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ABSTRACT
Indra is a suite of large-volume cosmological N-body simulations with the goal of providing excellent statistics of the large-scale
features of the distribution of dark matter. Each of the 384 simulations is computed with the same cosmological parameters and
different initial phases, with 10243 dark matter particles in a box of length 1 h−1 Gpc, 64 snapshots of particle data and halo
catalogues, and 505 time-steps of the Fourier modes of the density field, amounting to almost a petabyte of data. All of the Indra
data are immediately available for analysis via the SciServer science platform, which provides interactive and batch computing
modes, personal data storage, and other hosted data sets such as the Millennium simulations and many astronomical surveys. We
present the Indra simulations, describe the data products and how to access them, and measure ensemble averages, variances,
and covariances of the matter power spectrum, the matter correlation function, and the halo mass function to demonstrate the
types of computations that Indra enables. We hope that Indra will be both a resource for large-scale structure research and a
demonstration of how to make very large data sets public and computationally accessible.
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1 IN T RO D U C T I O N

Understanding the observations made by large-scale structure sur-
veys such as Euclid, Roman, DESI, and the VRO requires input
from theoretical predictions of structure formation in the form of
numerical simulations. Cosmological N-body simulations solve for
the non-linear gravitational collapse of matter and are indispensable
tools both for testing cosmological models and for planning for,
and analysing, observations. For example, simulations are necessary
to predict the large-scale structure observables of dark energy and
modified gravity theories in the non-linear regime (e.g. Winther
et al. 2015; Joyce, Lombriser & Schmidt 2016), which can be
compared to simulations of the current �CDM (cold dark matter with
a cosmological constant, �) cosmological paradigm. Simulations
have also become an integral part of the analysis of measurements of
baryon acoustic oscillations (BAO) from galaxy redshift surveys (e.g.
Percival et al. 2014).

One of the pressing challenges when making inferences from
large observational surveys is that we can only observe the Universe
from one vantage point in a finite volume. This ‘cosmic variance’
places limits on the precision with which we can measure statistical
fluctuations on very large scales. This also presents a problem for

� E-mail: bridget.falck@jhu.edu

simulations: we cannot simulate exactly the positions of the galaxies
in this observational volume. We can, however, simulate an ensemble
of universes, increasing the precision with which we can numerically
predict the statistical properties (e.g. the covariance matrix) of the
matter distribution on large scales for a given cosmological model.

Ideally, one would want to simulate the full volume and resolution
that the next generation of galaxy surveys will attain, repeat this
thousands of times for different realizations of the same cosmological
model and parameters, run this ensemble for thousands of combina-
tions of cosmological parameters in a given model, and repeat the
entire process for any number of cosmological models one expects
the observations to test. Such a scenario has obvious drawbacks: it
would require a prohibitively expensive amount of computing power
and produce an excessive amount of data which would be impossible
to analyse without equally massive computing resources. Because of
these immense technical challenges, workarounds are being devised:
cosmological emulators (Heitmann et al. 2014, 2016; Garrison et al.
2018; DeRose et al. 2019; Nishimichi et al. 2019) attempt to
span cosmological parameter space with a few full simulations and
interpolate between them, low-resolution particle mesh simulations
attempt to capture features only at large scales (Takahashi et al.
2009; Blot et al. 2015), approximate simulations combine numerical
shortcuts with analytic solutions to produce fast and cheap ensembles
of realizations with a limited range of accuracy (see Chuang et al.
2015; Lippich et al. 2019, and references therein), and analytic
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methods attempt to model the statistics in order to reduce the number
of full realizations required to obtain the same precision (Pope &
Szapudi 2008; Dodelson & Schneider 2013; Taylor, Joachimi &
Kitching 2013; Heavens et al. 2017).

This paper aims to address the technical challenges head-on
by producing a suite of cosmological N-body simulations called
Indra1 hosted on SciServer,2 a science platform that allows the
community to perform analysis where the data are stored. This
method of server-side analysis was pioneered in astronomy by the
Sloan Digital Sky Survey SkyServer (Szalay et al. 2000), which
enabled astronomers to interactively explore a multiterabyte data
base by leveraging state-of-the-art archiving technologies. Modelled
on the success of the SkyServer, the Millennium Simulation Data
base (Lemson & Virgo Consortium 2006) made available the post-
processing outputs of the Millennium simulation (Springel et al.
2005), including halo catalogues, merger trees, and later, semi-
analytic galaxy catalogues (see also Riebe et al. 2011; Loebman
et al. 2014; Bernyk et al. 2016). The dark matter particle positions
and velocities, however, were not in the data base, as their large size
(roughly 20 TB) and usage patterns (being point clouds instead of
object catalogues) presented significant technical challenges.

Though data base technology has seen significant advances in the
past decade, our early efforts to build a relational data base for Indra
were motivated by reducing the number of rows in a table – the
planned full suite of 512 simulations amounts to 35 trillion output
particles. We considered storing particles in spatially sorted array-
like ‘chunks’ (Dobos et al. 2012) and developed an inverted indexing
scheme (Crankshaw et al. 2013) to access individual particles in
these arrays (e.g. to track their movement across many snapshots).
However, many technical advances opened up the capability to
release data in their native binary file format, without needing to
first load them into relational data bases, by mounting the data to
contained compute environments running on virtual machines. Indra
takes advantage of the SciServer science platform, built at Johns
Hopkins University where the data are stored, which provides inter-
active and batch mode server-side analysis in various environments,
public and private file storage in both flat files and data bases, and
many collaboration tools (Taghizadeh-Popp et al. 2020).

Recent advances have seen some tera- and peta-scale cosmological
simulation suites that provide their data for download, but with no
server-side computation (Blot et al. 2015; Heitmann et al. 2019;
Villaescusa-Navarro et al. 2019). Additionally, the latest version of
the Illustris hydrodynamical simulations (Nelson et al. 2019) pro-
vides both data for download and an interactive compute environment
similar to SciServer. Modern astronomical surveys are developing
infrastructures and tools for the analysis and cross-matching of data
sets that are hundreds of terabytes to petabytes in size (Jurić et al.
2017). The server-side analysis of both astronomical surveys and the
theoretical predictions from simulations will soon become common
practice for science involving very large data sets.

The Indra simulations are motivated by the goal of obtaining excel-
lent statistics of the large-scale matter density field on 100 h−1 Mpc
scales. We designed a suite of 512 (of which 384 are or will be
currently available) realizations of 1 h−1 Gpc-sided cosmological N-
body simulations, each with 10243 dark matter particles. We saved
64 snapshots per simulation, many more than other simulation suites,
so that ensemble statistics may be calculated for a large number of

1‘Indra’ refers to the Buddhist metaphor of Indra’s net, in which each of the
infinite jewels reflects every other jewel.
2http://www.sciserver.org

redshifts and merger histories of dark matter haloes are able to be
built. We describe the simulations and their data products in Section 2,
including details on how the initial conditions were created and an
issue that affected the first 128 simulations. In Section 3, we measure
ensemble averages, variances, and covariances from the three Indra
data products: the dark matter particles, the halo catalogues, and the
Fourier modes of the density field. In the appendix, we describe how
the full suite of simulations can be accessed and analysed by the
community.

2 TH E I N D R A SI M U L AT I O N S

2.1 Overview

The Indra suite of simulations were run using the code L-
GADGET2 (Springel 2005), each with a box length of 1 h−1 Gpc, 10243

particles, and WMAP7 cosmological parameters (�M = 0.272, �� =
0.728, h = 0.704, σ 8 = 0.81, ns = 0.967; Komatsu et al. 2011). They
are purely gravitational dark-matter-only cosmological simulations;
each dark matter particle has a mass of mp = 7.031 × 1010 h−1 M�.
The force softening length is 40 h−1 kpc, and the parameters used for
the force accuracy, time integration, and tree criteria are the same as
used for the Millennium Run (Springel et al. 2005), which used the
same lean version of GADGET. Initial conditions were generated using
second-order Lagrangian perturbation theory (2LPT; Scoccimarro
1998; Jenkins 2010), with pre-initial conditions on a regular grid and
a starting redshift of z = 127.3 A total of 64 snapshots are saved down
to z = 0 at the same redshifts as the Millennium Run. In general the
box size, particle number, and other parameters of Indra are geared
toward resolving haloes more massive than that of the Milky Way
and obtaining good statistics on BAO scales, while saving snapshots
at a large number of redshifts and not exceeding a petabyte of data.
Since Indra is intended to be a public resource, we hope it can serve
a variety of cosmological applications.

The Indra simulations can be identified using three digits that
range from 0 to 7, which we denote as x y z, corresponding to the
coordinates of an 8 × 8 × 8 cube. Note, however, that each simulation
is fully independent and obeys periodic boundary conditions in a 1
( h−1 Gpc)3 volume; see Section 2.3 for details about how the initial
phases were set up. Due to a bug in the initial conditions of the first
128 simulations, denoted 0 y z and 1 y z, these are not available,
though we may re-run them in the future.

Halo catalogues were generated on-the-fly using a standard
friends-of-friends (FOF) algorithm (Davis et al. 1985), with a linking
length of b = 0.2 times the interparticle separation, L/N, and
a minimum of 20 particles per halo. After the simulations were
finished, we ran SUBFIND (Springel et al. 2001) to identify subhaloes
in phase-space and calculate halo properties such as R200 and M200.

The Indra simulations may be accessed via SciServer, a science
platform that allows users to perform analysis where the data are
stored without the need to download terabytes to a local compute
cluster (Taghizadeh-Popp et al. 2020). Further details of data access

3Since the inception of this project over a decade ago, there has been much
progress in understanding the scale- and resolution-dependent effects of initial
conditions generation and starting redshift in cosmological simulations. In
particular, Michaux et al. (2021) quantify the discreteness effects of the
initial lattice in simulations with the same box size and resolution as Indra.
The difference between their reference ‘FCC’ simulation and Indra’s choice
of zinit = 127 with 2LPT varies with redshift, scale, and choice of statistic:
for the power spectrum (their fig. 7), from a few per cent at z = 3 to 1 per cent
at z = 0 and k = 1 h Mpc−1.
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are given in Appendix A. Below, we describe the three types of data
output for each of the Indra simulations: A total of 64 snapshots of
particle positions and velocities, 64 snapshots of halo catalogues,
and 505 snapshots of the Fourier modes of the density field. We then
describe in detail the initial conditions of the simulations, which were
created using Panphasia (Jenkins 2013) to allow higher resolution re-
simulations of interesting regions.

At the time of this writing, we are finishing up the last series
of 64 simulation runs and post-processing, and we will make these
available as they are ready. Therefore, the analysis performed in this
work is done on 320 Indra simulations: 2 0 0 to 6 7 7.

2.2 Data products

The output of the Indra simulations consists of three types of
data products: the positions, velocities, and identifiers (IDs) of
dark matter particles; halo and subhalo catalogues, along with the
IDs of their constituent particles; and the Fourier modes of the
coarse-gridded density field. The data are permanently stored on the
DataScope, developed by the Institute for Data Intensive Engineering
and Science4 at the Johns Hopkins University. The DataScope is a
multipetabyte file server with high throughput capability that hosts
large data sets across many domains; Indra data are accessed from
SciServer compute containers over a fast network connection. A
subset of the data, including all halo catalogue files and FFT outputs
and some of the particle snapshots, is also stored on a distributed file
system called the FileDB, which allows for more computationally
heavy analysis than the default SciServer Compute environment.
Read times are somewhat faster for the data on FileDB, and a system
for parallel computation using Dask5 is in development. All data
are accessed through SciServer using the INDRA-TOOLS software
package.6 Both interactive Compute and batch Jobs run Docker
containers on virtual machines, and the INDRA-TOOLS software,
whether run from a PYTHON script or Jupyter notebook, hides the
filesystem from the user, choosing to read from FileDB if the
requested data are there and from DataScope if not. Instructions
on how to access the full suite of Indra data, as well as a description
of the example Jupyter notebooks included with INDRA-TOOLS, are
provided in Appendix A.

2.2.1 Dark matter particles

The bulk of the petabyte of Indra data are in the form of particle
positions, velocities, and IDs for 64 snapshots of each simulation.
These are stored as binary files in the standard GADGET format. The
entirety of the particle snapshots are stored on the DataScope, and a
subset of the particle data, consisting of a few full simulations and
several full sets of snapshots, are also stored on FileDB servers. This
subset might be slightly faster to work with and currently includes
five full simulations (2 0 0, 3 0 0, 4 0 0, 5 0 0, and 6 0 0) and nine
full sets of snapshots at redshifts 0, 0.1, 0.5, 1, 1.4, 1.7, 2.0, 2.4, and
127.

The snapshots of particle data are immediately available for
analysis in the SciServer Compute environment. As an example, we
present a visualization of the particle data in Fig. 1, which shows the
density field of slices through two of the 512 Indra simulations at z =
1.7 and z = 0. The density fields were measured from interpolations

4http://idies.jhu.edu/what-we-offer/sciserver/datascope/
5http://dask.org/
6http://github.com/bfalck/indra-tools

Figure 1. Slices of the logarithmically scaled density field from 2 of the
Indra simulations at 2 of the 64 snapshots, z = 1.7 and z = 0, measured from
CIC-interpolations of the 10243 particle positions. Slices are 1 cell-length
thick with 3.9 h−1 Mpc grid cells.

of particle positions on to a grid using the cloud-in-cell (CIC)
assignment scheme. One CIC grid of a 10243-particle snapshot can be
computed in a few minutes using the package PMESH (Feng, Hand &
biweidai 2017). We discuss preliminary analysis of the particle data,
including power spectrum and correlation function covariances, in
Section 3.1.

2.2.2 Dark matter haloes

The halo data consist of FOF group tables computed on-the-fly,
SUBFIND halo catalogues computed after the runs have finished, and
the IDs of the constituent particles of both the FOF and SUBFIND

haloes. The FOF data are minimal and contain only the number of
particles in each halo, along with indexing information with which
to pick out the correct particle IDs from the group ID data. Post-
processing of the haloes, including calculation of the mass, radius,
position, velocity, and other halo properties is performed by SUBFIND

and stored in the subhalo tables. SUBFIND identifies one subhalo as
the ‘main’ subhalo of that parent FOF group and measures quantities
such as mass and radius for these haloes, so in this way the subhalo
catalogue contains properties both of parent FOF groups and of their
subhaloes.

For every FOF group, SUBFIND measures the radius within which
the FOF group has an overdensity 200 times the mean density of the
simulation, the mass within this R200,mean, the radius within which
the FOF group has an overdensity 200 times the critical density
of the simulation, the mass within this R200,crit, the radius within
which the FOF group has an overdensity corresponding to the value
at virialization in the top-hat collapse model for this cosmology,
and the mass within this Rtop-hat. For every subhalo, including the
‘main’ subhalo, SUBFIND measures the 3D coordinates of position as
determined by the particle with the minimum gravitational potential,
the 3D coordinates of peculiar velocity, the 1D velocity dispersion,
the maximum of the circular velocity curve, the 3D coordinates of
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halo spin, and the radius containing half of the mass. In the binary
catalogue data, all mass units are in h−1 M�, radius and position
units in h−1 Mpc, velocity units in km s−1, and spin units in h−1 Mpc
km s−1. In the data base, the units are the same except the masses are
in units of 1010 h−1 M�.

The FOF and SUBFIND catalogues of the full suite of Indra
simulations, for every snapshot, are stored in their binary file format
in both the DataScope and FileDB filesystems. Additionally, they
are loaded in to relational data base tables, which can be queried
directly from compute containers on SciServer. The usefulness of
hosting halo catalogues in a relational data base was successfully
demonstrated by the Millennium Simulation data base (Lemson &
Virgo Consortium 2006). They provide the capability of speeding
up analysis in many cases, for example, selecting haloes by mass
from many snapshots and hundreds of Indra volumes without the
need to read all of the binary catalogue files. The Indra data base
also exploits a spatial indexing library developed for numerical
simulations (Lemson, Budavari & Szalay 2011) that enables efficient
selection of haloes or particles within shapes such as spheres or cones.

The suite of Indra subhalo data, saved both in binary files and
in relational data base tables, is a data-rich resource for studies of
large-scale structure. For example, having 64 snapshots for each
simulation allows the construction of halo merger histories, which is
not possible when only a few snapshots are stored. In addition, since
all particle positions and velocities are saved, any other halo finder
may be run to complement the existing FOF and SUBFIND catalogues,
and new halo properties may also be measured from the constituent
particles. We discuss preliminary analysis of the halo data, including
the covariance of the mass function, in Section 3.2.

2.2.3 Fourier modes of the density

The Fourier-space density field is output as the simulation runs, more
frequently than are the particle snapshots, for a total of 505 time-
steps. The real and complex modes are defined on a 129 × 129 ×
65 grid of (kx, ky, kz), where kx and ky range from 0 to ±0.4 h Mpc−1

and kz ≥ 0, which is sometimes denoted the ‘upper half-sphere’
of k-space. The largest wavenumber is thus |k|max = 0.7 h Mpc−1

and correspondingly, the smallest length-scale in the FFT data are
9 h−1 Mpc. All of the FFT data, for every run and all 505 time-
steps, are stored on both the DataScope and FileDB filesystems and
amount to about 2 TB. In Section 3.3, we measure the distribution
functions of the Fourier amplitudes of the density field and of the
mode-dependent growth function, D(a, k).

2.3 Initial conditions

The initial conditions are generated using the IC 2lpt Gen
code (Jenkins 2010). Each Indra volume is a realization of a LCDM
universe with cubic periodic boundary conditions. To make the
realizations independent and representative of the set of all possible
volumes, we set the phases using the Panphasia multiscale realization
of a Gaussian white noise field (Jenkins 2013; Jenkins & Booth
2013).7 Each Indra volume is assigned its own small cubic white
noise field patch within the very large Panphasia field. This individual
white noise field is then convolved in k-space with an appropriate
real non-negative filter to produce a realization of the LCDM power
spectrum. The so-called k-space ‘corner modes’, i.e. the power at

7http://icc.dur.ac.uk/Panphasia.php

modes larger than the 1D particle Nyquist frequency, are not set to
zero (Falck et al. 2017).

The Panphasia realization is completely defined on all scales,
which means once the cubic patch in the Panphasia field has been
chosen, the phases for that Indra volume are known on all scales
below the box scale – even down to scales that could only be accessed
by future zoom simulations in these volumes.

For reference, we will give the locations of the phase information
within the Panphasia field in this section. The Panphasia field has
an octree structure, so to describe a cubic region it is necessary to
define five numbers: the level in the octree, three coordinates for
the location of one corner of the cube, and the side-length of that
cube. Jenkins (2013) defined a fixed format text descriptor to hold
these five pieces of information, in addition to a sixth check digit, for
error checking purposes only, and the name for the volume. This text
descriptor is used as an input by the IC 2lpt Gen code to set the phases
for a particular periodic volume. The descriptor, together with the
cosmological parameters, box size, and the linear power spectrum, is
all that is needed to set-up the Indra volumes themselves. Any future
zoom simulations of any region in any of the Indra volumes, down to
the putative CDM free streaming scale as need be, use the Panphasia
descriptor for the parent volume.

The phases of all of the Indra volumes can be given as a set of
descriptors that are functions of the three-digit identifiers x y z:

[Panph1, L15, (X, Y, Z), S75, CH − 999, INDRA xyz],

where x, y, z are octal integers, each in the range of 0–7, which
specify an Indra volume. The symbols, X, Y, Z, give the locations of
one corner of each cubic patch, where

X = 31248 + 100 ∗ x,

Y = 31376 + 100 ∗ y,

Z = 31504 + 100 ∗ z. (1)

We have set the check digits always to be −999 (which instructs the
IC 2lpt Gen code not to do the error checking). So, for example, the
descriptor for the Indra 555 volume is

[Panph1, L15, (31748, 31876, 32004),S75, CH−999,INDRA 555].

Although the Indra volumes are all close together in the Panphasia
field, they are disjoint, which for a Gaussian white noise field means
they are completely independent. Because of this, they cannot be
mapped directly to an (8 h−1 Gpc)3 volume; in principle it would
be possible to set up a realization of a roughly 10.7 h−1 Gpc-sided
cube that includes all of the Indra volume phase information. While
individual patches of such a simulation would resemble individual
Indra volumes to some extent, there would be clear differences on
the largest scales as the periodic constraints are very different. In
addition, for individual Indra volumes, the value of the integral of
the white noise field over the entire simulation volume is ignored, as
all Indra volumes must have exactly the mean density of the universe.
In a larger volume this information would be retained, contributing
to the largest scale modes of the periodic volume.

3 ENSEMBLE AV ERAG ES, VARI ANCES, AND
C OVA R I A N C E S

One major motivation for creating the Indra simulations is to enable
precise measurements of ensemble averages, variances, and covari-
ances at very large scales from full, not approximate, cosmological
N-body simulations. In this section, we demonstrate the types of
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The Indra simulations 2663

Figure 2. Left: The z = 0 ensemble average correlation function measured from 320 Indra simulations. The shaded region indicates the standard deviation of
the mean. Right: The correlation matrix of the same 320 correlation functions.

computations that Indra enables on each of the three main data
products. Section 3.1 measures the mean, variance, and covariance
of the matter correlation function and power spectrum from the dark
matter particle positions. Section 3.2 focuses on the mass function of
the dark matter haloes. In Section 3.3, we study the Fourier modes
of the density field and measure the distribution function, and its
evolution, of the Fourier amplitudes as well as the mode-dependent
growth function D(a, k).

3.1 Matter power spectrum and correlation function

The matter density contrast, δ = (ρ − ρ̄)/ρ̄, is a function of both
space and time. Its spatial distribution can be summarized in terms
of its two-point statistics in the form of the autocorrelation function,
ξ (r) = 〈δ(r′)δ(r′ + r)〉, or its Fourier dual, the power spectrum,
P(k) ≡ 〈|δk|2〉. These statistical descriptions completely specify a
Gaussian random field, such as the density field in the very early
Universe (Bardeen et al. 1986). The covariance matrix, C, of a
statistic y is given by

Cij ≡ 〈(yi − 〈yi〉)(yj − 〈yj 〉)〉, (2)

where i and j are bins of either r (for the correlation function
covariance) or k (for the power spectrum covariance).

Constraining cosmological parameters with large-scale structure
surveys requires measuring the covariance matrix from a large num-
ber of mock galaxy catalogues (see e.g. Percival et al. 2014; Lippich
et al. 2019), perhaps in combination with analytic methods (e.g.
Pope & Szapudi 2008). The error in covariance estimation due to
the finite number of realizations propagates to errors in parameter
constraints (Dodelson & Schneider 2013; Taylor et al. 2013; Blot
et al. 2016; Sellentin & Heavens 2016). Additionally, the mass
resolution of the N-body simulation has a systematic affect on the
covariance (Blot et al. 2015). The distribution of power spectra
departs from Gaussianity even at large scales (Takahashi et al. 2009;
Blot et al. 2015), necessitating the use of N-body simulations to study
these effects.

We measure the correlation function and power spectrum of the
Indra simulations by first interpolating the particle positions on to a
grid using a cloud-in-cell (CIC) assignment scheme, which results in
a measure of the density field in voxels of constant volume. This is
then Fourier-transformed to obtain the Fourier modes of the density
field, δk, from which we compute the power spectrum and correlation
function.

The correlation functions are measured from a CIC density grid of
10243 cells (with a Nyquist frequency of 3.2 h Mpc−1). Fig. 2 shows
the z = 0 mean correlation function, and its variance, from 320 Indra
simulations. The covariance of the correlation function is shown in
the right-hand panel of the figure in terms of its Pearson correlation
matrix:

Rij = Cij√
CiiCjj

. (3)

Fig. 3 shows the z = 0 mean matter power spectrum and its
variance, as well as the correlation matrix, of the dark matter particles
of 320 Indra simulations, measured from a CIC density grid of
5123 cells (corresponding to a Nyquist frequency of 1.6 h Mpc−1).
The CIC window function was deconvolved in the power spectrum
calculation, but no shot-noise subtraction or anti-aliasing scheme
was performed (see e.g. Jing 2005).

Because we measure the correlation functions and power spectra
over the full periodic simulation volumes, there are no modes present
larger than our ‘survey window’, so the covariance matrices do not
contain the effects of beat-coupling (Hamilton, Rimes & Scoccimarro
2006) or local averaging (de Putter et al. 2012). An observational
galaxy survey would measure these effects in its covariance matrix
since modes are present in the Universe on scales larger than any
survey volume. However, de Putter et al. (2012) found that these
effects mostly cancel each other, and additionally for a (1 h−1 Gpc)3

volume, the correction to the power spectrum due to the local average
effect is small, �10−4.

The Poisson error on the power spectra for 320 Indra simula-
tions, given by 1/

√
N (k) ∗ 320 for N(k) modes at wavenumber k,

is 2.5 per cent at the largest scales where k ∼ 0.01 h Mpc−1 and
0.3 per cent at 0.06 h Mpc−1, roughly the BAO scale. The Indra
simulations provide an excellent N-body benchmark for detailed
studies of the matter power spectrum and correlation function
covariance using analytic and approximate methods.

3.2 Halo mass function

In the context of understanding or analysing large-scale galaxy
surveys, the halo catalogues are of primary importance. Methods that
aim to speed up N-body simulations by introducing approximations
or simplifications of the fully non-linear gravitational collapse focus
on how well they can reproduce the spatial distribution, masses,
and key characteristics of the dark matter haloes identified in full
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Figure 3. Left: The z = 0 ensemble average power spectrum measured from 320 Indra simulations. The shaded region indicates the standard deviation of the
mean. Right: The correlation matrix of the same 320 power spectra.

Figure 4. Upper: Average M200 mass function at z = 0 of 320 simulations.
The grey-shaded region shows the standard deviation in each mass bin, and
vertical lines show where the M200 mass is equivalent to 20 and 50 times the
particle mass. Theoretical mass functions from Sheth, Mo & Tormen (2001),
Press & Schechter (1974), and Tinker et al. (2010) are also shown. Lower:
Standard deviation of the z = 0 mass functions of Fig. 4, along with the
Poisson error. The Poisson error is a very good approximation of the standard
deviation of the mass function for larger haloes, but underestimates it for
smaller haloes.

N-body simulations (Blot et al. 2019; Lippich et al. 2019). In
this data release paper, we focus on the mass distribution of the
Indra haloes and its ensemble average, variance, and covariance.
Specifically, we measure the M200 mass function of the main
subhaloes identified by SUBFIND, excluding the children of the main
subhaloes. M200 is defined as the mass within R200, the radius within
which the density is greater than 200 times the critical density,
ρc.

The upper panel of Fig. 4 shows the average M200 mass function at
z = 0 of 320 Indra simulations, along with theoretical mass functions

(Press & Schechter 1974; Sheth et al. 2001; Tinker et al. 2010)
derived using HMFcalc (Murray, Power & Robotham 2013).8 The
standard deviation of these mass functions is given by the grey-
shaded area around the mean and is only visible for the highest
masses. As is standard, the mass function begins to flatten at masses
for which haloes are not well resolved due to the resolution limit of
the simulation. Vertical lines show where the halo mass is equivalent
to 20 and 50 times the particle mass, though note that these masses
do not correspond to the number of particles in the haloes (all haloes
have a minimum of 20 particles) since we have measured the M200

mass function; the lines are merely a guide to suggest a point along
the mass function at which haloes may be considered well resolved,
which is a subjective judgment in any case.

Though the mass function is generally plotted as the cumulative
number density of haloes greater than a given mass as a function of
mass, the variance of the mass function is better characterized by
the mean number of haloes (not the cumulative number density) in
each mass bin, N̄ . The bottom panel of Fig. 4 shows the relative
standard deviation of the mean number of haloes in each mass
bin, (σN̄/N̄ )/

√
320, along with the Poisson error, 1/

√
N̄ ∗ 320.

The Poisson error is a very good approximation to the standard
deviation of the mass function for haloes above ∼1013 h−1 M�
and slightly underestimates the standard deviation for lower mass
haloes. The errors generally increase as a function of mass, as the
number of haloes at a given mass decreases, but also increase at low
mass, as fewer haloes are found due to the resolution limit of the
simulation.

Fig. 5 shows the correlation matrix of 320 z = 0 mass functions. As
a guide, the horizontal and vertical lines show where the M200 mass is
equivalent to 50 times the particle mass, or 3.5 × 1012 h−1 M�. The
off-diagonal elements are greatest for the lowest mass haloes, echoing
the small-scale (large k) behaviour of the power spectrum covariance
in Fig. 3. The covariance matrix has a rather rich structure that to our
knowledge we are the first to measure to this precision. There is a
substantial anticorrelation far from the diagonal, i.e. between large
and small haloes. We suspect this is a result of conservation of mass
in these simulations, i.e. larger haloes grow at the expense of smaller
haloes.

8http://hmf.icrar.org/
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Figure 5. Correlation matrix of the mass functions of 320 Indra simulations
at z = 0. The horizontal and vertical lines show where the M200 mass is
equivalent to 50 times the particle mass.

3.3 Fourier modes of the density field

In this section, we analyse the Fourier modes of the density field
that are output as the simulations run. These data enable the study
of the mode-by-mode evolution of the density field without the
need to measure computationally expensive density grids from the
particle positions, though only down to scales of k ∼ 0.7 h Mpc−1

(9 h−1 Mpc). We first measure the mean and variance of the z = 0
power spectra and compare this to those derived from the particle
positions. We then look in detail at the one-point distribution
functions of the density, δk(a), and the mode-dependent growth
function, D(a, k), in four bins of wavenumber.

3.3.1 Power spectra

Fig. 6 shows the mean and variance of the power spectra of 320
Indra realizations at z = 1, measured both from the output Fourier
modes of the density field and from the CIC density grid derived
from the particle positions. Both the mean and the variance of the
FFT and particle-based power spectra agree very well with each other
up to the Nyquist frequency of the FFT output, with only a slight
deviation at higher frequencies (at the corner modes; see Section 2.3).
Note that the FFT and CIC power spectra were not computed in the
same k-space bins, which explains some of the disagreement at low
frequencies. The FFT outputs are therefore an exceptional resource
for studies of the Fourier-space density field from the largest scales
down to the mildly non-linear regime of 10 h−1 Mpc, at very high
temporal resolution, without the need for expensive interpolations of
the density field from the particle data. These data can also be an
excellent training set for neural network architectures.

3.3.2 One-point distribution function

The properties of the distribution of density fluctuations at early times
are well described by a Gaussian random field, as extensively studied
by Bardeen et al. (1986). In particular, the Fourier transform of a
Gaussian random field allows analytical study of the decomposition
of the field into its Fourier amplitudes and phases. For a given
scale-factor a and wavenumber k, the Fourier amplitudes of the

Figure 6. Ensemble average power spectra of 320 simulations at z = 1. In
blue is the mean and standard deviation of power spectra derived from the
FFT output, and in magenta is the mean and the standard deviation of power
spectra from CIC density fields of the particle positions (as in Section 3.1).
The vertical lines show the Nyquist frequencies of the FFT output (blue) and
of the CIC grid (magenta).

density field can vary for different random initial conditions and
for different wavevectors within a bin of wavenumber. We can thus
measure the one-point distribution function of Fourier modes from
an ensemble of simulations such as Indra and study its evolution and
scale dependence.

In Matsubara (2007), the complex Fourier modes are normalized
by the power spectrum, and a distribution function is obtained for

αk = δk(a)√
P (a, k)

= δk(a)√
〈|δk(a)|2〉 = Ak eiθk . (4)

Matsubara (2007) finds that the distribution function of a Fourier
mode does not depend on the phase θ k, with the result that, for a
random field (not necessarily Gaussian) in a spatially homogeneous
space, the one-point distribution function of Fourier phase, P(θ k), is
always homogeneous, that is, the phases are uniformly distributed.

Fig. 7 shows the evolution of individual Fourier modes for 20
random wavevectors having nearly the same wavenumber in four k
bins, defined in Table 1: the largest modes (upper left), modes around
the BAO scale (upper right), the regime where L ∼ 21 h−1 Mpc (lower
left), and the mildly non-linear regime where L ∼ 10.4 h−1 Mpc
(lower right). As k increases and the length-scale gets smaller, the
evolution of a given Fourier mode becomes more non-linear, but at
all scales, the range of normalized mode amplitudes within the k
bin is similarly spread out. These trajectories look rather random,
but are deterministic, driven by the evolving phase and amplitude
couplings between each mode and all other modes (i.e. the rest of the
density field; e.g. Bernardeau et al. 2002). The distribution of mode
amplitudes at a given time is the one-point distribution function
studied by Bardeen et al. (1986) and Matsubara (2007).

The Fourier modes of a Gaussian random field have a distribution
function that is Rayleigh-distributed (Bardeen et al. 1986):

PG(Ak, θk) dAkdθk = 2Ake−A2
k dAk

dθk

2π
(5)

(see equation 68 in Matsubara 2007). In the upper panels of Fig. 8,
we show the one-point distribution function of Fourier modes from
320 Indra simulations for the four k bins given in Table 1 and three
values of the scale factor, a = 0.2, 0.5, and 0.8, corresponding to
redshifts of z = 4, 1, and 0.25. The lower panels of Fig. 8 show the
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Figure 7. Evolution of normalized Fourier modes of the density field for
a random selection of wavevectors in a bin of wavenumber in one Indra
simulation.

Table 1. The wavenumber bins, their corresponding range of scales, and
the number of wavevectors (for one simulation) in each bin. Thus, the total
number of modes in each bin is Nm multiplied by the number of simulations
used, which is 320 in this paper.

|k| ( h Mpc−1) δk l ( h−1 Mpc) (lmin, lmax) Nm

0.02 0.015 314 (180, 1256) 417
0.06 0.005 105 (97, 114) 998
0.30 0.001 20.9 (20.87, 21.01) 4548
0.60 0.001 10.47 (10.45, 10.49) 1224

difference between these distribution functions and that of a Gaussian
random field. All of the distribution functions appear to be relatively
consistent with a Rayleigh-distributed Gaussian random field.

As Fig. 8 shows, there is very little difference between the
distribution functions at different times and scales. However, Fig. 7
shows differences in the time-evolution of individual Fourier modes
at different scales. In Fig. 9, we show summary statistics of the
one-point distributions of Fourier modes as a function of scale
factor. The upper panel shows the ratio of the mean to the standard
deviation, μ/σ , which has a constant value of

√
π/(4 − π ) �

1.913 for a Rayleigh-distributed Gaussian random field. The lower
panel shows the evolution of the skewness, which is equal to
(2

√
π(π − 3))/(4 − π )3/2 � 0.631 for a Gaussian random field.

The error bands are given by the standard errors of each statis-
tic, assuming that the statistics are Gaussian distributed (Harding,
Tremblay & Cousineau 2014). The largest scale mode, at k =
0.02 h Mpc−1, is the only one for which the statistics lie outside
those of a Rayleigh distribution. This may be because there is
a factor of 2 fewer modes in this largest bin than the k =
0.06 h Mpc−1 bin. It is also interesting to note the oscillation of
the distribution function statistics of the smallest scale mode, k =
0.6 h Mpc−1, but further investigations are outside the scope of this
paper.

3.3.3 Scale-dependent evolution

In linear theory, the matter density contrast δ evolves independently
of scale. The linear growth function DL(a) can be defined via

δ(a) = DL(a)δ(a = 1). (6)

For a flat universe where �M + �� = 1,

DL(a) = 5/2 �M

√
�M/a3 + �L

∫ 1

0

da

(a
√

�M/a3 + �L)3
, (7)

which reduces to DL(a) = a when �M = 1.
When δ � 1, the evolution becomes non-linear, and the k-

modes no longer evolve independently, an effect known as mode-
coupling (Meiksin & White 1999; Scoccimarro, Zaldarriaga & Hui
1999). In this case, one can solve for the evolution of the density
field perturbatively:

δ(a, k) ≈ D(a)δ(1)(k) + D2(a)δ(2)(k) + ... (8)

Taking the first order only, and approximating δ(1)(k) as the density
field of the first output of the simulations at z = 127, we measure
the mode-dependent growth function D(a, k) as the amplitude of the
ratio of the complex Fourier modes of the density field:

D(a, k) = |δk(a)/δk(z = 127)|. (9)

We then divide this by the mode-independent linear growth function,
calculated from the analytic solution in equation (7) and scaled by
the growth function at z = 127:

D(a) = DL(a)/DL(z = 127). (10)

The ratio is then

D(a, k)/D(a) = |δk(a)/δk(z = 127)|
DL(a)/DL(z = 127)

. (11)

When this ratio deviates from unity, that is a sign that the evolution
is non-linear and the mode-coupling term is important.

The collection of D(a, k)’s that contribute to a k bin can exhibit
a large amount of variation for one simulation and across many
realizations of random initial phases. Fig. 10 shows the evolution of
the mode-dependent growth function for 20 random wavevectors in
the four k bins defined in Table 1. Note that the y-axis ranges change
for each wavenumber. Also shown are the median, mean, and inner
68 per cent percentiles of the distributions of all wavevectors within
each wavenumber range over 320 Indra simulations, shown in black.

At a given a, the distribution of mode-dependent growth functions
for the largest mode is very nearly Gaussian, while the BAO
(105 h−1 Mpc), mildly non-linear (20.9 h−1 Mpc), and more non-
linear (10.5 h−1 Mpc) distrubutions are positively skewed. It turns
out that these distributions, for a given scale factor, are very nearly
lognormal. In Fig. 11, we plot the sigma-normalized mean of the
logarithm of these distributions, or explicitly, 〈ln (D(a, k)/D(a))〉, as
a function of the scale factor. Here, the average 〈〉 is taken over
the simulations in the Indra ensemble and the modes in each k bin.
Notably, the means of the two largest scale bins are below zero,
meaning the means of the mode-dependent growth functions are less
than the linear growth rate, at all scale factors, while the two smaller
scale modes are above zero and grow over time. This shows how
energy cascades from large to small scales as a result of mode–mode
coupling.

As with the Fourier mode distribution functions in Fig. 8, it is
illustrative to look at the full distributions of the mode-dependent
growth function at a given scale-factor. In Fig. 12, we show the
distributions of ln (D(a, k)/D(a)) in four k bins, normalized by

MNRAS 506, 2659–2670 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/2/2659/6317622 by U
niversity of D

urham
 user on 19 August 2021



The Indra simulations 2667

Figure 8. Upper panels: One-point distribution functions of normalized Fourier amplitudes of the density field in four k bins and at three values of the scale
factor, measured for 320 Indra simulations. Lower panels: Difference between the Indra distribution functions and those of a Gaussian random field. The error
bars correspond to Poisson errors.

Figure 9. Statistics of Fourier mode distribution functions as a function of
scale-factor in four k bins. The upper panel shows the ratio of the mean to the
standard deviation, along with its value for a Rayleigh-distributed Gaussian
random field, while the lower panel shows the skewness and its Gaussian
value. The bands show the standard errors of each statistic.

their standard deviations, for three different scale factors. Recall
from equation (9) that we have defined the mode-dependent growth
function as the amplitude of the complex Fourier modes of the density
field, δk(a), normalized by δk(z = 127) as a proxy for the linear
density field, and that the ratio D(a, k)/D(a) is near unity when the
density field evolves linearly. Even after normalizing the width of the
histograms by their standard deviations, which is much larger for the

Figure 10. Mode-dependent growth function evolution for a random selec-
tion of wavevectors having the same wavenumber, as well as the median
(solid), mean (dotted), and 16th and 84th percentiles (dashed) of the
distributions of all wavevectors having within the given range of wavenumber
over 320 Indra simulations. Wavelengths of modes in the middle of each bin
appear in the upper left corner of each panel.

smaller scale modes, the distributions become wider as k increases
and the growth function tends to deviate far from the linear theory
value. The distribution of the largest-scale mode (|k| = 0.02 h Mpc−1)
is sharply peaked around 0, which is expected for linear
evolution.
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Figure 11. Evolution of the sigma-normalized mean of the logarithm of the
mode-dependent growth function, D(a, k).

4 C O N C L U S I O N S

Indra is a suite of cosmological N-body simulations made avail-
able and computationally accessible through the SciServer science
platform. Each of the 384 ( h−1 Gpc)3 volumes was run with the
same cosmological parameters and different realizations of the initial
conditions, providing the means to calculate precise averages and
covariances on large scales. The large number of saved snapshots (64)
for each simulation provides excellent redshift coverage and enables
the calculation of halo merger trees, semi-analytic catalogues, and
other derived data products.

In this paper, we have presented ensemble averages, variances, and
covariances for each of Indra’s three main data products: dark matter
particles, halo catalogues, and Fourier-space density grids. We also
studied in detail the one-point distribution function of the Fourier-
space density field and the evolution and mode dependence of the
growth function. We anticipate that the suite of Indra simulations
will enable a variety of scientific investigations, such as

(i) conditional statistics: mass functions, correlation functions,
and power spectra conditional on, e.g. a density criterion (see e.g.
Massara et al. 2020);

(ii) extreme statistics, e.g. of very large or very rare structures (see
e.g. Watson et al. 2014);

(iii) re-simulations of interesting structures at higher resolution
[enabled by Panphasia (Jenkins 2013) initial phases];

(iv) new data bases of structures: haloes from other halo finders,
voids, or filaments defined by haloes or by the dark matter particles,
etc.;

(v) ‘event data base’ of interesting things from the full suite, e.g.
merging clusters;

(vi) suites of mock galaxy catalogues and light-cone catalogues,
optimized by fast spatial searches and well sampled over a large
range of redshifts;

(vii) studies where a full N-body reference ensemble would
benchmark tests of, or eliminate the need for, suites of approximate
simulation methods; and

(viii) the development of machine learning methods requiring
large training sets of structure formation on 10–100 h−1 Mpc scales.

The ability to ask these and other scientific questions of the
petabyte-scale Indra simulations is supported by the data stor-
age and computational infrastructure of the DataScope and SciS-
erver (Taghizadeh-Popp et al. 2020). For modern data sets of the
size as the Indra suite, it becomes unfeasible to require users to
download the data for local analysis. Instead, a science platform
such as SciServer allows users to bring their analysis to the data.
In this paper, we have presented patterns of storage (data base and
distributed file systems) and compute (Jupyter notebooks in Docker
containers) developed for SciServer that we found useful for large
simulation data and that can in principle be replicated by other teams.
SciServer itself has been deployed in a number of other institutes and
various groups are building their own science platforms. Current and
future large-scale structure surveys such as Euclid, Roman, DESI,
and the VRO also require large suites of simulations to perform their
analysis, and we would strongly encourage those groups to publish
any simulation data catalogues together with their observational data.

We believe that making Indra available in an environment such
as SciServer is worth the considerable effort and resources. Making
the data explorable and interactive, without the need to download
terabytes to a local compute environment, opens up discovery space
to the community of simulation experts as well as students and the
public.

Figure 12. Distribution functions of σ -normalized ln (D(a, k)/D(a)) in four k bins and at three values of the scale factor, measured for 320 Indra simulations.
The σ -normalized mean values of the distributions are given as vertical lines under the histograms, showing that the two larger scale modes have means less
than 0, and the two smaller-scale modes have means greater than 0. See Fig. 10 for a sense of distribution widths without σ -normalizing; the distributions are
narrow at low k.
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A P P E N D I X : AC C E S S I N G A N D A NA LY S I N G T H E
INDRA SIM U LATIONS

Indra is accessed by creating an account on the SciServer science
platform (Taghizadeh-Popp et al. 2020) at http://www.sciserver.org.
SciServer users have access to public data sets and SQL data
bases, private data storage, file-sharing and group collaborative tools,
and the interactive and batch-mode compute environments. Users
effectively opt-in to data sets they are interested in by choosing
the appropriate Science Domain; Indra is in the Cosmological
Simulations Science Domain, which also contains data from the
Millennium simulations. Once a user joins this Domain, they will be
able to query the Indra data base in CasJobs and load the Indra data
and software in a Compute container, both of which are reached from
SciServer Dashboard after you log in. General SciServer tutorials can
be found at http://www.sciserver.org/support/help/.

All of the Indra data, including the data base of halo catalogues, can
be analysed in a Compute container. When creating a new container,
choose the Cosmological Simulations compute image, which has
INDRA-TOOLS9 and some other simulation software pre-installed, and
check all of the Indra Data Volumes. The INDRA-TOOLS GITHUB

repository includes several example Jupyter notebooks to help get
users started with accessing the data and performing some analysis:

9http://github.com/bfalck/indra-tools

Figure A1. Left: Particles in a sphere around the most massive halo in run
2 0 0 at z = 0 whose radius is three times the radius of the halo. Right:
Particles identified as being in this halo.

(i) read examples: How to read all of the data products: snapshots
of particle positions and velocities, plus pre-computed power spectra
at select snapshots; Fourier modes of the coarse-gridded density field;
and the halo and subhalo catalogues, including how to index the halo
catalogues and retrieve IDs of particles in haloes.

(ii) database examples: How to query the halo data base tables,
including sample queries that demonstrate how to select from one
run and snapshot, one run and multiple snapshots, and one snapshot
and multiple runs.

(iii) density field examples: How to compute real-space density
fields from the Fourier-space density fields and from the snapshots
of particle positions as well as how to create quick slices for plots
using the Shape3D functionality.

(iv) Shape3D examples: How to use Shape3D objects to effi-
ciently read subsets of particles contained in spheres, boxes, cones,
and cone segments to, e.g. grab all particles around (or in) a given
halo or create light-cones.

Since reading all 10243 particles from one snapshot can take
some time, the Shape3D functionality can significantly speed up
analyses that are only concerned with portions of the full volume.
This functionality uses the spatial indexing library developed for
numerical simulations (Lemson et al. 2011) to define shapes within
a periodic volume and selectively read only those particles contained
within the shape. Fig. A1 demonstrates the result of querying the
most massive halo for run 2 0 0 at z = 0 from the data base and
reading all particles in a sphere around that halo, which takes a few
seconds to execute. The right-hand panel shows only those particles
identified as being within the halo, which can take 1–2 min because
it requires reading the entire binary halo catalogue and the halo
particle IDs for that run and snapshot. This is one of the examples in
the Shape3D examples notebook.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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