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precipitated shifts in kinship patterns, but

not phenotypes.
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SUMMARY
Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms
of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in
the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from com-
mingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide
the first genomic characterization of Bronze Age individuals (n = 8; 0.001–1.23 coverage) from the central Ital-
ian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of
ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian
Peninsula as early as 1600BCE,with this ancestry component increasing through time.We detect close patri-
lineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the
Bronze Age (2200–900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in
population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy
directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman
2576 Current Biology 31, 2576–2591, June 21, 2021 ª 2021 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Imperial period had a stronger influence, particularly on the frequency of variants associated with protection
against Hansen’s disease (leprosy). Our study provides a closer look at local dynamics of demography and
phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the
Chalcolithic/Bronze Age transition.
INTRODUCTION

The Italian Chalcolithic (or Copper Age [CA]; 3600–2200 BCE),

the period between the Late Neolithic (N) (7000–3600 BCE)

and the Bronze Age (BA) (2200–900 BCE), is characterized by

the development of new tools from different metallic sources

and was followed by major cultural transformations, including

that of burial practice—from an emphasis on the collective to

the individual and of personal, prestige grave goods.1,2 Ancient

DNA (aDNA) studies have highlighted the occurrence of major

shifts in the genetic profiles of populations coinciding with mate-

rial culture changes, such as from hunting-gathering to

farming.3–6 At the beginning of the transition from the Chalco-

lithic to the BA �5,000 years ago, people from the Eurasian

Steppe arrived in Europe, resulting in further admixing with local

populations.7–10 Although these events have been extensively

studied in most of Europe4,11,12 and a number of studies on

ancient genomes from the Italian Peninsula, Sardinia, and Sicily

have been recently published,4,7,9,13–17 the demographic dy-

namics of the Chalcolithic/Early BA in the Italian Peninsula are

still not well characterized. Though previous studies place the

arrival of a Steppe-related ancestry component in Northern Italy9

and in Sicily16 after 2300 BCE, a chronological gap from 1900 to

900 BCE is present, and little is known about the spread of

Steppe-related ancestry in Central Italy. In addition, the available

data show an Iranian N-related component detected in Sardinia

after 900 BCE,16,17 although affinities to Caucasus hunter-gath-

erers (CHG) and Iran N farmers are present in Central Italian N in-

dividuals13 and in Middle BA Sicily,16 at a lower proportion than

modern Italians.11 However, although the BA CHG affinity in Si-

cily is supported by f4 statistics, the evidence for the N CHG

influx is less robust. Furthermore, with a few exceptions,18,19

previous surveys have focused primarily on describing ancestral

relationships or inferring movement and mixtures of populations

at the expense of questions focusing on the social dynamics

associated with these events, e.g., evaluating the kinship struc-

ture in prehistoric society.

aDNA is proving a useful tool for helping to infer past social

structures and reproductive behavior (reviewed in Racimo

et al.20). In N Europe, several studies have detected a wide-

spread cultural connection of patrilineal social organization21,22

as well as for the BA transition with large-scale, sex-biased mi-

grations,8,23,24 local patterns of patrilocality and female exog-

amy,18,25 and the influence of cultural diffusion versus migra-

tion.9 Although the social implications of these changes are still

debated,26 cultural shifts can have an effect on adaptation

(e.g., a change in technology leads to a change in diet, leading

to selective pressure on metabolism genes). So far, the social

structure(s) in Central Italy during the Chalcolithic/BA transition

and whether shifts in cultural practices (kinship, patrilocality,

and exogamy) correlate with the introduction of Steppe-related

ancestry remains unexplored. This may be partially due to the

fact that, although there exists a wide variety of burial practices
in the Chalcolithic period in Italy, they are often characterized by

collective depositions of commingled remains.2 This has made

the anthropological analysis of the burial populations and inter-

pretations regarding kinship and social structure difficult; how-

ever, high-throughput aDNA sequencing allows for the genetic

screening of large numbers of skeletal samples and reconstruc-

tion of individuals from disarticulated remains.

In addition to reshaping our understanding of the demographic

history of the European continent, analyses of ancient genomes

from Europe have recently called into question hypotheses

regarding the time depth of selection on phenotypic traits in

Europe. For example, aDNA has revealed that Mesolithic hunt-

er-gatherers in Europe could have dark skin and blue eyes

(a combination rarely seen today)27–29 and that selection on

skin pigmentation occurred in the last 5,000 years.30,31 Other

recent work has suggested that selection within genes related

to fatty acid metabolism and starch digestion did not take place

during the transition to agriculture but instead initiated closer to

2000 BCE following the introduction of Steppe-related ancestry

into Europe,31 with the ancestry component itself a possible

driver. Another open question, that of the role of pathogens in

shaping human genomes, is now starting to be explored using

aDNA. One particular pathogen, Hansen’s disease (leprosy), is

first seen in paleopathological evidence in the Mediterranean

dating to the BA32 and is noted in Central and Northeast Italy

by 300 BCE.33 The disease may have been later spread by Ro-

man military movements34 and increased to high numbers in Eu-

rope in the Early Medieval Period, but declined by the 15th cen-

tury CE, and the role of human genetic adaptation in this decline

is unknown. There are a number of genetic loci that have been

implicated in the manifestation and progression of the infec-

tion,35–38 including one recently discovered using aDNA.39

Here, using an aDNA approach, we investigated the diversity

of ancestry components prior to and through the Chalcolithic/

BA transition in Northeastern and Central Italy and whether shifts

in Steppe-related ancestry correlate with changes in inferred so-

cial structure and/or phenotypic traits.

RESULTS

We extracted DNA from 51 skeletal elements (teeth = 37,

petrous bones = 10, and additional powder from petrous

bones = 4) at the Ancient DNA Laboratory of the Institute of

Genomics, University of Tartu in Estonia. The human remains

are from one necropolis (Necropoli di Gattolino; hereafter,

‘‘Gattolino’’) and three cave sites located in Northeastern

(Grottina dei Covoloni del Broion: ‘‘Broion’’) and Central Italy

(Grotta La Sassa: ‘‘La Sassa’’ and Grotta Regina Margherita:

‘‘Regina Margherita’’; Figures 1A and S1). After screening 47

libraries at a low depth (±20M reads per library), we identified

and sequenced 20 libraries with more than 4% endogenous

human DNA and mtDNA-based contamination estimates

less than 1.44% (Data S1A and S1B). For the disarticulated
Current Biology 31, 2576–2591, June 21, 2021 2577
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Figure 1. Geographical location of samples and relative or absolute dating

(A) Map of the geographical location of selected published (smaller, transparent) and newly generated samples from the Italian Peninsula, Sardinia, and Sicily

included in this study. The titled locations are here newly reported. See also Table 1 and Data S1.

(B) Distribution of relative and absolute dating and genetic assignment from newly generated samples (i) and published (transparent; order: [ii] Italian Peninsula; [iii]

Sardinia; and [iv] Sicily).

See also Data S1A–S1D.
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remains in the cave sites, we calculated the pairwise

mismatch rate of SNPs (P0) on pseudo-haploid data as imple-

mented in READ40 to identify genetically identical samples

and attempt to calculate a minimum number of individuals

(see STAR Methods and Data S1B for details).

The sequences of identical samples were merged together,

leaving 22 unique individuals: eleven from Broion (Italy_

Broion_CA = 4, Italy_Broion_EBA = 2, and Italy_Broion_BA =

5), four from Gattolino (Italy_Gattolino_CA), three from Regina

Margherita (Italy_ReginaMargherita_BA), and four from La Sassa

(Italy_LaSassa_CA). The final data are composed of individuals

with endogenous DNA between 0.48% and 48.87%, average

genomic coverage between 0.00163 and 1.243, and estimated

contamination rates of 0.00%–1.44% (mtDNA-based) and

0.45%–1.98% (X-chromosome-based in males only; Table 1;

Data S1A and S1B).

In order to characterize the timing of genetic shifts related to

the presence of ancestry from the Steppe and to assign
2578 Current Biology 31, 2576–2591, June 21, 2021
individuals in commingled contexts within chronological space,

we relied on two forms of temporal assignment: archaeological

evidence (e.g., ceramic fragments, a significant amount of

metallic tools found with the human remains, and geological

layers; STAR Methods) and direct radiocarbon dating of 12 of

the 22 individuals here sequenced (Figure 1B; Data S1C; STAR

Methods). Of the ten undated samples, the age of BRC013 can

be inferred as ± the average reproductive span of a woman

(30 years) to a directly dated sample (BRC022) from the first-

degree relatedness (likely brothers), although for the other

nine (BRC007, BRC011, BRC024, LSC011A1, GCP002A1,

GCP004A1, GLR001A1, GLR002A1, and GLR004), we assigned

them to the most parsimonious group, considering both archae-

ological and genetic information.

Genetic structure of Italy from the N to the Iron Age
To compare Chalcolithic and BA individuals from Italy to other

ancient and contemporary European populations, we performed



Table 1. Archaeological information, genome coverage, genetic sex, mtDNA, and Y chromosome haplogroups of the individuals of this study

Individual Site Date Genome coverage Gen. sex mtDNA HG Y chromosome HG No. of SNPs

BRC001/023 Broion 4430 ± 40 BP; 3313–2934 cal

BCE

0.172 XY J2a1a1 G2a3-F1193-F2291 231,702

BRC002 Broion failed C14 dating 0.143 XY N1a1a1a1 R1b1-DF90 200,133

BRC003 Broion 3239 ± 31 BPa; 1532–1452

cal BCE

1.235 XY U4a2f R1b1’5-P312 920,226

BRC007/019 Broion 3272 ± 29 BP; 1608–1502 cal

BCE

0.189 XX K1a1b1 – 259,050

BRC010/018 Broion 3532 ± 35 BP; 1926–1775 cal

BCE

0.360 XX H+16291T – 437,478

BRC011 Broion not dated 0.0025 XY T2c1+146T! – 3,606

BRC013 Broion failed C14 dating 0.052 XY H5a1b G2a3-F705 70,071

BRC015 Broion not dated 0.0016 XY T2c1e – 2,145

BRC022 Broion 4489 ± 41 BP; 3334–3100 cal

BCE

0.145 XY H5a1b G2a3-F1193 188,166

BRC024 Broion not dated 0.0144 XY HV0a R1 19,590

BRC030 Broion 3502 ± 41 BP; 1886–1751 cal

BCE

0.110 XX K1a4a1e – 145,106

GCP002 Regina Margherita failed C14 dating 0.138 XY U5b2b5 G2 181,152

GCP003 Regina Margherita 3277 ± 29 BP; 1608–1504 cal

BCE

0.138 XX H3am – 180,991

GCP004 Regina Margherita not dated 0.0052 XX U5b2b3 – 7,278

GLR001 Gattolino not dated 0.214 XX K2b1b – 262,814

GLR002 Gattolino not dated 0.129 XY J1c3e1 I2d-L623/M223 163,883

GLR003 Gattolino 4829–4627 BP; 2874–2704

cal BCE

0.008 XX H10d – 10,863

GLR004 Gattolino not dated 0.122 XY H3am I2b-M26 157,772

LSC002/004 La Sassa 4091 ± 29 BP: 2840–2575 cal

BCE

1.014 XY H1bv1b J2a7-Z2397 903,958

LSC005/013 La Sassa 4097 ± 39 BP; 2847–2575 cal

BCE

0.1323 XX H1e5a – 176,120

LSC007 La Sassa not dated 0.0029 XY H1bv1b – 4,033

LSC011 La Sassa 4073 ± 37 BP; 2837–2498 cal

BCE

0.063 XY J1c1 J2a-M410 (J2a7-Z2397) 83,596

Dates in BP are raw radiocarbon dates; calibrated dates are the 68.3% probability and were calibrated using IntCal2041 and either CALIBREV8.242 or OxCal 4.443 (GLR003). See also Data S1. Gen.,

genetic; HG, haplogroup.
aSample failed C14 dating, but a genetically identical sample was able to be dated
bIndicates identical haplotype ll
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Figure 2. Overview of genetic structure

(A) Principal component analysis (PCA) of newly generated individuals with previously published data projected onto the variation from present-day populations

(Data S1D).

(B) DyStruct analysis of newly reported ancient individuals (bold) numerically ordered at K = 4 together with a subset of key ancient Eurasian populations spanning

from Neolithic to Iron Age. The icons on the right of the graph indicate the symbols of the population as shown on the PCA in (A). Samples with lc indicate low

coverage samples generated in this study. See also Figures S2–S4A.

(C) Analysis of the Steppe-related ancestry components in selected published (transparent) and newly generated ancient samples (X) from the Italian Peninsula

using f4 statistics in form f4(Mbuti.DG, Yamnaya Kalmykia; X, Anatolia Neolithic) (samples with * have a Z score less than or equal to �3). Tests with less than

5,000 SNPs were not included.

See also Data S2B and Figure S4B.
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principal-component analysis (PCA), projecting ancient samples

onto the genetic variation of 1,471 present-day individuals from

Eurasia (Figures 2A and S4A).44,45 Our newly generated samples

scatter into two main clusters: European N (EN) (blue circle) en-

compassing all the Chalcolithic samples (Italy_LaSassa_CA, Ita-

ly_Gattolino_CA, and Italy_Broion_CA) and post-Neolithic (PN)

(red circle), including Early Bronze and BA samples from Grotta

Regina Margherita and Broion. Interestingly, most of the N,
2580 Current Biology 31, 2576–2591, June 21, 2021
Chalcolithic, and BA Italian samples available from the literature

fall within the EN cluster, although PN ismostly featuring Iron Age

(IA) samples together with a few published BA individuals. This

can be reconciled by the fact that most of the Italian BA samples

available to date come from Sardinia and Sicily, two Mediterra-

nean islands for which a reduced Steppe-related ancestry

component has already been reported.6,11,16,17,46 This is

confirmed by DyStruct analysis (Figures 2B and S2), which



B

A

Figure 3. Ancestry composition of European and Italian ancient
samples

(A) We used Chromopainter in the unlinkedmode to reconstruct the genome of

European (for which only a subset of relevant samples was analyzed) and

Italian ancient individuals as a combination of six main putative sources. See

also Figure S6.

(B) The same framework has been used on a vector composed of 4,950

different f4 in the form f4(X, Y; Target, Mbuti.DG). Mbuti.DG has not been used

as a source.

See also Data S2 and S3.
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also shows a high Anatolian N-like component in Sardinian and

Sicilian individuals from the Chalcolithic and BA.

A separation within the EN cluster (Figure 2A) clearly differen-

tiates Anatolian and Eastern Europe N (right) from Western Eu-

rope N, defined as samples west of Germany (left, toward west-

ern hunter-gatherer [WHG]; Data S1D). A similar separation has

already been reported and interpreted as a difference in WHG

proportion of these samples.17,47–49 We note that most of our

Chalcolithic individuals fall on the right side of the cluster (Anato-

lia and Eastern Europe).

We furtherexplored theaffinitybetween ItalianChalcolithicsam-

ples and WHG by computing f4(Mbuti.DG, Italy_Mesolithic.SG;

Italy_Sardinia_N, X) (Data S2H) where X is either Italy_N, Italy_

LaSassa_CA, Italy_Gattolino_CA, or Italy_Broion_CAandnegative
Z scores (min = �12.942; max = �3.026) indicate that Italy_

Central_Mesolithic shares more with Italy_Sardinia_N than with

peninsular Italian Chalcolithic. At the same time, we also tested

f4(Mbuti.DG, Anatolia_N; Italy_Sardinia_N, X), for which only the

comparison with Italy_Gattolino_CA yields significantly negative

values (Z score = �3.753), suggesting that either an imbalance in

WHG and Anatolia_N components between the two sides of the

EN cluster or structure within the EN component9,50 may explain

our results. We note however that outgroup f3 statistics in the

form f3(Mbuti.DG; Italy_CA, Y), where Italy_CA are all Chalcolithic

samples from the Italian Peninsula and Y are members of the EN

clusters may have no power to discriminate the observations

from the PCA analysis (Data S1K). Some studies have detected

an influence fromgroups related to hunter-gatherers fromGeorgia

and Iran starting from the N;13,51 however, our f4 of the form

f4(Mbuti.DG, Georgia Kotias; Italy_Sardinia_N, X) is not significant

for any of the pre-BA Italian groups (Data S2H).

We have evaluated the possibility of continuity at the interface

between N/Chalcolithic and BA, using the qpWave/qpAdm

framework (using the option ‘‘allsnps=YES’’; Data S3G and

S3H). When using two putative sources, all the target BA groups

fromNorth and Central Italy presented here support a scenario in

which Chalcolithic-like individuals received a contribution of

Steppe-related ancestry, possibly through Late N/Chalcolithic

groups from the north, such as Germany Bell Beaker, France

Middle N, and Italian Chalcolithic sources (Data S3G and S3H).

Model-based clustering analysis (DyStruct [Figures 2B and S2]

and ADMIXTURE [Figure S3])52,53 of selected ancient and pre-

sent-day individuals from Eurasia spanning from the Mesolithic

to the IA points to the presence of a Steppe-related ancestry

component in BA individuals from Italian Peninsula as the main

difference from the Sardinian and Sicilian individuals, explaining

the distribution of individuals between PN and EN in the PCA

(Figure 2A).

We tested this through f4(Mbuti.DG, Yamnaya Kalmykia; X,

Anatolia_N) (Figures 2C and S4B; Data S2B)7,9,13,15–17,54 with

X being Italian post-Mesolithic (only considering tests when at

least 5,000 SNPs were available) and show that the only indi-

viduals with a significant enrichment for Steppe-related

ancestry components are included within the newly generated

Early BA and BA, and in published Bell Beaker (I2478 and

I1979) or Italian IA individuals. Contrary to what has been pre-

viously reported for other Chalcolithic to BA transitions in

Europe,23 we also noted through outgroup f3 tests in form

f3(Italian_CA/Italian_EBA_BA, ancient; Mbuti.DG) (Data S2K)

that populations associated with Steppe-related ancestry did

not leave a male-biased signature in Italy, which, if at all, can

instead be seen through the contribution of pre-existing N

groups (Figure S5).

We recapitulated the emerging picture using two orthogonal

methods based on copying affinity, Chromopainter/NNLS55

and SOURCEFIND,56,57 and on the comparison of multiple f4

pairs (Figure 3). Concerning the novel samples, both approaches

show an overall consistency with DyStruct (Figures 2B and S2),

highlighting the post-N increase of European hunter-gatherer

(HG)-related components10,15 and the arrival of Steppe-related

ancestry, with the only exception being that of Sardinia in the

Early BA. Additionally, the Anatolian N and WHG proportions re-

ported for the Italian N and Chalcolithic samples are similar
Current Biology 31, 2576–2591, June 21, 2021 2581



Table 2. Comparison of pairwise estimates of Chalcolithic genomes

ID1 ID2

Non-

normalized

P0 SE

READ

relationship Z upper Z lower IBD1 IBD2 Plink Fxy Degree Relationship

BRC013 BRC022 0.255 0.003 first degree 6.23 �13.73 0.44 0.22 0.22 first sibling

LSC002/4 LSC011 0.266 0.002 first degree 3.37 �33.09 0.71 0.06 0.21 first parent-

offspring

LSC007 LSC002/4 0.244 0.005 first degree 4.46 �6.86

BRC001 BRC013 0.298 0.003 second degree 2.94 �7.74 0.37 0.03 0.11 second avuncular or

grandparent-

grandchild

BRC001 BRC022 0.323 0.002 unrelated NA �6.87 0.21 0.04 0.07 third 1st cousin

Kinship coefficient, Fxy, was estimated in PLINK 1.9.059 as 1/2 of the reported PIHAT value. PLINK-genome analyses used an input file of 16 imputed

genomes and a total of 5,526,356 variants with MAF > 0.05 and GP > 0.99. Reported are pairs of individuals in which at least one was >0.13 coverage

and who shared more than 12% of IBD. READ does not calculate third-degree relationships, rather categorizes them as ‘‘unrelated.’’ LSC007 was too

low coverage for imputation; thus, the pair with LSC002/4 was not estimated using PLINK. See also Data S4.
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regardless of their position within the EN cluster identified in the

PCA (Figure 2A).

We determined mitochondrial DNA (mtDNA) haplotypes for all

newly generated samples (Table 1; Data S1B and S1E) and Y

chromosome (Ychr) haplogroups for ten males with Ychr

coverage >0.013 (Table 1; Data S1B and S1F). Consistent with

the previously reported co-spread of Steppe-related ancestry

and Ychr haplogroup R1,7,10 we observed that three out of the

four Italian BA males for which a Ychr haplogroup could be

determined belong to haplogroup R1 and two of those were of

the R1b lineage (Table 1; Data S1B and S1F). This haplogroup

does not appear in the Chalcolithic samples. The two Italian

R1b lineages belong to the L11 subset of R1b, which is common

in modern Western Europe58 and in ancient male Bell-Beaker

burials,9 rather than to the R1b-Z2105 varieties found in the

ancient genomes from the Steppe-Belt of Russia.

Structure and mobility in the Chalcolithic and BA
The sites examined in this study include one necropolis with sin-

gle burials (Gattolino, 2874–2704 BCE), and the rest are com-

mingled cave burials (Broion, La Sassa, and Regina Margherita).

Samples in this study from La Sassa are restricted to the Chalco-

lithic period (2850–2499 BCE) and from Regina Margherita to the

BA (1609–1515 BCE). The Broion site is the only one that spans

both phases: the Chalcolithic (3335–2936 BCE) and the BA

(1923–1451 BCE). To better understand the site usage, whether

differences are present between cave and cemetery burials and

whether shifts in burial behavior occurred concurrently with

shifts in genetic ancestry, we analyzed uniparental markers

(informative of maternal versus paternal lineage diversity and

mobility), genetic kinship (informative of mobility of family struc-

ture), and runs of homozygosity (ROHs) (which can indicate the

size and homogeneity of a population).

In total, the Chalcolithic and BA sample sizes are approxi-

mately equal (n = 12 and 10, respectively), and the total number

of males and females does not differ from expectations (bino-

mial; p = 0.143); however, the ratio of males to females (7:1)

within the Chalcolithic cave burials does differ from the expected

value (binomial; p = 0.038), although it does not within the BA

layer of Broion and Regina Margherita (5:5; binomial; p = 0.50)
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or in the Chalcolithic necropolis of Gattolino (2:2; binomial; p =

0.5). These results indicate a slight bias in the Chalcolithic cave

burials toward males.

To identify whether first- and/or second-degree genetic

kinship relationships existed among individuals within or be-

tween the four sites or between the new genomes and published

ancient datasets (Data S4), we utilized two methods. First, for

initial determination of kinship degrees, we utilized a pairwise

mismatch estimation on the pseudo-haploid data (READ).40

We ran the analysis on all of the newly reported ancient genomes

together as one group as well as in groups by site and/or

chronology (separated into N/Chalcolithic and BA) and found

consistent results, regardless of grouping (Data S4A). To distin-

guish relationship type within degree (e.g., first degree, full sib-

lings versus parent-offspring), we used IBD analysis as imple-

mented in Plink-1.959 on imputed genotypes (STAR Methods).

Genotypes were imputed using a pipeline detailed in Hui

et al.60 and STAR Methods, and in the case of close (1 to 2) de-

grees of relationship, both methods provided consistent results

(Table 2).

We found no relationships among the seven tested BA individ-

uals, between any of the newly presented sites, or with published

data (DataS4); however, the small sample size suggests caution in

inferring patterns of general validity from these individuals. For the

twelve Chalcolithic individuals, close kinship relationships were

detected at both cave burial sites: La Sassa and Broion and all re-

lationships were detected between males (Tables 1 and 2). At La

Sassa, the two males LSC002/004 and LSC011 have an identical

Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and

S1F), different mtDNA haplotypes (H1bv1 and J1c1; Table 1;

Data S1B and S1E), a first-degree relationship, and a proportion

of IBD (PI_HAT) values consistent with parent-offspring (Table 2),

the summary of which indicates a father-son relationship. The na-

tureof calibration curves for radiocarbondatingprevents theexact

estimation ofwho is the father; however, the radiocarbon dates do

not reject the relatedness inferred from aDNA (Data S1C; STAR

Methods). Very low coverage sample LSC007 appears to have a

first-degree relationship with LSC002/004 (Data S1B; Figure S4),

and they share an identical mtDNA haplotype (H1bv1). LSC007

was too low coverage to assess the Ychr.
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The chronologically contemporaneous female LSC005/013

(H1e5a) does not have any detectable close genetic kinship rela-

tionships, clusters separately from the males on the PCA, and

hasa strontium isotopesignature that falls outside the rangedeter-

mined for the rest of the sampled teeth in La Sassa (n = 27; STAR

Methods). To test whether LSC005/013 was genetically more

similar to another population than the other La Sassa individuals,

we tested f4(Mbuti.DG, LSC005A1_LSC013; Italy_LaSassa_CA,

Other Sample/Population). There are positive non-zero Z scores

for a few contemporaneous populations, however, nothing above

the significance threshold (Data S2G). The summary of evidence

indicates that she may not have grown up in the same local area

as the other La Sassa individuals, but her genetic affinities require

higher coverage and more comparative samples to be certain.

At Broion, all the individuals directly dated to the Chalcolithic

(BRC001, BRC013, and BRC022) and/or that fall in the EN clus-

ter (BRC011; Figure 2A) are males, and all of the directly dated

individuals show first- and second-degree relationships (Tables

1 and 2; Data S1). These three share the Ychr G2a-P15 marker

and could have the exact same haplotype (G2a3-F1193-

F2291; Table 1; Data S1B and S1F); however, due to differences

in coverage, the terminal branch markers are not covered in all

three individuals (Data S1F). BRC013 and BRC022 share an

mtDNA haplotype (H5a1; Data S1B) and have a first-degree rela-

tionship although BRC001/023 (J2a1a1) has a second-degree

relationship with BRC013, but not BRC022 (Table 2). The PI_HAT

values support the first-degree relationship between BRC013

and BRC022 as full siblings as well as the differing second-de-

gree relationship between BRC013, BRC022, and BRC001/023

(Table 2). Given these values, the most parsimonious scenario

is that BRC013 and BRC022 are brothers and BRC013 is the

grandfather of BRC001/023; the radiocarbon dates do not reject

this scenario (STAR Methods; Data S1C).

Among the 22 novel individuals, we only found two cases of

matching mtDNA (Data S1B and S1E) among a variety of hap-

logroups associated with the N transition N1, H, J, and K,6,10

indicating a lack of detectable structure at the mitochondrial

level, which could be consistent with a larger maternal popula-

tion size, exogamy, and/or with a patrilocal kinship structure

across both time periods. To further explore these scenarios,

we analyzed ROHs (STAR Methods) in the ancient and selected

modern populations (TSI; Figures 4A–4C; Data S5C) with hap-

ROH, which is a method to detect ROH segments in low-

coverage genomes using a haplotype reference panel (STAR

Methods).61 We checked that differences in coverage did not

systematically bias estimates (Figure 4D) and checked against

imputation and sequencing errors (STAR Methods; Figure S7;

Data S5B). We calculated segment number and length in four

length categories: <1.6 centimorgan (cM); >1.6 cM; >4 cM;

and >8 cM (Data S5C) and focus on the greater than 1.6 cM

length category (which includes 4 and 8 cM segments), which

is informative regarding recent consanguinity and is the most

reliably inferred (STAR Methods; Figure S5; Data S5).

Estimates of ROH > 1.6 cM for the ancient samples after the

Mesolithic13 fall within the range of values obtained frommodern

Italian (TSI) individuals, suggesting similar levels of endogamy

(Figures 4A and 4B; Data S5C); however, there is a significant

(two-tailed t test; p = 0.0003) difference between the lengths of

>1.6-cM segments in Italian N (this study and Antonio et al.13)
and Italian BA (newly reported) and the number of >1.6-cM seg-

ments (two-tailed t test; p = 0.0001; Figure 4C; Data S5D), which

is consistent with either larger effective population sizes of the

BA or as the result of added diversity following an admixture

event with the local Chalcolithic populations. Within the La Sassa

site, individual LSC002/4 has the highest total length of >1.6-cM

segments and is the only one with detected segments >8 cM

(Data S5C).

Shifts in phenotypic features of ancient Italians
To determine whether the shifts in ancestry components through

time corresponded to any shifts in phenotypes, we imputed

genetic markers related to 115 phenotypes associatedwithmeta-

bolism, immunity, and pigmentation in the ancient samples pre-

sented here and in previously published studies (Data S6A–S6D;

STAR Methods).7,13,46,64,65 We analyzed a total of 332 ancient in-

dividuals (16 presented here for the first time and 316 from the

literature) groupedbypopulation: ItalianMesolithic (n = 3),13 Italian

N/Chalcolithic (n = 52; this study and Antonio et al.13), Italian BA

(n = 60; this study, Fernandes et al.,16 and Marcus et al.17), Italian

IA/Modern (n = 133),13 Near East N/Chalcolithic (n = 41),46,64 Near

East BA (n = 18),7,46,65 and Yamnaya (n = 18; Data S6A).4,7,64 For

groups with a sample size larger than three, we calculated the fre-

quency of the effective allele for each phenotypic variant in each

population and then performed an ANOVA test to analyze shifts

in the allele frequency. We compared both between Italian and

non-Italian groups fromdifferent periods (Data S6B) aswell as be-

tween groups within Italy, grouping the Italian individuals into 12

cohorts based both on period and geographic location (Data

S6C). For both tests, we applied a Bonferroni’s correction to set

the significance threshold and used a Tukey test to determine

the significant pairs (STAR Methods).

Eleven variants were significant when comparing the Italian

groups with Near Eastern and Yamnaya populations and eight in

the intra-Italy test, with four significant in both tests (Table 3;

Data S6B and S6C). Although these results should be interpreted

with caution due to the small sample size, some potentially inter-

esting results emerge. For the variants that are significant in both

tests (TLR1 [rs5743618], TNF [rs1800629], HLA [rs3135388], and

SLC45A2 [rs16891982]), the signal is driven almost entirely by

the post-Roman Republic Central Italy sample group (Cen_pos-

tRep), which includes Roman, Late Antiquity, and Medieval indi-

viduals. There is no detectable difference between the Italian BA

samples presented here and the Italian N/Chalcolithic groups,

despite the additional Steppe-related ancestry. Three out of four

of the variants highlighted here are linked to protection and sus-

ceptibility to Hansen’s disease (leprosy). The HLA-related variant

(rs3135388), indicated in the susceptibility to physical manifesta-

tions of the disease in a Danishmedieval population,39 was signif-

icantly different between post-BA Italians and N/Chalcolithic Near

East, BA Italians, and Yamnaya. The statistical significance of this

variant in this test is probably due to the low frequency of the pro-

tective allele in central Italians from the IA onward (Data S6C).

Another variant (TNF—rs1800629)66 also seems to decrease in

frequency of the protective allele (Table 3; Data S6C). Both results

are consistent with the rise in frequency of this disease in

the historical and archaeological record in Europe. The other

variant, TLR1 (rs5743618), which has been linked to both pro-

tection against leprosy38,67 and an increased susceptibility to
Current Biology 31, 2576–2591, June 21, 2021 2583



A B

C D

Figure 4. Runs of homozygosity in ancient and modern populations of the Italian Peninsula

(A) Distribution of total length of segments <1.6 centimorgan (cM) in Mesolithic,13 Neolithic/Chalcolithic (Antonio et al.13 and this study), Bronze Age (this study),

and Modern Italians (TSI).62

(B) Distribution of total length of segments >1.6 cM in Mesolithic,13 Neolithic/Chalcolithic (Antonio et al.13 and this study), Bronze Age (this study), and Modern

Italians (TSI).62

(C) Distribution of the total length of segments <1.6 cM (purple) and >1.6 cM (green) in Neolithic/Chalcolithic (Antonio et al.13 and this study) and Bronze Age (this

study).

(D) Total lengths of segments <1.6 cM (purple) and >1.6 cM (green) in all ancient samples (Antonio et al.13 and this study) plotted against the average genomic

coverage. Linear regression fitted by Datagraph (http://visualdatatools.com),63 solid line is the fitted line, and shaded area represents 95% confidence interval. R2

values are color coded to match the legend and reported in the lower right-hand corner.

See also Data S5.
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tuberculosis in Asian populations,68 shows a significant result in

the other direction, drivenby higher frequency only in the post-Ro-

man Republic Central Italy group (Table 3; Data S6C).

The fourth variant significant in both tests (rs16891982 in

SLC45A2 gene) is implicated in hair and eye pigmentation. In

terms of physical appearance, both the Chalcolithic and BA Italy

groups have imputed phenotypes more similar to IA and Later

Romans than to earlier populations in Italy and the Near East.

The three previously published Mesolithic individuals from

Italy13,27,29 are predicted to have dark skin, dark hair, and blue

eyes (Data S6D), although most of the other samples have pre-

dicted intermediate skin pigmentation, brown hair, and brown

eyes; however, individuals with blue eyes paired with either

dark or blond hair are also predicted in all time periods except
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in the N individuals from Central Italy (Data S6D).13 The variant

rs16891982, linked to darker eyes and hair, shows a significant

difference between post-BA Italy group and previous groups

from Italy, with the frequency decreasing in Central Italy starting

in the newly reported Chalcolithic individuals and with the lowest

values observed for the newly reported BA individuals and the

post-Roman Republic Central Italy group. This difference is

particularly notable compared to N Central Italy and Sardinian

groups prior to the BA (Data S6C).

DISCUSSION

The newly generated genomes provide a more detailed descrip-

tion of demographic dynamics of later Italian prehistory in a

http://visualdatatools.com


Table 3. List of significant phenotypic variants

SNP Gene Phenotype

Comparison between

Italy, Near East, and

Yamnaya significance Significant pairs of groups

Intra-Italy

comparison

significance Significant pairs of groups

rs2167079 NR1H3,

ACP2

HDL + y Yama versus all except NE_BA

rs174546 FADS1/

FADS2

LDL + y Ita_postBA versus NE_NeoCA and

Yama

rs174570 FADS1vs.3 LDL +;HDL +;TG � y Yam versus NE_BA and

Ita_postBAa; Ita_NeoCA versus

Ita_postBA

rs5743618 TLR1 protective factor for leprosy y Ita_postBAa versus Ita_NeoCA,

NE_NeoCA, Ita_BA

y Cen_postRepa versus Cen_NeoCA,

Sic_Neo, Sar_CA, Sic_BA,

Sar_BANur, Sar_IAPun, Cen_IARep

rs1800629 TNF protective factor for leprosy y Ita_postBA versus Ita_NeoCA and

NE_NeoCAa

y Cen_postRep versus CAa,

Sar_BANur

rs3135388 HLA protective factor for leprosy y Ita_postBA versus NE_NeoCAa,

Ita_BA, Yam

y Sar_BANura versus Cen_IARep,

Cen_postRep; Sar_CA versus

Cen_IARep

rs4251545 IRAK4 risk factor for Gram-positive

infection

y not significant pairs

rs13119723 intronic protective factor for celiac disease y Yama versus all Ita

rs2187668 HLA-DQA1 risk factor for celiac disease and

gluten intolerance

y NE_NeoCA and Yama versus all Ita

rs7775228 HLA-DRA risk factor for celiac disease and

gluten intolerance

y BAa versus Sar_Neo and all Cen

rs4713586 HLA-DRA risk factor for celiac disease and

gluten intolerance

y BA versus all except CAb

rs1050152 SLC22A4 risk factor for Crohn’s disease y NE_NeoCA versus Ita_BAa and

Ita_postBA

rs16891982 SLC45A2 eye color: brown; hair color: black

versus nonvs.black

y Ita_postBA versus NE_NeoCA,

Ita_NeoCAa, Ita_BA

y Cen_postRep versus Cen_NeoCAa,

Sar_CA, Sar_BANur

rs28777 SLC45A2 hair color: AAvs.black/CCvs.red;

skin color: dark

y Ita_postBA versus Ita_NeoCAa,

Ita_BA

rs1426654 SLC24A5 skin color: intermediate y Cen_NeoCAa versus all

See also Data S6. BA, Bronze Age; CA, Chalcolithic; Cen, Central Italians; IA, Iron Age; Ita, Italy; NE, Near East; Neo, Neolithic; Nur, Nuragic; Pun, Punic; Rep, Republic; Sar, Sardinia; Sic, Sicily; SNP,

variantID; Yam, Yamnaya.
aThe groups with the highest frequency of the effective allele in the significant pairs
bFrequency approaching 1 in most groups, except BA and CA
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European context.7,9,11,13 The split among European Early N in-

dividuals into two groups observed in the PCA and already re-

ported in Marcus et al.17 separates Sardinia N from mainland

Italy, coupled with the higher affinity of the Sardinia N to both

Anatolia_N andWHG, raise the possibility of population structure

within the EN component, although deeper analysis, including

high-coverage ancient genomes, is needed to dissect subtle dif-

ferences in ancestry.

Our analyses show the expected signature of peri- and post-

BA movements from Steppe-related populations across Italy:

absent in Italian individuals from the N and Chalcolithic,

emerging in the Early BA (Italian Bell Beaker [I2478: 2195–1940

calBCE],9 Italian Remedello [RISE486: 2134–1773 calBCE],7,13

and Broion [BRC010: 1952–1752 calBCE (95.4%)]) and

increasing through time in the individuals from Broion and Re-

gina Margherita (GCP003: 1626–1497 calBCE [95.4%]). These

samples confirm the date of arrival in Northern Italy to at least

�2000 BCE and its presence in Central Italy by 4 centuries later,

although denser sampling strategies are needed to assess the

dynamics of this spread. Our qpAdm results suggest that the

Steppe-related ancestry component could have arrived through

Late N/Bell Beaker groups from Central Europe, though what re-

mains unknown due to small sample size and limited geograph-

ical and chronological distribution is whether there were multiple

Steppe population sources and the exact timing and diffusion of

this ancestry component through the Italian Peninsula. The R1b

subtype found in BA Broion is a lineage found in both ancient Si-

cilian samples and Italian Bell Beakers. Together with the auto-

somal affinity of North and Central Italian BA groups with Late

N Germany, the Ychr data point to a possibly Northern-, trans-

alpine-, and potentially Bell-Beaker-associated source of the

Italian Steppe-related ancestry.

The importance of male kinship structures in the interface be-

tween the Chalcolithic and BA has also been explored using

our autosomal data. It has long been assumed that the com-

mingled cave burials of the Chalcolithic included some form

of kinship structure; however, it was not possible to directly

reveal it before the advent of aDNA. Here, we see the pattern

that, in the Chalcolithic period, these locations were preferen-

tially used to bury closely related male individuals, though the

social significance of this fact is not clear. Although the Chalco-

lithic populations of Italy utilized natural burial chamber spaces,

rock-cut tombs, and trench graves more than building mega-

lithic monuments of the kind seen along the Atlantic Façade

in an earlier time period, it appears that the importance of

burying related males together is a shared feature. The genetic

evidence shown here is consistent with an emphasis on patri-

lineal descendancy and patrilocality for these burial rites to

the populations at both La Sassa and Broion, an emphasis

that disappears in the BA but is also not present at the sin-

gle-burial style Chalcolithic cemetery of Gattolino (possibly

due to small sample size). It is important to note that these sites

do not represent a random and unbiased sampling of the local

populations, rather a snapshot of one particular ritual aspect of

these societies; thus, it cannot be inferred whether patrilocality

and patrilineality were generally practiced or whether these pat-

terns changed over time. More sampling for genetics and iso-

topes is needed to reconstruct the general population structure

and inter-community relationships.
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The arrival of the Steppe-related ancestry does not seem to

have affected the frequency patterns of any of the phenotypes

assessed in this work. Rather, the biggest changes seem to

have occurred with or after the Roman Imperial period. The

decrease in alleles associated with a protection against leprosy

after the IA is potentially interesting, given the increase in mani-

festations of the disease in the European bioarchaeological and

historical record from the 3rd to 4th millennium BCE69 until its

decline around the 1st millennium CE.70 It is still not clear exactly

how these variants interact with the disease and other patho-

genic mycobacterial infections; thus, more work is needed on

the clinical side before the full evolutionary history can be deter-

mined. It is also important to note that, as we did not test all

possible phenotypes but only a small subset, our results are

likely to be not the only phenotypic differences and more work

must be done to fully understand the complex relationships be-

tween evolutionary mechanisms and human genes. Fortunately,

whole ancient genomes like those generated in this study pro-

vide an invaluable resource that can be revisited in light of ad-

vancements in all areas of biology and genetics.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Ancient skeletal element This paper BRC001

Ancient skeletal element This paper BRC002

Ancient skeletal element This paper BRC003

Ancient skeletal element This paper BRC007

Ancient skeletal element This paper BRC010

Ancient skeletal element This paper BRC011

Ancient skeletal element This paper BRC013

Ancient skeletal element This paper BRC015

Ancient skeletal element This paper BRC022

Ancient skeletal element This paper BRC024

Ancient skeletal element This paper BRC030

Ancient skeletal element This paper GCP002

Ancient skeletal element This paper GCP003

Ancient skeletal element This paper GCP004

Ancient skeletal element This paper GLR001

Ancient skeletal element This paper GLR002

Ancient skeletal element This paper GLR003

Ancient skeletal element This paper GLR004

Ancient skeletal element This paper LSC002

Ancient skeletal element This paper LSC005

Ancient skeletal element This paper LSC007

Ancient skeletal element This paper LSC011

Chemicals, peptides, and recombinant proteins

Sodium Hypochlorite

solution (15%)

N/A CAS:7681-52-9

0.5 M EDTA pH 8.0 Fisher Scientific Cat# BP24821

Ethanol 96% Chemlab Cat# CL00.0507.1000

dNTP Mix (25mM each) Thermo Fisher Scientific Cat# R1122

dNTP Mix (10mM each) Thermo Fisher Scientific Cat# R0192

BSA Thermo Fisher Scientific Cat# B14

HGS Diamond Taq Eurogentec Cat# TAQ-I011-5000+

Critical commercial assays

MinElute PCR Purification Kit QIAGEN Cat# 28006

High Pure Viral Nucleic Acid

LargeVolume Kit

Roche Cat# 5114403001

NEBNext DNA Library Prep Master Mix Set

454

New England Biolabs Cat# E6070L

Qubit dsDNA BR Assay Kit Thermo Fisher Scientific Cat# Q32853

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q32854

Fragment Analyzer High Sensitivity NGS

Fragment Analysis Kit

Agilent Cat# DNF-474-0500

D1000 ScreenTape Agilent Cat# 5067-5582

D1000 Reagents Agilent Cat# 5067-5583

High Sensitivity D1000 ScreenTape Agilent Cat# 5067-5584

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

High Sensitivity D1000

Reagents

Agilent Cat# 5067-5585

KAPA Library Quantification

Kit

Roche Cat# KK4835

Deposited data

Human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Mitochondrial DNA reference genome,

cRSRS

Behar et al.71 https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3322232/#!po=70.8333

Compiled modern and ancient comparison

dataset (including restricted access

samples) 1240K and Human Origins

N/A https://reichdata.hms.harvard.edu/pub/

datasets/amh_repo/curated_releases/

index_v42.4.html

1000 Genomes Project Phase 3 The 1000 Genomes Project Consortium62 https://www.internationalgenome.org/

category/phase-3/

Haplotype Reference Consortium McCarthy et al.72 http://www.haplotype-reference-

consortium.org/

Italian aDNA data This paper http://www.ebc.ee/free_data; http://www.

ebi.ac.uk/ena/data/view/PRJEB37660;

ENA: PRJEB37660

Oligonucleotides

NEBNext Multiplex Oligos for

Illumina

New England Biolabs Cat# E7335

IS1_adapter.P5

A*C*A*C*TCTTTCCCTACACG

ACGCTCTTCCG*A*T*C*T

Meyer and Kircher73 Eurofins

IS2_adapter.P7

G*T*G*A*CTGGAGTTCAGACGTG

TGCTCTTCCG*A*T*C*T

Meyer and Kircher73 Eurofins

IS3_adapter.P5+P7 A*G*A*T*CG

GAA*G*A*G*C

Meyer and Kircher73 Eurofins

Software and algorithms

cutadapt Martin74 https://cutadapt.readthedocs.io/

en/stable/#

Burrow-Wheeler Aligner (BWA 0.7.12) Li and Durbin75 http://bio-bwa.sourceforge.net/

Samtools 1.3, 1.6, 1.9 Li et al.76 http://samtools.sourceforge.net/

Picard 2.12, 1.54 N/A http://broadinstitute.github.io/picard/

GATK 3.5 DePristo et al.77 https://gatk.broadinstitute.org

mapDamage 2.0 Jónsson et al.78 https://ginolhac.github.io/mapDamage/

mtDNA contamination algorithm Jones et al.79 N/A

ANGSD-0.916 Korneliussen et al.80 http://www.popgen.dk/angsd/index.php/

ANGSD

sex determination algorithm #1 Skoglund et al.81 https://github.com/pontussk/ry_compute

sex determination algorithm #2 Fu et al.15 N/A

HaploGrep2 Weissensteiner et al.82 https://haplogrep.i-med.ac.at/category/

haplogrep2/

BEDTools Quinlan83 https://bedtools.readthedocs.io/en/latest/

PLINK v1.90b3.27 Purcell et al.84 https://www.partners.org/purcell/plink/

EIGENSOFT 7.2.0 Patterson et al.44 https://github.com/DReichLab/EIG

ADMIXTOOLS Price et al.45 https://github.com/DReichLab/AdmixTools

ADMIXTURE Alexander et al.53 https://bio.tools/admixture

ChromoPainter/NNLS pipeline Lawson et al.55 https://people.maths.bris.ac.uk/�madjl/

finestructure-old/chromopainter_info.html

SourceFind Chacón-Duque et al.56 https://people.maths.bris.ac.uk/�madjl/

finestructure/sourcefind.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

READ Monroy Kuhn et al.40 https://bitbucket.org/tguenther/read

VCFtools Danecek et al.85 http://vcftools.sourceforge.net/

Datagraph MacAskill63 https://visualdatatools.com/

Beagle 4.1, 5.0 Browning and Browning86 https://faculty.washington.edu/browning/

beagle/b4_1.html

R 3.6 R Development Core Team87 http://www.R-project.org/

ATLAS v0.9.0 Link et al.88 https://bitbucket.org/wegmannlab/atlas/

wiki/Home

hapROH Ringbauer et al.61 https://pypi.org/project/hapROH/

HIrisPlex-S Chaitanya et al.89 and Walsh et al.90 https://hirisplex.erasmusmc.nl/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact: Tina

Saupe (tina.saupe@ut.ee).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The accession number for the DNA sequences reported in this paper is ENA:PRJEB37660 (https://www.ebi.ac.uk/ena/data/view/

PRJEB37660). The data are also available through the data depository of the EBC (http://evolbio.ut.ee).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The DNA was extracted from 47 bone and tooth samples in 51 extracts, 51 double-stranded, single-indexed libraries generated: 30

from Grottina dei Covoloni del Broion, 13 from Grotta La Sassa, four from the Necropoli di Gattolino di Cesena and four from Grotta

Regina Margherita. Forty-nine libraries were NGS screened at low depth and 20 sequenced to higher coverage and analyzed. More

detailed information about the archaeological sites of this study are given below.

Grottina dei Covoloni del Broion
Tina Saupe & Cinzia Scaggion

The Grottina dei Covoloni del Broion is part of the oriental rocky wall complex of Colli Berici. It is close to the famous cave Grotta

Broion in the province of Vicenza in Northern Italy where among Paleolithic sediments, the Italian geologist Piero Leonardi found sig-

nificant traces of Neanderthal. This prehistoric shelter is located in Vallà di Lumignano in themunicipality of Longare and was used as

a funerary site. Through the analysis of the palaeosurface, the site seems to have been used for a long time covering many gener-

ations belonging to the Chalcolithic confirmed by the discovery of Eneolithic artifacts.

Grottina dei Covoloni del Broion was discovered in 1973 and systematic excavations were conducted of the different geological

layers and of parts of the Grottina during four archeological campaigns between 1973 and 1977. The archaeological excavation of

1977 was entirely reserved for the study of funerary depositions. The inner part of the cave was intended for sepulchral use such as

was evidenced by the discovery of many human osteological findings incorporated in the calcareous sediment. The archaeologists

had also found ceramic fragments andmany flint artifacts: a flat blade of dagger, a significant amount of arrow cusps, blades, two flint

cores, small discoid beads and a small calcite tube from a bracelet or necklace, and other personal ornaments found in the same

layer. The human remains include bones and teeth under different states of conservation and distribution.91 For this study, in collab-

oration with the University of Padova andMuseum of Anthropology of Padova, samples of 26 human remains (pars petrous bone = 4,

teeth = 22) were taken with unknown morphological background of age and sex. Samples BRC001, BRC002, BRC003, BRC007,

BRC010, BRC013, BRC022, and BRC030 were dated at 14CHRONOCentre for Climate, the Environment, and Chronology in Belfast,

UK (Data S1C).

Grotta La Sassa
Luca Alessandri, Ilenia Arienzo, Flavio De Angelis and Mario Federico Rolfo

The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural

caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma.92 Several archaeological sur-

veys have been carried out in the cave, from 2016 to the present day by the Groningen Institute of Archaeology and the University of
e3 Current Biology 31, 2576–2591.e1–e12, June 21, 2021
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Rome Tor Vergata. The cave is in the valley close to the modern town of Sonnino (Latina, Italy). The coordinates of the entrance are:

WGS84, UTM 33T, 352627E, 4587452N. The cave yields an impressive stratigraphy ranging from the late Pleistocene to the Second

WorldWar, when the cave was used as a hiding shelter by the locals. Hundreds of disarticulated human bones and teeth scattered in

Room 1 (soundings N,WD and L) and Room 2were collected (Figure S1A). They have been radiocarbon dated to the Copper Age and

the Early Bronze Age (for the Italian chronology, see Anzidei and Carboni93 and Alessandri94). The sampled bones pertaining to this

work come from the stratigraphic units (SUs) 19, 31 and 36, in Room 2 (Figure S1B).

The three radiocarbon dates that come from human bones in SU 19 set the layer in the Copper Age/Chalcolithic. SUs 31 and 36

belong to a group of layers which contain Middle Bronze Age potsherds, possibly reworked in Medieval times (Figure S1). However,

the four radiocarbon dates which have been obtained from these samples are all tightly clustered around 4,050 BP (Figure S1D)

which, in Italian chronology, falls into the Late Copper Age. No pottery items were found in association with these bones, despite

the only Copper Age potsherds collected in the cave (Figure 13 in Alessandri et al.95) belonging to the Gaudo funeral facies,96 which

is characteristic of Southern Italy.

The anthropological samples were recruited for micro-sampling at the University of Rome ‘‘Tor Vergata’’ and the sampling process

was performed at Oxford University afterward. The visual preservation status was the driving inclusion criterion for the recruitment.

The osteological characteristics of the selected bones suggested that the fragments could belong to different individuals, even

though the molecular analyses later showed that the bone fragments pertaining to LSC002 and LSC004 come from the same indi-

vidual. These bone fragments consist of diagenetically damaged petrous bones and their siding are not reliably assessed bymorpho-

logical evaluation.

LSC005 is a lower second molar tooth pertaining to an adult individual, whose age at death could be set as 35-40 years old ac-

cording to classical osteological methods.97

LSC007 is an upper first molar related to a young adult whose age at death should be between 15 and 20 years old according to the

lack of enamel wear.97

LSC011 refers to a lower first molar dental element carried by a mandible of an adult male individual whose age at death should be

set up to 40 years old.97,98

The samples are already submitted to multi-isotope analysis for unravelling diet and mobility of people buried in Grotta La Sassa.

The mobility of the ancient people buried in La Sassa is currently under evaluation and the data will be conclusive shortly with the

publication of a dedicated paper in preparation. For the purpose of the present paper, the punctual data pertaining to the sampled

teeth are reported. Remarkably, LSC005 returns an enamel 87Sr/86Sr ratio of 0.709549, which is out of the range determined for the

rest of 27 sampled teeth from the cave. The LSC011 and LSC007 samples return an enamel 87Sr/86Sr ratio of 0.709308 and

0.708800, respectively, that are tuned with the data recovered from the rest of the teeth in La Sassa.

Samples LSC002/004, LSS005/013 and LSC011 were dated at 14CHRONO Centre for Climate, the Environment, and Chronology

in Belfast, UK (Data S1C).

Necropoli di Gattolino di Cesena
Monica Miari

The Necropoli of Gattolino is located in the municipality of Cesena (Emilia-Romagna region, central Italy). The four graves were

probably part of a larger Copper Age necropolis. The graves were all single, NW-SE oriented and the inhumations were in a lying

supine position. The burials included a vessel placed at the foot of the body in addition to flint artifacts, in particular arrow-heads.

Based on the materials, the necropolis highlights important contacts with central and southern Italy - with particular regard to the

Laterza facies - and seems to be framed from a recent phase of the Copper Age to the beginning of the Bronze Age, due to the pres-

ence in the Grave 1 of beads in Sicilian amber and silver.

Radiocarbon method and date of Gattolino
Sahra Talamo

The Gattolino bone collagen was extracted at the Department of Human Evolution, Max Planck Institute for Evolutionary Anthropol-

ogy (MPI-EVA) in Leipzig, Germany, following the pretreatment procedures in Talamo and Richards99 (MPI-Code: S-EVA). The outer

surface of the bone sample is first cleaned by a shot blaster and then 500mg of the whole bone is taken. The samples are then decal-

cified in 0.5M HCl at room temperature until no CO2 effervescence is observed. 0.1M NaOH is added for 30 minutes to remove

humics. The NaOH step is followed by a final 0.5M HCl step for 15 minutes. The resulting solid is gelatinized following Longin100

at pH 3 in a heater block at 75�C for 20h. The gelatine is then filtered in an Eeze-Filter (Elkay Laboratory Products (UK)) to remove

small (> 80 mm) particles. The gelatine is then ultrafiltered101 with Sartorius ‘‘VivaspinTurbo’’ 30 KDa ultrafilters. Prior to use, the filter

is cleaned to remove carbon containing humectants.102 The samples are lyophilized for 48 hours. C:N atomic ratios, and collagen

yields were measured to determine the extent of collagen preservation. Bones with > 1%weight collagen and C:N ratios in the range

2.9–3.6 are passing the evaluation criteria for collagen to proceed with the AMS analysis.103 Samples were graphitised and dated by

AMS at the Mannheim facility (laboratory code MAMS104).

In order tomonitor contamination introduced during the pretreatment stage, a sample from a cave bear bone, kindly provided by D.

Döppes (MAMS, Germany), was extracted along with the batch of La Ferrassie samples.105 The Gattolino collagen sample passed

the evaluation criteria for good quality collagen and is reported in Data S1C. TheRadiocarbon date of Gattolino 3was calibrated using

IntCal20;41 with the OxCal 4.4 program.43 The C:N ratio and the amount of collagen extracted (%Coll, > 30 kDa fraction) are reported.
Current Biology 31, 2576–2591.e1–e12, June 21, 2021 e4
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Grotta Regina Margherita
Robin Skeates

Grotta Regina Margherita is situated in the modern municipality of Collepardo (Frosinone province, Westcentral Italy). It is a large

limestone karst cave. It is located at an altitude of 480 m in the Fiume valley, and opens about 30 m above the bottom of a gorge

and below the hill on which the Medieval village of Collepardo now sits. It is the largest known mortuary cave in Middle Bronze

Age Central Italy (c. 1650-1400 BCE). Essentially, the cave can be divided into two contrasting zones: the twilight Entrance Hall

and the dark Interior Hall. Since 2008,106 our team has excavated and compared soundings in the archaeological deposits found

in diverse areas of the cave. The three aDNA samples of human petrous bone come from two different soundings in the Interior

Hall. In this part of the cave, we found clear evidence for primary and secondary mortuary rites having been performed in the Middle

Bronze Age in well-defined spaces enclosed by speleothems- distinguished archaeologically by concentrations of human remains

and body ornaments. This mortuary activity in the cave has been radiocarbon dated to between c. 1650 and 1450 cal BC.

Sample B297 comes from Sounding D, Context 32
Sounding D lies in a relatively well-defined sunken space delimited by large speleothems. Here, a rich and relatively extensive mor-

tuary deposit has been identified, comprising a dense and compact ‘carpet’ of human bones and associated artifacts (Context 32),

embedded in a fine cave loam and patches of calcite crust. Finds include: human and animal bones, pottery fragments, a clay spindle

whorl, two fragments of a small bronze ornamentmade of a cylindrical spiral of wire to which is attached a fragment of a faı̈ence bead,

a disc-shaped bead or button of mother-of-pearl, a quadrangular piece of sandstone, with wear traces from use in sharpening or

smoothing, and some pieces of charcoal. The human remains recovered so far (from the upper two thirds of the deposit) belong

to at least 19 individuals, with ten adults (including at least three young adults and one older adult of 40-60 years) and 9 sub-adults

(one fetus/perinatal individual, one infant of 18months, one infant of approximately 2 years, one child of approximately 3-6 years, one

child of approximately 8 years, one older child of 10 years, and three adolescents). There are at least two females and onemale adult.

Despite the generally disarticulated (and also somewhat fragmented) state of the human remains, a few of the bones (including some

phalanges) were found in articulation, and all bones from the skeleton (including many small and fragile bones) were represented,

suggesting the original deposition of whole bodies in this area. However, the significant under-representation of long bones (partic-

ularly the lower limbs-tibiae and femurs) hints at the successive removal of large bones from this area, which might then have been

redeposited elsewhere in or beyond the cave. The presence of mineralised breaks and calcite accretions covering breakage points

also indicates that most of the bones were fragmented prior to the formation of the calcite, quite possibly unintentionally in the Bronze

Age during the course of primary and secondary mortuary rites, which added to and disturbed earlier mortuary deposits in this area.

We obtained 10 radiocarbon determinations on human bones from Sounding D, to gain some idea of the period of time over which

thesemortuary deposits were formed, selecting only left heels (astragali) to ensure that wewere dating different individuals. The basic

time span provided by these determinations, at the 68 per cent probability level, is c. 1600-1450 cal BCE. Using Bayesian chrono-

logical modeling, at the same probability level, the period of activity can be narrowed down to 1-60 years, falling within 1545-1480 cal

BCE.

Samples B152 and B154 come from Sounding E, Context 60
Sounding E comprises a small sunken space situated among a group of speleothems. It is the innermost area excavated in the cave.

The deposits in this area are loose, having been heavily disturbed by the installation of the tourist walkway. Context 60 is the upper-

most layer of these deposits. Numerous concrete human bones, a few pottery fragments, and some charcoal and ashes were found

here. Aminimum number of 7 individuals is represented by the human bones, with three adults and four sub-adults (one infant of less

than one year, one child of around 6 years, one child of around 9 years, and one adolescent). There is at least one female adult and

onemale adult. Exceptionally, a humerus and an ulna were found in anatomical connection here. This, together with the relatively high

average frequency of representation of skeletal elements in this area (50 per cent), indicates the successive primary deposition of

whole bodies in this area.

A human left astragalus (SUERC-78150) from Sounding E has a radiocarbon date of c. 1500–1450 cal BC, which is contemporary

with some of the dated left astragali from Sounding D.

Samples GCP002 and GCP003 were dated at 14CHRONO Centre for Climate, the Environment, and Chronology in Belfast, UK

(Data S1C).

METHOD DETAILS

All of the laboratory work was performed in dedicated ancient DNA laboratories at the Estonian Biocenter, Institute of Genomics,

University of Tartu, Tartu, Estonia. The library quantification and sequencing were performed at the Estonian Biocenter Core Labo-

ratory. The main steps of the laboratory work are detailed below.

DNA extraction
In total 47 samples from human remains were extracted for DNA analysis. The four petrous bones from Broion cave were sampled

twice, giving a total of 51 extracts.
e5 Current Biology 31, 2576–2591.e1–e12, June 21, 2021
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The first layer of pars petrous was removedwith a sterilized drill bite to avoid exogenous contamination. Bone powder and a 10mm

core of the inner ear were sampled from the pars petrous. The drill bits and core drill were sterilized in between samples with 6% (w/v)

bleach followed by distilled water and then ethanol rinse. Root portions of teeth were removed with a sterile drill wheel.

The root and the petrous portions were soaked in 6% (w/v) bleach for 5 minutes. Samples were rinsed three times with 18.2 MUcm

H2O and soaked in 70% (v/v) Ethanol for 2 minutes. The tubes were shaken during the procedure to dislodge particles. The samples

were transferred to a clean paper towel on a rack inside a class IIB hood with the UV light on and allowed to dry for two to three hours.

Afterward, the samples were weighed to calculate the accurate volume of EDTA (20x EDTA [ml] of sample mass [mg]) and Protein-

ase K (0.5x Proteinase K [ml] of sample mass [mg]). EDTA and Proteinase K were added into PCR-clean 5 mL or 15 mL conical tubes

(Eppendorf) along with the samples inside the IIB hood and the tubes were incubated 72 h on a slow shaker at room temperature.

1000 ml of EDTA and 25 ml of Proteinase K were added to the bone powder of the pars petrous and were incubated 24 h on a

slow shaker at room temperature.

The DNA extracts (of root portions, pars petrous portions and bone powder) were concentrated to 250 ml using the Vivaspin Turbo

15 (Sartorius) and purified in large volume columns (High Pure Viral Nucleic Acid Large Volume Kit, Roche) using 2.5 mL of PB buffer,

1 mL of PE buffer and 100 mL of EB buffer (MinElute PCR Purification Kit, QIAGEN). For the elution of the endogenous DNA, the silica

columnswere transferred to a collection tube to dry and followed in 1.5mLDNA lo-bind tubes (Eppendorf) to elute. The samples were

incubated with 100 ml EB buffer at 37 C for 10 minutes and centrifuged at 13,000 rpm for two minutes. After centrifugation, the silica

columns were removed and the samples were stored at �20 C. Only one extraction was performed per extraction for screening and

30 ml used for libraries.

Library preparation
Sequencing libraries were built using NEBNext DNA Library Prep Master Mix Set for 454 (E6070, New England Biolabs) and Illumina-

specific adaptors73 following established protocols.73,107,108 The end repair module was implemented using 18.75 mL of water, 7.5 mL

of buffer and 3.75 mL of enzymemix, incubating at 20�C for 30 minutes. The samples were purified using 500 mL PB and 650 mL of PE

buffer and eluted in 30 mL EB buffer (MinElute PCR Purification Kit, QIAGEN). The adaptor ligation module was implemented using

10 mL of buffer, 5 mL of T4 ligase and 5 mL of adaptor mix,73 incubating at 20�C for 15 minutes. The samples were purified as in the

previous step and eluted in 30 mL of EB buffer (MinElute PCR Purification Kit, QIAGEN). The adaptor fill-in module was implemented

using 13 mL of water, 5 mL of buffer and 2 mL of Bst DNA polymerase, incubating at 37�C for 30 and at 80�C for 20 minutes. Libraries

were amplified using the following PCR set up: 50 mL DNA library, 1X PCR buffer, 2.5mM MgCl2, 1 mg/ml BSA, 0.2 mM inPE1.0,

0.2mMdNTP each, 0.1U/ml HGS Taq Diamond and 0.2 mM indexing primer. Cycling conditions were: 50 at 94C, followed by 18 cycles

of 30 s each at 94C, 60C, and 68C, with a final extension of 7 minutes at 72C. The samples were purified and eluted in 35 mL of EB

buffer (MinElute PCR Purification Kit, QIAGEN). Three verification steps were implemented to make sure library preparation was suc-

cessful and tomeasure the concentration of dsDNA/sequencing libraries - fluorometric quantitation (Qubit, Thermo Fisher Scientific),

parallel capillary electrophoresis (Fragment Analyzer, Agilent Technologies) and qPCR.

DNA sequencing
DNA was sequenced using the Illumina NextSeq500/550 High-Output single-end 75 cycle kit. As a norm, 15 samples were

sequenced together on one flow cell; additional data was generated for 20 samples to increase coverage (Data S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mapping
Before mapping, the sequences of the adapters, indexes, and poly-G tails occurring due to the specifics of the NextSeq 500 tech-

nology were cut from the ends of DNA sequences using cutadapt-1.11.74 Sequences shorter than 30 bp were also removed with the

same program to avoid random mapping of sequences from other species. The sequences were aligned to the reference sequence

GRCh37 (hs37d5) using Burrows- Wheeler Aligner (BWA 0.7.12)75 and the command mem with re-seeding disabled.

After alignment, the sequences were converted to BAM format and only sequences that mapped to the human genome were kept

with samtools 1.3.76 Afterward, the data from different flow cell lanes were merged and duplicates were removed using picard 2.12

(http://broadinstitute.github.io/picard/index.html). Indels were realigned using GATK 3.5109 and reads with a mapping quality less

than 10 were filtered out using samtools 1.3.76

aDNA authentication
As a result of degrading over time, aDNA can be distinguished from modern DNA by certain characteristics: short fragments and a

high frequency of C = > T substitutions at the 50 ends of sequences due to cytosine deamination. The programmapDamage2.078 was

used to estimate the frequency of 50 C = > T transitions. Rates of contamination were estimated on mitochondrial DNA by calculating

the percentage of non-consensus bases at haplogroup-defining positions as detailed in Jones et al.79 Each sample was mapped

against the RSRS downloaded from phylotree.org and checked against haplogroup-defining sites for the sample-specific hap-

logroup (Data S1).
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Samtools 1.976 option stats was used to determine the number of final reads, average read length, average coverage etc. The

average endogenous DNA content (proportion of reads mapping to the human genome) was 10.77% (0.48 - 48.87%) (Data S1A

and S1B).

Calculating genetic sex estimation
Genetic sex was calculated using the methods described in Skoglund et al.,81 estimating the fraction of reads mapping to Y chro-

mosome out of all reads mapping to either X or Y chromosome. Additionally, sex was determined using a method described in Fu

et al.,15 calculating the X and Y ratio by the division of the coverage by the autosomal coverage. Here, the sex was calculated for

samples with a coverage > 0.013 and only reads with amapping quality > 10were counted for the autosomal, X, and Y chromosome

(Data S1A and S1B).

Determining mtDNA haplogroups
Mitochondrial DNA haplogroups were determined using Haplogrep2 on the command line. For the determination, the reads were re-

aligned to the reference sequence RSRS and the parameter -rsrs were given to estimate the haplogroups using Haplogrep282,110

(Data S1B). Subsequently, the identical results between the individuals were checked visually by aligning mapped reads to the refer-

ence sequence using samtools 0.1.1976 command tview and confirming the haplogroup assignment in PhyloTree. Additionally, pri-

vate mutations were noted for further kinship analysis (Data S1E). The polymorphisms were estimated using the online platform of

haplogrep2. Here, the variant calling files (vcf.) were uploaded to the online platform and the known polymorphism in the RSRS

were converted to rCRS (Data S1E).

Y chromosome variant calling and haplotyping
A total of 138,425 binary Y chromosome SNPs that have been detected as polymorphic in previous high coverage whole Y chromo-

some sequencing studies111–113 were called in Chalcolithic/Bronze Age samples using ANGSD-0.91680 command–doHaploCall.

Only ten individual samples that had more than 0.01 3 Y chromosome variant coverage were kept for further analyses. A subset

of 105,691 sites yielded a call in at least one of the samples and in case of 2,480 sites at least one of the ten samples carried a derived

allele. Basal haplogroup affiliations of each sample were determined by assessing the proportion of derived allele calls (pD) in a set of

primary (A, B, C...T) haplogroup defining internal branches, as defined in Karmin et al.,112 using 1,677 informative sites. In case of all

ten samples the primary haplogroup could be determined unambiguously (pD > 0.85) with the support of at least 4 variants in derived

state considering the pD values outside the path connecting the root of the Y chromosome tree and the respective haplogroup were

observed in the range of 0-0.037. Further detailed sub-haplogroup assignments within the phylogeny of the primary haplogroup were

determined on the basis of mapping the derived allele calls to the internal branches of a tree based on modern high coverage ge-

nomes and highlighting the marker tagging the branch with the lowest derived allele frequency (Data S1B and S1F).

Kinship analysis and identical samples
Preparing data for analysis

First, all newly generated samples were called with ANGSD-0.91680 command–doHaploCall, sampling a random base for the posi-

tions that are present at MAF > 0.1 in the 1000 Genomes GBR population62 giving a total of 4,446,224 SNPs for autosomal kinship

analysis.

For the comparison with published studies, we used the 1240k panel SNPs only and select populations (Data S4) were retained

from the combined dataset using plink–keep and converted to .tped. We chose two sets of contemporaneous samples (CA and

BA) and only samples with > 0.1x coverage were included. The ANGSD output files were converted to .tped format, which was

used as an input for kinship analyses with READ.40

Identifying genetically identical individuals

When using this approach the coverage, sample size and population diversity is important. Recommendedminimum coverage com-

bined between compared individuals is 0.1x40 for accurate relationship estimation and too small a sample size will shift the estimated

P0 upward leading to false negatives (not detecting 1st or 2nd degree relatives) and too much population diversity, i.e., analyzing

completely different populations together (separated by too much time, distance etc.) will shift the P0 values lower, leading to false

positives. Keeping this in mind, we first used the tool to identify the redundant sampling of identical individuals within sites. All sam-

ples over 0.1x were first run and any identical samples merged. Then one sample of lower than 0.1x was tested against the newly

merged set starting with the highest coverage (e.g., 0.08x then 0.06x) and each time if the low coverage sample was estimated to

be identical to any other sample, it was merged. If it was not, it was removed from the pool. Only if the estimated mtDNA haplotype

and the READ analysis matched (showed identical) were they merged. This process was repeated until all samples with over 100,000

reads mapping to hg19 had been tested. We also checked the method using samples BRC027-29, which were powders taken from

the same petrous bones as BRC001-3. The approach correctly identified the matches in these three cases. Using this approach we

estimate the minimum/maximum number of individuals per site to be: Broion (12-15) and La Sassa (4-9).

Identifying kinship in new samples
Once identical individuals were identified and merged, to assess kinship relationships up to the 3rd degree, we divided the samples

several ways according to geography and time. First all sites were analyzed together regardless of time period, then all sites
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separated into Chalcolithic and Bronze Age based on C14 dates and genetic clustering on the PCA (EN versus PN clusters), then

each site separately with Broion also run in two ways: 1) all samples together and 2) separated into Chalcolithic and Bronze Age

sets. The mean P0 values are consistent across groupings (Data S4A) when assessing the results output, only pairs in which both

the lower and upper Z score are greater than 4 are reported in Table 2. The full list of comparative genomes is listed in Data S4B,

newly reported CA and BA results in Data S4C and S4D. Our main analysis is restricted to samples over 0.05x; however, we did

run some tests on individuals over 0.0005x as part of the exploration of identical samples, these results are in Data S4E and S4F.

We also compared our newly generated genomes (> 0.05x) to publishedCA andBA samples as listed in Data S4B, restricting analysis

to published genomes over 0.1x. Results are listed in Data S4G–S4J, with no new confirmed close kinship relationships to report.

Imputed genomes (see section Genome imputation) were used to study in further detail cases of close degree of genetic related-

ness detected with READ.We used the–genome function of PLINK 1.9.059 to estimate pairwise proportions of IBD1 and IBD2 that are

informative, for example, for distinguishing parent-offspring from sibling relationships (Table 2).

Preparing the datasets for autosomal analysis
For the chronological sample assignment for the study of the arrival of Steppe-related ancestry component in Italy, comparative

ancient samples from the Italian Peninsula, Sardinia, and Sicily broadly dated from the Neolithic to the Iron Age were added to

the dataset along with the newly generated ancient samples from this study.7,9,13,14,16,17 We used the following ranges for the

time periods: Neolithic ((N), 7000 - 3500 BCE), Copper Age/Chalcolithic ((CA), 3500 - 2200 BCE), Early Bronze Age ((EBA), 2200 -

1700 BCE), Bronze Age ((BA), 1700 - 900 BCE), and Iron Age ((IA), 900 - 200 BCE) and grouped samples using the published relative

and absolute dates. Because of the different chronological association of the transition from the Copper Age to the Bronze Age in

Sardinia, ancient samples from the Nuragic culture were grouped with other ancient samples from Sardinia dated to the Bronze

Age and ancient samples from the Punic culture were grouped with samples dated to the Iron Age (see also Data S1D).

20 individuals were sequenced in additional runs to an average genomic coverage between 0.13 and 1.24x. Sequences were re-

aligned using the same process as previously described and identical individuals were merged using samtools 1.676 command

merge and duplicates were removed using picard tools 1.54 (http://broadinstitute.github.io/picard/index.html).

In total, 22 individuals were selected for genomic analysis (Table 1; Data S1). Autosomal variants were called with ANGSD-0.91680

command–doHaploCall calling all thepositions in the Lazaridis et al., 2016 aDNAdataset.46 For the analysis, a dataset of ancient andpre-

sent-day individuals from David Reich Lab (https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-

present-day-and-ancient-dna-data, release: 1st ofMarch 2020) and thedataset fromFernandeset al.16 andMarcus et al.17weremerged

usingPLINKv1.9059 (TableS4).Weperformedall subsequent analysis onautosomaldata.However,weexcludedpublishedancient sam-

ples from Sardinia and Sicily which had been annotated as low coverage or contaminated samples and group_label_sampleID.

We created two different datasets maximizing SNP coverage in 1)modern (1240K +HO) and 2) ancient samples (1240K). Themod-

ern dataset was used to perform principal component analysis, DyStruct, and ADMIXTURE. The ancient dataset was used for out-

group f3 statistics, f4 statistics, Chromopainter/NNLS, f4 NNLS analysis and qpAdm.

Principal component analysis
Plink files were converted to EIGENSTRAT format using the program convertf from the EIGENSOFT 7.2.0 package with the param-

eter familynames:NO.44,45 PCA was performed using the program smartpca with the parameter autoshrink:YES, projecting ancient

individuals onto the components constructed based on the modern genotypes. The PCA was visualized using R-3.6.87 The sampled

individuals were projected on top of the present-day individuals in the David Reich dataset. A subset of ancient individuals from Eur-

asia were projected in groups (Figures 2A and S4; Data S1D).4–7,9,10,12–15,23,24,46,47,64,65,114–121

DyStruct
We modeled individuals as a mixture of different ancestral components by means of DyStruct, which takes into consideration

temporal dynamics in the model based clustering method similar to admixture.52 In detail, we performed five independent runs

for K ancestral component K Î {2..10}, of 50 epochs each, using the same set of modern and ancient individuals used in PCA and

ADMIXTURE analysis, and assigning them to time-interval of 1000 years, assuming generations of 25 years (Figures 2B and S2).

To ease the visualization in Figure 2B, we focused only on Italian individuals together with a small subset of key Eurasian

populations.

f4 statistics
For the f4 statistics, the same dataset as for the PCA was used and the target groups with 798 individuals from 191 ancient groups

from Europe, Caucasus, Near East (Data S2). We performed f4 statistics in the form f4(Mbuti.DG, site1; site2, Y) for each studied site,

whereby site 1 + 2 are the newly studied sites and Y is one of the comparative ancient groups/population (Data S2A). Additionally, we

performed f4 statistics in form f4(Mbuti.DG, sample1; sample2, Y) as well as f4(Mbuti.DG, sample1; Y1, Y2) for each studied sample

(Data S2C–S2F). We used ancient individuals from different context: Western Hunter-Gatherers, Eastern Hunter-Gatherers, Yam-

naya Steppe/ Pontic Steppe, European Neolithic farmers, Anatolia Neolithic, and ancient Italian individuals from previously

studies.7,9,13,14,16,17 We used the program qpDstat with the option f4mode:YES from the software ADMIXTOOLS 4.1.122

Additionally, we performed f4 statistics in form f4(Mbuti.DG, Russia_EBA_Yamnaya_Kalmykia.SG/Samara, X, Anatolia_N) to test

the affinity of all ancient Italian individuals spanning from the Neolithic to the Iron Age using qpDstats (Data S2B). The results of the
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f4 statistics in form f4(Mbuti.DG, Russia_EBA_Yamnaya_Kalmykia.SG, X, Anatolia_N) were visualized using R 3.687 (See also Figures

2C and S4B).

Outgroup f3 statistics
For the study of X chromosome versus autosomes, outgroup f3 statistics in the form f3(Italian_CA/Italian_EBA_BA,X; Mbuti.DG) were

performed with Mbuti.DG as the outgroup and the same subset of the ancient population previously described was chosen. For the

analysis, the autosome and X chromosome positions available in Lazaridis et al.46 ancient dataset were selected and the data was

converted to EIGENSTRAT format using the program convertf from EIGENSOFT 7.2.044 with the parameter familynames:NO. To un-

derstand the sex-specific patterns detected in European Bronze Age populations, the newly generated samples were grouped ac-

cording to the clusters seen in the PCA (Figure 2A) - Italy_CA (n = 12) and Italy_EBA_BA (n = 8). Published ancient individuals from

Italian Peninsula were added to the groups following Italy_CA: Italy_C.SG (R1014.SG, R4.SG, R5.SG = 3),13 Italy_North_Remedel-

lo_C.SG (RISE487.SG, RISE4879.SG = 2)7 and Italy_EBA_BA: Italy_North_Remedello_EBA.SG (RISE486.SG = 1), Italy_North_Bell-

Beaker (I1979, I2477, I2478 = 3).9 Outgroup f3 statistics were computed using ADMIXTOOLS 1.1122 option qp3Pop (See also Data

S1K, Figure S5).

Additionally, we performed outgroup f3 statistics in form f3(Italy_CA, X; Mbuti.DG) to explore the genetic relationships of Italy_CA

and peri-Neolithic groups (X) (Data S1K). The group Italy_CA contains following samples from the Italian Peninsula dated to the Chal-

colithic: Italy_Broion_CA, Italy_Gattolino_CA, Italy_LaSassa_CA, Italy_C.SG, Italy_North_MN_Iceman_contam.S, and

Italy_North_Remedello_C.SG.

Admixture analysis
We exploited themodel-based algorithm implemented in ADMIXTURE53 projecting ancient individuals (-P flag) into the genetic struc-

ture calculated on the modern dataset, due to missing data in the ancient samples. In detail, we performed unsupervised Admixture

for K Î {2..10} formodern samples, and used the ‘‘per-cluster’’ inferred allele frequencies to project the ancient samples.We visualized

the Q output using R 3.687 (Figure S3).

Chromopainter/NNLS and SourceFind
We reconstructed the ancestry of each individual using the Chromopainter (CP)/NNLS framework55 and SourceFind (Figures 3 and

S6). First, in order to obtain information from the highest number of markers, we painted all the Italian and a selection of European

ancient individuals, using the unlinked mode, together with Loschbour_published.DG (Western European Hunter-Gatherer), I0061

(Eastern European Hunter-Gatherer), I0707 (Anatolia Neolithic), KK1.SG (Caucasus Hunter-Gatherer), HGDP00982 (Mbuti), I0443

(Yamnaya herders), against a set of 1,260 modern individuals (donors). We used 0.0002 and 318 as M and n parameters.123 The re-

sulting copying vectors, summarizing the number of markers inherited from each modern individual, were then pooled according to

donors’ affiliation and normalized to sum 1. Finally, we reconstructed each target individual copying vector as a mixture of different

proportions of the putative surrogate sources, taking advantage of a slightly modified version of the nnls function in the ‘‘nnls’’ pack-

age in R software, and implemented inGlobeTrotter. In addition, in order to reduce the noise generated by the relatively low number of

markers, the same analysis has been repeated using the putative source average copying vectors through all the ChromoPainter runs

(Figure S6).

Additionally, the same analysis has been performed using SourceFind rather than the NNLS.56,57 In detail, for each sample, we

performed 10 runs of 5million iterations thinned by 10,000 and discarding the first 50,000 iterations. The expected number of sources

was set to 3 with a maximum of 4 possible sources. Only the iteration characterized by the highest Likelihood was shown in a barplot

(Figure S6).

f4 NNLS analysis
In order to provide an additional description of ancestral composition of the analyzed samples we carried out a NNLS analysis using

different f4 statistics vectors as a proxy of relations among different ancient groups. In detail, for any given target population, an f4

analysis in the form f4(X,Y, Target, Mbuti.DG) has been performed, where X, Y and target belong to one of 100 ancient groups from

previously and newly genotyped data. In doing so, we obtain for each target a vector of 4,950DStatistics; andwe used the vectors for

two different sets of putative sources to infer the ancestral proportions of a selection of European and Italian ancient samples, using

the same nnls function of the Chromopainter/NNLS analysis (See also Figure S6). We used the following sets of sources:

Set 1: Luxembourg_Loschbour_published.DG, Anatolia_N, Iran_Tepe_Abdul_Hosein_N.SG, Russia_EHG

Set 2: Luxembourg_Loschbour_published.DG, Anatolia_N, Iran_Tepe_Abdul_Hosein_N.SG, Russia_Yamnaya_Kalmykia.SG
qpAdm
In order to describe the ancestry of Italian target individuals as a combination of prehistoric groups known to have played amajor role

in European demography, we harnessed the qpWave/qpAdm framework (Data S3). In details, for each sample, given a set of left and

right populations, and for the number of left (sources) K Î {2..4} we:
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a) Evaluated if the right samples can be used to significantly discriminate the provided sources, harnessing qpWave. Right pop-

ulations present in sources were excluded for that specific test.

b) If step a) provided a significant p value < 0.01, we used qpWave to evaluate if the target sources could be described as a com-

bination of K sources.

c) If b) provided a p value > 0.01, we used qpAdm to describe the target as a mixture of the K sources employed for that specific

experiment. Given the high rate of missingness in some of our tested samples we used the option ‘‘allsnps=YES’’

We used three different sets of left groups which we called ‘‘pre-Bronze Age,’’ ‘‘post-Bronze Age,’’ and ‘‘Continuity Neolithic’’

pre-Bronze Age left panel:

Anatolia_N, Luxembourg_Loschbour_published.DG,Russia_EHG, Georgia_Kotias.SG

post-Bronze Age left panel:

Anatolia_N, Russia_Yamnaya_Samara, Luxembourg_Loschbour_published.DG

Continuity Neolithic left panel:

Russia_EBA_Yamnaya_Samara, Italy_Mesolithic.SG, Italy_C.SG, LaSassa, Broion_CA, Iberia_C, Germany_BellBeaker, France

MN

In all cases we used the following right populations:

Russia_AfontovaGora3, Russia_EHG, Iberia_ElMiron, Belgium_GoyetQ116_1_published, Russia_Kostenki14, Jordan_PPNB,

Russia_MA1_HG.SG, Israel_Raqefet_M_Natufian, Ust_Ishim.DG, Czech_Vestonice16, Georgia_Kotias.SG

Genome imputation
Following Hui et al.,60 genotype likelihoods were first updated with BEAGLE 4.186 from genotype likelihoods produced by ATLAS88 in

Beagle -gl mode, followed by imputation in Beagle -gt mode with BEAGLE 5124 from sites where the genotype probability (GP) of the

most likely genotype reaches 0.99. To balance between imputation time and accuracy, we used 503 Europeans genomes in 1000

Genomes Project Phase 362 as the reference panel in Beagle -gl step, and 27,165 genomes (except for chromosome 1, where

the sample size is reduced to 22,691 due to a processing issue in the release) from the Haplotype Reference Consortium (HRC)72

in the Beagle -gt step. A second GP filter (MAX(GP) > = 0.99) was applied after imputation. Both new and published genomes

were processed individually in the -gl step; in the -gt step, they were jointly imputed in the following groups:

All new genomes sequenced in this study; Mesolithic genomes (n = 3), Neolithic and Chalcolithic genomes (n = 13), Iron Age and

later genomes (n = 11) from Antonio et al.;13 Bronze Age Steppe: RISE509, RISE511, RISE547, RISE548, RISE550, RISE552 from

Allentoft et al.;7 EBA1 and EBA2 from Damgaard et al.;65 Anatolia Neolithic: Bar31, Bar8, Klei10, Pal7, Rev5 from Hofmanová

et al.;5 WHG: KO1 from Gamba et al.;125 Bichon from Jones et al.;121 La Braña from Olalde et al.;27 EHG: Sidelkino from Damgaard

et al.;65 CHG: KK1 and SATP from Jones et al.121

Runs of Homozygosity
We used hapROH61 to detect runs of homozygosity (ROH) in ancient genomes. Using information from a reference panel, hapROH

has been shown to work for genomes with more than 400K of the 1240K SNPs panel covered at an error rate lower than 3% in

pseudo-haploid genotypes.61 We note that the requirement is broadly in line with the imputation accuracy we get from coverages

as low as 0.05x, where �60% of common variants (MAF greater than or equal to 0.05) in the HRC panel are recovered with an ac-

curacy greater than 0.95 in diploid genotypes.60 Among common variants in the HRC panel, 853,159 overlap with the 1240K SNPs

panel.

Nevertheless, imputation errors are not evenly distributed across the genome; the accuracy varies with the genotypes, minor allele

frequency and local recombination rate, which may bias results in downstream analysis. We introduced random genotype errors into

modern high-coverage genomes following the pattern observed in imputed ancient genomes. We then compare the total amount of

ROHdetected in the original genomes and the genomeswith simulated imputation errors to explore whether hapROHcan be used on

imputed genomes.

Predicting imputation errors
A logistic regressionmodel was developed to predict imputation errors from the features of the variant. Imputation accuracy has been

shown to vary according to the true underlying genotypes (heterozygous sites have lower accuracy than homozygous sites) and mi-

nor allele frequencies (rarer variants have lower accuracy).24,60,125 Since recombination breaks down linkage disequilibrium, the local

recombination rate will also affect imputation accuracy via the number of linked sites. Finally we also included the substitution type

(transition versus transversion) among the explanatory variables, because post-mortem damage in aDNA might be erroneously in-

terpreted asC to T (or G to A)mutations. Considering that allele frequencies influence both imputation accuracy andROHdetection, a

log-transformedMAF termwas added in addition to the untransformedMAF to capture its effect more accurately. The recombination

rate was also log-transformed. The header of Data S5 lists the explanatory variables and the transformation applied to each of them.

We down-sampled the 20xNeolithic Hungarian genomeNE1 to 0.05x and ran it through the same imputation pipeline. The imputed

genotypes were then compared to the confidently called genotypes in the original 20x genome to calculate the error rate. Because

NE1 is older than all the genomes sequenced in this study, we expect to establish a lower bound of the performance of imputation

from its result.
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We fitted three separate multinomial logistic regression models to predict the imputed genotypes when the true genotype is ho-

mozygous for the reference allele (0/0), homozygous for the alt allele (1/1), or heterozygous (0/1). The outcome is a categorical var-

iable with four values: missing genotypes (not passing the max(GP) greater than or equal to 0.99 post-imputation filter), 0/0, 0/1, and

1/1. Data S5A shows the coefficients and intercept for each model.

We then used themodel to simulate the effect of imputation by introducing random genotype errors into a VCF file with high-quality

genotypes. For each variant, we applied the softmax function on the scores for the four outcome categories (./., 0/0, 0/1, 1/1) to obtain

the probability distribution before randomly drawing an ‘‘imputed’’ genotype. This allows us to quickly generate large numbers of

‘‘pseudo-imputed’’ genomes where the true genotypes are known for assessing the effect on downstream analysis without the

lengthy process of down-sampling and imputation. Data S5B shows that the error pattern after imputation is well approximated

by this approach when applied onto the original 20x NE1 genome.

Introducing imputation errors into modern genomes
Weused the samemodel to introduce randomerror into 107modern Italian (TSI) genomes from the 1000Genomes Project Phase 3.62

We extracted them from the HRC panel so that the list of variants is identical to what we get after imputation with HRC as the refer-

ence panel. We then used hapROH to detect ROH segments in both the original genomes and the genomes after introducing impu-

tation errors. Except for switching from haploid to diploidmode, we kept the default parameters unchanged.We also used the default

reference panel, 1000 Genomes Project data at 1240K sites, after masking out the TSI population. The relevant parameters to the

hapsb_ind function are:

h5_path1000 g = ‘all1240/chr’, e_model = ‘diploid_gt’, p_model = ‘EigenstratUnpacked’, post_model = ‘Standard’, delete = False,

n_ref = 2504, exclude_pops = [‘TSI’], readcounts = True, random_allele = False, roh_in = 1, roh_out = 20, roh_jump = 300, e_rate =

0.01, e_rate_ref = 0.0, cutoff_post = 0.999, max_gap = 0, roh_min_l = 0.01

Figure S7A compares the total length (top) and number (bottom) of ROH tracks detected in the original genomes and the genomes

with simulated imputation errors. In general the correlation is high for ROH segments longer than 1.6cM, although the total length is

under-estimated in the presence of simulation errors when we filter for ROH segments longer than 4cM. This is most likely caused by

longer ROH segments being broken down into shorter ones due to erroneous genotypes. Nevertheless outlier individuals with long

ROH segments still stand out. The total number of ROH segments is reproduced less accurately in the simulated genomes than the

total length of ROH segments.

In addition we tested a hidden Markov model-based ROH detection algorithm implemented in BCFtools126 on the original and

simulated genomes. Because this hidden Markov model-based algorithm takes allele frequencies in the population into account,

we randomly divided the 107 individuals into 9 groups in order to 1) better match the sample size in this study and 2) reduce the

running time of the analysis. Example command:

bcftools roh -G 30 -I -m genetic_map_chr{CHROM}_combined_b37.txt < input.vcf.gz > -o < output > -O r

Only ROH segments with a quality above 20 on the phred scale were retained. The result is similar to that from hapROH although

the correlation is slightly lower (Figure S7B), supporting that the total length of ROH segments longer than 1.6cM can be reliably

recovered in imputed genomes.

We also observed a strong correlation between the total ROH lengths detected by hapROH and BCFtools in the original genomes,

which drops from �0.97 to �0.8 after imputation errors are introduced (Figure S7C). We chose to use hapROH on the ancient ge-

nomes out of two considerations. First, hapROH appears more robust in the presence of imputation errors (Figures S7A and

S7B). Moreover, unlike BCFtools which processes a group of individuals together and utilizes allele frequencies in the population,

hapROH examines one individual at a time. In this way it is less likely for our ROH result to be biased by the differences in sequencing

coverage.

Detecting ROH segments in ancient genomes
We ran hapROHwith the same setting as above on the imputedChalcolithic and Bronze Age genomes generated in this study and the

published Italian Mesolithic, Neolithic and Chalcolithic genomes (Data S1; Figure 4). For the 107 TSI genomes, we used results from

the original genomes without the simulated errors.

Phenotype prediction
For the 41 HIrisPlex-S set of SNPs we selected 2Mb around the informative variants, merging the regions on the same chromosome,

with the exception of the variants on chromosome 15, which have been analyzed in two different regions since the distance between

the two nearest SNPs was about 20 Mb. We finally selected 10 regions from 9 autosomes, spanning from about 1.5 Mb to 6 Mb. For

the other phenotypic informative markers (diet, immunity and diseases), we selected 2Mb around each variant andmerged the over-

lapping region, for a total of 48 regions from 17 autosomes and X chromosome.

We called the variants using ATLAS v0.9.088 task = call andmethod =MLE commands at positions with aminimum allele frequency

(MAF) greater than or equal to 0.1% in the reference panel, that has been selected according to the different components of the sam-

ples: 1) Europeans from 1000 Genomes (EUR),62 for our Chalcolithic and Bronze Age Italians, for the pre-Imperial Romans from An-

tonio et al.13 for pre-Nuragic and Nuragic Sardinians from Fernandes et al.16 and Marcus et al.17 and for Yamnaya;4,7,64 2) EUR plus

the MANOLIS (EUR-MNL) set from Greece and Crete extracted from the Haplotype Reference Consortium (HRC)72 (accessed at:

http://www.haplotype-reference-consortium.org/) for the ancient Near Easterns, for non-Sardinian western Mediterraneans from
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Fernandes et al.,16 for post-Nuragic Sardinians from Marcus et al.17 and for Imperial and Later Romans from Antonio et al.13 (Table

S4). After calling the variants separately for each sample, we merged them in one VCF file per region. We used the merged VCFs as

input for the first step of our imputation pipeline60 (genotype likelihood update), performed with Beagle 4.1 -gl command86 using the

same panels as before as reference. We then discarded the variants with a genotype probability (GP) less than 0.99 and imputed the

missing genotype with the -gt command of Beagle 5.0124 using the HRC as a reference panel for all groups of samples. We then dis-

carded the variants with a GP < 0.99 and used the remaining SNPs to perform the phenotype prediction. Two markers of the HIris-

Plex-S set, namely the rs312262906 indel and the rare (MAF = 0 in the HRC) rs201326893 SNP, were not analyzed because of the

difficulties in the imputation of such variants. Results are reported in Data S6A–S6D.

We performed this analysis on our Chalcolithic and Bronze Age individuals and on published ancient samples from the Near

East,7,46,64,65 Italy13,16,17 and Yamnaya population,4,7,64 with a coverage greater than or equal to 0.05x. First, we grouped the indi-

viduals in six groups based on their location and time, namely two groups from Near East (Neolithic/Chalcolithic and Bronze Age),

three from Italy (Neolithic/Chalcolithic, Bronze Age, post-Bronze Age) and one Yamnaya (Data S6A). We compared the groups per-

forming an ANOVA test and, for the significant variants, we performed a Tukey test to identify the significantly different pairs of groups

(Data S6B). We then analyzed the difference within Italy by creating 13 local groups (excluding 7 Sardinian individuals with an uncer-

tain dating) (Data S6A) and comparing the 12 groups larger than 3 with an ANOVA test (Data S6C). For both comparisons, we used a

Bonferroni’s correction on an alpha value of 0.01 for the number of tested SNPs to set the significance threshold. We performed our

phenotype analysis in a set of 332 ancient individuals, composed of the 16 Italian Bronze and Chalcolithic individuals reported here

for the first time and 316 ancient Italians, Near Easterns and Yamnaya from the literature (Data S6A). Sample-by-sample phenotype

prediction and genotype at the selected phenotype informative SNPs, reported as number of effective alleles (0, 1 or 2) are shown in

Data S6D.
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