In this case, one speaks of a non-smooth fold bifurcation, in which the
neutral equilibrium at the bifurcation point is replaced by an attractor-repeller pair (where
the attractor is characterised by a negative and the repeller by a positive Lyapunov expo-
nent). Moreover, in the case of quasiperiodic forcing the stable and unstable non-autonomous
equilibria are called strange non-chaotic attractors (SNA) and strange non-chaotic repellers
(SNR) due to their unusual combination of a fractal geometry and non-chaotic dynamics
[GOPY84, Bje05, FKP06, HP06, Jäg09, Fuh16a, FGJ18]. For a precise mathematical
definition of these notions, we refer to section 2.2 (in particular theorem 2.2). It is this
dichotomy between smooth and non-smooth fold bifurcations which causes the different
behaviour of the Lyapunov exponents observed in figure 2.

Before we make this precise, in theorem 1 below, it seems fit to comment on the relevance of
non-smooth bifurcations. An immediate question that can be asked is whether this alternative
form of the fold bifurcation in forced systems present a very common phenomenon, or if it
is rather ‘pathological’ and may not play an important role for the description of real-world
processes. However, in the case of quasiperiodic forcing, the wide-spread occurrence of non-
smooth bifurcations and the related existence of SNA has been observed in a large number of
numerical and experimental studies and in a variety of different contexts, ranging from classical
and electronic oscillators to quantum mechanics, conceptual climate models and astrophysics
(e.g. [RBO+87, DRC+89, WFP97, VLPR00, HP06, MCA15, RRM15, Zha13, LKK+15]).
In addition, the simulations in figures 2(b) and 4(e)–(h) provide similar numerical evidence
for the existence of nonsmooth bifurcations in the qpf Allee model (2) and (3). These findings
are backed up by rigorous results in [Fuh16a, FGJ18, Fuh16b], showing that non-smooth fold
bifurcations occur for open sets of parameter families of qpf scalar ODE’s. They can therefore
be robust and persistent under small perturbations of the system. In the light of these results, one
may say that fold bifurcations in qpf models may be either smooth or non-smooth, depending
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on the precise form of the model and the shape and strength of the forcing, and both of the
cases are sufficiently widespread and persistent to be relevant in practical considerations and
applications. As for the case of random forcing, according to our knowledge the phenomenon
of non-smooth bifurcations has not been studied previously. However, at least in the specific
situation of the rdf Allee model given by (2) and (4), theorem 2 below demonstrates as well
that the non-smooth case is far from exceptional.

In the existing literature, non-smooth fold and saddle-node bifurcation have mainly been
discussed in the context of strange non-chaotic attractors, since they present one of the main
mechanisms for the creation of these objects. There exists a vast amount of numerical stud-
ies on this topic, which has attracted considerable attention in computational and theoretical
physics since the early 1990’s, in the physics literature. We refrain from going into detail and
refer to the monograph [FKP06] for an overview and further references. The mathematical
literature on the subject is far more restricted. The first rigorous proof for the occurrence of non-
smooth saddle-node bifurcations has been given in [Her83] for a particular discrete-time model
that is related to one-dimensional Schrödinger operators with quasiperiodic potential. A more
detailed study of these models under more general assumptions has been performed later in
[Bje05, Bje05b, Bje07], whereas results on some new model classes, but under somewhat
restrictive conditions, have been established in [Jäg09]. The combination of these methods then
allowed to extend these proofs to more general classes of qpf systems in the above-mentioned
work [Fuh16a, FGJ18, Fuh16b]. Apart from that, a general setting for fold bifurcations has
been provided in [NO07] for minimally forced systems and in [AJ02] for more general classes
of forcing processes.

1.5. Presentation and discussion of the main results

1.5.1. Lyapunov gap in non-smooth fold bifurcations. In order to give a precise description of
the connection between non-smooth fold bifurcations and the Lyapunov gap, we denote by
xs
β the non-zero stable equilibrium of (2) at parameter β,6 and by λ(xs

β) its associated Lya-
punov exponent. We refer again to section 2 for the precise definitions. In order to obtain
rigorous results, we will need to apply a general framework for non-autonomous fold and
saddle-node bifurcations that has been established in [AJ02] and will be discussed in detail
in section 2.2. For the moment, we only need to mention that an important condition for the
application of these results is the concavity of the fibre maps in the region where the bifurcation
takes place. This is, in turn, a consequence of the concavity of the right side of the respective
non-autonomous ODE. In order to ensure this concavity in (2), we need to restrict to suitable
parameter ranges, as specified in the following.

Remark 1.3. We let

b(r, K, S) =
r

K2
·
(

K − S
2

)2

and γ(K, S) =
1
9
·
(

K + S
K − S

)2

(6)

and assume that

κ < b(r, K, S) · (1 − γ(K, S)). (7)

6 Note that there is always an equilibrium at zero, which is a natural requirement for any population dynamical model
and ensured by the multiplicative form of the forcing in (2). Due to the Allee effect, the zero equilibrium is stable as
well and presents the unique global attractor of the system after the bifurcation.
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Then, as we explain in detail in section 2.4, the family (2) with forcing term (3) or (4) undergoes
a fold bifurcation in the parameter interval

J(r, K, S) = [b(r, K, S) · (1 − γ(K, S)), b(r, K, S)+ 1]. (8)

It should be mentioned, however, that this restriction in the parameter ranges is rather a techni-
cal condition and could easily be improved, in particular by using numerical methods, in order
to include a broader range of parameters. The crucial condition is that the time-t-maps of skew
product flows induced by (2) are concave for some t > 0. Hence, even if not all of our exam-
ples satisfy condition (7), it seems more reasonable to rely on the numerical evidence for the
occurrence of fold bifurcations in these cases than to resort to highly technical proofs that do
not add further insight. However, all the rigorous statements provided below will be restricted
to the parameter range J(r, K, S).

Theorem 1. Suppose that (7) holds. If the Allee model (2) with forcing term given by (3) or
(4) undergoes a non-smooth fold bifurcation at the critical parameter βc ∈ J(r, K, S), then we
have that

lim
β↗βc

λ(xs
β) = λ(xs

βc
) < 0. (9)

If the fold bifurcation is smooth, then we have limβ↗βc λ(xs
β) = 0. The analogous results hold

for the unstable equilibrium xu
β .

We prove a more general version of this result, namely theorem 4.1, in section 4.1.
As we have discussed in the previous subsection, whether or not a fold bifurcation in a qpf

system is smooth or non-smooth depends on the precise system parameters, and the numerical
evidence presented in figures 2 and 4 suggests that both pattern occur for the qpf Allee model.
In contrast to this, the following result states that in the case of the rdf Allee model with forcing
term (4) only non-smooth bifurcations occur.

Theorem 2. Suppose that (7) holds. Then any fold bifurcation that occurs in the forced Allee
model (2) with random forcing term (4) at a critical parameter βc ∈ J(r, K, S) is non-smooth.

This statement is a direct consequence of the more general theorem 3.4, which is stated and
proven in section 3.2.

1.5.2. Critical slowing down and finite-time Lyapunov exponents. The interpretation of the
Lyapunov gap in a non-smooth fold bifurcation depends on the precise meaning given to the
notion of recovery rates. If these are identified with the Lyapunov exponents, then it follows
that, unlike in classical fold bifurcations, there are no slow recovery rates in non-smooth fold
bifurcations. However, it would also seems reasonable to say that the intuitive meaning of
recovery rates, as used in experimental studies like [SBB+09], is better captured by the mathe-
matical notion of finite time Lyapunov exponents. Instead of measuring the asymptotic stability
of an orbit, these only take into account the expansion or contraction around an orbit over some
finite time span. Given T > 0, we denote the Lyapunov exponent at time T of the flow generated
by (2) and starting at an initial condition (θ, x) ∈ Θ× R by λT(θ, x).

In a smooth fold bifurcation, it is known that all finite time Lyapunov exponents in the
basin of attraction of the stable equilibrium xs

β will be very close to λ(xs
β), provided the time

T is sufficiently large [SS00]. In contrast to this, the non-smooth case shows a characteristic
spreading of these quantities, which can be observed in figure 5.
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Figure 5. The above plots (a)–(f) show the behaviour of the finite-time Lyapunov expo-
nents during fold bifurcations in the forced Allee model. The middle curve is always
the time 2000 Lyapunov exponent (as an approximation of the asymptotic Lyapunov
exponent), whereas the upper and the lower curves correspond to the maximal and min-
imal time 4/3 Lyapunov exponents, respectively. (a) Shows the case of a smooth fold
bifurcation in the qpf Allee model with parameter values r = 80, K = 10, S = 0.1, κ = 4
and q = 1. (b) Shows the case of a nonsmooth fold bifurcation in the same model with
r = 80, K = 10, S = 0.1,κ = 51.2 and q = 5. (c) Shows a quasiperiodic case again, but
this time with the simultaneous variation of parameters depicted in the black line, as in
figure 3(c). (d) and (e) Show the case of a non-smooth fold bifurcation in the randomly
forced Allee model with parameters r = 80, K = 10, S = 0.1 and κ = 2 and κ = 6,
respectively. Finally, (f) shows the random case simultaneous variation of parameters
as in figure 3(f).
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In order to translate this observation into a rigorous statement, we denote the largest time T
Lyapunov exponents that is ‘observable’ on the attractor xs

β by λmax
t (xs

β), the minimal one by
λmin(xs

β). (We refer to section 5 for the precise definition.) The behaviour differs according to
whether the forcing is quasiperiodic or random.

Theorem 3. Suppose that (7) holds. If the forced Allee model (2) with quasiperiodic forcing
term (3) undergoes a non-smooth fold bifurcation at some critical parameter βc ∈ J(r, K, S),
then we have that for any T > 0

lim
β↗βc

λmax
T (xs

β) � λ(xu
βc

) > 0, (10)

lim
β↗βc

λmin
T (xu

β) � λ(xs
βc

) < 0. (11)

In the case of random forcing (4), we have that for any T � 0

lim
β↗βc

λmax
T (xs

β) � 0. (12)

This result is a direct consequence of theorem 5.1 (for the qpf case) and theorem 5.3 (for
the rdf case), which are stated and proven in section 5.

Both the statement and the numerical results imply that at least in theory non-smooth fold
bifurcations can be anticipated and detected beforehand via a spread in the distribution of
finite-time Lyapunov exponents, which reaches into the positive region. However, at the same
time this highlights a variety of practical problems that may arise when trying to establish
early-warning signals for forced systems on the basis of recovery rates. Unlike for Lyapunov
exponents, which are asymptotic quantities and usually show a very uniform behaviour, the use
of finite-time Lyapunov exponents requires to make a number of choices. First of all, there is
the question of the time-scale (the choice of T) for which these quantities should be measured.
When T is too small, it is likely that positive finite-time exponents will be observed already far
from any bifurcation (depending on the geometry of the system). Conversely, if T is chosen
too large, positive finite-time exponents may exist, but may only be observed with very small
probabilities (thus requiring many measurements for a reliable signal). In any case, even with
the right choice of the time-scale and sufficient data, examples as the one shown in figure 5(c)
will remain difficult to treat.

Finally, at the critical parameter, we take a brief look at the distribution of finite-time Lya-
punov exponents on different timescales, which are shown in figure 6 (for the qpf case; for
results in the random case, see figure 8). The probability of observing exponents above or
close to zero is plotted in figure 7(a) and decreases quickly (see figure 9 for the respective plots
in the random case). Our simulations are somewhat inconclusive concerning the rate of decay,
which seems to be somewhere between polynomial and exponential. However, exponential
decay is confirmed rigorously in [FJR22] for so-called pinched skew products, which are in
many aspects very similar to the systems we study here.

1.5.3. Numerical analysis. We throughout illustrate the findings of this article with numerical
experiments. The numerical analysis of the studied systems is greatly simplified by the fact
that equilibria with negative Lyapunov exponents are attracting in forward time (hence the
name attractor), while an equilibrium with positive Lyapunov exponent (a so-called repeller)
is attracting in backward time, see also section 2. Accordingly, to study a certain property of

6498



Nonlinearity 35 (2022) 6485 F Remo et al

Figure 6. Distributions of the finite-time Lyapunov exponents in the qpf Allee model
(2) with parameters r = 80, K = 10, S = 0.1, κ = 51.2 and β = 9.629 on different
timescales, computed with sliding windows over a trajectory of length t = 20 000.

Figure 7. A plot of the relative frequency of positive exponents (as observed in figure 6)
on (a) standard, (b) logarithmic and (c) log–log-scale.

typical points on the attractor (repeller),7 one can pick almost any point (θ0, x0) and iterate it
forwards (backwards) until—after some transition time—its trajectory follows the attractor so
that with almost certainty, its further evolution reflects the behaviour of typical points.8 Note
that if we denote the right-hand side of (2) by w(t, x), then evolving this equation backwards
over an interval [0, T] in time amounts to substituting w(t, x) by −w(T − t, x) and is therefore
straightforward.

Hence, to numerically approximate, for example, the Lyapunov exponent of the attractor,
we simply have to compute the pointwise Lyapunov exponent along a sufficiently long forward
trajectory (after discarding its transient initial part), see (19) for the definition of the pointwise

7 Typical with respect to natural ergodic measures on the respective equilibria, see section 2.
8 In fact, a little more care is needed. When studying points on the attractor, one has to choose x0 above the repeller
to ensure that Ξt(θ0, x0) does not approach the equilibrium at x = 0. This is achieved by choosing x0 above the
autonomous equilibrium. Similarly, when iterating (θ0, x0) backwards to approximate the repeller, one has to ensure
that x0 is between both attractors. This is achieved by picking x0 close to 0 but positive.
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Figure 8. Distributions of the finite-time Lyapunov exponents in the randomly forced
Allee model (2) with parameters r = 80, K = 10, S = 0.1, κ = 6 and β = 13.978 on dif-
ferent timescales, computed with sliding windows over a trajectory of length t = 20 000.

Figure 9. A plot of the relative frequency of positive exponents (as observed in figure 8)
on (a) standard, (b) logarithmic and (c) log–log-scale.

Lyapunov exponent. By subdividing this long trajectory into multiple segments of a fixed time-
length T, we can further compute multiple finite time Lyapunov exponentsλT. We refer to such
obtained values of λT as finite time Lyapunov exponents computed with a sliding window (of
size T) over the respective trajectory. Note again that if the underlying trajectory is long enough,
this collection of finite time Lyapunov exponents almost surely reflects the actual statistics of
the finite time Lyapunov exponents on the attractor.

1.5.4. Further remarks. It should be pointed out that although finite-time Lyapunov exponents
are—by definition—observable in finite time and may therefore in principle be accessible to
experimental measurements, it is a difficult task to achieve and implement this for any real-life
system. At the same time, a meaningful and practical definition of autocorrelation is difficult
to provide for forced systems with moving random equilibria. Hence, the practical implemen-
tation of early-warning signals for critical transitions in forced systems remains a wide open
problem, even in the simplest case of fold bifurcations.

On the theoretical side, an imminent problem that we tried to highlight by the above dis-
cussion is to give a precise mathematical meaning to terms like recovery rates, critical slowing
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down as early warning signals and other notions that come up in the context of critical transi-
tions. If theory and applications are supposed to go hand in hand, this will be an indispensable
basis for further progress. The results and findings presented here should be understood as a
contribution to that discussion.

1.5.5. Structure of the article. In section 2, we collect the required preliminary facts concern-
ing the mathematical theory of non-autonomous dynamics and skew product systems, with a
particular emphasis on invariant graphs and fold bifurcations in this setting. The application
to the forced Allee model (2) is discussed in section 2.4. In section 2.5, we also introduce
some discrete-time skew product systems, which may be thought of as simplified models for
the time-one maps of the skew product flow induced by the forced Allee model. Section 3 is
then devoted to the discussion of non-smooth fold bifurcation and also contains the proof of
(a more general version of) theorem 2. The existence of the Lyapunov gap, stated in theorem
1, is proven in section 4, which also contains a result on the slope of the Lyapunov exponents
at the bifurcation point (in the setting of the discrete-time model from section 2.5). Finite-time
Lyapunov exponents are then defined and discussed in section 5, including the proof of (a more
general version of) theorem 3.

2. Preliminaries

2.1. Skew product flows and invariant graphs

In order to treat continuous-time and discrete-time dynamics alongside, we letT be either equal
to R (continuous-time) or Z (discrete-time). In both cases, a dynamical system is a pair (Y,Ξ)
of a set Y and a T-flow Ξ on Y, that is, a mapping

Ξ : T× Y → Y, (t, y) �→ Ξt(y) (13)

which satisfies the flow properties

Ξ0(y) = y and Ξt+s(y) = Ξt(Ξs(y)). (14)

In the discrete-time case, this implies that Ξt(y) = f t(y), where f : Y → Y is the bijective map
given by f (y) = Ξ1(y).

We always assume that Y is equipped with a σ-algebra B. A probability measure μ on Y is
called Ξ-invariant if μ ◦ Ξt = μ for all t ∈ T. The set of all μ-invariant probability measures
on (Y,B) is denoted by M(Ξ). Given μ ∈ M(Ξ), we call the quadruple (Y,B,μ,Ξ) a measure-
preserving dynamical system (mpds). We refer to [Arn98] and references therein for details and
background.

If Y is a metric space and Ξ is continuous on the product space T× Y, we call the pair (Y,Ξ)
a topological dynamical system (tds). In this case, we throughout assume B to be given by the
Borel σ-algebra on Y.

Non-autonomous dynamics are modeled by skew product systems. Given a tds (Θ,ω) or an
mpds (Θ,B,μ,ω), a skew product flow with base Θ and phase space X is a flow on Y = Θ× X
of the form

6501



Nonlinearity 35 (2022) 6485 F Remo et al

Ξ : T×Θ× X →Θ× X, (t, θ, x) �→ Ξt(θ, x) = (ωt(θ), ξt(θ, x)). (15)

Hence, if πΘ : Θ× X is the canonical projection to Θ, then πΘ ◦ Ξt(θ, x) = ωt(θ). The maps
X � x �→ ξt(θ, x) ∈ X, with t ∈ R and θ ∈ Θ fixed, are called fibre maps. If X is a metric space,
we assume the fibre maps to be continuous without further mentioning. If X is a smooth man-
ifold and all the fibre maps ξt(θ, ·) are r times differentiable, we call Ξ an ω-forced Cr flow. If
X = R and the fibre maps are all monotonically increasing, we say Ξ is an ω-forced monotone
flow.

As discussed already in the introduction, in the context of non-autonomous systems the
notion of an equilibrium point has to be replaced by that of a random equilibrium, to which
we will from now on refer to as an invariant graph, whose position depends on the forcing
variable θ. We say a measurable function ϕ : Θ→ X is an invariant graph of the flow Ξ, if it
satisfies the condition

Ξt
θ(ϕ(θ)) = ϕ(ωt(θ)) (16)

for all θ ∈ Θ and t ∈ T.9 Here, we usually do not distinguish between invariant graphs that
coincide almost everywhere with respect to the given reference measure in the base, which in
the qpf case is just the Lebesgue measure. Hence, whenever we speak of invariant graphs, we
implicitly mean equivalence classes of functions. This is very natural when Ξ is forced by an
mpds, but may become a subtle issue as soon as Θ is a metric space and topological properties
of invariant graphs come into play. For instance, by saying that an invariant graph is continuous,
we mean that there exists a (uniquely determined) continuous representative of the respective
equivalence class. It is worth mentioning that in the case of semi-continuous graphs, there may
exist several different semi-continuous representatives in the same equivalence class—an issue
that we will come back to in section 4 below. In the random case, we may not require that (16)
is satisfied pointwise, but only almost surely. More precisely, if μ is an ω-invariant measure
and (16) is satisfied μ-almost surely, then ϕ is called a (Ξ, μ)-invariant graph.

It turns out that in the situation where base flow ω is ergodic, there is an intimate relation
between invariant graphs and the invariant ergodic measures of the skew product system. Any
(Ξ, μ)-invariant graph ϕ clearly defines a Ξ-invariant measure μϕ given by

μϕ(A) = μ({θ ∈ Θ|(θ,ϕ(θ)) ∈ A}). (17)

A partial converse to this statement for ergodically forced monotone flows is provided by the
following result, which essentially goes back to Furstenberg [Fur61] (see also [Arn98]) and
highlights the significance of invariant graphs from an ergodic-theoretical viewpoint. Given
μ ∈ M(ω), we denote by Mμ(Ξ) the set of Ξ-invariant probability measures on Θ× X which
project to μ in the first coordinate.

Theorem 2.1 (See [Arn98, theorem 1.8.4] and [Fur61, theorem 4.1]). Suppose Ξ is
anω-forced monotone flow, μ ∈ M(ω) is ergodic with respect to ω and ν ∈ Mμ(Ξ) is ergodic
with respect to Ξ. Then there exists a (Ξ, μ)-invariant graph ϕ such that ν = μϕ.

Hence, for monotone skew product flows with ergodic base flow there is a one-to-one corre-
spondence between invariant ergodic measures and the invariant graphs of the system. Similar

9 We use ϕ instead of x to denote invariant graphs from now on (unlike in the introduction) to stress the fact that these
are functions.
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to the autonomous case, the stability of an invariant graph ϕ can be characterised in terms of
its Lyapunov exponent. The latter is given by

λμ(ϕ) =
1
t

∫
Θ

log ‖∂xξ
t(θ,ϕ(θ))‖ dμ(θ) =

∫
Θ

log ‖∂xξ
1(θ,ϕ(θ))‖ dμ(θ), (18)

for any t > 0 where ∂x denotes the derivative with respect to x and μ ∈ M(ω) is a given ref-
erence measure in the base. It is known that, under some mild assumptions, an invariant graph
with negative Lyapunov exponent attracts a set of initial conditions of positive measure [Jäg03]
(with respect to the product measureμ× Leb if X = R

d , where Leb denotes the Lebesgue mea-
sure on R

d). Hence, the graph ϕ is called an attractor in this case, and a repeller if λ(ϕ) > 0
[Fuh16a].

Observe that Birkhoff’s ergodic theorem and the invariance of the graph ϕ imply that

λμ(ϕ) =
∫
Θ

log ‖∂xξ
1(θ,ϕ(θ))‖ dμ(θ)

= lim
t→∞

1/t
∫ t

0
log ‖∂xξ

1(ωs(θ),ϕ(ωs(θ)))‖ ds

= lim
t→∞

1/t
∫ t

0
log ‖∂xξ

1(Ξs(θ,ϕ(θ)))‖ ds = λ(θ,ϕ(θ))

(19)

for μ-almost all θ ∈ Θ. In other words, the pointwise Lyapunov exponent λ(θ, x) of μϕ-almost
every point (θ, x) on ϕ coincides with the Lyapunov exponent of ϕ. As we will discuss in the
final part of this article, the limit in the definition of λ(θ,ϕ(θ)) is in general not uniform. For
that reason, the time-T Lyapunov exponents

λT (θ,ϕ(θ)) = 1/T
∫ T

0
log ‖∂xξ

1(ωs(θ) ξs(θ ϕ(θ)))‖ ds, (20)

where T > 0, may carry relevant information different from that encoded in the (asymptotic)
Lyapunov exponents.

An important notion in the context of forced systems is that of pinched sets and pinched
invariant graphs [Gle02, Sta03, FJJK05, JS06, Jäg07]. A priori, the definition of ‘pinching’
is independent of the dynamics. Suppose that Θ is a compact metric space, X = [a, b] ⊆ R

and ϕ−,ϕ+ : Θ→ X. Further, assume that ϕ− is lower semi-continuous and ϕ+ is upper semi-
continuous andϕ− � ϕ+. Thenϕ− andϕ+ are called pinched if there exists a point θ ∈ Θwith
ϕ−(θ) = ϕ+(θ). If we only have that for any ε > 0 there exists θε with |ϕ+(θε) − ϕ−(θε)| < ε,
then we call ϕ+ and ϕ− weakly pinched. In the case of random forcing, we will use the
following measure-theoretic analogue. Suppose (Θ,B,μ) is a measure space, X = [a, b] ⊆ R

and ϕ− � ϕ+ : Θ→ X are measurable. Then ϕ− and ϕ+ are called measurably pinched if the
set Aδ := {θ ∈ Θ|ϕ+(θ) − ϕ−(θ) < δ} has positive measure for all δ > 0. Otherwise, we call
ϕ− and ϕ+ μ-uniformly separated. For strictly ergodic (that is, minimal and uniquely ergodic)
forcing processes, all three notions of pinching coincide, see [AJ02, lemma 3.5]. In this case,
two pinched invariant graphs always coincide on a dense subset of Θ.
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In order to define pinching for a set M ⊆ Θ× X, we let Mθ = {x∈ X|(θ, x) ∈ M and define
the upper and lower bounding graphs of M as ϕ+

M(θ) = sup Mθ and ϕ−
M(θ) = inf Mθ. Then M

is called pinched/weakly pinched/measurably pinched if this is true for its pair of bounding
graphs (where in the topological setting M is supposed to be compact, which results in the
respective semi-continuity of the graphs ϕ±

M).

2.2. Fold bifurcation scenario

With the above notions, we can now formulate the bifurcation scenario—both in a deterministic
and a random setting—which is taken from [AJ02] and will provide the general framework for
our further studies. We start with the deterministic case. Given A ⊆ Θ× X and θ ∈ Θ, we let
Aθ = {x ∈ X|(θ, x) ∈ A}.

Theorem 2.2 ([AJ02, theorem 7.1]). Let ω be a flow on a compact metric space Θ and
suppose (Ξβ)β∈[0,1] is a parameter family of ω-forced monotone C2 flows. Further assume
that there exist continuous functions γ−, γ+ : Θ→ X with γ− < γ+ such that the following
conditions hold for all β ∈ [0, 1], θ ∈ Θ and all t � 0, where applicable.

(a) There exist two distinct continuous Ξ0-invariant graphs and no Ξ1-invariant graph in
Γ = {(θ, x)|γ−(θ) < x < γ+(θ)};

(b) ξt
β(θ, γ±(θ)) � γ±(ωt(θ));

(c) The maps (β, θ, x) �→ ∂ i
xξ

t
β(θ, x) with i = 0, 1, 2 and (β, θ, x) �→ ∂βξ

t
β(θ, x) are

continuous;
(d) ∂xξ

t
β(θ, x) > 0 ∀ x ∈ Γθ;

(e) ∂βξ
t
β(θ, x) < 0 ∀ x ∈ Γθ;

( f ) ∂2
xξ

t
β(θ, x) < 0 ∀ x ∈ Γθ.

Then there exists a unique critical parameter βc ∈ [0, 1] such that

• If β < βc, then there exist two continuous Ξβ-invariant graphs ϕ−
β < ϕ+

β in Γ. For any

ω-invariant measure μ we have λμ(ϕ−
β ) > 0 and λμ(ϕ+

β ) < 0.
• If β = βc, then either there exists exactly one continuous Ξβ-invariant graph ϕβ in
Γ (smooth bifurcation), or there exists a pair of weakly pinched Ξβ-invariant graphs
ϕ−
β � ϕ+

β in Γ with ϕ−
β lower and ϕ+

β upper semi-continuous (non-smooth bifurcation).
If μ is an ω-invariant measure, then in the first case λμ(ϕβ) = 0. In the second case
ϕ−
β (θ) = ϕ+

β (θ) μ-almost surely implies λμ(ϕ±
β ) = 0, whereas ϕ−

β (θ) < ϕ+
β (θ) μ-almost

surely implies λμ(ϕ−
β ) > 0 and λμ(ϕ+

β ) < 0.
• If β > βc, then no Ξβ-invariant graphs exist in Γ.

Remark 2.3. (a) Note that in [AJ02], the conditions of this theorem are stated in terms
of the right side of the differential equation. However, [AJ02, section 7] provides a detailed
discussion of how this translates into the above conditions on the flow, and these are the ones
which are actually used in the proof. We come back to this issue in remark 2.4 below.

(b) A similar result for minimally forced flows induced by scalar differential equations is
given in [NO07].

(c) The result in [AJ02] is stated for convex fibre maps. However, the above version for
concave fibre maps is equivalent. For the discrete-time version, this is discussed in [AJ02,
remark 6.2(c)].
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(d) Likewise, the statement in [AJ02] is given for the closed region Γ instead of the open
set Γ that we use here (for convenience later on), but the proof in [AJ02] can be adjusted with
minor modifications.

(e) Non-continuous invariant graphs with negative Lyapunov exponents, as they appear in
non-smooth fold bifurcation of qpf systems, are called strange non-chaotic attractors (SNA)
[GOPY84, Kel96, Sta03, FKP06, NO07, AJ02].

Remark 2.4. Continuous-time skew product flows are typically defined via non-autonomous
ODE’s of the form

x′(t) = V(ωt(θ), x). (21)

In fact, (21) a priori only yields a local flow where trajectories may diverge and hence not
be defined for all times t ∈ R. As we will only deal with bounded solutions (see also lemma
3.6), this issue is not of further importance. We refer the interested reader to [Fuh16b] for more
details.

Now, in order to apply theorem 2.2 to flows defined by equations of the form (21), it is crucial
that the validity of the assumptions can be read off directly from the differential equations.
Fortunately, there is a rather immediate translation between the properties of parameter families
of non-autonomous vector fields Vβ and the relevant properties of the resulting skew product
flow.

First, the curves γ± can usually be chosen constant, in which case (a) may be obvious or
be checked by hand for the respective models and (b) follows from Vβ(θ, γ±(θ)) < 0 for all
θ ∈ Θ. Secondly, by standard results on the regularity of solutions of an ODE with respect to
parameters, it suffices to assume that for each θ ∈ Θ the mapping [0, 1] × R× R � (β, t, x) �→
Vβ(ωt(θ), x) is continuous, C1 with respect to β, and C2 with respect to x in order to ensure that
Ξβ is indeed C2 and continuously differentiable with respect to β. Hence, the condition (c)
will hold as well. The monotonicity in (d) follows immediately from the uniqueness of the
solutions to (21). The monotonicity condition (e) always holds if β �→ Vβ(ωt(θ), x) is mono-
tonically decreasing. Finally, the concavity of the fibre maps required in (f) is a consequence
of the concavity of Vβ in the considered region. We refer to [AJ02, Fuh16b], as well as to the
discussion of the application to the forced Allee model in section 2.4, for further details.

The following statement is a measure-theoretic analogue of theorem 2.2. While this result
is not explicitly stated in [AJ02], the article contains a discrete-time analogue and the transla-
tion to the continuous-time setting is both straightforward and also discussed in detail for the
deterministic case in [AJ02, section 7].

Theorem 2.5 (Compare [AJ02, theorem 4.1]). Let (Θ,B,μ,ω) be a measure preserving
dynamical system and suppose (Ξβ)β∈[0,1] is a parameter family ofω-forced monotoneC2 flows.
Further assume that there exist measurable functions γ−, γ+ : Θ→ X with γ− < γ+ such that
the following conditions hold for all β ∈ [0, 1], μ-almost all θ ∈ Θ and all positive t ∈ T,
where applicable.

(a) There exist two μ-uniformly separated (Ξ0, μ)-invariant graphs but no (Ξ1, μ)-invariant
graph in Γ;

(b) ξt
β(θ, γ±(θ)) � γ±(ωt(θ));

(c) The maps (β, t, x) �→ ξt
β(θ, x) and (β, t, x) �→ ∂xξ

t
β(θ, x) are continuous;

(d) ∂xξ
t
β,θ(x) > 0 ∀ x ∈ Γθ;
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(e) For some t > 0 there exist constants C < c1 � 0 such that C � ∂βξ
t
β(θ, x) � c1 ∀ x ∈ Γθ;

( f ) ∂2
xξ

t
β(θ, x) < 0 ∀ x ∈ Γθ;

(g) The function η(θ) = sup
{
| log ∂xξ

t
β(θ, x)|

∣∣∣x ∈ Γθ, β ∈ [0, 1]
}

is integrable with respect
to μ.

Then there exists a unique critical parameter βμ ∈ [0, 1] such that

• If β < βμ, then there exist exactly two (Ξβ , μ)-invariant graphs ϕ−
β < ϕ+

β in Γ which are

μ-uniformly separated and satisfy λ(ϕ−
β ) > 0 and λ(ϕ+

β ) < 0.
• If β = βμ, then either there exists exactly one (Ξβ , μ)-invariant graph ϕβ in Γ, or

there exist two measurably pinched invariant graphs ϕ−
β � ϕ+

β in Γ. In the first case,

λμ(ϕβ) = 0; in the second case, λμ(ϕ−
β ) > 0 and λμ(ϕ+

β ) < 0.
• If β > βμ, then no fβ-invariant graphs exist in Γ.

In analogy to the deterministic setting, we again speak of a smooth bifurcation if there
exists a unique neutral invariant graph at the bifurcation point, and of a non-smooth bifurcation
if there exists an attractor-repeller pair (a pair of pinched invariant graphs with negative and
positive Lyapunov exponent, respectively).

Remark 2.4 concerning how to ensure the conditions are met by the flow induced by a non-
autonomous vector field equally apply in the random setting. Note that continuity with respect
to θ is not required in this case.

2.3. Forcing processes

For later use, we introduce forcing processes both in discrete and continuous time. Quasiperi-
odic motion in discrete time is given by a rotation ω : Td → T

d , θ �→ θ + ρ mod 1 which is
irrational, in the sense that its rotation vector ρ = (ρ1, . . . , ρd) has incommensurate entries.10

In this case, the transformation ω is minimal and uniquely ergodic, with the Lebesgue mea-
sure on T

d as the unique invariant probability measure. The continuous time analogue is an
irrational Kronecker flow ω : R× T

d → T
d , ωt(θ) = θ + tρ, where ρ (or some scalar multiple

thereof) is again incommensurate.
In order to model random forcing in discrete time, we will simply use Bernoulli processes

as examples. Hence, we let Σ = {0, 1}Z and equip this space with the Bernoulli measure μ
with probabilities 1/2 for the symbols 0 and 1. Actually, we could likewise set Σ to be [0, 1]Z

and μ to be the infinite product LebZ

[0,1] of the Lebesgue measure on [0, 1], or even replace
Leb[0,1] by any measure λ on [0, 1] whose topological support includes 0 and 1. In any case,
the dynamics on Σ are given by the shift map σ : Σ � (θn)n∈Z �→ (θn+1)n∈Z which is ergodic
with respect to each such measure.

A slight complication occurs in the case of continuous-time random forcing. As mentioned
in the introduction, we would like to use sin(Wt) as a forcing term in (2). Hence, it is natural
to consider the Wiener space, that is, the space of continuous real-valued functions C(R,R)
equipped with the Borel σ-algebra generated by uniform topology and the classical Wiener
measure P. However, in order to obtain a skew product flow we need a measure-preserving
transformation on our probability space. If θ ∈ C(R,R) is a path of a Brownian motion, the
standard measure-preserving shift on the Wiener space is given by ωt(θ)(s) = θ(s + t) − θ(t).
The problem that occurs is the fact that if we now want to define a forcing term f on C(R,R)
by evaluating the sinus at θ(0), that is, f (θ) = sin(2πθ(0)), then f (ωt(θ)) = 0 for all t ∈ R (the
standard Brownian motion starts in zero, and the classical shift respects this property). We

10 Here ρ1, . . . , ρd are called incommensurate if n0 +
∑d

j=1 njρ j = 0 implies n0 = n1 = . . . = nd = 0.
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therefore use a slightly modified version of this process to model bounded random forcing for
our purposes. To that end, we let p : C(R,R) →C(R,T1) = Θ be the projection of real-valued
to circle-valued functions (induced by the canonical projection π : R→ T

1) and let P0 = p∗P
be the push-forward ofP. Further, we let S : T1 ×Θ→Θ, (x, θ) �→ θ + x and equipΘwith the
measure ν = S∗(Leb

T1 × P0). By definition, ν has equidistributed marginals and can therefore
be seen to be invariant under the shift ω : R×Θ→Θ defined by ωt(θ)(s) = θ(t + s). This
construction will allow us to define a forcing term simply by evaluating the sinus (viewed as a
function on T

1) at θ(0).

2.4. Application to the forced Allee model

In order to apply the above theorems 2.2 and 2.5 to the forced Allee model (2) with forcing
terms (3) and (4), respectively, we first have to bring this equation into a form that fits into
the mathematical setting described above. Note that the vector field V in (21) does not depend
on a real time-variable t, but on a variable θ that belongs to the driving space Θ. The time-
dependence then enters the equation via the forcing flow ω. This means that we need to slightly
modify our initial equation (2) by assuming that the forcing function F in (2) is not defined on
R, but is given as a map F : Θ→ [0, 1] on one of the driving spaces discussed in the previous
section. The time-dependence is then given by replacing F(t) in (2) with F(ωt(θ)), where ω is
the forcing flow on Θ and θ ∈ Θ is an arbitrary starting point. Hence, we arrive at the following
modified version of (2).

x′(t) =
r

K2
· x(t) · (K − x(t)) · (x(t) − S) − (β + κ · F(ωt(θ))) · x =: Vκ,β(θ, x) (22)

In the case of quasiperiodic forcing, we then let Θ = T
d and

F : Td → [0, 1], θ �→
d∏

i=1

(
1 + sin(2π(θi))

2

)q

. (23)

Further, we let ω denote the Kronecker flow on Td (with irrational translation vector ρ) intro-
duced in the last section. Note that the differential equation given by (2) and (3) and the one
given by (22) and (23) are identical.

Similarly, in the case of random forcing we let Θ = C(R,T1) equal the projected Wiener
space introduced in the last section and let

F : Θ→ [0, 1], θ �→ 1 + sin(2πθ(0))
2

(24)

and chooseω to be the shift onΘ introduced in the previous section. Then again the differential
equations defined by (2) and (24) are the same.

We now want to verify that the skew product flow induced by (22) satisfies the assumptions
of theorem 2.2 (for the quasiperiodic forcing term (23)) or theorem 2.5 (for the random forcing
term (24). More precisely, we need to specify the admissible parameter ranges stated in remark
1.3 in the introduction and show that the respective conditions are met for all admissible param-
eters. As pointed out in remark 2.4, conditions (c)–(e) in theorems 2.2 and 2.5 follow directly
from the specific form of the scalar field Vβ,κ. Moreover, condition (g) in theorem 2.5 holds
as well, since all the involved functions are bounded (and therefore, in particular, integrable).
However, it remains to specify a suitable parameter range and appropriate functions γ± so that
(a), (b) and (f) hold.
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It is easy to check that the fold bifurcation of the unforced equation (1) takes place at

β = b(r, K, S) :=
r

K2
·
(

K − S
2

)2

. (25)

Moreover, the neutral equilibrium point at the bifurcation is x0 = K+S
2 . If κ < b(r, K, S) and

β � b(r, K, S) − κ, then we have that Vκ,β(θ, x0) > 0 for all θ ∈ Θ and both forcing terms (3)
and (4) (note here that F � 1). At the same time, givenβ < b(r, K, S), the unforced Allee model
(1) has equilibrium points x = 0 and

x±β =
K + S

2
± 1

2

√
(K − S)2 − 4βK2

r
=

K + S
2

± K − S
2

·
√

1 − β̄,

where

β̄ =
4βK2

r(K − S)2
.

As the forcing is always downwards (recall that the forcing term is−κF with κ � 0 and F � 0),
this implies in particular that Vκ,β(θ, x±β0

) < 0 for all θ ∈ Θ, κ > 0 and β � β0. Hence, we

obtain a forward invariant region Θ× [x0, x+β0
] and a backward invariant region Θ× [x−β0

, x0],
where β0 will be specified below. Using the concavity of Vκ,β in x, equally shown below,
this implies the existence of two invariant graphs in [γ−, γ+] = [x−β0

, x+β0
]. Similarly, if β >

b(r, K, S), then the bifurcation has already taken place and there will not be any invariant graph
above the equilibrium at 0. Hence, conditions (a) and (b) are satisfied.

It remains to ensure the concavity of Vκ,β(θ, ·) in the considered regionΘ× (γ−, γ+), where
γ± still need to be specified. The second derivative of Vκ,β with respect to x is given by

∂2
x Vκ,β(θ, x) =

r
K2

· (−6x + 2(K + S)),

and is thus independent of β and κ. We have

∂2
x Vκ,β(θ, x) < 0 ⇔ x >

K + S
3

.

Hence, we simply need to choose β0 such that x−β0
� K+S

3 . By the above, this means that we
require

x−β =
K + S

2
− K − S

2
·
√

1 − β̄ � K + S
3

,

which is equivalent to

β̄ � 1 − γ(K, S),

where γ(K, S) = 1
9

(
K+S
K−S

)2
, and hence to

β � b(r, K, S) · (1 − γ(K, S)).

This means that if κ > 0 satisfies

κ < b(r, K, S) · γ(K, S)
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and we let

J(r, K, S) = [b(r, K, S) · (1 − γ(K, S)), b(r, K, S)+ 1],

then the parameter family of flows Ξβ induced by the vector fields (Vκ,β)β∈J(r,K,S) satisfies all
the assertions of theorem 2.2 (modulo rescaling the parameter interval J(r, K, S)) and therefore
undergoes a non-autonomous fold bifurcation.

2.5. A simplified discrete-time model

As mentioned in the introduction, in order to reduce the technical effort of our investigation,
some of our rigorous results deal with discrete time systems. Of course, in principle, it would
be most natural to consider the Poincaré sections of the continuous time models associated to
(2). However, to prove that those actually satisfy the properties we need in our analysis turns
out to be a surprisingly tough problem in itself, which, furthermore, does not appear to provide
any insights into the behaviour of the (finite time) Lyapunov exponents.11 Instead, we consider
explicit paradigm examples which allow us to concentrate on those aspects of the dynamics
which this work focuses on.

Specifically, we consider the parameter families of skew product maps

fβ : Θ× R→Θ× R, (θ, x) �→ (ω(θ), arctan(αx) − κ · F(θ) − β) (26)

with real parameters α > π/2, β ∈ [0, 1] and κ ∈ (0, β̃c), where β̃c = arctan(
√
α− 1) −√

α− 1/α is the critical parameter at which the fold bifurcation of the autonomous family
x �→ arctan(αx) − β occurs. It is worth mentioning that—besides some important features
of the above models—the precise choice of the fibre maps in (26) is more for the sake of
concreteness than of actual mathematical relevance, see [Fuh16a].

The forcing processes we consider are either defined on Θ = T
d and given by a rota-

tion ω : θ �→ θ + ρ with rotation vector ρ ∈ T
d (quasiperiodic forcing) or on Θ = Σ, where

Σ = {0, 1}Z and ω is given by the shift σ on Σ (random forcing), all as in section 2.3 above.
For the forcing function F, we use

F(θ) =
sin(2πθ) + 1

2
(27)

in the qpf case and

F(θ) = θ0 (28)

in the random case. As figure 10 (to be compared to figure 3) and figures 12–14 (to be com-
pared to figures 5–7) indicate, the phenomena we discussed for the forced Allee model remain
observable when we go over to the above kind of systems.

The behaviour of the attractors and repellers during smooth and non-smooth bifurcations in
the qpf case are shown in figure 11. This figure also illustrates some key features of non-smooth
bifurcations in qpf systems and allows us to give a heuristic description of the mechanism
that causes the non-smoothness. The rigorous description of this mechanism is the basis for
the mathematical analysis of non-smooth bifurcations in [Jäg09, Fuh16a]. As can be seen in
figures 11(d)–(f), when the attracting and repelling graphs approach each other in a non-
smooth way, they develop a sequence of ‘peaks’. These appear in an ordered way, and the

11 The interested reader may take a look at [Fuh16b] for an example of the analysis of a very simplified non-autonomous
continuous time system through an associated Poincaré map.
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Figure 10. Lyapunov exponents during saddle-node bifurcations in the family (26) with
forcing terms (27) (quasiperiodic) and (28) (random). The plots are analogous to those
shown in figure 3 for the forced Allee model. Just as for that model, the behaviour of
the Lyapunov exponents depends fundamentally on the precise form of the considered
parameter changes. (a) Smooth bifurcation in the qpf case, with parameters α = 10
and κ = 1. The bifurcation occurs at βc = 0.341 502. (b) A non-smooth bifurcation
in the same model, with parameters α = 100 and κ = 1. The bifurcation occurs at
βc = 0.550 7468. (c) Non-smooth bifurcation with simultaneous variation of parame-
ters α and β along the black curve in (d). (e) and (f) Lyapunov exponents in the rdf case,
with parameters α = 10 and κ = 0.1 and bifurcation parameter β = 0.866 in (e) and
α = 10 and κ = 0.4 and bifurcation parameter β = 0.566 in (f). In (g), the parameters
κ and β are varied again at the same time along the black parameter curve shown in (h).
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Figure 11. (a)–(c) Smooth saddle-node bifurcation in (26) with quasiperiodic forcing
(27). Parameter values are α = 10, κ = 1, ρ = ω (golden mean) and (a) β = 0.1708 (b)
β = 0.34 and (c) β = 0.341 502. (d)–(f) Non-smooth saddle-node bifurcation bifurca-
tion in in (26) with quasiperiodic forcing (27). Parameter values are α = 100, κ = 1,
ρ = ω and (a) β = 0.4 (b) β = 0.54 and (c) β = 0.550 7486.

next peak is always the image of the previous one and is generated as soon as the latter reaches
into the region with large derivatives which is centred around the zero-line T1 × {0}. The first
peak is located around the minimum of the blue curve in (d). The second peak emerges in (e)
and is fully developed in (f), where a number of further peaks can be seen as well. Thereby,
the movement of each peak is amplified by the large derivatives close to zero (of magnitude α,
see (26)). For this reason, as β is increased, the speed by which the peaks move as β is varied
increases exponentially with the order of the peak, whereas its width decreases exponentially
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Figure 12. Minimal and maximal finite-time Lyapunov exponents (with the asymptotic
one plotted in the middle) for the parameter families used in figure 10 (in the same
order). The time is n = 5 in all cases. Observe that just as in the forced Allee model (see
figure 5), an approaching bifurcation is anticipated by maximal finite time Lyapunov
exponents above or close to 0.

(since each peak is stretched vertically due to the expansion around 0). In the limit, the two
curves touch each other with the tips of the peaks. Note that only a finite number of peaks can
be observed at the bifurcation point in (f), since these quickly become too thin to be visible in
numerical simulations. However, it is known that the region between the two graphs in (f) is
actually filled densely by further peaks [GJ13, FGJ18]. We refer to the introduction of [Jäg09]
for a more detailed discussion.

The range of the finite time Lyapunov exponents for the same parameter families as in
figure 10 is shown in figure 12.
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Figure 13. Distributions of the finite-time Lyapunov exponents in the qpf discrete-time
system (26) with parameters α = 100, κ = 1 and ρ the golden mean. Observe again the
qualitative similarity to the distribution of finite time Lyapunov exponents in the forced
Allee model (figure 6).

Figure 14. A plot of the relative frequency of positive exponents (as observed in
figure 13) on a (a) standard, (b) logarithmic and (c) log–log-scale.

Finally, the distribution of finite-time Lyapunov exponents (on different time-scales) is plot-
ted in figure 13, and the corresponding relative frequencies as a function of time in figure 14.
In both cases, we restrict to the qpf case.

3. Abundance of nonsmooth fold bifurcations

The results discussed in the previous section provide a general setting for non-autonomous
saddle-node bifurcations. We shall now take a closer look at non-smooth bifurcations and
discuss their widespread occurrence in forced systems.

3.1. Quasiperiodic forcing

In the case of quasiperiodic forcing, the latter is well-established by a number of rigorous
results both in the discrete- and continuous-time case. In order to state these, we need to intro-
duce some arithmetic properties of the rotation numbers or vectors in the base, which play a

6513



Nonlinearity 35 (2022) 6485 F Remo et al

crucial role. Given τ ,κ > 0, we say ρ ∈ T
d is Diophantine (of type (τ ,κ)) if

∀ k ∈ Z
d\{0} : inf

p∈Z

∣∣∣∣∣p+
d∑

i=1

ρiki

∣∣∣∣∣ � τ |k|−κ.

We note that the set of rotation vectors that satisfy a Diophantine condition of type (τ ,κ) for
some τ > 0 (with κ fixed) is of full Lebesgue measure for all κ > d+1

d .
Let us start by considering the discrete-time case. Generalising example (26), consider

discrete-time flows given by qpf monotone interval maps of the form

f : Td × R→ T
d × R, (θ, x) �→ (ω(θ), fθ(x)), (29)

where ω : Td → T
d, θ �→ θ + ρ is again an irrational rotation with rotation vector ρ and fθ(·)

is C2 and strictly increasing on X. For a given rotation vector ρ ∈ T
d, we further consider the

space of one-parameter families

Fρ =
{

( fβ)β∈[0,1] : fβ is of form (29) and (β, θ, x) �→ fβ,θ(x) is C2
}

(30)

equipped with the metric

d(( fβ)β∈[0,1], (gβ)β∈[0,1]) = sup
β∈[0,1]

(‖ fβ − gβ‖2 + ‖∂β fβ − ∂βgβ‖0), (31)

where ‖.‖k denotes the Ck-norm on the space Dk(Td × X) of k times differentiable self-maps of
T

d × X. Note that all maps fβ in parameter families from Fρ have the same base flow ω : θ �→
θ + ρ on T

d .
The following result has been established in [Fuh16a], with precursors in [Bje05, Jäg09].

Theorem 3.1 ([Fuh16a]). Suppose that ρ ∈ T
d is Diophantine. Then there exists a non-

empty open set U ⊆ Fρ such that each ( fβ)β∈[0,1] ∈ U satisfies the assertions of theorem 2.2
and undergoes a non-smooth saddle-node bifurcation.

This confirms that the set of parameter families with a non-smooth saddle-node bifurcation
is large in a certain sense, and that the phenomenon can occur in a robust way (both corre-
sponding to the openness of the set U). Thereby, it is important to note that in [Fuh16a] the set
U in this result is characterised by explicit C2-estimates involving derivatives with respect to all
three variables β, θ and x. This makes it possible to check whether it contains a given parameter
family and therefore provides explicit examples of non-smooth saddle-node bifurcations.

Corollary 3.1.1 ([Fuh16a]). If ρ is Diophantine and α is sufficiently large, then the param-
eter family ( fβ)β∈[0,1] defined in (26) belongs to the set U and hence undergoes a non-smooth
saddle-node bifurcation.

Continuous-time analogues of these results have been established in [Fuh16b]. In this case,
one considers non-autonomous vector fields, given by differentiable functions of the form

V : Td × R→ R, (32)

which induce qpf flows via the corresponding differential equation

x′(t) = V(ωt(θ0), x(t)), (33)
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where ω : R× T
d → T

d, (t, θ) �→ θ + tρ is an irrational Kronecker flow with rotation vector
ρ ∈ T

d , as described above. We let

V =
{

(Vβ)β∈[0,1]|V is of the form (32) and (β, θ, x) �→ Vβ(θ, x) is C2
}

(34)

and equip V with the metric

d((Vβ)β∈[0,1], (Wβ)β∈[0,1]) = sup
β∈[0,1]

(‖Vβ − Wβ‖2 + ‖∂βVβ − ∂βWβ‖0).

Theorem 3.2 ([Fuh16b]). For any Diophantine ρ ∈ T
d, there exists an open set Uρ ⊆ V

such that for any (Vβ)β∈[0,1] ∈ V the flow induced by (32) satisfies the assertions of theorem
2.2 and undergoes a non-smooth fold bifurcation.

Again, the explicit characterisation of the set Uρ given in [Fuh16b] makes it in principle pos-
sible to check for non-smooth bifurcations in specific examples. However, this is considerably
more technical than in the discrete-time case. Moreover, the application to the forced Allee
model (2) with quasiperiodic forcing (3) would require a number of highly non-trivial and
technical modifications. Therefore, we refrain from going into more details here and just point
out that figures 2(b) and 4(e)–(h) provide substantial numerical evidence for the occurrence of
non-smooth fold bifurcations in this case.

3.2. Random forcing

In contrast to the quasiperiodic case, the influence of bounded random noise on saddle-node
bifurcations has not been studied systematically so far. Our aim for the remainder of this section
is to establish the occurrence of non-smooth bifurcations in a broad class of rdf monotone flows
and maps. To that end, we introduce the notion of an autonomous reference system. Let γ− <
γ+ ∈ R and suppose (gβ)β∈[0,1] is a one-parameter family of differentiable flows gβ : T× R→
Rwith the following properties (which are supposed to hold for all β ∈ [0, 1], t ∈ T and x ∈ R,
where applicable).

(g1) g0 has two fixed points in the interval [γ−, γ+], whereas g1 has none;
(g2) gt

β(γ±) � γ±;
(g3) ∂xgt

β(x) > 0;
(g4) The mapping (β, t, x) �→ gt

β(x) is continuous;
(g5) The mapping β �→ gt

β(x) is differentiable and ∂βgt
β(x) < 0;

(g6) ∂2
x gt

β(x) < 0 for all x ∈ [γ−, γ+] (concavity).

We call such a family (gβ)β∈[0,1] an (autonomous) reference family.

Remark 3.3. (a) Properties (g1)–(g6) imply that the family (gβ)β∈[0,1] undergoes a fold
bifurcation in the interval [γ−, γ+]: due to the concavity in (g6), gβ can have at most two fixed
points in this region, with the upper one attracting and the lower one repelling. By (g1), the
map g0 has two such fixed points. Due to the monotone dependence on the parameter assumed
in (g5), these two fixed points have to move towards each other as β is increased. They have
to vanish before β = 1, as g1 has no fixed points, and the only possibility to do so is to collide
at a unique bifurcation parameter βc.

(b) If T = Z (that is, in the discrete time case), the simplest way to obtain a reference fam-
ily of this kind is to fix some strictly increasing map g : R→ R such that g maps the points
γ± below themselves, is strictly concave on [γ−, γ+] and has two fixed points in [γ−, γ+],
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but g − 1 does not have any fixed points in this interval. Then gβ = g − β satisfies the above
properties.

Our main result of this section now states that under some mild conditions, any random
perturbation of such a reference family will undergo a non-smooth fold bifurcation.

Theorem 3.4. Suppose that (Θ,B, ν,ω) is an mpds and (Ξβ)β∈[0,1] is a parameter family
of ω-forced monotone flows that satisfies the assumptions of theorem 2.5 with constant curves
γ±. Further, assume that (gβ)β∈[0,1] is an autonomous reference family such that the following
conditions hold for all β ∈ [0, 1].

(a) For all x ∈ X, t > 0 and ν-almost all θ ∈ Θ we have gt
β(x) � ξt

β(θ, x). (Lower bound)
(b) For all ε, T > 0 there exists a set Aε,T ⊆ Θ of positive measure ν(Aε,T) > 0 such that

|ξt
β(θ, x) − gβ(x)| � ε and |∂xξ

t
β(θ, x) − ∂xgt

β(x)| � ε (35)

for all θ ∈ Aε,T, |t| � T and x ∈ [γ−, γ+]. (Shadowing)
(c) For ν-almost every θ ∈ Θ there exists t ∈ T and δ > 0 such that ξt

β(ω−t(θ), x) � gt
β(x) +

δ for all x ∈ [γ−, γ+]. (Separation)
Then (Ξβ)β∈[0,1] undergoes a non-smooth fold bifurcation and the bifurcation parameter βc

is the same as in the reference family (gβ)β∈[0,1].

Remark 3.5. Note that by construction the forced Allee model (22) with random forcing
term (4) satisfies the assumptions of theorem 3.4, with the unforced Allee model as a reference
family. This then implies theorem 2.

In order to prove theorem 3.4, we first provide the following auxiliary statement about the
equivalence of the existence of invariant graphs and the existence of orbits that remain in the
region Γ = Θ× [−γ, γ] at all times.

Lemma 3.6. Suppose Ξ is a monotone skew product flow of the form (5) with an mpds
(Θ,B, ν,ω) in the base. Further, assume that there exist measurable curves γ− � γ+ : Θ→ X
that satisfy

ξt(θ, γ±(θ)) � γ±(ω(θ)) (36)

for ν-almost every θ ∈ Θ and all t � 0. Let

Γ = {(θ, x)|θ ∈ Θ, γ−(θ) � x � γ+(θ)}. (37)

Then there exists a (Ξ, ν)-invariant graph ϕ in Γ if and only if

ξt(θ, γ+(θ)) � γ−(ωt(θ)) (38)

holds for all t � 0 and ν-almost every θ ∈ Θ.

Proof An important ingredient for the proof are the graph transforms Ξt
∗γ of a measurable

function γ : Θ→ X. For t ∈ T, these are defined by

Ξt
∗γ(θ) = ξt(ω−t(θ), γ(ω−t(θ))). (39)
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If t � 0, we speak of a forwards transform and if t � 0, of a backwards transform. We define

γ+
t = Ξt

∗γ
+ and γ−

t = Ξ−t
∗ γ−. (40)

Then (36) together with the monotonicity of the fibre maps implies that the family of functions
γ+

t is decreasing in t. Similarly, the family γ−
t is increasing (note here that ξt(θ, γ−(θ)) � γ−(θ)

for t > 0 implies ξt(θ, γ−(θ)) � γ−(θ) for t < 0).
Suppose now that (38) holds for all t > 0 and ν-almost every θ ∈ Θ. Then γ+

t is bounded
below by γ− for all t > 0 and thus converges ν-almost everywhere to a function

ϕ+(θ) = lim
t→∞

γ+
t (θ). (41)

Due to the continuity of the fibre maps, we have that

ξs(θ,ϕ+(θ)) = ξs
(
θ, lim

t→∞
γ+

t (θ)
)
= lim

t→∞
ξs(θ, γ+

t (θ))

= lim
t→∞

γ+
t+s(ω

s(θ)) = ϕ+(ωs(θ))
(42)

ν-almost everywhere. Hence, ϕ+ is the desired invariant graph.
Conversely, assume that there exists an invariant graph ϕ in Γ. Then the monotonicity of

the fibre maps gives

ξt(θ, γ+(θ)) � ξt(θ,ϕ(θ)) = ϕ(ωt(θ)) � γ−(ωt(θ)) (43)

for ν-almost every θ ∈ Θ. �

Remark 3.7. As we have seen in the above proof, if Ξ satisfies the assumptions of lemma
3.6 and has at least one invariant graph, then the formula

ϕ+(θ) = lim
t→∞

γ+
t (θ) = lim

t→∞
ξt(ω−t(θ), γ+(ω−t(θ))) (44)

yields one such graph. This way of defining an invariant graph is called pullback construction
and generally works if the graph is an attractor. In a similar fashion, it is possible to show that
the pushforward construction

ϕ−(θ) = lim
t→−∞

γ−
t (θ) = lim

t→∞
ξ−t(ωt(θ), γ−(ωt(θ))) (45)

also defines an invariant graph, which usually is a repeller. However, the graphs ϕ− and ϕ+

may coincide, as in the case of a smooth fold bifurcation (see theorem 2.5).

We can now turn to the

Proof of Theorem 3.4. Let βc be the bifurcation parameter for the family (Ξβ)β∈[0,1] and
β̃c the one for the reference family (gβ)β∈[0,1]. We first show that βc = β̃c. Denote the unique
fixed point of gβ̃c

in [γ−, γ+] by x0. Then, for ν-almost all θ ∈ Θ and all β < β̃c and t � 0, we
obtain

ξt
β(θ, γ+) � ξt

β̃c
(θ, γ+) � gt

β̃c
(γ+) � gt

β̃c
(x0) = x0 � γ−.

Hence, lemma 3.6 implies that Ξβ has at least one invariant graph in Γ for all β � β̃c, and thus
βc � β̃c.
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Conversely, suppose that β > β̃c. As gβ has no fixed points in [γ−, γ+] and gt
β(γ+) < γ+

for all t � 0, we obtain that gT
β(γ+) < γ− for some T > 0. Let ε > 0 be such that gT

β(γ+) <
γ− − ε. By assumption, the set Aε,T in the statement of the theorem has positive measure. For
any θ ∈ Aε,T, we obtain

ξT
β (θ, γ+) � gT

β(γ+) + ε < γ−.

Due to lemma 3.6, this excludes the existence of an invariant graph in Γ for β > βc. We
therefore obtain βc � β̃c. Together with the above, this yields βc = β̃c.

It remains to show the non-smoothness of the bifurcation. To that end, we set

ϕ+(θ) = lim
t→∞

ξt
βc

(ω−t(θ), γ+) and ϕ−(θ) = lim
t→∞

ξ−t
βc

(ωt(θ), γ−).

As discussed in remark 3.7, ϕ+ and ϕ− are well-defined invariant graphs. To finish the proof,
we have to show that ϕ−(θ) < ϕ+(θ)ν-almost surely.

To that end, observe that condition (a) in theorem 3.4 together with the monotonicity of the
fibre maps implies ξt

βc
(θ, x) � gt

βc
(x) for all x ∈ [γ−, γ+], all t < 0 and ν-almost all θ ∈ Θ. As

a consequence, we have ϕ−(θ) � x0 almost surely. Now, by assumption (c) we have that for
ν-almost every θ ∈ Θ there exists δ > 0 and s ∈ T such that ξs

βc
(ω−s(θ), x0) > gs

βc
(x0) + δ =

x0 + δ. Thus, we obtain

ϕ+(θ) = lim
t→∞

ξt
βc

(ω−t(θ), γ+)

= lim
t→∞

ξs
βc

(ω−s(θ), ξt−s
βc

(ω−t(θ), γ+)) � lim
t→∞

ξs
βc

(ω−s(θ), gt−s
βc

(γ+))

� ξs
βc

(ω−s(θ), x0) � x0 + δ

and hence, in particular, ϕ+(θ) > x0 � ϕ−(θ). This finishes the proof. �

4. Lyapunov exponents in nonsmooth fold bifurcations

4.1. Lyapunov gap in nonsmooth fold bifurcations

The aim of this section is to provide a proof of theorem 1, which we restate here in a more
general form.

Theorem 4.1. Suppose that (Ξβ)β∈[0,1] is a parameter family of forced monotone C2-flows
that satisfies the assumptions of theorem 2.2 ( for deterministic forcing) or theorem 2.5 ( for
random forcing). Further, assume that the fold bifurcation that occurs in this family at the
critical parameter βc is non-smooth. Then

lim
β↗βc

λ(ϕ+
β ) = λ(ϕ+

βc
) < 0. (46)

If the fold bifurcation is smooth, then limβ↗βc λ(ϕ+
β ) = 0. The analogous results hold for the

unstable equilibrium ϕ−
β .

Proof. Let us first consider the deterministic case, that is, assume (Ξβ)β∈[0,1] satisfies the
assumptions of theorem 2.2. We claim that for each θ ∈ Θ we have that ϕ+

βc
(θ) coincides with

ϕ(θ) = lim
β↗βc

ϕ+
β (θ).
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Note that ϕ is well-defined due to the monotone dependence of ξt
β on β (see assumption (e) in

theorem 2.2) which results in ϕβ � ϕβ′ whenever β < β′ � βc.
In order to see that ϕ is an invariant graph, fix θ ∈ Θ, t > 0 and ε > 0. Choose δ > 0

such that |ξt
βc

(θ,ϕ(θ)) − ξt
βc

(θ, x)| < ε for all x ∈ Bδ(ϕ(θ)) and at the same time |ξt
β(θ, x) −

ξt
β′ (θ, x)| < ε whenever |β − β′| < δ. Note that such δ exists due to the uniform continuity of

(β, x) �→ ξt
β(θ, x). Let β < βc be such that βc − β < δ, ϕ+

β (θ) − ϕ(θ) < δ and ϕ+
β (ωt(θ)) −

ϕ(ωt(θ)) < ε. We obtain

|ξt
βc

(θ,ϕ(θ)) − ϕ(ωt(θ))| � |ξt
β(θ,ϕ(θ)) − ϕ+

β (ωt(θ))|+ 2ε

= |ξt
β(θ,ϕ(θ)) − ξt

β(θ,ϕ+
β (θ))|+ 2ε � 3ε.

As ε > 0 was arbitrary, this proves ξt
βc

(θ,ϕ(θ)) = ϕ(ωt(θ)) and hence the invariance ofϕ under
Ξβc . Now, since the graphsϕ+

βc
are monotonically decreasing in β, we haveϕ � ϕ+

βc
. As there is

no Ξβc -invariant graph above ϕ+
βc

in the considered region Γ, we obtain ϕ+
βc

= ϕ. Using domi-
nated convergence, this proves the statement about the Lyapunov exponents in the deterministic
case.

In the random case, the above arguments (applied to almost every θ instead of every θ) work
similarly (when using theorem 2.5 instead of theorem 2.2). �

4.2. Slope at the bifurcation point

Although this is not in our main focus, we want to comment in this section on a particular
qualitative difference between non-smooth fold bifurcations in the qpf and the rdf case. As it
can be seen from figures 2(b)–(d), the slope of the Lyapunov exponent of the attractor increases
strongly towards the bifurcation in the qpf case, whereas it only increases slightly or even
remains constant in the random case.

In fact, the heuristic description of non-smooth fold bifurcations in qpf systems given in
section 2.5 suggests that ∂βλ(ϕ+

β ) should actually increase to infinity as β ↗ β+
c . The reason

is that due to the concavity of the right side of the vector field, the Lyapunov exponent increases
whenever the graph decreases. Thereby, the quantitative contribution of each peak that develops
should be the product between its width and its speed, which is more or less constant since both
decrease, respectively increase, with the same exponential rate. Hence, every peak contributes
a similar amount to the slope of the Lyapunov exponent, and as there are infinitely many peaks,
this slope grows to infinity as the bifurcation is approached. In principle, we believe that this
heuristic explanation could be made precise by using the machinery for the proof of non-
smooth fold bifurcations in [Fuh16a, Fuh16b] which, however, goes beyond our current scope.

For the case of random forcing, we provide a proof for the boundedness of the slope of
the Lyapunov exponent of ϕ+

β as β ↗ βc. In order to avoid too many technicalities and to
not obstruct the view on the underlying mechanism, we restrict to the case of the discrete-
time example (26). We note, however, that the proof can be generalised to broader classes of
monotone skew product maps and, with some more work required, to continuous-time systems.

Theorem 4.2. Suppose ( fβ)β∈[0,1] is the family of skew product maps given by (26) with
Θ = {0, 1}Z the Bernoulli space equipped with the shift map σ and the Bernoulli measure μ.
Letβc = arctan(

√
α− 1) −

√
α− 1/α− κ. Then ( fβ)β∈[0,1] satisfies the hypothesis of theorem

2.5 (with γ− = 0 and γ+ = π/2) and undergoes a non-smooth saddle-node bifurcation with
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critical parameter βc. Moreover, there exists a constant C > 0 such that

|∂βλμ(ϕ±
β )| � C

for all β ∈ [0, βc].

Before we turn to the proof of the theorem 4.2, we first need the following preliminary
result.

Lemma 4.3. In the situation of theorem 4.2 we let γ±
n,β = f ±n

β∗ γ
±, where the graph transform

f n
β∗ is defined as in the proof of theorem 3.6. Then γ±

n,β(θ) converges to ϕ±
β (θ) uniformly in β

and θ (with β ∈ [0, βc] and θ ∈ Σ) as n →∞.
Moreover, for all θ ∈ Σ, the map [0, βc) � β �→ ϕ±

β (θ) is differentiable and for every β′ ∈
[0, βc), we have that

∂βγ
±
n,β(θ) = −

n∑
i=1

i−1∏
�=1

∂x f ±1
β,σ−�θ( f ±(n−�)

β,σ−nθ
(γ+))

n→∞−−−→ ∂βϕ
±
β (θ) (47)

uniformly in β and θ for all β ∈ [0, β′] and all θ ∈ Σ.

Proof. We only consider γ+
n,β and ϕ+

β , the statements for γ−
n,β and ϕ−

β follow analogously.
Recall that

fβ : Σ× R→ Σ× R, (θ, x) �→ (ω(θ), g(x) − κ · θ0 − β),

with g(x) = arctan(αx).
First, observe that ∂2

x f n
β,θ(x) < 0 for all n ∈ N as long as x, fβ,θ(x), . . . , fβ,ωn−1(θ)(x) > 0

since the composition of concave increasing functions is again concave. Second, note that with
θ∗ = . . . 1, 1, 1 . . . ∈ Σ, we have

f βc,θ∗(x) = fβ,θ(x) − (βc − β) − κ(1 − θ0) (48)

for all β ∈ [0, βc] and all θ ∈ Σ, x ∈ X.
Hence, we obtain that for all β ∈ [0, βc], θ ∈ Σ and all n, n′ ∈ N with n � n′ we have

|γ+
n′,β(θ) − γ+

n,β(θ)| = f n′

β,σ−n′ θ
(γ+) − f n′

β,σ−n′θ
( f n−n′

β,σ−nθ
(γ+))

� f n′

β,σ−n′ θ
(γ+) − f n′

β,σ−n′ θ
( f n−n′

βc,θ∗(γ+))

= f n′−1
β,σ1−n′ θ

( fβ,σ−n′θ(γ
+)) − f n′−1

β,σ1−n′θ
( fβ,σ−n′θ( f n−n′

βc,θ∗(γ+)))

� f n′−1
β,σ1−n′θ

( f βc,θ∗(γ+)) − f n′−1
β,σ1−n′ θ

( f βc,θ∗( f n−n′
βc,θ∗(γ+)))

� f n′−2
β,σ2−n′ θ

( f 2
βc,θ∗(γ+)) − f n′−2

β,σ2−n′ θ
( f 2

βc,θ∗( f n−n′
βc,θ∗(γ+)))

� . . . � f n′
βc,θ∗(γ+) − f n′

βc,θ∗( f n−n′
βc,θ∗(γ+))

= |γ+
n′,βc

(θ∗) − γ+
n,βc

(θ∗)|,
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where we used the monotonicity of the fibre maps in the first inequality and the above men-
tioned concavity together with (48) in the steps to the fourth, fifth and sixth line. This proves
the first part.

Next, we show that ∂βγ
+
n,β(θ) converges uniformly in θ and β which immediately implies

the second part. To that end, we first provide a uniform upper bound on

sup
θ∈Σ,β∈[0,β′ ]

∂x fβ,θ(γ
+
n,β(θ))

for all n ∈ N. Similarly as in the proof of theorem 3.4, we see that

xmin(β) := min
θ∈Σ

ϕ+
β (θ) � x0(β′)

for all β ∈ [0, β′], where x0(β′) is the upper fixed point of the map g − κ− β ′. Hence, we have

0 � sup
θ∈Σ,β∈[0,β′ ]

∂x fβ,θ(γ
+
n,β(θ)) = sup

θ∈Σ,β∈[0,β′ ]
g′(γ+

n,β(θ)) � g′(ϕ+
β (θ))

� g′(x0(β′)) =: c < 1,
(49)

where we used the concavity of g and the monotone dependence of ϕ+
β (θ) on β.

Now, observe that

∂βγ
+
n,β(θ) = ∂β f n

β,σ−nθ(γ
+)

= ∂β fβ,σ−1θ( f n−1
β,σ−nθ

(γ+))

+ ∂x fβ,σ−1θ( f n−1
β,σ−nθ(γ

+)) · ∂β f n−1
β,σ−nθ(γ

+)

= . . . =

n∑
i=1

∂β fβ,σ−iθ( f n−i
β,σ−nθ(γ

+))
i−1∏
�=1

∂x fβ,σ−�θ( f n−�
β,σ−nθ(γ

+))

= −
n∑

i=1

i−1∏
�=1

∂x fβ,σ−�θ( f n−�
β,σ−nθ(γ

+)).

Together with (49), we hence obtain for n � n′

|∂βγ+
n′,β(θ) − ∂βγ

+
n,β(θ)| =

n∑
i=n′+1

i−1∏
�=1

∂x fβ,σ−�θ( f n−�
β,σ−nθ(γ

+))

�
n∑

i=n′+1

ci−1,

which proves the statement. �
We can now turn to the

Proof of Theorem 4.2. We keep the notation as in the previous proof. Observe that
(g − κ− β)β∈[0,1] is an autonomous reference family for ( fβ)β∈[0,1]. Therefore, the fact that
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( fβ)β∈[0,1] undergoes a non-smooth saddle-node bifurcation with critical parameter βc (given
by the bifurcation parameter of the family (g − κ− β)β) is a direct consequence of theorem
3.4. Hence, it remains to prove the existence of a uniform bound on the slope of the Lyapunov
exponent. As before, we only consider ϕ+

β . Further, we show the statement for β ∈ [0, βc)
which immediately yields the full statement by means of the mean value theorem.

Given β ∈ [0, βc), observe that

∂βλμ(ϕ+
β ) = ∂β

∫
Σ

log ∂x fβ,θ(ϕ
+
β (θ)) dθ

= ∂β

∫
Σ

log g′(ϕ+
β (θ)) dθ =

∫
Σ

g′′(ϕ+
β (θ))

g′(ϕ+
β (θ))

· ∂βϕ+
β (θ) dθ.

With c � supx∈[0,π/2] |g′′(x)/g′(x)|, we hence obtain

|∂βλμ(ϕ+
β )| � c

∫
Σ

|∂βϕ+
β (θ)| dθ.

Now, let

α = sup
θ∈Σ, θ0=0

f ′βc,σθ( f βc,θ(xc))

and note that

α = g′(g(xc) − βc) = g′(g(xc) − κ− βc + κ) = g′(xc + κ) < g′(xc) = 1,

where xc is the neutral fixed point of the map g − κ− βc. Then
∫
Σ

|∂βϕ+
β (θ)| dθ =

∫
Σ

|∂β lim
n→∞

γ+
n,β(θ)| dθ = lim

n→∞

∫
Σ

|∂βγ+
n,β(θ)| dθ

(47)
= lim

n→∞

∫
Σ

n∑
i=1

i−1∏
�=1

∂x fβ,σ−�θ( f n−�
β,σ−nθ

(γ+)) dθ

= lim
n→∞

n∑
i=1

∫
Σ

i−1∏
�=1

∂x fβ,σ−�θ( f n−�
β,σ−nθ(γ

+)) dθ

� lim
n→∞

n∑
i=1

∫
Σ

i−1∏
�=1

∂x fβ,σ−�θ( fβ,σ−�−1θ(xc)) dθ

� lim
n→∞

n∑
i=1

i−1∑
k=0

αk · μ
(
{θ ∈ Σ : k = #{1 < � � i : θ−� = 0}}

)

= lim
n→∞

n∑
i=1

i−1∑
k=0

αk ·
(

i − 1
k

)
(1/2)i−1

= lim
n→∞

n∑
i=1

i−1∑
k=0

(
i − 1

k

)
(α/2)k(1/2)i−1−k

= lim
n→∞

n∑
i=1

(α/2 + 1/2)i−1 < ∞.
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Since α is independent of β, the statement follows. �

5. Range of finite-time Lyapunov exponents

In this section, we provide a proof of theorem 3, which we restate below in a more general form.
To that end, let us introduce the maximal finite-time Lyapunov exponents on the attractor. As
invariant graphs only need to be defined almost surely, we just take into account exponents that
can be ‘seen’ on a set of positive measure by setting

λmax
k (ϕ+

β ) = sup

{
λ ∈ R

∣∣∣∣μϕ+
β

({(θ, x)|λk( fβ , θ, x) � λ}) > 0

}
.

Here, the graph measure μ
ϕ+
β

is as discussed in section 2.1. Note that if the forcing is quasiperi-

odic, then the attractors prior to the bifurcation are all continuous so that we actually have

λmax
k (ϕ+

β ) = max
{
λk(θ,ϕ+

β (θ))
∣∣θ ∈ T

1
}

whenever β < βc.

We first consider the case of quasiperiodic forcing, where the general statement we aim at
reads as follows.

Theorem 5.1. Suppose (Ξβ)β∈[0,1] is a parameter family of qpf monotone flows that satisfies
the hypotheses of theorem 2.2. Then for all k ∈ N we have

lim
β↗βc

λmax
k (ϕ+

β ) � λ(ϕ−
βc

). (50)

Before we turn to the proof, however, we have to address some subtleties concerning the
topology of pinched invariant graphs in this setting. Suppose we observe a non-smooth bifur-
cation as characterised in theorem 2.2, so that there exist exactly two graphs ϕ−

βc
< ϕ+

βc
(up to

modifications on sets of measure zero), where ϕ−
βc

is lower and ϕ+
βc

is upper semicontinuous.
Let A+ = supp(μ

ϕ+
βc

) and A− = supp(μϕ−
β+

), where supp(ν) denotes the topological support

of a measure ν.12 Then A+ is Ξβc -invariant, and consequently the upper and lower bounding
graphs ϕu

A+ and ϕl
A+ given by

ϕu
A+ (θ) = sup A+

θ and ϕl
A+ (θ) = inf A+

θ

are Ξβ-invariant graphs, with ϕu
A+ upper and ϕl

A+ (θ) lower semicontinuous (see [Sta03]). As
ϕ±
βc

are the only Ξβ-invariant graphs in the considered region Γ, we must have ϕl
A+ (θ) = ϕ−

βc

and ϕu
A+ = ϕ+

βc
almost surely (see [Sta03] for more details), but the graphs may differ on a

set of measure zero (which is the subtle complication that requires particular care in the proof
of theorem 5.1 below). Nevertheless, this implies in particular that (θ,ϕ−

βc
(θ)) ∈ A+ almost

surely, so that μϕ−
βc

(A+) = 1 and hence A− ⊆ A+. As the converse inclusion follows in the

same way, we have A− = A+. One particular consequence of this discussion is the following

12 Given a Borel measure ν on some second countable metric space X, the support of ν is defined as supp(ν) = {x ∈
X|ν(Bδ(x)) > 0∀ δ > 0} = X\

⋃
U open, ν(U)=0 U. It is easy to see that supp(ν) is always closed and can be characterised

as the smallest closed set A ⊆ X with ν(X\A) = 0. Moreover, if ν is invariant under some continuous transformation
f , then so is supp(ν).
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Lemma 5.2. Forμ-almost every θ0 ∈ Θ and every δ > 0 there exists a set B ⊆ Θ of positive
measure such that

{(θ,ϕ+
βc

(θ))|θ ∈ B} ⊆ Bδ((θ0,ϕ−
βc

(θ0))).

We can now turn to the

Proof of Theorem 5.1. Fix k ∈ N. First, we claim that there exists a set of positive measure
of θ ∈ Θ such that

λk(θ,ϕ−
βc

(θ)) � λ(ϕ−
βc

). (51)

In order to see this, assume for a contradiction that λk(θ,ϕ−
βc

(θ)) < λ(ϕ−
βc

) for almost all θ.
Clearly, this implies the existence of δ > 0 and of a set Θδ ⊆ Θ of positive measure such that

λk(θ,ϕ−
βc

(θ)) � λ(ϕ−
βc

) − δ

for all θ ∈ Θδ . Due to Birkhoff’s ergodic theorem (and the ergodicity of the flow ω on Θ),
the orbit of almost every θ ∈ Θ visits the set Θδ with positive frequency. This implies that the
pointwise Lyapunov exponent of almost every θ satisfies

λ(θ,ϕ−
βc

(θ)) < λ(ϕ−
βc

).

This, however, contradicts Birkhoff’s ergodic theorem according to which we have

λ(θ,ϕ−
βc

(θ)) = λ(ϕ−
βc

)

almost surely. Hence, there exists a positive measure set of θ which satisfies (51).
Now, let ε > 0 be given. Due to lemma 5.2, there is δ > 0 and θ0 ∈ Θ which satisfies (51)

and a set B ⊆ Θ of positive measure such that (θ,ϕ+
βc

(θ)) ∈ Bδ(θ0,ϕ−
βc

(θ0)) for all θ ∈ B. If δ
is chosen small enough, then it follows by continuity that

λk(θ,ϕ+
βc

(θ)) � λ(ϕ−
βc

) − ε

for all θ ∈ B. As ε > 0 was arbitrary, we obtain that λmax
k (ϕ+

βc
) � λ(ϕ−

βc
). Finally, as

limβ↗βc ϕ
+
β (θ) = ϕ+

βc
(θ) almost surely (see the proof of theorem 4.1), we obtain (50) again

by continuity. �

We now turn to the random case. In this case, we have to restrict to the setting of theorem
3.4 (instead of the more general situation of theorem 2.5).

Theorem 5.3. Suppose that (Ξβ)β∈[0,1] is a parameter family of randomly forced monotone
flows that satisfies the assumptions of theorem 3.4. Then for all k ∈ R

lim
β↗βc

λmax
k (ϕ+

β (θ)) = 0.

Proof. Let (gβ)β∈[0,1] be the autonomous reference family from theorem 3.4. Then we have
that gβc has a unique fixed point x0 ∈ [γ−, γ+] whose Lyapunov exponent vanishes, that is,
log ∂tgt

βc
(x0) = 0 for all t > 0. By continuity, this means that given t ∈ R and ε > 0 there

exists δ > 0 such that |x − x0| < δ and |β − βc| < δ implies | log(gt
β(x))|/t < ε. Moreover, as
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limt→∞ gt
βc

(γ+) = x0, we can further require that gt
β(γ+) < x0 + δ/2 for all β ∈ [βc − δ′, βc]

and some t, δ′ > 0.
Now, by assumption (b) of theorem 3.4 there exists a set Aδ/2,t ⊆ Θ of positive measure

such that for all θ ∈ ωt(Aδ/2,t) we have

ξt
β(ω−t(θ), γ+) � x0 + δ.

As ϕ+
β (θ) is the monotone limit of the sequence ξt

β(ω−t(θ), γ+) (see the proof of theorem 3.4)
and is bounded below by x0, this implies that x0 � ϕ+

β (θ) � x0 + δ and therefore, using con-

dition (b) again, |λt(θ,ϕ+
β (θ))| < ε for all θ ∈ Aδ/2,k and β ∈ [βc − δ′, βc]. As ε > 0 was

arbitrary, this completes the proof. �
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