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Random tilings of the two-periodic Aztec diamond contain three macro-
scopic regions: frozen, where the tilings are deterministic; rough, where the
correlations between dominoes decay polynomially; smooth, where the cor-
relations between dominoes decay exponentially. In a previous paper, the
authors found that a certain averaging of height function differences at the
rough-smooth interface converged to the extended Airy kernel point process.
In this paper, we augment the local geometrical picture at this interface by in-
troducing well-defined lattice paths which are closely related to the level lines
of the height function. We show, after suitable centering and rescaling, that
a point process from these paths converge to the extended Airy kernel point
process provided that the natural parameter associated to the two-periodic
Aztec diamond is small enough.

1. Introduction. Random tiling models have in recent years provided a rich source
of stochastic processes related to random matrix theory statistics; see [15] and references
therein. In particular, restricted to certain domains, random tilings of large domains may sep-
arate into macroscopic regions featuring facets at the boundary. In these facets, the random
tiling appears ordered and the measure is said to be frozen (or solid). Away from these facets,
the measure can be rough (also known as liquid) or smooth (also known as gas)1 with the
distinction depending on whether the correlations between the tiles decay polynomially or
exponentially. For some classes of these random tilings, the curves separating these regions
can be analyzed [2, 11, 18]. This feature is mathematically established for random tilings but
should hold for other similar models such as the six vertex model; see, for example, [1, 12].

For many random tiling models containing just a frozen and a rough phase, there is a
lattice path which separates the two phases. It has been shown in some of these models
that the fluctuations of this path, under suitable scaling and centering, is given by the Airy
process,2 and this feature is believed to be universal. The question motivating a series of
papers including this one is whether there is a similar path separating a rough and smooth
phase and are its fluctuations, after suitable centering and rescalings, also described by the
Airy process?

In this paper, we focus on a particular random tiling model, the two-periodic Aztec dia-
mond which is defined fully below. This model was introduced in [10] and its correlation
kernel3 was computed in a long-winded computation. This formula was simplified in [9]
into a more convenient form for asymptotic computations, and the asymptotics were com-
puted along a diagonal of the Aztec diamond, including at the rough-smooth boundary. In a

Received June 2020; revised April 2021.
MSC2020 subject classifications. 60G55, 82B20, 60K35.
Key words and phrases. Domino tilings, Airy kernel point process, two-periodic Aztec diamond.

1We adopt the nomenclature from statistical physics instead of solid, liquid and gas. These are not states of
matter.

2In this paper, by Airy process, we mean the Airy-2 process.
3More precisely, a formula was found for entries of the inverse Kasteleyn matrix.
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later development, Duits and Kuijlaars [13] gave a different and more systematic approach to
compute a particle correlation kernel and analyze its asymptotics in the two-periodic Aztec
diamond using multiple orthogonal polynomials. Yet another approach based on Wiener–
Hopf factorization of matrix-valued symbols was given in [6]. Further developments of these
approaches have been particularly fruitful in other models [5, 8].

However, these results did not give any significant insight into the geometry of the inter-
face between the smooth and rough regions nor the limiting behavior. The two main obstacles
being that there was no clear definition of paths which could separate the two macroscopic
regions, and the methods available at the time, only gave the asymptotics of the dominoes
and did not directly connect the computations with the asymptotic picture which is over-
whelmingly evident from simulations. Put simply, the asymptotics of the inverse Kasteleyn
matrix for the dimers/dominoes at the rough-smooth boundary involves a full-plane smooth
term with a part of the Airy kernel as a correction term. Nevertheless, we introduced a ran-
dom signed measure in [3] built by taking specific averages of height function differences
between faces. The height function gives a random surface interpretation of the random tiling
model and is defined precisely below. After quite a subtle computation, we showed that this
signed measure converged to the extended Airy kernel point process.

However, this recent development did not specify any lattice paths which separate the
rough and smooth regions as one would expect with the presence of the extended Airy kernel
point process. In this paper, we find that there is a way to define a sequence of lattice paths
such that the net (signed) number of lattice paths through appropriate intervals converges to
the extended Airy kernel point process, provided that the natural parameter associated to the
two-periodic Aztec diamond is small enough. This restriction is due to technical details of
our proof and we do not believe there to be any different behavior outside this restriction. The
significance of our result is that it shows that there are paths separating the rough and smooth
regions that are in a sense described by the Airy kernel point process in the limit. Thus we take
a step towards understanding what is apparent from our simulations. Unfortunately, we fall
short of proving the overall geometry as well as showing that there is a last path converging to
the Airy process. The rest of this Introduction is devoted to giving the main definitions of the
model, defining the extended Airy kernel, giving an informal version of the main theorem,
which is stated precisely later in the paper.

1.1. The two-periodic Aztec diamond. An Aztec diamond graph of size n is a bipartite
graph which contains white vertices given by

W= {
(i, j) : i mod 2 = 1, j mod 2 = 0,1 ≤ i ≤ 2n − 1,0 ≤ j ≤ 2n

}
(1.1)

and black vertices given by

B= {
(i, j) : i mod 2 = 0, j mod 2 = 1,0 ≤ i ≤ 2n,1 ≤ j ≤ 2n − 1

}
.(1.2)

The edges of the Aztec diamond graph are given by b− w= ±e1,±e2 for b ∈ B and w ∈ W,
where e1 = (1,1) and e2 = (−1,1). The coordinate of a face in the graph is defined to be
the coordinate of its center. For an Aztec diamond graph of size n = 4m with m ∈ N, define
the two-periodic Aztec diamond, Dm, to be an Aztec diamond graph with edge weights a for
all edges incident to the faces (i, j) with (i + j)mod 4 = 2 and edge weights b for all the
edges incident to the faces (i, j) with (i + j)mod 4 = 0; see Figure 1. We call the faces (i, j)

with (i + j)mod 4 = 2 to be the a-faces and the faces (i, j) with (i + j)mod 4 = 0 to be the
b-faces. With this setup, one sees that there are two types of white vertices and black vertices
depending on the weights of the incident edges. These are given by

Wi = {
(x, y) ∈ W : x + y mod 4 = 2i + 1

}
for i ∈ {0,1}(1.3)
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FIG. 1. The two-periodic Aztec diamond with m = 1. Edges incident to the faces labelled a have edge weight a

while edges incident to the faces labelled b have edge weight b = 1.

and

Bi = {
(x, y) ∈ B : x + y mod 4 = 2i + 1

}
for i ∈ {0,1}.(1.4)

A dimer configuration on the Aztec diamond graph is a subset of edges so that each vertex
is incident to exactly one edge. Such edges in a configuration are called dimers. A proba-
bility measure is defined on the two-periodic Aztec diamond graph by picking each dimer
configuration with probability proportional to the product of the edge weights of that dimer
configuration.

Throughout the rest of the paper, we refer to an a-dimer (b-dimer resp.) to be a dimer
covering an a-edge (b-edge resp.). We say that an a-dimer is incident to a particular b-face
if it shares a common vertex with that b-face.

1.2. Squishing. Assign an orientation to each edge of the Aztec diamond, by prescribing
an arrow from each white vertex to its incident black vertices. For the two-periodic Aztec
diamond graph, define the squishing procedure as the operation which contracts each b-face
while simultaneously increasing the size of the a-faces so that the a-face coordinates remain
unchanged and keeping the orientation; see Figure 2 for an example. The resulting graph
consists of only a-edges and a-faces while for the dimers, only the a-dimers are visible. This
operation was inspired by a similar operation for the honeycomb graph in [29] and we adopt
the naming convention. Label D̃m to be the graph Dm after the squishing procedure.

After this procedure, we call a double edge to be the result of two a-dimers contracting to
the same edge. Observe that there is a parity condition for the number of incident a-dimers
for each b-face. That is, the number of incident a-dimers for each b-face is either 0, 2 or 4
since odd numbers invalidate the dimer covering. A consquence of this parity condition, as we
explain in Section 2, is that the a-dimers are either part of double edges, (oriented) loops or
paths, where the precise definitions of loops and paths are given in Section 2.4 Heuristically,
paths can be thought of as connected sequences of a-dimers which start at either the top or
bottom boundaries of the Aztec diamond and terminate at either the left or right boundaries
of the Aztec diamond. Figure 2 shows paths and double edges, while Figure 3 shows double
edges, loops and paths in a larger simulation.

4A careful choice needs to be made to make paths and loops well defined. This choice is given in Section 2.
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FIG. 2. The squishing procedure for an Aztec diamond of size 12. In each figure, the a-dimers are drawn in
red while the b-dimers are drawn in black. The left figure shows the original dimer configuration while the right
figure shows the same dimer configuration with a smaller size of b-face. We have only put the orientation on the
a-dimers.

FIG. 3. A random dimer configuration of a two-periodic Aztec diamond of size 300 with a = 0.5 after the
squishing procedure. We have suppressed the orientation.
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1.3. Extended Airy kernel point process. Following [14], let IA be the indicator function
for some set A and denote I to be the identity matrix or operator. Let Ai(·) denote the standard
Airy function, and define

Ã(τ1, ζ1; τ2, ζ2) =
∫ ∞

0
e−λ(τ1−τ2)Ai(ζ1 + λ)Ai(ζ2 + λ)dλ(1.5)

and

φτ1,τ2(ζ1, ζ2) = Iτ1<τ2

1√
4π(τ2 − τ1)

e
− (ζ1−ζ2)2

4(τ2−τ1)
− (τ2−τ1)(ζ1+ζ2)

2 + (τ2−τ1)3

12 ,(1.6)

which is referred to as the Gaussian part of the extended Airy kernel; see [14]. The extended
Airy kernel, A(τ1, ζ1; τ2, ζ2), is defined by

A(τ1, ζ1; τ2, ζ2) = Ã(τ1, ζ1; τ2, ζ2) − φτ1,τ2(ζ1, ζ2).(1.7)

Let β1 < · · · < βL1 , L1 ≥ 1 be fixed given real numbers and let Ap = [αl
p,αr

p] for αl
p < αr

p

and 1 ≤ p ≤ L2 be finite disjoint intervals in R. Write

	(x) =
L2∑

p=1

L1∑
q=1

wp,qI{βq }×Ap(x),

where wp,q are some given complex numbers for 1 ≤ p ≤ L2, 1 ≤ q ≤ L1. The extended
Airy kernel point process, μAi, is a determinantal point process on L1 lines {β1, . . . , βL1}×R

defined by

E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμAi
({βq} × Ap

))]= det
(
I+ (

e	 − 1
)
A
)
L2({β1,...,βL1 }×R

(1.8)

for wp,q ∈ C.

1.4. Informal statement of theorem. Here, we state informally our main theorem, using
the informal definitions for paths. The main theorem will be made precise below in Sec-
tion 3.

In Figure 3, we see that there are paths starting and ending at the boundary, as well as
double edges and loops, some of which may be attached to the paths. These notions will be
defined precisely below in Section 2. If we remove the loops and the double edges, we are
left with just paths. The regions between these paths will be called corridors. These corridors
go all the way up to the boundary and the height at the boundary defines the corridor height
for all faces in the corridor.5 Differences between corridor heights on faces gives the (signed)
number of paths between faces. For 1 ≤ p ≤ L2, 1 ≤ q ≤ L1, the intervals {βq} × Ap , can
be rescaled and put between faces at the rough-smooth boundary, and we can consider the
corridor height differences between faces. Dividing this by 4 gives a quantity that we denote
by κm({βq} × Ap).

THEOREM (Informal version of Theorem 3.1). Assume that a ∈ (0,1/3). The random
variables κm({βq} × Ap), 1 ≤ q ≤ L1, 1 ≤ p ≤ L2 converge jointly in law to the random
variables μAi({βq} × Ap), 1 ≤ q ≤ L1, 1 ≤ p ≤ L2, as m → ∞.

A couple of remarks are in order.

5Our convention for the height function is given in Section 2.
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REMARK 1.

1. For the statement of the theorem, we require that a ∈ (0,1/3), but there is a smooth
phase for all a ∈ (0,1). This is a technical restriction and we believe that the theorem should
hold for all values of a ∈ (0,1).

2. We cannot show that there actually is a last path in the third quadrant connecting the
bottom and left boundaries as we move along the diagonal. Paths can in principle behave in
strange ways but these strange behaviors should happen with very low probability.

These remarks are summarized into a conjecture after the statement of the main theorem
below.

2. Combinatorial definitions. In this section, we expand on the squishing procedure
introduced before, giving the concepts of loops and paths and their correspondence with the
height function.

As mentioned in the Introduction, we assign outgoing edges from each white vertex to its
incident black vertices. For a dimer covering d on Dm, let d̃ denote the dimer covering after
the squishing procedure, that is, d̃ records the collection of a-dimers present in a configura-
tion Dm, with prescribed arrows from white vertices to black vertices.

The height function, an idea usually attributed to Thurston [27], is defined for the two-
periodic Aztec diamond at the center of each face of the Aztec diamond graph. The height
function is determined by the height differences as we traverse between each pair of adjacent
faces influenced by whether a dimer covers the shared edge and the prescribed arrow in the
following way:

• a height change of +3 if the shared edge is covered by a dimer and the prescribed arrow
points to the left (from the starting face),

• a height change of −3 if the shared edge is covered by a dimer and the prescribed arrow
points to the right (from the starting face),

• a height change of −1 if the shared edge is not covered by a dimer and the prescribed
arrow points to the left (from the starting face) and

• a height change of +1 if the shared edge is not covered by a dimer and the prescribed
arrow points to the right (from the starting face).

We assign the height at the face (0,0) (outside of the Aztec diamond graph) to be equal to
1. The height function on the faces bordering the Aztec diamond graph are deterministic and
given by the above rule. Notice that the height function is divergence free around each white
and black vertex in the Aztec diamond.

Define the a-height function, denoted by ha(f ) where f is an a-face, to be the height
function of the two-periodic Aztec diamond restricted to the a-faces. The a-height change
between two a-faces which share an edge after the squishing procedure is in {−4,0,4}. It
follows that the a-height function is completely determined after the squishing procedure but
the a-height function does not recover the original dimer covering; see Figure 4 for an exam-
ple. An easy way to see this is that if there is no height change between two a-faces then this
is either from a double edge or from no a-dimers on the shared edge between faces; we cannot
distinguish between these configurations from the a-height function. The a-height function,
by construction, is divergence free on the a-faces around each b-face. The possible a-height
changes when traversing the a-faces around each b-face are no change; one a-height change
of ±4 and another a-height change of ∓4; a height change of ±4 followed ∓4 followed by
±4 followed by ∓4. These indicate that the maximum a-height change between a-faces that
are incident to the same b-face but do not share an edge after the squishing procedure is 4.
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FIG. 4. The squishing procedure from Figure 2 and the right figure shows the a-height function with the size of
b-face set to zero.

These can easily be verified by considering all local configurations around each b-face; see
Figure 5.

We define a loop of length k, with k ≥ 4, to be a sequence of distinct edges (e1, e3, . . . ,

e2k−1) such that:

1. e2i+1 are a-edges and covered by dimers for all 0 ≤ i ≤ k − 1, and none of these a-
dimers are part of a double edge after the squishing procedure,

2. there are distinct b edges e0, e2, . . . , e2k incident to distinct b-faces not covered by
dimers such that e2i shares one endpoint with e2i−1 and its other endpoint with e2i+1 for all
0 ≤ i ≤ 2k where e−1 = e2k−1 and e2k+1 = e1.

It follows that after the squishing procedure, the sequence of edges in the loop is connected
and visually forms a loop. Each loop is in fact oriented thanks to the prescribed orientation.
We denote by �(γ ) to be the length of the loop γ .

The above criterion of requiring distinct b-edges means that loops which appear to have
one self-intersection after the squishing procedure, are in fact two separate loops. However,

FIG. 5. All possible local configurations around each b-face (up to rotations and reflections) along with the
possible a-height changes. The a-dimers are drawn in red while the b-dimers are drawn in black. For simplicity,
we have suppresed the orientation.
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FIG. 6. The a-dimers are drawn in red while the b-dimers are drawn in black, with the a-height function given at
each a-face. The leftmost and rightmost a-dimers can be seen as part of a path or a loop. Between these leftmost
and rightmost a-dimers, it is not clear whether the loop or path goes up or down, unless mirrors are used. The
mirrors are drawn in blue (dashed).

there is an ambiguity in the definition when two (or more) loops intersect at more than one
b-face; see Figure 6.

To circumvent this ambiguity when two or more loops intersect or meet at more than one
b-face, we introduce a mirror at each vertex of D̃m where d̃ has four incident a-edges. The
mirror is a line between the centers of the a-faces of lowest a-height value, and on each side
of the mirror, there is a different loop. Once this choice is given, it is not hard to see that the
loops are unique. From this convention, we call the vertices with mirrors meeting points and
say that two loops meet at a vertex of D̃m.

The height function definition means that there is an a-height change of ±4 when travers-
ing into or out of each loop with the sign depending on the orientation of the loop and that the
a-height function along the inner boundary a-faces of the loop is constant. From our conven-
tions, stepping into a counterclockwise loop decreases the a-height function by 4 (a negative
loop) while stepping into clockwise loop increases the a-height function by 4 (a positive
loop) which leads to the following definition.

DEFINITION 2.1. Define ha
l (f ) to be the contribution of the a-height function from

only the loops for the a-face f , that is, ha
l (f )/4 is given by the number of positive loops

surrounding f subtracted by the number of negative loops surrounding f .

It follows that given a configuration of oriented loops, there is a well-defined a-height
function on loops. From the above definition of mirrors, the converse is also true.

We define a path of length k, with k ≥ 1, to be a sequence of distinct edges (e1, e3, . . . ,

e2k−1) such that:

1. e2i+1 are a-edges and covered by dimers for all 0 ≤ i ≤ k − 1 and none of these a-
dimers are part of a double edge after the squishing procedure,

2. there are distinct b-edges e2, . . . , e2k−2 not covered by dimers such that e2i shares an
endpoint with e2i−1 and e2i+1 for all 1 ≤ i ≤ k − 1,

3. e1 and e2k−1 are incident to the boundary face of Dm.

As for loops, each path is in fact oriented thanks to the prescribed orientation. Analogous
to the ambiguity that is present for loops, paths are not well defined due to the possibility of
intersecting multiple times with loops (or other paths). This ambiguity is removed using the
mirrors, that is, paths can meet with loops (or other paths) at meeting points and it is clear,
by our convention, which sequence of a-dimers belongs to which object.

For each path, there is an a-height difference of ±4 for the a-faces on either side of the
path, which depends on the orientation of the path which leads to the following lemma.
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LEMMA 2.2. Each a-dimer on Dm after squishing is either part of a double edge, a loop
or a path.

PROOF. From the squishing procedure, there are either zero, two or four a-dimers inci-
dent to each b-face. If there are two incident a-dimers to a b-face, then there must be a dimer
covering a b-edge on this face, with the a-dimers forming either a double edge or the a-
dimers sharing no common incident a-face of Dm. In the former case, a nearest neighboring
b-face must have at least two incident a-dimers while in the latter case, there is an a-height
difference which means the presence of a loop or a path. If there are four incident a-dimers
to a b-face, then there are three cases given by having:

1. two adjacent double edges,
2. a double edge incident to a loop or a path,
3. two loops or paths.

For each of these possibilities, see Figure 5. The first case is immediate and notice that it is
impossible for these double edges to have angles ±π/2 from each other. To see the second
case, if there is a double edge incident to a b-face and the remaining two vertices of that b-
face are not incident to another double edge, then the two remaining a-dimers are not incident
to the same a-face and hence, a loop or a path is formed due to an a-height difference. When
there are no double edges incident to a b-face, it follows that there is exactly one a-dimer in
each direction protruding out of the b-face, which corresponds to a mirror. This means that
there are a-height differences giving two separate loops or paths. �

For the rest of this subsection, we suppose that we have applied the squishing procedure.
From the definition of the a-height function and the proof of the above lemma, we see that
a path cannot meet itself (this type of self-intersection is a loop and a path), nor can it meet
another path, unless both paths separate the same a-height. If two paths separate the same
a-height, then these paths can meet at the meeting points (our convention using mirrors at the
meeting points defines each path uniquely).

Each boundary face on the top and bottom boundaries of D̃m induces an oriented path that
terminates on either the left or right boundaries of D̃m, with each path separating a different
a-height. Since the paths on the bottom (resp. top) boundary separate different heights, it
follows that the paths on the bottom (resp. top) boundary cannot meet at a vertex in D̃m. It
is possible (combinatorially), that one path starting from the bottom boundary and one path
starting from the top boundary meet at mulitple vertices in D̃m, which only happens if they
separate the same a-height. Note that due to the height increasing from left to right on the
bottom boundary and decreasing from left to right on the top boundary, only one such pairing
is combinatorially possible.

For a dimer covering d of Dm, label 
̃i,m = 
̃i,m(d̃) to be the oriented paths which separate
the a-height 4i and 4i + 4 for 0 ≤ i ≤ 2m − 1. The trajectories of these paths naturally
partition D̃m into sets of faces which we call corridors, so that each face in the (squished)
Aztec diamond belongs to a corridor, which is captured in the next definition.

DEFINITION 2.3. Let C0 = C0(d̃) be all the a-faces in D̃m bounded between 
̃0,m and
the boundary of D̃m, Ci = Ci (d̃) be all a-faces in D̃m bounded between 
̃i−1,m and 
̃i,m

for 0 < i ≤ 2m − 1, and C2m = C2m(d̃) be all a-faces in D̃m bounded by 
̃2m−1,m and the
boundary of D̃m.

For an a-face f ∈ Ci and 0 ≤ i ≤ 2m, we denote

ha
c(f ) = 4i,

which is called the corridor height of the face f ∈ Ci .
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It follows from the above discussion that a-height function is the sum of the contribution
from loops and the corridor height, that is, for f ∈ D̃m we have

ha(f ) = ha
c(f ) + ha

l (f ).(2.1)

3. Main theorem. Before stating the main theorem, we introduce some notation. We
have the following constant from [9]:

c = a

(1 + a2)
.(3.1)

Since we are interested in the rough-smooth boundary, we fix ξ = −1
2

√
1 − 2c and set

c0 = (1 − 2c)
2
3

(2c(1 + 2c))
1
3

, λ1 =
√

1 − 2c

2c0
and λ2 = (1 − 2c)

3
2

2cc2
0

.(3.2)

The term ξ can be thought of as the asymptotic parameter which puts the analysis at the
rough-smooth boundary after re-scaling (along the main diagonal in the third quadrant of the
Aztec diamond). The terms λ1 and λ2 are scale parameters, as found in [9].

For the rest of this paper, we introduce M = M(m) → ∞ slowly as m → ∞, but with
M4(logm)8/m1/3 → 0 as m → ∞, for example, we could have M = (logm)γ where γ > 0.
Recall that β1 < · · · < βL1 , L1 ≥ 1 are given fixed real numbers and Ap = [αl

p,αr
p] for αl

p <

αr
p and 1 ≤ p ≤ L2 are finite disjoint intervals in R. We want to place scaled versions of the

intervals {βq} × Ap approximately at the rough-smooth boundary so that we get intervals
between a-faces. To be more precise, introduce

βm(q, k) = 2
⌊
βqλ2(2m)2/3 + kλ2(logm)2⌋ and(3.3)

ρm = 4
⌊
m(1 + ξ)

⌋
, τm(q) = ⌊

β2
qλ1(2m)1/3⌋,(3.4)

where 1 ≤ k ≤ M . The additional parameter k is for notational convenience later in the paper
and is not needed (i.e., set k = 1) in order to state of the results of this paper.

We also need the following notation for a-faces. Recall that e1 = (1,1) and e2 = (−1,1).
Define the a-faces for 1 ≤ p ≤ L2, 1 ≤ q ≤ L1 and 1 ≤ k1, k2 ≤ M

J l
p,q,k1,k2

= (
ρm + 2

⌊
αl

pλ1(2m)1/3 − λ1k1(logm)2⌋− 1 − 2τm(q)
)
e1

− βm(q, k2)e2(3.5)

and

J r
p,q,k1,k2

= (
ρm + 2

⌊
αr

pλ1(2m)1/3 + λ1k1(logm)2⌋+ 1 − 2τm(q)
)
e1

− βm(q, k2)e2.(3.6)

Again, the additional parameters k1 and k2 are for convenience later in the paper. Let PAz
denote the probability measure with respect to the two-periodic Aztec diamond and for 1 ≤
p ≤ L2, 1 ≤ q ≤ L1, let

κm

({βq} × Ap

)= 1

4

(
ha
c

(
J r

p,q,1,1
)− ha

c

(
J l

p,q,1,1
))

.(3.7)

We are now in a position to state precisely the main theorem.

THEOREM 3.1. Assume that a < 1/3 and that κm and μAi are defined as above. Then,
the random variables κm({βq}×Ap), 1 ≤ p ≤ L2,1 ≤ q ≤ L1 converge jointly in distribution
to the random variables μAi({βq} × Ap) as m → ∞.
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Although κm is in general a signed measure, we expect that with probability tending to 1,
it is actually a positive measure.

It is clear from the definition that the corridors are separated by paths. Hence, κm in (3.7)
counts the (signed) number of paths between two points at a distance of order m1/3 at the
rough-smooth boundary. The theorem says that counting the number of paths this way defines
a signed measure that converges to the extended Airy kernel point process. We get a signed
measure because the paths can backtrack. However, we expect that the backtracks are small
(like loops) and do not have any influence on the scales we are considering.

The paths 
̃i,m split into two parts 
̃t
i,m and 
̃b

i,m which start from the top and bottom
boundaries respectively; see Figure 4. We expect that for all a ∈ (0,1) there is an i0, close
to m, such that 
̃b

i0,m
ends at the left boundary and 
̃b

i0+1,m ends at the right boundary. Thus,

we believe that the path 
̃b
i0,m

is the last path in the third quadrant in the vicinity of the main
diagonal, that is, between this path and the center of the Aztec diamond, there are no paths.
Moreover, we conjecture that for all a ∈ (0,1) the path 
̃b

i0,m
converges, after appropriate

rescaling, to the Airy process.
The proof of the above theorem involves four main ingredients which are stated in Sec-

tion 4, with their proofs postponed until later in the article. This allows us to give the proof
of the main theorem in Section 5. In Section 6 we give the proof of the first main ingredient
which gives a refinement of the main result in [3]. In Section 7, we give the proof of the
second main ingredient which gives couplings between configurations at the rough-smooth
boundary with the smooth phase. In Section 8, we give the proof of the third main ingredient
which says that there are no (full-plane) paths in the smooth phase almost surely. In Section 9,
we give the proof of the final main ingredient, which gives control of the size of the loops
provided that a < 1/3.

4. Auxiliary results. Before we are in a position to prove Theorem 3.1, we require four
ingredients which are given in the following four subsections. The proofs of these results are
postponed to later in the paper.

4.1. Multi-line to single line. In this subsection, we give the asymptotics of the inverse
Kasteleyn matrix at the rough-smooth boundary [9], the definition of the random measure
defined by taking (single) a-height differences on multiple lines used in [3], and state a result
that this random measure is equivalent, at the rough-smooth boundary as m → ∞, to the
random measure defined by taking multiple a-height differences on a single line.

4.1.1. The Kasteleyn matrix and its inverse. The Kasteleyn matrix for a finite planar
bipartite graph is a type of signed weighted adjacency matrix whose rows are indexed by the
black vertices of the graph and whose columns are indexed by the white vertices of the graph.
More precisely, for a graph with white vertices W̃ and black vertices B̃ which admits dimer
coverings, K is a matrix with entries

Kbw =
{

0 if (w,b) is not an edge in the graph,

sgn(e)w(e) if e = (w,b) is an edge in the graph,
(4.1)

where sgn(e) is chosen according to the Kasteleyn orientation, a choice in signs ensures that
the product of Kbw for the edges around each face is negative, and w(e) denotes the edge
weight of e. For the significance of the Kasteleyn matrix for random tiling models, see, for
example, [17]. We will denote Kbw = K(b,w) and stick to this convention throughout the
paper.

For planar bipartite graphs, G, the dimers form a determinantal point process [16]. More
explicitly, suppose that E = {ei}ri=1 is a collection of distinct edges with ei = (bi ,wi), where
bi and wi denote black and white vertices.
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THEOREM 4.1 ([15, 16]). The dimers form a determinantal point process on the edges
of G with correlation kernel L meaning that the probability of observing edges e1, . . . , er is
given by detL(ei ,ej )1≤i,j≤r where L(ei ,ej ) = K(bi ,wi)K

−1(wj ,bi ).

In what follows below, the graph G will either denote a finite graph such as the Aztec
diamond graph or the full-plane (Z2).

The Kasteleyn matrix for the two periodic Aztec diamond of size n = 4m with parameters
a and b, denoted by Ka,b, is given by

Ka,b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a(1 − j) + bj if y = x + e1, x ∈ Bj ,(
aj + b(1 − j)

)
i if y = x + e2, x ∈ Bj ,

aj + b(1 − j) if y = x − e1, x ∈ Bj ,(
a(1 − j) + bj

)
i if y = x − e2, x ∈ Bj ,

0 if (x, y) is not an edge,

(4.2)

where i2 = −1 and j ∈ {0,1}. A formula for the inverse Kasteleyn matrix for the two-periodic
Aztec diamond was derived in [10] and a simplification given in [9]. Before giving the asymp-
totics of the inverse Kasteleyn matrix at the rough-smooth boundary, we give the full-plane
smooth phase inverse Kasteleyn matrix (with the same edge weight conventions). Denote
Psm to be the probability measure in the full-plane smooth phase. Define the white and black
vertices on the plane by

W∗
i = {

(x, y) ∈ Z
2 : x mod 2 = 1, y mod = 0, x + y mod 4 = 2i + 1

}
(4.3)

and

B∗
i = {

(x, y) ∈ Z
2 : x mod 2 = 0, y mod = 1, x + y mod 4 = 2i + 1

}
,(4.4)

where i ∈ {0,1}. Recall that b = 1. For j ∈ {0,1} and w ∈ W∗
j , the weight of the edge (w,w +

(−1)kei) is given by a(1−k)(1−j)+kj for k ∈ {0,1}, i ∈ {1,2}, which is the same convention as
the two-periodic Aztec diamond. Let

c̃(u1, u2) = 2
(
1 + a2)+ a

(
u1 + u−1

1

)(
u2 + u−1

2

)
,(4.5)

which is related to the so-called characteristic polynomial for the dimer model [19]; see [9],
(4.11), for an explanation. Write

h(ε1, ε2) = ε1(1 − ε2) + ε2(1 − ε1),(4.6)

and for the rest of this paper, 
R denotes a positively oriented circle of radius R around the
origin. The full-plane smooth phase inverse Kasteleyn matrix is given by

K
−1
1,1(x, y) = − i1+h(εx,εy)

(2π i)2

∫

1

du1

u1

∫

1

du2

u2

aεyu
1−h(εx,εy)

2 + a1−εyu1u
h(εx,εy)

2

c̃(u1, u2)u
x1−y1+1

2
1 u

x2−y2+1
2

2

,(4.7)

where x = (x1, x2) ∈ W∗
εx

and y = (y1, y2) ∈ B∗
εy

with εx, εy ∈ {0,1}; see [9], Section 4, for
details and connections with [19]. Note that in the above formula, we can replace x ∈ W∗

εx
and

y ∈ B∗
εy

by x ∈ Wεx and y ∈ Bεy for εx, εy ∈ {0,1} and this gives the same formula.
We can now give our formulas for the asymptotics of the inverse Kasteleyn matrix at the

rough-smooth boundary. We set

C = 1√
2c

(1 − √
1 − 2c).(4.8)
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From [9], it is natural to write

K−1
a,1(x, y) = K

−1
1,1(x, y) −KA(x, y),(4.9)

which defines KA. The full expression for KA is complicated and will not be given in full
here; see [9], Theorem 2.3, and [13], Proposition 6.2.

Let αx,αy,βx,βy ∈ R, k1
x, k

2
x, k

1
y, k

2
y ∈ Z and fx, fy ∈ Z

2. We will use the following scal-
ing of x and y at the rough-smooth boundary:

x = (
ρm + 2

⌊
αxλ1(2m)1/3 + k1

xλ1(logm)2⌋)e1

− (
2
⌊
βxλ2(2m)2/3 + k2

xλ2(logm)2⌋)e2 + fx

y = (
ρm + 2

⌊
αyλ1(2m)1/3 + k1

yλ1(logm)2⌋)e1

− (
2
⌊[βyλ2(2m)2/3 + k2

yλ2(logm)2⌋)e2 + fy.

(4.10)

We introduce the notation

gε1,ε2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i(
√

a2 + 1 + a)

1 − a
if (ε1, ε2) = (0,0),√

a2 + 1 + a − 1√
2a(1 − a)

if (ε1, ε2) = (0,1),

−
√

a2 + 1 + a − 1√
2a(1 − a)

if (ε1, ε2) = (1,0),

i(
√

a2 + 1 − 1)

(1 − a)a
if (ε1, ε2) = (1,1).

(4.11)

From [9], Theorem 2.7, and its proof, we have the following theorem.

THEOREM 4.2 ([9]). Assume that x = (x1, x2) ∈ Wεx and y = (y1, y2) ∈ Bεy are given by
(4.10) with εx, εy ∈ {0,1}. Furthermore, assume that |αx |, |αy |, |βx |, |βy |, |fx |, |fy | ≤ C for
some constant C > 0 and that |k1

x |, |k2
x |, |k1

y |, |k2
y | ≤ M with M as above. Then, as m → ∞

KA(x, y) = iy1−x1+1C
−2−x1+x2+y1−y2

2 c0gεx,εy e
αyβy−αxβx− 2

3 (β3
x−β3

y )

× (2m)−
1
3
(
Ã
(
βx,αx + β2

x ;βy,αy + β2
y

)+ o(1)
)
.

(4.12)

Also, as m → ∞,

K
−1
1,1(x, y) = iy1−x1+1C

−2−x1+x2+y1−y2
2 c0gεx,εy e

αyβy−αxβx− 2
3 (β3

x−β3
y )

× (2m)−
1
3
(
φβx,βy

(
αx + β2

x ;αy + β2
y

)+ o(1)
)
.

(4.13)

The formulation given for the above theorem is slightly different from that in [9], however,
this modification makes no difference.

4.1.2. Definition of random measures. We give the definition of μm which is equivalent
to the definition in [3] but in a simpler form as well as random measure that will be used in the
proof of the main theorem. The reason for the simplification for μm is that in [3], we stated
the formulas in terms of particles to coincide with determinantal point processes. Define

μm

({βq} × Ap

)= 1

4M

M∑
k=1

h
(
J r

p,q,1,k

)− h
(
J l

p,q,1,k

)
.(4.14)
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The random signed measure μm can be thought of as a “horizontal averaging” of the height
function. The following theorem from [3] holds for our choice of M in this paper, it is easy
to see that our choice of M in this paper is a restriction of the one given in [3].

THEOREM 4.3 (Theorem 1.1 in [3]). As m → ∞ and for all a ∈ (0,1), μm converges to
the extended Airy kernel point process in the sense that there exists R > 0 such that

lim
m→∞E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμm

({βq} × Ap

))]

= E

[
exp

(
L2∑

p=1

L1∑
q=1

wp,qμAi
({βq} × Ap

))](4.15)

with wp,q ∈C such that |wp,q | < R for all 1 ≤ p ≤ L2, 1 ≤ q ≤ L1.

Roughly speaking, the above theorem says that the horizontal averaging of the height
function converges (in the above sense) to the Airy kernel point process.

Introduce the random signed measure

νm

({βq} × Ap

)= 1

4M

M∑
k=1

ha(J r
p,q,k,1

)− ha(J l
p,q,k,1

)
.(4.16)

The measure νm can be thought of as a “vertical averaging” of the height function.

PROPOSITION 4.4. As m → ∞ and for all a ∈ (0,1), νm converges to the extended Airy
kernel point process, where convergence is in the same sense as that given in Theorem 4.3.

It follows from the proposition that the random variables νm({βq} × Ap) converge jointly
in law to the random variables μAi({βq} × Ap), 1 ≤ p ≤ L2, 1 ≤ q ≤ L1 as m → ∞. The
proof is given in Section 6.

4.2. Smooth couplings. Here, we state a result for coupling the dimer configurations at
the rough-smooth boundary to the restriction of the full-plane smooth phase to a single box
and also show that two distant configurations in the full-plane smooth phase are almost inde-
pendent.

Let (u, v) be an a-face and let �
(u,v)
L = �((u, v),L) be a box with corners (u+L− 1, v),

(u−L+ 1, v), (u, v +L− 1) and (u, v −L+ 1) for L ∈ 2Z, chosen so that the box is inside
the Aztec diamond. Let ∂�

(u,v)
L denote vertices which share edges that cross boundary of

the box �
(u,v)
L . Let W�

(u,v)
L denote all white vertices in �

(u,v)
L ∪ ∂�

(u,v)
L , then we can write

W�
(u,v)
L = {w1, . . . ,wR} where R = L2/2+2L. Set f1 = e1, f2 = e2, f3 = −e1, and f4 = −e2

and [N ] = {1, . . . ,N} for a positive integer N . A configuration in �
(u,v)
L is a set of edges:

(w1,w1 + fs1), . . . , (wR,wR + fsR),(4.17)

where sj ∈ [4],1 ≤ j ≤ R. We think of (4.17) as the event that all these edges are covered by
dimers. For s ∈ [4]R , we let s denote the configuration (4.17). Note that for certain choices of
s, two edges will meet at a black vertex, but these configurations will have probability zero.
We have two probability measures on � = [4]R coming from PAz and Psm.

Write

Aij (s) = Ka,1(wi,wi)K
−1
1,1(wi,wj + fsj )(4.18)
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and

Cij (s) = −Ka,1(wi,wi)KA(wi,wj + fsj );(4.19)

see Section 4.1.1. It follows from Theorem 4.2 and [9], Theorem 2.6, that there is a constant
C0 such that ∣∣Cij (s)

∣∣≤ C0(4.20)

for all i, j and for all s chosen so that (u, v) = x, where x is of the form given by (4.10).
Then, PAz induces the following measure on �:

pAz
(
s|�(u,v)

L

)= det
(
Aij (s) + Cij (s)

)
1≤i,j≤R(4.21)

and Psm gives

psm
(
s|�(u,v)

L

)= det
(
Aij (s)

)
1≤i,j≤R.(4.22)

Note that if wj + fsj = wk + fsk for j �= k, then (4.21) and (4.22) both give zero, so config-
urations with overlaps have probability zero.

PROPOSITION 4.5. Let C0 be the constant in (4.20). Then, we have the following esti-
mate of the total variation distance:

dT V (pAz,psm) = 1

2

∑
s∈�

∣∣pAz
(
s|�(u,v)

L

)− psm
(
s|�(u,v)

L

)∣∣≤ eC0(2L + L2)2

m1/3 ,(4.23)

where pAz = pAz(·|�(u,v)
L ), psm = psm(·|�(u,v)

L ), provided L satisifes C0(2L + L2)2 ≤ m1/3

and (u, v) = x is of the form given in (4.10).

The proof is given in Section 7.
In order to show that two distant configurations in the smooth phase are almost inde-

pendent, we need to augment the notation given above. Consider �1 = �(J r
p,q,k1,1

,L) and

�2 = �(J r
p,q,k2,1

,L) for k1 �= k2 with 1 ≤ k1, k2 ≤ M , 1 ≤ p ≤ L2 and 1 ≤ q ≤ L1, where

L < λ1(logm)2/
√

2. The condition on L ensures that �1 and �2 are disjoint. We extend the
above conventions for �1 ∪ �2. That is, for 1 ≤ i ≤ 2:

• ∂�i denotes vertices which share edges that cross boundary of the box �i

• W�i = {w1+(i−1)R, . . . ,wR+(i−1)R} denotes all white vertices in �i ∪ ∂�i .

A configuration in �1 ∪ �2 is a set of edges:

(w1,w1 + fs1), . . . , (w2R,w2R + fs2R
),(4.24)

where sj ∈ [4],1 ≤ j ≤ 2R and R = L2

2 + 2L as before. We consider the smooth phase on
the set of configurations �1 ∪�2 = [4]2R , where each �i is responsible for the configuration
in �i for 1 ≤ i ≤ 2. Write for 1 ≤ i, j ≤ 2R

Dij (s) = Ka,1(wi,wi)K
−1
1,1(wi,wj + fsj ),(4.25)

Eij (s) =

⎧⎪⎪⎨
⎪⎪⎩

Ka,1(wi,wi)K
−1
1,1(wi,wj + fsj ) if 1 ≤ i, j ≤ R,

Ka,1(wi,wi)K
−1
1,1(wi,wj + fsj ) if R + 1 ≤ i, j ≤ 2R,

0 otherwise,

(4.26)

and Fij (s) = Dij (s) − Eij (s). As above, Psm induces the probability measure on �1 ∪ �2

psm
(
s|�1 ∪ �2)= det

(
Dij (s)

)
1≤i,j≤2R(4.27)
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and the marginals on each �i

psm
(
s|�k)= det

(
Eij (s)

)
1+(k−1)R≤i,j≤Rk for 1 ≤ k ≤ 2.

PROPOSITION 4.6. There exists constants C,c0 > 0 such that∑
s∈�

∣∣psm
(
s|�1 ∪ �2)− psm

(
s|�1)psm

(
s|�2)∣∣≤ CR2e−c0(logm)2

,(4.28)

provided that

R <
λ2

1(logm)4

4
+ λ1(logm)2.

The proof is given in Section 7.

4.3. Biinfinite paths in the full-plane smooth phase. In Section 2, we defined corridors,
paths and loops for a dimer covering on Dm. Analogous to the Aztec diamond, there is a
height function for the dimer model on the plane defined through height differences between
faces, with the same convention given for the Aztec diamond. This height function on the
plane is unique up to height level. There is also a corresponding notion of a-height function,
ha . Both the prescribed orientation and the squishing procedure generalize to the full plane
by assigning an arrow to each edge of the plane from its white vertex to its black vertex,
and by contracting the size of each b-face while simultaneously increasing the size of each
a-face. A biinfinite path is a biinfinite sequence of distinct edges {e2k+1, k ∈ Z} such that:

1. the sequence of a-edges {e2k+1}k∈Z are all by covered by a-dimers and none of these
a-edges are part of a double edge after the squishing procedure, and

2. there exists a sequence {e2k}k∈Z of distinct b-edges not covered by dimers such that the
edge e2k shares an endpoint with the edges e2k−1 and e2k for all k ∈ Z.

Similar to the construction for D̃m, we introduce mirrors to vertices of the plane (after squish-
ing) where the dimer covering has four incident a-dimers, that is, a mirror is a line between
the centers of a-faces of lowest a-height value around each vertex which has four incident
a-dimers after the squishing procedure. Analogous to the case of D̃m, equipped with mirrors,
biinfinite paths are well defined. Following the arguments in Section 2, each a-dimer in the
full-plane smooth phase is either part of a double edge, an oriented loop or a biinfinite path.

THEOREM 4.7. For a ∈ [0,1), in the full-plane smooth phase there are no biinfinite
paths in the full-plane smooth phase almost surely.

The proof of this theorem is given in Section 8.

4.4. Control of loops. For a dimer covering on Dm or the full-plane, let Dl be the set of
loops in the covering. Let S be a set of a-edges. We say that a loop γ in Dl intersects S if γ

has an a-dimer that covers an edge in S. Recall that �(γ ) denotes the number of a-dimers in
a loop, that is, the length of a loop.

LEMMA 4.8. Let S be a set of a-edges in Dm or the full-plane, and assume that a ∈
(0,1/3). Then,

P
[∃γ ∈ Dl that intersects S and has length �(γ ) at least d

]≤ |S|
1 − 3a

(3a)d,(4.29)

where |S| is the size of S, and P is either PAz or Psm.

We also prove a similar result for double edges, which holds for all a ∈ [0,1), but this is
not needed for the proof of our main result. The proof is given in Section 9.
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5. Proof of Theorem 3.1. Before giving the proof of Theorem 3.1, we first state and
prove two lemmas. We recall the notation from Section 4.2 that for an a-face (u, v), we use
�((u, v),L) to denote a box with corners (u + L − 1, v), (u − L + 1, v), (u, v + L − 1) and
(u, v − L + 1) for L ∈ 2Z. Throughout this section, we fix

L = 2
⌊
λ1M(logm)2⌋(5.1)

and for 1 ≤ p ≤ L2,1 ≤ q ≤ L1 we let �
p,q,r
L = �(J r

p,q,
M
2 �,1,L) so that J r

p,q,k,1 ∈ �
p,q,r
L

for all 1 ≤ k ≤ M ; similarly for �
p,q,l
L . Note that the choice of L above satisfies the condition

in Proposition 4.5.

LEMMA 5.1. Under PAz and for a ∈ (0,1/3),

1

4M

M∑
k=1

ha
l

(
J r

p,q,k,1
)− ha

l

(
J l

p,q,k,1
)→ 0

in probability as m → ∞.

A similar computation shows that 1
4M

∑M
k=1 ha

l (J
r
p,q,1,k)−ha

l (J
l
p,q,1,k) → 0 in probability

as m → ∞.

PROOF. Let Da
m denote the set of all a-edges in the Aztec diamond and let δ > 0 be

given. Take S = Da
m and let d = δ(logm)2 in Lemma 4.8. Write

A = {all loops in the Aztec diamond that have length ≤ d}.(5.2)

Lemma 4.8 gives

PAz
[
Ac]≤ |Da

m|
1 − 3a

(3a)δ(logm)2 ≤ Cm2(3a)δ(logm)2 = o(1)(5.3)

as m → ∞. Define

h
a,d
l (f ) = the loop height given by loops of length less than or equal to d.(5.4)

If dm = δ(logm)2+ε for any ε > 0, then in the Aztec diamond ha
l (f ) = h

a,dm

l (f ) in the set
A. Thus, we have

PAz

[
1

4M

M∑
k=1

ha
l

(
J r

p,q,k,1
)
> ε

]

≤ PAz

[{
1

4M

M∑
k=1

h
a,dm

l

(
J r

p,q,k,1
)
> ε

}
∩ A

]
+ PAz

[
Ac]

≤ PAz

[
1

4M

M∑
k=1

h
a,dm

l

(
J r

p,q,k,1
)
> ε

]
+ o(1).

(5.5)

By the choice of L in (5.1), the random variable 1
4M

∑M
k=1 h

a,dm

l (J r
p,q,k,1) only depends on

dimer configurations in �
p,q,r
L . Hence, by Proposition 4.5

PAz

[
1

4M

M∑
k=1

ha
l

(
J r

p,q,k,1
)
> ε

]
≤ Psm

[
1

4M

M∑
k=1

h
a,dm

l

(
J r

p,q,k,1
)
> ε

]
+ o(1).(5.6)
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Write

B =
{

all loops in �
p,q,r
L that have length ≤ (2 + δ) logL

log(1/3a)

}
.(5.7)

Then, we have

Psm
[
Bc]≤ |�p,q,r

L |
1 − 3a

(3a)
− (2+δ) logL

log 3a = 4L2

1 − 3a
L−2−δ = o(1)(5.8)

as m → ∞. If d̃m = −3 logL
log 3a

, we have that h
a,d
l (f ) = h

a,d̃m

l (f ) in the set B . We have that

Psm

[
1

4M

M∑
k=1

h
a,dm

l

(
J r

p,q,k,1
)
> ε

]

≤ Psm

[{
1

4M

M∑
k=1

h
a,d̃m

l

(
J r

p,q,k,1
)
> ε

}
∩ B

]
+ Psm

[
Bc]

≤ Psm

[
1

4M

M∑
k=1

h
a,d̃m

l

(
J r

p,q,k,1
)
> ε

]
+ o(1).

(5.9)

Then, we have reduced (5.6) to

PAz

[
1

4M

M∑
k=1

ha
l

(
J r

p,q,k,1
)
> ε

]
≤ Psm

[
1

4M

M∑
k=1

h
a,d̃m

l

(
J r

p,q,k,1
)
> ε

]
+ o(1).(5.10)

We focus on the right side of (5.10). We have that Esm[ha
l (J

r
p,q,k,1)] = Esm[ha,d̃m

l (J r
p,q,k,1)] =

0, which follows immediately since the distribution of the loops is symmetric (i.e., the proba-
bility of a configuration of loops is invariant under flipping the sign of all the loops due to the
form of the correlation kernel of the full-plane smooth phase in (4.7) and that there are only
loops and double edges in the full-plane smooth phase almost surely from Theorem 4.7). By
using Chebychev’s inequality, we have

Psm

[
1

4M

M∑
k=1

h
a,d̃m

l

(
J r

p,q,k,1
)
> ε

]
≤ 1

(4Mε)2 Varsm

[
M∑

k=1

h
a,d̃m

l

(
J r

p,q,k,1
)]

(5.11)

and the right side expands to

Varsm

[
M∑

k=1

h
a,d̃m

l

(
J r

p,q,k,1
)]=

M∑
k=1

Varsm
[
h

a,d̃m

l

(
J r

p,q,k,1
)]

(5.12)
+ 2

∑
1≤k1<k2≤M

Covsm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)
h

a,d̃m

l

(
J r

p,q,k2,1
)]

.

We first show that

Covsm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)
h

a,d̃m

l

(
J r

p,q,k2,1
)]= o(1)(5.13)

as m → ∞. Each random variable h
a,d̃m

l (J r
p,q,k,1) only depends on at most d̃m loops, since

the loops are bounded by d̃m, which means that h
a,d̃m

l (J r
p,q,k,1) only depends on dimer con-

figurations inside �(J r
p,q,k,1,2[d̃m]). This means that Proposition 4.6 applies with R chosen
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to be 2d̃2
m + d̃m, which means that for |r1|, |r2| < d̃m

C
(
2d2

m + dm

)2
e−c0(logm)2

≥ ∣∣Psm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)= r1, h

a,d̃m
(
J r

p,q,k2,1
)= r2

]
− Psm

[
ha,d̃m

(
J r

p,q,k1,1
)= r1

]
Psm

[
ha,d̃m

(
J r

p,q,k2,1
)= r2

]∣∣
(5.14)

for k1 �= k2 and C,c0 as given in Proposition 4.6. Using the above equation, we have that

Esm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)
h

a,d̃m

l

(
J r

p,q,k2,1
)]

= ∑
|r1|,|r2|<d̃m

r1r2Psm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)= r1, h

a,d̃m

l

(
J r

p,q,k2,1
)= r2

]
.

(5.15)
= o(1) + ∑

|r1|,|r2|<d̃m

r1r2Psm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)= r1

]
Psm

[
h

a,d̃m

l

(
J r

p,q,k2,1
)= r2

]

= Esm
[
h

a,d̃m

l

(
J r

p,q,k1,1
)]
Esm

[
h

a,d̃m

l

(
J r

p,q,k2,1
)]+ o(1),

where the o(1) error term after the second equality comes from the bound in (5.14)
multiplied by the number of terms in the sum. By recalling that Esm[ha

l (J
r
p,q,k,1)] =

Esm[ha,d̃m

l (J r
p,q,k,1)] = 0, this means we have verified (5.13). By noting that

Esm[ha,d̃m

l (J r
p,q,k,1)

2] < d̃2
m and d̃2

m/M → 0 as m → ∞, we have shown that

Psm

[
1

4M

M∑
k=1

h
a,d̃m

l

(
J r

p,q,k,1
)
> ε

]
→ 0 as m → ∞

as required. �

For the next lemma, let Path(p, q, r) be the event in the Aztec diamond that there is a
path that intersects the set Sp,q,r of a-edges between J r

p,q,1,1 and J r
p,q,M,1.

LEMMA 5.2. For a ∈ (0,1/3), and all 1 ≤ p ≤ L2, 1 ≤ q ≤ L1,

lim
m→∞PAz

[
Path(p, q, r)

]= 0.(5.16)

PROOF. Let us call a consecutive set of a-edges that are part of a loop or a path a
sequence of a-edges. Since a path starts and ends at the boundary, any path that inter-
sects Sp,q,r has to have a sequence of a-edges in �

p,q,r
L of length greater than or equal

to dm = [Mλ1(logm)2] by the definition of L in (5.1). Then, we have

PAz
[
Path(p, q, r)

]
≤ PAz

[∃ a seq. of a-edges in �
p,q,r
L intersecting Sp,q,r with length ≥ dm

]
(5.17)

= Psm
[∃ a seq. of a-edges in �

p,q,r
L intersecting Sp,q,r with length ≥ dm

]+ o(1),

where the last step follows by applying Proposition 4.5. The last probability is the probability
in the full-plane smooth phase of the restriction of an event in the full-plane. By Theorem 4.7,
there are no paths almost surely in the full-plane smooth phase, so the sequence of a-edges
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has to be part of a loop. Thus, we have

Psm
[∃ a seq. of a-edges in �

p,q,r
L intersecting Sp,q,r with length ≥ dm

]
≤ Psm

[
there is a loop intersecting Sp,q,r of length ≥ dm

]
≤ |Sp,q,r |

1 − 3a
(3a)dm ≤ M

1 − 3a
(3a)[Mλ1(logm)2] = o(1)

(5.18)

as m → ∞. Combining this with (5.17), we have proved the lemma. �

We now give the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. From the formulas for κm and νm in (3.7) and (4.16), we have
that

κm

({βq} × Ap

)− νm

({βq} × Ap

)

= 1

4M

M∑
k=1

ha
c

(
J r

p,q,1,1
)− ha

c

(
J l

p,q,1,1
)

− ha
c

(
J r

p,q,k,1
)− ha

l

(
J r

p,q,k,1
)+ ha

c

(
J l

p,q,k,1
)+ ha

l

(
J l

p,q,k,1
)

(5.19)

= 1

4M

M∑
k=1

ha
l

(
J l

p,q,k,1
)− ha

l

(
J r

p,q,k,1
)+ 1

4M

M∑
k=2

ha
c

(
J r

p,q,1,1
)− ha

c

(
J r

p,q,k,1
)

− 1

4M

M∑
k=2

ha
c

(
J l

p,q,1,1
)− ha

c

(
J l

p,q,k,1
)
,

where the first equality follows from using (2.1). We have that

1

4M

M∑
k=1

ha
l

(
J l

p,q,k,1
)− ha

l

(
J r

p,q,k,1
)→ 0

as m → ∞ with probability tending to one by Lemma 5.1. From Lemma 5.2, no paths sepa-
rate J r

p,q,1,1 and J r
p,q,k,1 for 1 ≤ k ≤ M with probability tending to one, and so we conclude

that

1

4M

M∑
k=2

ha
c

(
J r

p,q,1,1
)− ha

c

(
J r

p,q,k,1
)→ 0

as m → ∞ with probability tending to one. A similar argument shows that

1

4M

M∑
k=2

ha
c

(
J l

p,q,1,1
)− ha

c

(
J l

p,q,k,1
)→ 0

with probability tending to one. We have shown that

κm

({βq} × Ap

)− νm

({βq} × Ap

)→ 0

as m → ∞ with probability tending to 1. Since νm converges to the Airy kernel point process
weakly, we conclude that so does κm. �
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6. Proof of Proposition 4.4. Before giving the proof of Proposition 4.4, we need the
following lemma.

LEMMA 6.1. There exists R > 0 such that

lim
m→∞EAz[exp

[
1

M

L2∑
p=1

L1∑
q=1

M∑
k=1

wp,q

(
ha(J r

p,q,k,1
)− ha(J r

p,q,k,k

))]= 1(6.1)

and

lim
m→∞EAz[exp

[
1

M

L2∑
p=1

L1∑
q=1

M∑
k=1

wp,q

(
ha(J r

p,q,k,k

)− ha(J r
p,q,1,k

))]= 1(6.2)

for all |wp,q | < R where 1 ≤ p ≤ L2 and 1 ≤ q ≤ L1.

This is proved in Appendix B. We can now give the proof of Proposition 4.4.

PROOF OF PROPOSITION 4.4. Let wp,q = up,q + ivp,q where up,q, vp,q ∈ R for 1 ≤
p ≤ L2, 1 ≤ q ≤ L1. Define

Rm =
L2∑

p=1

L1∑
q=1

up,qνm

({βq} × Ap

)
, R′

m =
L2∑

p=1

L1∑
q=1

vp,qνm

({βq} × Ap

)
,(6.3)

Sm =
L2∑

p=1

L1∑
q=1

up,qμm

({βq} × Ap

)
, S′

m =
L2∑

p=1

L1∑
q=1

vp,qμm

({βq} × Ap

)
,(6.4)

Tm =
L2∑

p=1

L1∑
q=1

up,qμAi
({βq} × Ap

)
, and T′

m =
L2∑

p=1

L1∑
q=1

vp,qμAi
({βq} × Ap

)
.(6.5)

We want to prove that there exists r0 > 0 so that if |up,q | ≤ r0, |vp,q | ≤ r0 for all 1 ≤ p ≤ L2,
1 ≤ q ≤ L1, then

lim
m→∞EAz

[
eRm−Tm+i(R′

m−T′
m)]= 1.(6.6)

Define for ζ ∈ C, |Reζ | < 1

Fm(ζ ) = EAz
[
eRm−Tm+ζ(R′

m−T′
m)].(6.7)

This is an analytic function in ζ . We need the following claim whose proof is postponed.

CLAIM 1. There is an r0 > 0 so that if |up,q | ≤ r0/2, |vp,q | ≤ r0/2 for all 1 ≤ p ≤ L2,
1 ≤ q ≤ L1 then limm→∞ Fm(t) = 1 for all t ∈ R, |t | ≤ 1.

We first show that this implies that limm→∞ Fm(i) = 1 for |up,q | ≤ r0/2, |vp,q | ≤ r0/2
for all 1 ≤ p ≤ L2, 1 ≤ q ≤ L1, which is exactly what we want to prove. This follows if we
show that the family of functions {Fm(ζ )}m≥1 is a normal family for |Reζ | < 1, since this fact
combined with Claim 1 implies that Fm(ζ ) → 1 uniformly on compact subsets of |Reζ | < 1,
which implies (6.6). We next show that {Fm(ζ )}m≥1 is a normal family for |Reζ | < 1. If t

and x are real and |t | ≤ r , then

etx ≤ e|tx| ≤ er|x| ≤ erx + e−rx.(6.8)
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If |Reζ | < 1, this inequality gives∣∣Fm(ζ )
∣∣≤ EAz

[
eRm−Tm+(Reζ )(R′

m−T′
m)]

≤ EAz
[
eRm−Tm+R′

m−T′
m
]+EAz

[
eRm−Tm−(R′

m−T′
m)].(6.9)

By Claim 1, the right side converges to 2 as m tends to infinity and is bounded by 4 for
sufficiently large m. Thus, we have |Fm(ζ )| ≤ 4 for all |Reζ | ≤ 1 and for sufficiently large m.
From Montel’s theorem, we have that {Fm(ζ )}m≥1 is a normal family for |Reζ | < 1.

It remains to prove Claim 1. We need the following claim whose proof is postponed until
after the proof of Claim 1.

CLAIM 2. There is an r1 > 0 so that if |up,q | ≤ r1/2, |vp,q | ≤ r1/2 for all 1 ≤ p ≤ L2,
1 ≤ q ≤ L1

lim sup
m→∞

EAz
[
e2(Rm−Sm)+2t (R′

m−S′
m)]≤ 1(6.10)

and

lim inf
m→∞ EAz

[
Rm − Sm + t

(
R′

m − S′
m

)]= 0(6.11)

for all t ∈ R, |t | ≤ 1.

PROOF OF CLAIM 1. From Theorem 4.3, we have that there exists r0 such that

lim
m→∞EAz

[
eSm−Tm+t (S′

m−T′
m)]= 1(6.12)

for |up,q | ≤ r0, |vp,q | ≤ r0 for all 1 ≤ p ≤ L2, 1 ≤ q ≤ L1 and |t | ≤ 1. The Cauchy–Schwarz
inequality gives

EAz
[
eRm−Tm+t (R′

m−T′
m)]

= EAz
[
eRm−Sm+Sm−Tm+t (R′

m−S′
m+S′

m−T′
m)]

≤ EAz
[
e2(Rm−Sm)+2t (R′

m−S′
m)]1/2

EAz
[
e2(Sm−Tm)+2t (S′

m−T′
m)]1/2

.

(6.13)

It follows from (6.10) and (6.12) that

lim sup
m→∞

EAz
[
eRm−Tm+t (R′

m−T′
m)]≤ 1.(6.14)

Conversely, by Jensen’s inequality we have

EAz
[
eRm−Sm+Sm−Tm+t (R′

m−S′
m+S′

m−T′
m)]

≥ exp
(
EAz

[
Rm − Sm + t

(
R′

m − S′
m

)])
exp

(
EAz

[
Rm − Tm + t

(
R′

m − T′
m

)])
.

(6.15)

It follows from (6.11) and (6.12) that

lim inf
m→∞ EAz

[
eRm−Tm+t (R′

m−T′
m)]≥ 1,(6.16)

which proves the claim with r0 = r1/2. �

PROOF OF CLAIM 2. To prove (6.10), we have by expanding out the definitions of
Rm,Sm,μm and νm

EAz
[
e2(Rm−Sm)+2t (R′

m−S′
m)]

= EAz

[
exp

[
2

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)(6.17)

× (
ha(J r

p,q,k,1
)− ha(J r

p,q,1,k

)− (
ha(J l

p,q,k,1
)− ha(J l

p,q,1,k

)))]]
.
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Applying Cauchy–Schwarz gives

EAz
[
e2(Rm−Sm)+2t (R′

m−S′
m)]

≤ EAz

[
exp

[
4

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)
(
ha(J r

p,q,k,1
)− ha(J r

p,q,1,k

))]]1/2

(6.18)

×EAz

[
exp

[
4

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)
(−ha(J l

p,q,k,1
)+ ha(J l

p,q,1,k

))]]1/2

.

For the first term on the right side of (6.18), we use Cauchy–Schwarz again

EAz

[
exp

[
4

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)
(
ha(J r

p,q,k,1
)− ha(J r

p,q,1,k

))]]

≤ EAz

[
exp

[
8

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)
(
ha(J r

p,q,k,1
)− ha(J r

p,q,k,k

))]] 1
2

(6.19)

×EAz

[
exp

[
8

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)
(
ha(J r

p,q,k,k

)− ha(J r
p,q,1,k

))]] 1
2

and conclude using Lemma 6.1 that the right side tends to 1 as m tends to infinity. A similar
computation holds for the second term on the right side of (6.18) using an analogous version
of Lemma 6.1.

To prove (6.11), we expand out the definitions of Rm,Sm,μm and νm which gives

EAz
[
Rm − Sm + t

(
R′

m − Sm

)]

= 1

M

L2∑
p=1

L1∑
q=1

M∑
k=1

(up,q + tvp,q)

×EAz
[
ha(J r

p,q,k,1
)− ha(J r

p,q,1,k

)]−EAz
[
ha(J l

p,q,k,1
)− ha(J r

p,q,1,k

)]
.

(6.20)

We only focus on the first expectation on the right side; the second is analagous. The expec-
tation of height differences is the signed sum of dimer probabililites, which can be evaluated
by Theorem 4.1 using the asymptotic entries of K−1

a,1 at the rough-smooth boundary. As the
distance between J r

p,q,k,1 and J r
p,q,1,k is at most CM(logm)2 which bounds the number of

dimer probabilities involved, the contributions from KA are negligible as m → ∞, see Theo-
rem 4.2, and so only contributions from the K

−1
1,1 are relevant. This means we have

EAz
[
ha(J r

p,q,k,1
)− ha(J r

p,q,1,k

)]
= Esm

[
ha(J r

p,q,k,1
)− ha(J r

p,q,k,k

)]−Esm
[
ha(J r

p,q,k,1
)− ha(J r

p,q,k,k

)]+ o(1)(6.21)

= o(1)

as m → ∞, where we have used the fact that the smooth phase is flat (so the expected height
change between a-faces in directions parallel to e1 or e2 is zero—we omit the computation).

�

7. Proofs of Proposition 4.5 and Proposition 4.6. PROOF OF PROPOSITION 4.5. In
the proof below, we write pAz(·) = pAz(·|�(u,v)

L ), psm(·) = psm(·|�(u,v)
L ).
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Let 1 ≤ i ′1 < · · · < i ′R−r ≤ R and 1 ≤ j ′
1 < · · · < j ′

R−r ≤ R where 1 ≤ r ≤ R be given.
Observe that,∣∣det

(
Ai′p,j ′

q
(s)
)
1≤p,q≤R−r

∣∣
= ∣∣det

(
Ka,1(wi′l ,wi′p)K−1

1,1(wi′p ,wj ′
q
+ fsj ′

q
)
)
1≤p,q≤R−r

∣∣
= Psm

[
all edges (wi′p ,wj ′

p
+ fsj ′

p
),1 ≤ p ≤ R − r are covered

]
.

(7.1)

Consequently,∑
s∈[4]R

∣∣det
(
Ai′p,j ′

q
(s)
)
1≤p,q≤R−r

∣∣
= 4r

∑
sj ′

1
,...,sj ′

R−r
∈[4]

Psm
[
edges (wi′p ,wj ′

p
+ fsj ′

p
),1 ≤ p ≤ r are covered

]≤ 4r
(7.2)

since all the events in the sum are disjoint, they give different dimer configurations.
Write

A(s) = (
Aij (s)

)
1≤i,j≤R = (

A1(s) . . .AR(s)
)
,(7.3)

where

Aj(s) =
⎛
⎜⎝

A1j (s)
...

ARj (s)

⎞
⎟⎠(7.4)

and similarly for C(s). Let ei be the standard basis column vectors, 1 ≤ i ≤ R, so that

Cj(s) =
R∑

i=1

Cij (s)ei .(7.5)

Then, ∣∣det
(
Aij (s) + m−1/3Cij (s)

)
1≤i,j≤R − det

(
Aij (s)

)
1≤i,j≤R

∣∣
≤

R∑
r=1

∑
1≤j1<···<jr≤R

1

mr/3

∣∣det
(
Cj1(s) . . .Cjr (s)Aj ′

1
(s) . . .Aj ′

R−r
(s)
)∣∣,(7.6)

where [R]\{j1, . . . , jr} = {j ′
1 < · · · < j ′

R−r}. Now, by (7.5),

|det
(
Cj1(s) . . .Cjr (s)Aj ′

1
(s) . . .Aj ′

R−r
(s)
)

=
∣∣∣∣∣

R∑
i1,...,ir=1

Ci1j1(s) . . .Cirjr (s)det
(
ei1 . . . eir Aj ′

1
(s) . . .Aj ′

R−r
(s)
)∣∣∣∣∣

≤ Cr
0

R∑
i1,...,ir=1

∣∣det
(
ei1 . . . eir Aj ′

1
(s) . . .Aj ′

R−r
(s)
)∣∣,

(7.7)

by (4.20). Note that ∣∣det
(
ei1 . . . eir Aj ′

1
(s) . . .Aj ′

R−r
(s)
)∣∣= 0(7.8)
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if ip = iq for some p �= q . Thus,

R∑
i1,...,ir=1

∣∣det
(
ei1 . . . eir Aj ′

1
(s) . . .Aj ′

R−r
(s)
)∣∣

= r! ∑
1≤i1<···<ir<R

∣∣det
(
ei1 . . . eir Aj ′

1
(s) . . .Aj ′

R−r
(s)
)∣∣

= r! ∑
1≤i1<···<ir<R

∣∣det
(
Ai′pj ′

q
(s)
)
1≤p,q≤R−r

∣∣,
(7.9)

which can be seen by expanding the determinant along the first r columns, where
[R]\{i1, . . . , ir} = {i′1 < · · · < i′R−r}. Combining (7.6), (7.7) and (7.9), we see that∣∣det

(
Aij (s) + m−1/3Cij (s)

)
1≤i,j≤R − det

(
Aij (s)

)
1≤i,j≤R

∣∣
≤

R∑
r=1

(
C0

m1/3

)r

r! ∑
1≤i1<···<ir≤R

∑
1≤j1<···<jr≤R

∣∣det
(
Ai′pj ′

q
(s)
)
1≤p,q≤R−r

∣∣.(7.10)

Thus by (4.21), (4.22) and (7.10)∑
s∈�

∣∣pAz
(
s|�(x,y)

L

)− psm
(
s|�(x,y)

L

)∣∣
= ∑

s∈�

∣∣det
(
Aij (s) + m−1/3Cij (s)

)
1≤i,j≤R − det

(
Aij (s)

)
1≤i,j≤R

∣∣

≤
R∑

r=1

(
C0

m1/3

)r

r! ∑
1≤i1<···ir≤R

1≤j1<···<jr≤R

∑
s∈�

∣∣det
(
Ai′pj ′

q
(s)
)∣∣

1≤p,q≤R−r

≤
R∑

r=1

(
C0

m1/3

)r

r! ∑
1≤i1<···ir≤R

1≤j1<···<jr≤R

4r ,

(7.11)

where we also used (7.2) in the last inequality. Thus, using r!(R
r

)≤ Rr , we have∑
s∈�

∣∣pAz(s) − psm(s)
∣∣

≤
R∑

r=1

(
4C0

m1/3

)r

r!
(
R

r

)2

≤
R∑

r=1

(
4C0R

m1/3

)r (R

r

)
= (

1 + 4C0Rm−1/3)R − 1

= eR log(1+4C0Rm−1/3) − 1 ≤ e4C0R
2m−1/3 − 1 ≤ 4C0R

2m−1/3e

(7.12)

provided that 4C0R
2m−1/3 ≤ 1, as required. �

We need the following lemma whose proof is in the Appendix A.

LEMMA 7.1. For 1 ≤ i ≤ R and R +1 ≤ j ≤ 2R or 1 ≤ j ≤ R and R +1 ≤ i ≤ 2R with
R < λ2

1(logm)4/4 + λ1(logm)2, there exists constants c0,D > 0 such that∣∣Fij (s)
∣∣≤ De−c0(logm)2

.(7.13)
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PROOF OF PROPOSITION 4.6. The computation is very similar to the one for Proposi-
tion 4.5 and so we give a shortened computation. We have that∣∣det

(
Dij (s)

)
1≤i,j≤2R − det

(
Eij (s)

)
1≤i,j≤2R

∣∣
≤

R∑
r=1

∑
1≤j1<···<jr≤2R

∣∣det
(
Fj1(s) . . . F jr (s)Ej ′

1
(s) . . .Ej ′

2R−r
(s)
)∣∣,(7.14)

where [2R]\{j1, . . . , jr} = {j ′
1 < · · · < j ′

2R−r} and we use the same notation as given in (7.4).
Using the notation given in (7.5) and following the same steps given in Proposition 4.6, we
have that the left side of the above equation is bounded above by

R∑
r=1

∑
1≤j1<···<jr≤2R

∣∣∣∣∣
2R∑

i1,...,ir=1

Fi1j1(s) . . . Firjr (s)det
(
ei1 . . . eir Ej ′

1
(s) . . .Ej ′

2R−r
(s)
)∣∣∣∣∣

(7.15)

=
R∑

r=1

r! ∑
1≤j1<···<jr≤2R
1≤i1<···<ir≤2R

∣∣Fi1j1(s) . . . Firjr (s)det
(
Ei′pj ′

q
(s)
)
1≤p,q≤2R−r

∣∣

by the same argument given in (7.9). We use the bound from Lemma 7.1 for each Filjl
1 ≤

l ≤ r to get ∑
s∈�

∣∣det
(
Dij (s)

)
1≤i,j≤2R − det

(
Eij (s)

)
1≤i,j≤2R

∣∣

≤
2R∑
r=1

Dre−rc0(logm)2 ∑
1≤j1<···<jr≤2R
1≤i1<···<ir≤2R

∑
s∈�

∣∣det
(
Ei′pj ′

q
(s)
)
1≤p,q≤2R−r

∣∣

≤ 16R2De−c0(logm)2

(7.16)

by following the same steps given in the last two equations in the proof of Proposition 4.6.
�

8. Geometry of the full-plane smooth phase. In this section, we introduce directed
random spanning trees and give three differently weighted graphs LR , LwR and L

f
R , which are

equivalent in dimer model measure. We give the explicit gauge transformations between the
measures. We show that the dimer model on LR converges weakly to the full-plane smooth
phase when R → ∞. Using this and extending the notion of corridors to the full-plane smooth
phase, we show that there is only one corridor almost surely.

8.1. Directed spanning tree. In this subsection, among introducing directed spanning
trees, we also give three different weightings for a dimer model (which will eventually be
shown to be gauge equivalent) and describe the spanning tree correspondence for two of
these weightings.

Consider a finite connected directed graph embedded in the plane. Assign weights to each
directed edge of the graph. Note that the weight of the edge from u to v is not necessarily
equal to the weight of the edge from v to u. A directed spanning tree with root r (also known
as an arborescence) T is a connected union of edges of G such that each vertex of the graph
has exactly one outgoing edge in T except for the root r which has only incoming edges. The
weight of a directed spanning tree T is the product of the weights of the directed edges of T .
The random directed spanning tree is a probability measure on the set of directed spanning
trees with the probability of picking a directed spanning tree being proportional to the weight
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FIG. 7. The left figure shows the graph LR for R = 3. The graphs LwR and L
w
R have the same vertex and edge

sets as LR , but different edgeweights. The vertices in W1 are colored in red while the vertices in W0 are colored in

white. The right figure shows a dimer covering on LR with the dimers responsible for the tree on T
w,p
R (and T

f,d
R )

colored green and the dimers responsible for the tree on T
w,d
R (and T

f,p
R ) colored blue.

of the directed spanning tree. Random spanning tree is a rich subject but we will not review
this here; [4].

Temperley [26] found a bijection between random spanning tree of an n × m rectangle in
Z

2 and dimer covers on (2m − 1) × (2n − 1) with a corner vertex removed. This bijection
was generalized in [20], providing a bijection between directed weighted spanning trees on
a connected planar graph and dimer coverings on a related graph. Rather than describe this
bijection in its full setting, we restrict to the setting relevant for this paper.

Introduce a bipartite graph (for the dimer model) which has white vertices given by

W̄= {
(2i + 1 − 2R,2j + 2 − 2R) : 0 ≤ i ≤ 2R − 2,0 ≤ j ≤ 2R − 2

}
∪ {

(4i + 1 − 2R,−2R) : 1 ≤ i ≤ R − 1
}

∪ {
(−1 − 2R,4j + 2 − 2R) : 0 ≤ j ≤ R − 1

}
∪ {

(4i + 1 − 2R,2R) : 0 ≤ i ≤ R − 1
}

∪ {
(2R − 1,4j + 2 − 2R) : 0 ≤ j ≤ R − 1

}
and black vertices given by

B̄= {
(2i − 2R,2j + 1 − 2R) : 0 ≤ i ≤ 2R − 1,0 ≤ j ≤ 2R − 1

}
,

where R > 1. The edges between the white and black vertices are parallel to e1 = (1,1) and
e2 = (−1,1); see Figure 7. As before, we have the same convention of W̄0, W̄1, B̄0 and B̄1, that
is

W̄i = {
(x, y) ∈ W̄ : x + y mod 4 = 2i + 1

}
for i ∈ {0,1}(8.1)

and

B̄i = {
(x, y) ∈ B̄ : x + y mod 4 = 2i + 1

}
for i ∈ {0,1}.(8.2)

We introduce three different weightings for this bipartite graph and label them accordingly.
For j, k ∈ {0,1}, i ∈ {1,2} and w ∈ Wj , if the edges (w,w + (−1)kei) have weight:

• a(1−j)(1−k)+kj , then label the graph LR ;
• a2kj , then label the graph L

w
R;

• a2(1−k)(1−j), then label the graph L
f
R ,
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that is, the graph labels above are sets of vertices, edges, as well as their edge weights. The
first weighting above is the two-periodic weighting for this graph, the second has its edge
weights that are not equal to one on edges incident to vertices in W1 while the third has its
edge weights that are not equal to one on edges incident to vertices in W0.

Recall that the dimer model is uniquely parameterized by its face weights, that is, the
measure is uniquely determined by the alternating product of the edge weights around each
face. It is easy to see that the dimer models on LR , LwR and L

f
R have the same face weights

and hence the measures are the same, that is, they are gauge equivalent. We show below the
explicit gauge transformations between the dimer models.

We now describe the tree correspondence for the dimer model on L
w
R . We use the same

convention as above that the graph label includes the graph’s vertices, edges as well as the
edge weights. The graph for the primal directed spanning tree, Tw,p

R , has vertex set given by
W̄1 while the graph of the dual directed spanning tree, Tw,d

R , has vertex set given by W̄0 ∪
(−1 − 2R,−2R). The edges in T

w,d
R and T

w,p
R are parallel to ±e1 and ±e2. For each dimer

(w,w ± ei) with i ∈ {1,2} and w ∈ W̄1, there is a directed edge in the directed spanning tree
from w to w ± 2ei with the directed edge having the same weight as its corresponding dimer.
That is, the directed edges of Tw,d

R of the form (v, v + 2(−1)kei) have weights a2k for i ∈
{1,2} and k ∈ {0,1}. The same correspondence holds for dimers incident to vertices in W̄0 but
these give the dual directed spanning tree and so all directed edges in T

w,d
R have weight 1. The

choice in boundary conditions of LwR means that all boundary vertices Tw,p
R are connected to

a single vertex, that is, a wired directed spanning tree. The dual spanning tree is rooted at the
vertex (−1−2R,−2R). It is immediate that once the primal tree has been found, the dual tree
is fully determined and deterministic. Moreover, the above correspondence between dimers to
directed edges can be simply reversed, so that given a primal tree with the above weights, the
dual tree and the resulting dimer configuration are completely determined, with each dimer
configuration having weight given by the product of its edge weights. As a consequence, each
pair of directed spanning trees in the above construction only depends on the primal directed
spanning tree, and so it follows that the dimer model LwR is equivalent to the primal random
directed spanning tree T

w,p
R .

Next we describe the tree correspondence for the dimer model on L
f
R . This time, the graph

for the primal directed spanning tree, Tf,p
R , has vertex set given by W̄0 ∪ (−1 − 2R,−2R)

while the graph of the dual directed spanning tree, Tf,d
R , has vertex set given by W̄1. The

same correspondence between dimers and edges in the tree given in the correspondence on
L
w
R holds in this case. Here, the primal tree T

f,p
R is rooted at (−1 − 2R,−2R), the dual tree

is wired and the dimer configuration on L
f
R is completely determined by the primal tree on

T
f,p
R .
As noted above for the Aztec diamond, there is a height function defined on faces LR in

one-to-one correspondence (up to height level) and dimer configurations on LR . Due to the
bijection between dimers on L

w
R and trees on T

w,p
R , the height function is in correspondence

with trees on T
w,p
R [20]. In particular, each directed edge on T

w,p
R corresponds to two incident

edges (which are in the same direction) on L
w
R , exactly one of which is covered by a dimer.

Due to the correspondence between trees, dimers and heights, there are four heights around
each directed edge on T

w,p
R [20] (since there are four faces incident to each directed edge).

The main observation we need from [20] is that two directed edges of the same type are only
able to join the same tree if after unwinding,6 their heights match.

Random directed drifted spanning tree can be generated using Wilson’s algorithm [28],
which gives a convenient tool for infinite limits. Wilson’s algorithm is briefly described as

6The winding number is defined as the number of right turns minus left turns.
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follows: define the loop erasure of a finite path P , denoted by LE(P) to be the path after
chronologically removing the loops of P . This is well defined when P does not visit any
vertex infinitely often. Consider any ordering of the vertices {v1, . . . , v4R2} of Tw,p

R and set
F0 = ∅. Let Pi denote the path generated by a random walk with weights (1,1, a2, a2) in
the directions (e1, e2,−e1,−e2) started from vi which terminates if it exits Tw,p

R (i.e., it hits
the single vertex connected to all the boundary vertices of Tw,p

R ) or hits Fi−1 (if vi ∈ Fi−1,
then the random walk has already hit Fi−1). Then set Fi = Fi−1 ∪ LE(Pi ). The tree F4R2 is
a random drifted directed spanning tree. Note that the distribution of the tree is independent
on the choice of ordering of the vertices [28].

Finally, we mention that we denote the infinite graph of Tw,p
R , that is, in the limit as R →

∞, by T
w,p . For the wired directed spanning tree on T

w,p
R one can take the limit as R → ∞

without considering weak limits using Wilson’s algorithm rooted at infinity [4] giving a wired
directed spanning forest on T

w,p [4], where the underlying directed edges have weights a2k

for (v, v + 2(−1)kei) for k ∈ {0,1} and i ∈ {1,2} and v ∈ W∗
1. Indeed, the algorithm relies

on the underlying random walk to be transient, which is the case for this directed spanning
tree, and can be described as follows: let F0 = ∅ and let v1, v2 . . . be an enumeration of
the vertices in W∗

1. Inductively, pick a vertex vn and run the drifted random walk from vn.
Stop the walk when it hits Fn−1, otherwise let it run indefinitely. Call this walk Pn. Set
Fn = Fn−1 ∪ Pn and F =⋃

nFn. Then, from [4], F has the same distribution as the wired
directed forest on T

w,p . Moreover, we have the following.

PROPOSITION 8.1. The wired directed spanning forest on T
w,p is a single tree almost

surely.

The original statement for uniform spanning trees was due to Pemantle [23]. The above re-
sult follows from the formulation in [4]. Indeed, one only needs to show that two independent
drifted random walks intersect with probability one when started from two different points in
Z

2 [22]; see, for example, [21], Theorem 10.22. This is shown in [24], Theorem 1.3, so the
proof of the result is complete.

8.2. Gauge transformation. The act of multiplying all the edges incident to a vertex of
a graph by a constant is called a gauge transformation. This transformation does not change
the dimer model measure. We consider each of the three dimer models defined in Section 8.1
and give the explicit gauge transformations.

PROPOSITION 8.2. The gauge transformation to get from the dimer model on LR to the
dimer model on L

w
R is given by:

• muliplying each vertex x = (x1, x2) ∈ W̄j with j ∈ {0,1} by aj+ 1
2 (x2−2+2R),

• muliplying each vertex y = (y1, y2) ∈ B̄ by a− 1
2 (y2−1+2R).

The gauge transformation to get from the dimer model on LR to the dimer model on L
f
R is

given by:

• muliplying each vertex x = (x1, x2) ∈ W̄j with j ∈ {0,1} by a−j− 1
2 (x2−2+2R),

• muliplying each vertex y = (y1, y2) ∈ B̄ by a
1
2 (y2−1+2R).

PROOF. We apply the first gauge transformation to LR . By doing so, around x =
(x1, x2) ∈ W̄j the edges (x, x + (−1)kei) for k ∈ {0,1}, i ∈ {1,2} have weight

a(1−j)(1−k)+kj aj+ 1
2 (x2−2+2R)a− 1

2 (x2+1−2k−1+2R),
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where the first factor is the weight of the edge while the second and third factors are from the
multiplications assigned to the white and black vertices respectively. Simplifying the above
formula gives

a(1−j)(1−k)+kj+j+k−1 = a2kj ,

which are the edge weights of LwR .
Next, we apply the second gauge transformation to LR . Then, around x = (x1, x2) ∈ W̄j

the edges (x, x + (−1)kei) for k ∈ {0,1}, i ∈ {1,2} have weight

a(1−j)(1−k)+kj a−j− 1
2 (x2−2+2R)a

1
2 (x2+1−2k−1+2R),

where the first factor is the weight of the edge while the second and third factors are from the
multiplications assigned to the white and black vertices respectively. Simplifying the above
formula gives

a(1−j)(1−k)+kj−j−k+1 = a2(1−j)(1−k),

which are the edge weights of LfR . �

REMARK 2. As a consequence of Proposition 8.2, the dimer model on LR is equivalent
to the directed random spanning tree on T

w,p
R and to the directed random spanning tree on

T
f,p
R .

8.3. Convergence to the full-plane smooth phase. The Kasteleyn matrix on LR reads for
(x, y) ∈ B̄× W̄

K(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a(1 − j) + bj if y = x + e1, x ∈ B̄j ,(
aj + b(1 − j)

)
i if y = x + e2, x ∈ B̄j ,

aj + b(1 − j) if y = x − e1, x ∈ B̄j ,(
a(1 − j) + bj

)
i if y = x − e2, x ∈ B̄j ,

0 if (x, y) is not an edge.

(8.3)

The following proposition shows that entries of K−1 converge to their full-plane smooth
phase counterpart which indicates that as R → ∞, the dimer model on LR converges weakly
to the full-plane smooth phase.

PROPOSITION 8.3. For x ∈ W̄ε1 , y ∈ B̄ε2 fixed in terms of R, with ε1, ε2 ∈ {0,1} and all
a ∈ (0,1) we have ∣∣K−1(x, y) −K

−1
1,1(x, y)

∣∣≤ CRe−c0R,(8.4)

where c0,C > 0 are constants.

A few remarks are in order.

REMARK 3.

1. Although x ∈ W̄ε1 , y ∈ B̄ε2 in the above proposition, the choice in coordinate system for
the graph LR has the same parity as the Aztec diamond and the full-plane as well.

2. We expect that the bound in Proposition 8.3 could be sharpened to e−c0R , by using more
precise estimates, for example,those estimates from [9], Section 4. However, this requires a
much more delicate computation than the one given here.
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The approach taken is partly based from a computation in [10] with a useful simplification
valid for this setting. The above result and the local statistics theorem, Theorem 4.1, guaran-
tees the measure on LR converges weakly as R → ∞ to the full-plane smooth phase measure.
Below, we use that x = (x1, x2) and y = (y1, y2) without further mention.

We let for i, j ∈ {0,1}
Gi,j = Gi,j (w1,w2, b1, b2) = ∑

x∈W̄i

∑
y∈B̄j

K−1(x, y)w
x1
1 w

x2
2 b

y1
1 b

y2
2 ,(8.5)

that is, the generating function of the inverse Kasteleyn matrix on LR with the variables
(w1,w2) marking the white vertex coordinate and variables (b1, b2) marking the black vertex
coordinate. We also need restrictions on the generating function. Here, we will abuse notation
and denote

Gi,j |x∈A
y∈B

= ∑
x∈W̄i

∑
y∈B̄j

K−1(x, y)w
x1
1 w

x2
2 b

y1
1 b

y2
2 Ix∈AIy∈B.(8.6)

We will also use the notation that fr(w) = (1 − wr)/(1 − w).

PROOF OF PROPOSITION 8.3. We give the computation in full for vertices in W̄1 × B̄0
and the other computations follow from the same method. For space reasons, we omit these
additional computations but highlight the main differences.

Consider the matrix �a = K∗K , where K∗ is the conjugate transpose of K . For x =
(x1, x2) ∈ W̄1 and y = (y1, y2) ∈ B̄0 and since KK−1 = I, we have

�aK
−1(x, y) = ∑

b∈B̄

∑
w∈W̄

K∗(x, b)K(b,w)K−1(w,y) = ∑
b∼x

K∗(x, b)Ib=y,(8.7)

where
∑

b∼x denotes the sum over vertices b that are nearest neighbored vertices to x. Notice
that we can instead expand out K∗K first in �aK

−1(x, y) which gives∑
b∼x

K∗(x, b)Ib=y

= �aK
−1(x, y)

= a
(
K−1(x + 2e1, y)Ix1<2R−3Ix2<2R−2(8.8)

+ K−1(x + 2e2, y)Ix1>1−2RIx2<2R−2 + K−1(x − 2e1, y)Ix1>1−2RIx2>2−2R

+ K−1(x − 2e2, y)Ix1<2R−3Ix2>2−2R

)+ 2
(
1 + a2)K−1(x, y) for x ∈ W̄1.

Here, the indicator functions keep track of the boundary of the box. We multiply the above
equation by w

x1
1 w

x2
2 b

y1
1 b

y2
2 and sum over x ∈ W̄1 and y ∈ B̄0, simplifying each term into gen-

erating function formulas. For example, under this procedure we have∑
x∈W̄1

∑
y∈B̄0

K−1(x + 2e1, y)Ix1<2R−3Ix2<2R−2w
x1
1 w

x2
2 b

y1
1 b

y2
2

= 1

w2
1w

2
2

∑
x∈W̄1

∑
y∈B̄0

× (1 − Ix1=1−2R − Ix2=2−2R + Ix=(1−2R,2−2R))K
−1(x, y)w

x1
1 w

x2
2 b

y1
1 b

y2
2

= 1

w2
1w

2
2

(
G1,0 − G1,0|x1=1−2R − G1,0|x2=2−2R + G1,0|x=(1−2R,2−2R)

)

= 1

w2
1w

2
2

(
G1,0 − G1,0|x1=1−2R − G1,0|x2=2−2R

x1 �=1−2R

)
.

(8.9)
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By applying this procedure to all terms in (8.8), and after collecting terms we arrive at(
a
(
w−2

1 + w2
1
)(

w−2
2 + w2

2
)+ 2

(
1 + a2))G1,0

− a
(
w−2

2 + w2
2
)(

w−2
1 G1,0|x1=1−2R + w2

1G
1,0|x1=2R−3

)
− a

(
w−2

1 + w2
1
)(

w−2
2 G1,0| x2=2−2R

x1 �=1−2R,2R−3
+ w2

2G
1,0| x2=2R−2

x1 �=1−2R,2R−3

)

= ∑
x∈W̄1

∑
y∈B̄0

(∑
b∼x

K∗(x, b)Ib=y

)
w

x1
1 w

x2
2 b

y1
1 b

y2
2 .

(8.10)

Notice that the first term on the left side in the above expression is c̃(w2
1,w

2
2)G

1,0. We set

d1
10(w1,w2, b1, b2) = ∑

x∈W̄1

∑
y∈B̄0

(∑
b∼x

K∗(x, b)Ib=y

)
w

x1
1 w

x2
2 b

y1
1 b

y2
2 ,(8.11)

which is the right side of (8.10). For d1
10(w1,w2, b1, b2), we expand out the right side of the

above equation by using the definition of K∗, use the indicator function and the fact that the
black vertices are in B̄0. This gives

d1
10(w1,w2, b1, b2)

= ∑
x∈W̄1

∑
y∈B̄0

(Ix+e1=y − iIx+e2=y + aIx−e1=y − aiIx−e2=y)w
x1
1 w

x2
2 b

y1
1 b

y2
2

= ∑
x∈W̄1

∑
y∈B̄0

(Ix+e1=y + aIx−e1=y)w
x1
1 w

x2
2 b

y1
1 b

y2
2

(8.12)
= ∑

x∈W̄1

w
x1
1 w

x2
2 b

x1+1
1 b

x2+1
2 + aw

x1
1 w

x2
2 b

x1−1
1 b

x2−1
2

= (b1b2 + ab−1
1 b−1

2 )

w2R
1 w2R

2 b2R
1 b2R

2

× (
w1b1w

2
2b

2
2fR

(
w4

1b
4
1
)
fR

(
w4

2b
4
2
)+ w3

1b
3
1w

4
2b

4
2fR−1

(
w4

1b
4
1
)
fR−1

(
w4

2b
4
2
))

,

where the two terms in parenthesis in the above equation are from vertices in W1 whose
coordinates are either of the form (4i + 1 − 2R,4j − 2R + 2) with 0 ≤ i, j ≤ R − 1 or of the
form (4i + 3 − 2R,4j + 4 − 2R) with 0 ≤ i, j ≤ R − 2. We also set

d2
10(w1,w2, b1, b2)

= a
(
w−2

2 + w2
2
)(

w−2
1 G1,0|x1=1−2R + w2

1G
1,0|x1=2R−3

)
+ a

(
w−2

1 + w2
1
)(

w−2
2 G1,0| x2=2−2R

x1 �=1−2R,2R−3
+ w2

2G
1,0| x2=2R−2

x1 �=1−2R,2R−3

)
.

(8.13)

Then, we have that (8.10) can be rewritten as

G1,0 = d1
10

c̃(w2
1,w

2
2)

+ d2
10

c̃(w2
1,w

2
2)

.(8.14)

Extracting coefficients of the G1,0 in the above equation gives formulas for K−1(x, y). We
consider, for ε > 0,

1

(2π i)4

∫

1−ε

dw1

w1

∫

1−ε

dw2

w2

∫

1−ε

db1

b1

∫

1−ε

db2

b2

G1,0

w
x̃1
1 w

x̃2
2 b

ỹ1
1 b

ỹ2
2

(8.15)
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for each term in (8.14). These are given in the following two lemmas whose proofs are post-
poned until after completing the proof of the proposition.

LEMMA 8.4. For x ∈ W̄1 and y ∈ B̄0,

1

(2π i)4

∫

1−ε

dw1

w1

∫

1−ε

dw2

w2

∫

1−ε

db1

b1

∫

1−ε

db2

b2

× d1
10(w1,w2, b1, b2)

w
x1
1 w

x2
2 b

y1
1 b

y2
2 c̃(w2

1,w
2
2)

= K
−1
1,1(x, y).

(8.16)

LEMMA 8.5. For C,c0 > 0 constants and x1, x2, y1, y2 fixed in terms of R,∣∣∣∣ 1

(2π i)4

∫

1−ε

dw1

w1

∫

1−ε

dw2

w2

∫

1−ε

db1

b1

∫

1−ε

db2

b2

d2
10(w1,w2, b1, b2)

c̃(w2
1,w

2
2)w

x1
1 w

x2
2 b

y1
1 b

y2
2

∣∣∣∣
≤ CRe−c0R.

(8.17)

We now proceed with the rest of the proof of the proposition. From Lemmas 8.4 and 8.5, it
follows that only the first term on the right side of (8.14) gives a contribution when extracting
out the coefficient of (x1, x2) and (y1, y2) for the white and black vertices respectively while
the other term tends to zero exponentially fast. This verifies the proposition for the case
when x ∈ W̄1 and y ∈ B̄0. For the case x ∈ W̄1 and y ∈ B̄1, the difference is that to equation
(8.8), we multiply by w

x1
1 w

x2
2 b

y1
1 b

y2
2 and sum over x ∈ W̄1 and y ∈ B̄1 instead. The rest of the

computation proceeds in a similar fashion. For the case x ∈ W̄0, (8.8) is no longer valid and
instead, we have the equation∑

b∼x

K∗(x, b)Ib=y

= �aK
−1(x, y)

= a
(
K−1(x + 2e1, y)Ix1<2R−1Ix2<2R(8.18)

+ K−1(x + 2e2, y)Ix1>−2R−1Ix2<2R + K−1(x − 2e1, y)Ix1>−2R−1Ix2>−2R

+ K−1(x − 2e2, y)Ix1<2R−1Ix2>−2R

)+ 2
(
1 + a2)K−1(x, y) for x ∈ W̄0.

To this equation, we multiply by w
x1
1 w

x2
2 b

y1
1 b

y2
2 and sum over x ∈ W̄0 and y ∈ B̄0 or y ∈ B̄1

depending on the case. The main steps of the computation proceed as the case x ∈ W̄1 and
y ∈ B̄0. Note that there are few additional terms due to the vertex (−1 − 2R,−2R) not being
present in W̄0, but these term are negligible from the same reason behind Lemma 8.5. �

We next prove Lemma 8.4.

PROOF OF LEMMA 8.4. We expand out the integral in Lemma 8.4 using the definition
of d1

10(w1,w2, b1, b2) which gives

1

(2π i)4

∫

1−ε

dw1

w1

∫

1−ε

dw2

w2

∫

1−ε

db1

b1

∫

1−ε

db2

b2

(b1b2 + ab−1
1 b−1

2 )w1b1w
2
2b

2
2

w
2R+x1
1 w

2R+x2
2 b

2R+y1
1 b

2R+y2
2

(8.19)

× (fR(w4
1b

4
1)fR(w4

2b
4
2) + w2

1b
2
1w

2
2b

2
2fR−1(w

4
1b

4
1)fR−1(w

4
2b

4
2))

c̃(w2
1,w

2
2)

.

We take the change of variables wi = √
ui and bi = √

vi for i ∈ {1,2} for the above inte-
gral, moving the contours of integration from 
(1−ε)2 to 
1−ε which does not pick up any
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additional contributions. This change of variables doubles the contour of integration for each
integral but there is an extra factor of 1/2 from each change of variables which means the
above equation is equal to

1

(2π i)4

∫

1−ε

du1

u1

∫

1−ε

du2

u2

∫

1−ε

dv1

v1

∫

1−ε

dv2

v2

(v1v2 + a)

u
2R+x1−1

2
1 u

2R+x2−2
2

2 v
2R+y1

2
1 v

2R+y2−1
2

2
(8.20)

× (fR(u2
1v

2
1)fR(u2

2v
2
2) + u1u2v1v2fR−1(u

2
1v

2
1)fR−1(u

2
2v

2
2))

c̃(u1, u2)
.

In the above integral, we can compute the integrals with respect to v1 and v2. This amounts

to extracting coefficients of v
R+ y1

2
1 and v

R+ y2−1
2

2 for y ∈ B̄0 in the numerator of the inte-
grand. Notice that we cannot get a contribution for this from both fR(u2

1v
2
1)fR(u2

2v
2
2) and

u1u2v1v2fR−1(u
2
1v

2
1)fR−1(u

2
2v

2
2)) because y ∈ W̄0 (i.e., one term gives a contribution for

black vertices of the form (4i + 1,4j) while the other term gives a contribution for the ver-
tices of the form (4i + 3,4j + 2)). Doing this extraction gives

1

(2π i)2

∫

1−ε

du1

u1

∫

1−ε

du2

u2

(u−1
1 u−1

2 + a)

u
2R+x1−1

2
1 u

2R+x2−2
2

2 u
− 2R+y1

2
1 u

− 2R+y2−1
2

2 c̃(u1, u2)

(8.21)

and simplifying gives

1

(2π i)2

∫

1−ε

du1

u1

∫

1−ε

du2

u2

(u−1
1 u−1

2 + a)

u
x1−y1−1

2
1 u

x2−y2−1
2

2 c̃(u1, u2)

= 1

(2π i)2

∫

1−ε

du1

u1

∫

1−ε

du2

u2

(1 + au1u2)

u
x1−y1+1

2
1 u

x2−y2+1
2

2 c̃(u1, u2)

.

(8.22)

Since c̃(u1, u2) contains no poles in {(u1, u2) : 1 − ε ≤ u1, u2 ≤ 1}, we deform both contours
to 
1 and the above integral is exactly equal to K

−1
1,1(x, y). �

We now prove Lemma 8.5.

PROOF OF LEMMA 8.5. We only show the bound for one generic term. The rest of the
terms in d2

10(w1,w2, b1, b2) follow from similar computations, as explained after the bound
on the generic term.

Consider the term

1

(2π i)4

∫

1−ε

dw1

w1

∫

1−ε

dw2

w2

∫

1−ε

db1

b1

∫

1−ε

db2

b2

G1,0|x1=1−2R

c̃(w2
1,w

2
2)w

x̃1
1 w

x̃2
2 b

ỹ1
1 b

ỹ2
2

,(8.23)

where x̃ = (x̃1, x̃2) ∈ W̄1 and ỹ = (ỹ1, ỹ2) ∈ B̄0 and we recall that

G1,0|x1=1−2R = ∑
x∈W̄1

∑
y∈B̄0

K−1(x, y)w1−2R
1 w

x2
2 b

y1
1 b

y2
2 .(8.24)

We take the change of variables wi = √
ui and bi = √

vi for i ∈ {1,2} for the integral in
(8.23), moving the contours of integration from 
(1−ε)2 to 
1−ε which does not pick up any
additional contributions. This change of variables doubles the contour of integration for each
integral but there is an extra factor of 1/2 from each change of variables which means that
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(8.23) is equal to

1

(2π i)4

∫

1−ε

du1

u1

∫

1−ε

du2

u2

∫

1−ε

dv1

v1

∫

1−ε

dv2

v2

u
1−2R−x̃1

2
1

c̃(u1, u2)

× ∑
x∈W̄1

x1=1−2R

∑
y∈B̄0

K−1(x, y)u
x2−x̃2

2
2 v

y1−ỹ1
2

1 v
y2−ỹ2

2
2 ,

(8.25)

where the above sum in x = (x1, x2) is only summed over those pairs with x1 = 1 − 2R. We
perform the integrals in (8.25) with respect to v1 and v2 which gives

1

(2π i)2

∫

1−ε

du1

u1

∫

1−ε

du2

u2

u
1−2R−x̃1

2
1

c̃(u1, u2)

∑
x∈W̄1

x1=1−2R

K−1(x, ỹ)u
x2−x̃2

2
2 ,(8.26)

where ỹ = (ỹ1, ỹ2). For the integral with respect to u1, we make the change of variables
u1 �→ u−1

1 . Notice that c̃(u−1
1 , u2) = c̃(u1, u2) and that c̃(u1, u2) contains no zeroes for r <

|u1| < 1/r for 0 < r < 1 close to 1. We deform the contour of integration for the integral with
respect to u1 to 
r . We also split up the integral with respect to u2 depending on whether
x2 ≤ x̃2 or x2 > x̃2 and in the latter case, deform the contour to 
1+ε . Again, no additional
contributions are picked up. Under these steps, (8.26) is equal to

1

(2π i)2

∫

r

du1

u1

∫

1−ε

du2

u2

u
2R−1+x̃1

2
1

c̃(u1, u2)

∑
x∈W̄1

x1=1−2R
x2>x̃2

K−1(x, ỹ)u
x2−x̃2

2
2

+ 1

(2π i)2

∫

r

du1

u1

∫

1+ε

du2

u2

u
2R−1+x̃1

2
1

c̃(u1, u2)

∑
x∈W̄1

x1=1−2R
x2≤x̃2

K−1(x, ỹ)u
x2−x̃2

2
2 .

(8.27)

We now need the following claim which is proved after the conclusion of the proof of the
lemma.

CLAIM 3. For x = (x1, x2) ∈ W̄1 with x1 = 1 − 2R, x1 = 2R − 3, x2 = 2 − 2R or x2 =
2R − 2, and ỹ = (ỹ1, ỹ2) ∈ B̄, we have∣∣K−1(x, ỹ)

∣∣≤ C(8.28)

for some C > 0 constant.

We can now take absolute values of each of the terms in (8.27). Using the claim and that
c̃(u1, u2) > 0 for u1 on 
r and u2 on 
1−ε , we have that (8.27) is bounded above by

C1

∫

r

du1

u1

∫

1−ε

du2

u2
|u1|

2R−1+x̃1
2

∑
x∈W̄1

x1=1−2R
x2>x̃2

1

+ C2

∫

r

du1

u1

∫

1+ε

du2

u2
|u1|

2R−1+x̃1
2

∑
x∈W̄1

x1=1−2R
x2≤x̃2

1,

(8.29)
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where C1,C2 > 0 are constants. Since r < 1 and that x̃1 is fixed in terms of R, the above term
is bounded by CRe−c0R as required.

To bound the rest of the terms in the integrals on the left side of the equation in Lemma 8.5,
we apply the same procedure using either the variable u1 or u2 in bounding the integral,
depending on which has a factor of R or −R in its exponent. Note that for integrals containing
the term uR

1 or uR
2 , we can immediately make the contour deformation to 
r without the

change of variables u1 �→ u−1
1 . The analogous bound to the one given in Claim 3 also holds

for x ∈ W̄0; see Remark 4. After applying these steps to all the terms in the integral on the
left side of the equation in Lemma 8.5, we find that all terms are bounded by CRe−c0R

as required. Finally, we now give the proof of Claim 3 which completes the proof of the
proposition. �

Finally, we give the proof of Claim 3.

PROOF OF CLAIM 3. For the purpose of this proof, denote KL
w
R

(resp K
L
f
R

) and K−1
L
w
R

(resp K−1
L
f
R

) to be the Kasteleyn and inverse Kasteleyn matrices on L
w
R resp (LfR). We also let

C,C1,C2 > 0 be arbitrary constants throughout the proof and also denote L
�
R\{x, ỹ} to be

the graph L
�
R with the vertices x and ỹ removed from L

�
R along with their incident edges,

where � is either w or f.
From the gauge transformation given in Proposition 8.2, we have

(8.30) K−1(x, ỹ) = a
1
2 (x2+2R−2)+1a− 1

2 (ỹ2+2R−1)K−1
L
w
R
(x, ỹ) = a

1
2 (x2−ỹ2+1)K−1

L
w
R
(x, ỹ).

The entry K−1
L
w
R
(x, ỹ) when x and ỹ are not on the same face, up to an overall sign, is a signed

weighted count of dimer coverings on L
w
R\{x, ỹ} divided by the partition function. The sign

in the signed weighted count is from the fact that the original Kasteleyn orientation on L
w
R

is no longer a valid Kasteleyn orientation on L
w
R\{x, ỹ}. Nevertheless, this signed weighted

count is bounded above by the partition function on L
w
R\{x, ỹ}. Therefore, we have

∣∣K−1
L
w
R
(x, ỹ)

∣∣≤ ZL
w
R\{x,ỹ}
ZL

w
R

,(8.31)

where ZG denotes the partition function of the dimer model on the graph G. From the cor-
respondence detailed in Section 8.1, the dimer model on L

w
R is equivalent to the directed

random spanning tree on T
w,p
R with x being a vertex on the graph of the primal tree. For this

directed (primal) spanning tree, there is no directed edge passing through the vertex ỹ, there
is an incoming edge into x but no outgoing edge from x. Each of these is a restriction of the
total number of weighted spanning tree configurations (up to a constant) and we conclude
that

ZL
w
R\{x,ỹ} ≤ C1ZL

w
R
.(8.32)

Using the above equation and (8.30) and (8.31), we find that

K−1(x, ỹ) ≤ C1a
1
2 (x2−ỹ2−1).(8.33)

Proceeding as above which gave equations (8.30) and (8.31), but instead using the gauge
transformation between LR and L

f
R in Proposition 8.2, we also have

K−1(x, ỹ) = a
1
2 (ỹ2−x2−1)K−1

L
f
R

(x, ỹ)(8.34)
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and

∣∣K−1
L
f
R

(x, ỹ)
∣∣≤ Z

L
f
R\{x,ỹ}
Z
L
f
R

.(8.35)

From the correspondence detailed in Section 8.1, the dimer model on L
f
R is equivalent to the

directed random spanning tree on T
f,p
R , but this time, x is a vertex on the graph of the dual

tree. To put the restriction onto the primal tree, for simplicity we suppose that x1 = 1 − 2R

(the other cases follow from a similar argument). For this choice of x1, we have

Z
L
f
R\{x,ỹ} = Z

L
f
R\{x,ỹ,x−e1+e2,x−e1} + a2Z

L
f
R\{x,ỹ,x−e1+e2,x+e2},(8.36)

which follows from just partitioning over dimers incident to x − e1 + e2. This split has
removed the restriction on the dual tree. Each of the terms Z

L
f
R\{x,ỹ,x−e1+e2,x−e1} and

Z
L
f
R\{x,ỹ,x−e1+e2,x+e2} can be bounded by 1

2C2ZL
f
R

because each of their directed span-

ning tree configurations are contained within the directed spanning tree on T
f,p
R for C2 large

enough. This and the two equations above give∣∣K−1(x, ỹ)
∣∣= C2a

1
2 (ỹ2−x2+1).(8.37)

Since both (8.34) and (8.37) hold, for large enough C1 and C2 we obtain the claim. �

REMARK 4. An analagous bound to Claim 3 holds for x = (x1, x2) ∈ W̄0 with x1 = −1−
2R, x1 = 2R − 1, x2 = −2R or x2 = 2R. The same proof holds, albeit with a simplification
as now the removed vertices are on the boundary LR . We omit this computation as it contains
no additional technical information.

8.4. Proof of Theorem 4.7. Before proving Theorem 4.7, we need the following lemma.

LEMMA 8.6. The directed spanning forests on T
w,p and T

f,p are single trees almost
surely.

REMARK 5. A similar result for a more general construction was proved in [25], however
that approach requires embedding spanning forests (cycle-rooted spanning forests) on the
torus and taking the toroidal exhaustion. Our approach bypasses this.

PROOF OF LEMMA 8.6. Proposition 8.3 gives that, as R → ∞, the dimer model on LR

converges weakly to the full-plane smooth phase. Moreover, Proposition 8.2 shows that the
full-plane smooth phase is equivalent to the directed spanning forest on both T

w,p and T
f,p .

All edge probabilities for directed spanning forests on T
w,p and T

f,p can then be computed
explicitly using the local statistics formula given in Theorem 4.1 with the correlation kernel
given in (4.7). Moreover, by symmetry of the full-plane smooth phase inverse Kasteleyn
matrix, probabilities of all cylinder events of directed spanning forests on T

w,p are equivalent
to those on T

f,p after rotating the configurations by π . This can be seen by rotating the
dimer configuration on T

w,p , followed by shifting the configuration by the vector e1 + e2 and
computing the new cylinder events there. From Proposition 8.1, the directed spanning forest
on T

w,p is a single tree almost surely and due to the equivalence, the directed spanning forest
on T

f,p is also a single tree. �

PROOF OF THEOREM 4.7. Recall that the a-dimers correspond to directed edges on
both directed spanning trees on T

w,p and T
f,p . That is, for w ∈ W∗

0, the a-dimers (w,w + ei)

correspond to the directed edges (w,w + 2ei) for i ∈ {1,2} which is on the directed spanning
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tree T
f,p . Conversely, for w ∈ W∗

1, a-dimers (w,w − ei) correspond to the directed edges
(w,w − 2ei) for i ∈ {1,2} which is on the directed spanning tree T

w,p .
Suppose that there is a biinfinite path in the smooth phase. The biinfinite path in the smooth

phase cannot be supported on only one tree as this contradicts Lemma 8.6, that is, the a-
dimers on the biinfinite path belong to both T

w,p and T
f,p . Consider a dimer, d1, incident to

W∗
0 (not necessarily an a-dimer) and take the same type of dimer, d2, on the other side of the

biinfinite path, that is, there is a sequence of adjacent faces between d1 and d2 that crosses
the biinfinite path an odd number of times. Thanks to the bijection between trees, dimers and
heights (up to height level) two dimers of a tree (of the same type) can only join the same
branch if they separate the same height after winding [20]. Since these two dimers separate
different heights, then the branch passing through d1 must unwind before joining the branch
passing through d2 (or vice versa). However, this is true for all pairs of vertices on either side
of the biinfinite path, which is only possible if there is more than one tree for Tw,p and T

f,p ,
which is a contradiction. �

9. Peierls argument for loops and double edges. In this section, we first give the proof
of Lemma 4.8 which is based on Peierls argument. It turns out that the same argument can
be applied for double edges, which holds for all a ∈ (0,1). This statement and proof is also
given below.

PROOF OF LEMMA 4.8. We give the result for PAz and then explain the difference for
Psm. Let γ be a loop in Dm and let ZDm\γ be the partition function for the dimer coverings
on Dm\γ . Then,

ZDm ≥ ZDm\γ
(
1 + a�(γ )),(9.1)

where the coefficient of ZDm\γ comes from rotating the a-dimers along the loop γ so that
they are now b-dimers and noting that the product of edge weights when all dimers on γ are
a-edges is a�(γ ) while when they are all b-dimers, the product of edge weights is equal to 1.
From this, we have

PAz[All a edges along γ ∈Dl] ≤ al(γ ).(9.2)

Then, letting v be a face in S, we obtain

PAz
[∃γ ∈ Dl containing v, l(γ ) ≥ d, a edges along γ

]
≤ ∑

γ�v

al(γ ) ≤
∞∑

k=d

(3a)k = (3a)d

1 − 3a

(9.3)

provided that a < 1/3. The first inequality above comes from a counting argument: when
tracing over the edges of the loop, there are two choices for b-edges at the endpoint of each
a-edge at a b-face. For one of these choices, the next a-edge in the sequence is determined,
while the other choice has two choices for the next a-edge in the sequence, which means
three choices in total. We now take a union bound over all faces v in S which gives the result
for PAz.

The same argument holds for the full-plane smooth phase provided we show the analog of
(9.2) for the smooth phase, that is showing

Psm[All a edges along γ ∈ Dl] ≤ al(γ ).(9.4)

However, the above equation immediately follows since the smooth phase is a Gibbs mea-
sure [19]. �

Next we show that the same argument given in the proof of Lemma 4.8 holds for
double edges. For a dimer covering, let De be the set of all sequences of distinct edges
γ = (e1, . . . , e2k) such that the following properties hold:
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1. ei shares endpoints with ei−1 and ei+1 for all 0 ≤ i ≤ 2k with e0 = e2k and e2k+1 = e1;
2. e2i+1 are a-edges while e2i+2 are b-edges for all 0 ≤ i ≤ k − 1;
3. the pairs (e2i+1, e2k−(2i+1)) form double edges after the squishing procedure for all

0 ≤ i ≤ k − 1;
4. γ is not incident to any other double edges.

For γ ∈ De, let �e(γ ) be the number of a-dimers in γ .

LEMMA 9.1. Let S be a set of a-edges in Dm or in the full-plane. Then, for all a ∈ (0,1),

P
[∃γ ∈ De that intersects S and has length �e(γ ) at least d

]≤ 2|S|
1 − a

ad,

where |S| is the size of S, and P is either PAz or Psm.

PROOF. We give the proof of Dm and the proof for the full-plane is analogous by arguing
the same way for (9.4). Let γ ∈ De ∩ �L and let ZDm\γ be the number of dimer coverings
on Dm\γ , where Dm\γ is the graph Dm removing γ and any incident edges to γ . If γ = ∅,
then ZDm\∅ = ZDm , which is the number of dimer coverings on Dm. We can partition the
set of dimer coverings on Dm into the set of dimer coverings which is also a dimer covering
of the smaller graph Dm\γ (with a dimer covering on γ ) and those where there is no dimer
covering on the smaller graph Dm\γ . This gives

ZDm ≥ ZDm\γ
�e(γ )/2∏

i=0

(
1 + a2),(9.5)

where the coefficient of ZDm\γ is due to each double edge could be replaced b edges instead.
This gives ZDm ≥ ZDm\γ which means that

PAz[All double edges along γ ∈ De] = a�e(γ )ZDm\γ
ZDm

≤ a�e(γ ).(9.6)

Let v be a vertex in S. Then,

PAz
[∃γ ∈ De containing v, �e(γ ) ≥ d, double edges along γ

]
≤ ∑

γ�v

a�e(γ ) = 2
∞∑

k=d

ak = 2ad

1 − a

(9.7)

for a ∈ (0,1). The factor 2 above is due to there being only two choices for the direction of
γ and once that choice is made, there are no further choices. �

APPENDIX A: PROOF OF LEMMA 7.1

Here, we bring forward a result from [9] which allows us to prove Lemma 7.1. Introduce

Ek,� = 1

(2π i)2

∫

1

du1

u1

∫

1

du2

u2

u�
1u

k
2

c̃(u1, u2)
.(A.1)

Then, from (4.7) we have

K
−1
1,1(x, y) = −i1+h(ε1,ε2)

(
aε2Ek1,�1 + a1−ε2Ek2,�2

)
,(A.2)

where

k1 = x2 − y2 − 1

2
+ h(ε1, ε2), �1 = y1 − x1 − 1

2

k2 = x2 − y2 + 1

2
− h(ε1, ε2), �2 = y1 − x1 + 1

2
.

(A.3)

The following is given in [9], Lemma 4.7.
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LEMMA A.1. Let Am, Bm, m ≥ 1, be given and set bm = max(|Am|, |Bm|), and

am =
{
Am if bm = |Bm|,
Bm if bm = |Am|.(A.4)

Assume that bm > 0, m ≥ 2. There exists constants C,d1, d2 > 0 so that

|EBm+Am,Bm−Am | ≤ C√
bm

C2bm
(
e
−d1

a2
m

bm + e−d2bm
)

(A.5)

for all m ≥ 2 and C is defined in (4.8).

We now prove Lemma 7.1.

PROOF. We set Bm = (ki + li)/2 and Am = (ki − li)/2 with 1 ≤ i ≤ 2 in Lemma A.1
and notice that bm = |Am| while am = Bm for the conditions given in Lemma 7.1. From the
restriction of R, we have that L < λ1(logm)2. This restriction on L means that �1 and �2 do
not overlap and are separated by a distance of at least λ1(2 − √

2)(logm)2. This means that
the smallest bm happens when �1 and �2 are closest, that is, k2 = k1 + 1 in the definition
of �1 and �2, and so bm is at least equal to λ1(2 − √

2)(logm)2. We apply Lemma A.1 and
using that bm is at least of order (logm)2, we find that

|EBm+Am,Bm−Am | ≤ 2C

logm
Cc1(logm)2 = 2C

logm
e−c0(logm)2

with C,c0, c1 > 0, since C < 1. �

APPENDIX B: PROOF OF LEMMA 6.1

We only give the proof of the first equation in the lemma. The proof of the second equation
is analogous, but requires considering the particle process transversally (there is no additional
technical complications here, just more notation). The outline of the proof is to introduce
particle process given [3] and then use the determinantal structure to perform a cumulant
expansion. We can then use results from [3].

For ε ∈ {0,1}, introduce

Lε
m(q, k) =

{(
2t − ε + 1

2

)
e1 − βm(q, k)e2; t ∈ [0,4m] ∩Z

}
(B.1)

and

Lε
m =

L1⋃
q=1

M⋃
k=1

Lε
m(q, k).(B.2)

Then, Lm = L0
m ∪ L1

m defines discrete intervals on the Aztec diamond. For z ∈ Lm, write
ε(z) = ε if z ∈ Lε

m where ε ∈ {0,1}. For z ∈ Lm, and since each z is incident to an a-face, we
let

x(z) = z − 1

2
(−1)ε(z)e2 ∈ Wε,

y(z) = z + 1

2
(−1)ε(z)e2 ∈ Bε,

(B.3)

for ε ∈ {0,1} which gives a relation between particles and dimers. The determinantal point
process on Lm is given by

K̃m

(
z, z′)= aiK−1

a,1

(
x
(
z′), y(z)

)= K̃m,0
(
z, z′)+ K̃m,1

(
z, z′),(B.4)
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where the second equality is due to (4.9). Let Ip,q,k be the interval in Lm(q, k) between
J r

p,q,k,1 and J r
p,q,k,k . Then, let

Ip,q,k(z) =
{

1 z ∈ Ip,q,k,

0 otherwise.
(B.5)

We have that

ha(J r
p,q,k,1

)− ha(J r
p,q,k,k

)=∑
i

(−1)ε(zi )Ip,q,k(zi),(B.6)

where
∑

i is the sum of all particles in the determinantal point process on Lm. Let

ψ(z) =
M∑

k=2

L2∑
p=1

L1∑
q=1

wp,q(−1)ε(z)Ip,q,k(z).(B.7)

Then, we have the following:

EAz

[
exp

[
1

M

L2∑
p=1

L1∑
q=1

M∑
k=2

wp,q

(
ha(J r

p,q,k,1
)− ha(J r

p,q,k,k

))]]

= E
[
e

1
M

∑
i ψ(zi)

]
= E

[∏
i

e
1
M

ψ(zi)

]
= det

(
I+ (

e
1
M

ψ − 1
)
Km

)
,

(B.8)

where the expectations in the second and third equality are over the determinantal point pro-
cess on Lm. We can now take a cumulant expansion by taking logarithms of both sides, which
gives

log det
(
I+ (

eψ/M − 1
)
Km

)
(B.9)

=
∞∑

s=1

1

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥s

tr
[
ψ�1Km . . .ψ�rKm

];

see, for example, page 450 in [7]. Below, we use the notation [N ] = {1, . . . ,N}, p =
(p1, . . . , pr) and zr+1 = z1. Expanding the above trace gives

tr
[
ψ�1Km . . .ψ�rKm

]
= ∑

z∈Lr
m

∑
k∈[M]r

∑
p∈[L2]r

∑
q∈[L1]r

r∏
i=1

× Ipi,qi ,ki
(zi)(−1)�iε(zi )wri

pi ,qi
Km(zi, zi+1)

= ∑
δ∈{0,1}

∑
z∈Lr

m

∑
k∈[M]r

∑
p∈[L2]r

∑
q∈[L1]r

r∏
i=1

× Ipi,qi ,ki
(zi)(−1)�iε(zi )wri

pi ,qi
Km,δi

(zi, zi+1)

(B.10)

by (B.4). Following our previous approach in [3], Section 4, we split this trace into four parts.
Let

Dr = {0,1}r × [M]r × [L2]r × [L1]r .(B.11)
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Define

Dr,0 = {
(δ, k,p, q) ∈ Dr; δi = 0, ki = ki+1,pi = pi+1

and qi = qi+1,1 ≤ i ≤ r
}
,

(B.12)

Dr,1 = {
(δ, k,p, q) ∈ Dr; δi = 0, qi = qi+1 for 1 ≤ i ≤ r

and pi �= pi+1 for some i
}
,

(B.13)

Dr,2 = {
(δ, k,p, q) ∈ Dr; δi = 0, qi = qi+1,pi = pi+1 for 1 ≤ i ≤ r

and ki �= ki+1 for some i
}(B.14)

and

Dr,3 = {
(δ, k,p, q) ∈ Dr; δi = 1 or qi �= qi+1 for some i

}
.(B.15)

Then, we have Dr = Dr,0 ∪ Dr,1 ∪ Dr,2 ∪ Dr,3. Introduce

(B.16) Tj (m, r, l) = ∑
z∈(Lm)r

∑
(δ,k,p,q)∈Dr,j

r∏
i=1

(−1)�iε(zi )w�i
pi ,qi

Ipi,qi ,ki
(zi)Km,δi

(zi, zi+1),

for 0 ≤ j ≤ 3. Then, by (B.9) and (B.10) we have

log det
(
I+ (

e
1
M

ψ − 1
)
Km

)=
3∑

j=0

Uj(m),(B.17)

where we define

Uj(m) =
∞∑

s=1

1

Ms

s∑
r=1

(−1)r+1

r

∑
�1+···+�r=s
�1,...,�r≥1

Tj (m, r, �)

�1! . . . �r ! .(B.18)

From Lemmas 4.1 and 4.2 in [3], we have that U0(m),U1(m),U2(m) tend to 0 uniformly as
m → ∞ for |wp,q | ≤ R. We can trivially bound T3 by using Lemma A.1 and Theorem 4.2
since the sum over each zi in (B.16) is over at most M(logm)2 terms which gives the bound

∣∣T3(m, r, �)
∣∣≤ ∑

(δ,k,p,q)∈Dr,3

Cr
1

mr/3 Mr(logm)2r ≤ Cr

mr/3 M2r (logm)2r ,(B.19)

where C,C1 > 0 are constants. This gives that

∣∣U3(m)
∣∣≤ ∞∑

s=1

Rs

Ms

s∑
r=1

1

r

∑
�1+···+�r=s
�1,...,�r≥s

Cr(logm)2rM2r

mr/3 ,(B.20)

which tends to zero as m → ∞ for R sufficiently small. This concludes the proof of the first
equation in the lemma.
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