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1 Introduction

There is a long-standing interest in smooth soliton solutions in gravity. There are many
examples where some S1 direction shrinks smoothly to zero, starting with the bubble of
nothing instability of the Kaluza-Klein vacuum [1]. A similar solution with asymptotically
locally AdS boundary conditions was dubbed the AdS soliton [2]. These solutions are easily
constructed; they are simply double analytic continuations of black hole solutions (in these
examples, uncharged black holes in asymptotically flat or asymptotically AdS space). In the
AdS case, the soliton is a time-independent solution, with a flat conformal boundary. The
spin structure of a spacetime with a contractible S1 has antiperiodic boundary conditions
on the S1. In the holographic AdS/CFT correspondence, the dual theory thus has a spatial
circle with antiperiodic boundary conditions for fermions; if the CFT was supersymmetric
this choice of boundary conditions breaks the supersymmetry. The AdS soliton is dual
to the ground state in this theory. It has a negative energy, which is identified with the
Casimir energy of the dual CFT; the antiperiodic boundary conditions for fermions spoil
the cancellation between the bosons and fermions.

A simple generalization of these boundary conditions in the CFT is to add a Wilson
line around the non-trivial cycle, giving a non-trivial holonomy for the bulk gauge field. A
family of bulk solutions satisfying these boundary conditions can be obtained by a double
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analytic continuation of electrically charged black holes. After the analytic continuation,
the solutions have a magnetic flux through the circle; in the bulk the Wilson line is related
to the total amount of magnetic flux through this cycle. These are AdS analogues of
the Melvin fluxtube solutions in flat space [3], and were previously studied in [4–6]. For
simplicity, we study the solutions primarily in four bulk dimensions with a flat boundary,
but we also consider generalisations in Euclidean signature to a boundary which is S1×Σg

for some Riemann surface of genus g > 1, and to five bulk dimensions, which may be
interesting for its relation to N = 4 SYM.

Surprisingly, there is a solution of vanishing energy in this family which is supersym-
metric. This is surprising, as the solutions still have the same structure as the AdS soliton,
with a smooth origin which enforces antiperiodic boundary conditions for the fermions on
the shrinking S1, which we normally think of as breaking the supersymmetry. However,
the holonomy around the circle can compensate for the change in boundary conditions.
The supersymmetry of these solutions has been recognised in various guises before. They
are double analytic continuations of a set of supersymmetric naked singularities identified
in four dimensions in [7, 8] and in five dimensions in [9]. They were also studied in four
dimensional Euclidean space very recently in [10] as an extension of the supersymmetric
black holes dual to the twisted supersymmetric index. We add to these previous discus-
sions by emphasizing the previously unnoticed fact that these solutions are perfectly well
behaved Lorentzian configurations. Indeed, these configurations can be thought as a su-
persymmetric extension of the AdS soliton of [2]. We provide a detailed discussion of the
role of its spin structure; we will explicitly construct the antiperiodic Killing spinors in the
bulk spacetime.

We also point out a degeneracy for supersymmetric solutions with these boundary con-
ditions, which is present in both Lorentzian and Euclidean signature for the flat boundary
conditions. For the flat boundary conditions, in addition to the smooth soliton solutions,
AdS in Poincaré coordinates, with one of the spatial directions identified also satisfies the
boundary conditions. A solution with a Wilson line is easily obtained by adding a constant
gauge potential in the bulk, without changing the geometry. This solution is also super-
symmetric for integer-quantized values of the Wilson line, with periodic Killing spinors for
even n and antiperiodic Killing spinors for odd n.

Thus, for a range of values of the Wilson line on the S1, there are two bulk solutions
with these boundary conditions: the magnetic flux tube solution and the solution dressed
with a constant gauge field.1 We will show that there is a phase transition between these
two families of solutions precisely at the supersymmetric point with antiperiodic Killing
spinors; the ground state of the CFT with these boundary conditions is the soliton for
smaller values of the Wilson line, and the constant gauge field solution for larger values.

With S1×Σg boundary conditions, there is a similar degeneracy in the Euclidean par-
tition function: the other solution is an analytic continuation of the magnetically charged
black hole solution of Romans, with an AdS2 ×Σg near-horizon region [7, 11, 12]. We can
similarly periodically identify to obtain and S1 direction and add a constant gauge poten-

1As noted in [6], the magnetic flux solution exists only for a finite range of values of the holonomy.
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tial in this case. The path integral for the CFT on an S1 × Σg with the supersymmetry-
preserving choice of Wilson line computes the twisted supersymmetric index [13–16].2 In
this context, both of these three-dimensional configurations have been considered before:
the solution with the constant gauge field was studied in [12] as the bulk dual of this twisted
partition function. It was noted in [10] that there is a supersymmetric solution with an
R2×Σg near-horizon region — our magnetic flux tube — and that this has the same value
for the action as the Romans solution. However, it was not previously appreciated that
these solutions compete.

This is as far as we know the first example where there is a degeneracy between bulk
solutions in a supersymmetric partition function, and it would be fascinating to under-
stand its implications for the field theory. It would be interesting to study the one-loop
determinant of the bulk fields on both solutions to see if this lifts the degeneracy. We
conjecture that it does not, and the supersymmetric ground state in field theory is dual to
a superposition of the two geometries. If so, this would be the first example we know where
a field theory ground state has such an interpretation. It would then be very interesting to
consider the observables in this state, such as correlation functions, whose calculation in the
bulk will be sensitive to the relative phase between the two solutions. It is also interesting
that there is qualitative difference between even and odd integer-quantized Wilson lines;
in the even case, with periodic Killing spinors, there is a unique supersymmetric solution
in the bulk, while in the odd case there is this degeneracy.

In the first part of the paper, we will discuss the case with flat boundary in AdS4
in some detail. We set up the bulk theory in section 2.1, and describe the solutions in
section 2.2. We give a careful analysis of supersymmetry in section 2.3, and describe the
phase structure in section 2.4. We then briefly discuss the extension to S1×Σg boundaries
in section 3. We generalize the analysis to AdS5 for flat boundaries in section 4.

2 Four dimensions

2.1 Gauged N = 2 supergravity

Our explicit discussion of solutions in four dimensions is carried out in the context of mini-
mal gauged N = 2 supergravity in four dimensions. This theory was originally constructed
in terms of the physical fields [18, 19], whose supersymmetry transformations only close
under commutation up to equations of motion. Subsequently two alternative constructions
were presented based on the superconformal multiplet calculus [20–22]. This theory is a
universal subsector of a range of four-dimensional supersymmetric theories. The bosonic
sector is the familiar Einstein-Maxwell-AdS theory, with action

S (g,A) =
∫
d4x
√
−g

[
R

2 −
1
8FµνF

µν + 3
`2

]
, (2.1)

2See [17] for a review and more references.
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where F (A)µν = ∂µAν − ∂νAµ .The field equations are

∂µ
(√
−gFµν

)
= 0 ,

Rµν − 1
2gµνR−

1
2

[
Fµρ Fν

ρ − 1
4gµνFρσF

ρσ
]
− 3
`2
gµν = 0 . (2.2)

When supplemented by the fermionic sector, the supergravity theory is invariant under
supersymmetry transformations of all the fields. In our calculations we will only make use
of the transformation of the chiral Rarita-Schwinger fields ψµi :

δψµ
i = 2Dµεi − 1

4F (A)ρσγρσγµ εij εj + `−1 εij tj
k γµεk , (2.3)

δψµ i = 2Dµεi − 1
4F (A)ρσγρσγµ εij εj + `−1 εij t

j
k γµε

k , (2.4)

where γ5 = −iγ0γ1γ2γ3, γ5ψiµ = ψiµ and γ5ψµi = −ψµi and i = 1, 2 and we shall pick
tij = iσ3 =⇒ ti

j = −iσ3. The covariant derivatives of the supersymmetry parameters are
given by

Dµεi =
(
∂µ + 1

4ωµ
abγab

)
εi − 1

2`Aµ t
i
j ε
j , (2.5)

Dµεi =
(
∂µ + 1

4ωµ
abγab

)
εi − 1

2`Aµ ti
j εj . (2.6)

In our calculations we find that is convenient to work with the spinor

χ ≡ ε1 + ε2 , (2.7)

such that the Killing spinor equation is

2Dµχ+ 1
4F (A)ρσγρσγµγ5 χ− `−1i γµγ5χ = 0 , (2.8)

where the covariant derivative of χ follows from (2.5),

Dµχ =
(
∂µ + 1

4ωµ
abγab − 1

2` iAµ
)
χ . (2.9)

We recall that all fermionic fields have been suppressed on the right-hand side of equa-
tion (2.9), because we will be dealing with purely bosonic backgrounds. In the following
sections we will consider a class of soliton solutions that can be partially supersymmetric.
Their possible supersymmetry will be investigated by analyzing the equation (2.8).

The Lagrangian (2.1) can be obtained from the compactification of eleven dimensional
supergravity over the seven sphere with the ansatz [23]

ds2
11 = ds2

4 + 4`2
∑
i

(
dµ2

i + µ2
i

(
dφi + 1

4`A
)2
)
. (2.10)

F4 = −3
`
ε4 − 2`2

∑
i

µidµi ∧
(
dφi + 1

4`A
)
∧ ∗4dA (2.11)

where ∗4 is the Hodge dual with respect to the four-dimensional metric ds2
4 and ε4 its volume

form. The φi are 2π periodic angular coordinates parametrizing the four independent
rotations on S7. We will be interested in considering the higher-dimensional interpretation
of some of our solutions using this uplift.
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2.2 Planar solitons

The solutions we consider all have metric

ds2 = r2

`2

(
−dt2 + dz2

)
+ dr2

f(r) + f(r)dφ2 . (2.12)

When considering supersymmetry we will also need a corresponding set of vierbeine, which
we take to be

e0 = r

`
dt ,

e1 = dr√
f(r)

,

e2 =
√
f(r)dφ ,

e3 = r

`
dz. (2.13)

The simplest solution has

f(r) = r2

`2
. (2.14)

If φ is not periodically identified, this is simply pure AdS4 in Poincaré coordinates. How-
ever, we are interested in considering solutions with φ periodically identified in the bound-
ary. For Poincaré-AdS, we can impose this identification on the bulk as a quotient. We
will postpone a full discussion of this quotient until we have discussed the soliton solution.

The soliton solution is

f(r) = r2

`2
− µ

r
− Q2

r2 , (2.15)

A =
(2Q
r
− 2Q

r0

)
dφ , (2.16)

where r0 is the largest root of the equation f(r0) = 0.3 This solution can be obtained
by a double analytic continuation from an electrically charged black hole solution, where
the analytic continuation also involves analytically continuing the charge Q. We have
r ∈ [r0,∞), and regularity of the metric at r = r0 requires that φ is periodic with period

∆φ = 4π`2r3
0

3r4
0 +Q2`2

. (2.17)

We have added a constant contribution to the gauge potential to ensure regularity at r = r0;
there is then a non-trivial holonomy of the gauge field at infinity. This is related to the
net magnetic flux along the z axis,

Φ = −
∮
Aφ (r =∞) dφ = −1

2

∫
Fµνdx

µ ∧ dxν = 2Q
r0

∆φ. (2.18)

The soliton solution is determined by two parameters; from the bulk perspective the
natural parametrization is µ,Q or r0, Q. From the boundary perspective, the natural

3Note that f always has at least one positive root, for all real values of µ,Q.

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
5

parameters are ∆φ,Φ. In the usual holographic dictionary, we fix the boundary geometry
and the boundary value of Aµ, which is interpreted as a background gauge field coupled to
a global U(1) symmetry of the CFT. Recall that as discussed in the introduction, for the
soliton solutions the bulk spin structure is antiperiodic on the φ circle, as this contracts
smoothly in the interior.

Thus, we consider the CFT on a background

ds2
Boundary = −dt2 + dz2 + dφ2, (2.19)

with φ taken to be periodic with period ∆φ, and an antiperiodic spin structure for the
fermions, and a Wilson line (holonomy) on the φ circle with value Φ, and we look for bulk
solutions satisfying these boundary conditions. We obtain a suitable bulk soliton solution
by solving for µ,Q as functions of ∆φ,Φ. We have

µ = r4
0 −Q2`2

r0`2
, Q = Φr0

2∆φ, (2.20)

and inverting (2.17) gives [6]

r0 = 2π`2

3∆φ

(
1±

√
1− Φ2

Φ2
max

)
, (2.21)

where Φmax = 4π√
3`. We see that there are two solutions for r0 for Φ ∈ [0,Φmax]. At Φ = 0,

the minus branch has r0 = 0, giving µ = Q = 0, so it reduces to the Poincaré-AdS solution.
The plus branch has Q = 0, and

µ =
( 4π`

3∆φ

)3
`, (2.22)

which is just the AdS soliton. The two branches coalesce at Φ = Φmax.
The parameters µ,Q control the subleading parts of the metric and gauge field asymp-

totically, so they can be interpreted as vevs of the corresponding operators in the field
theory. The gauge field gives a vev for the current in the boundary theory,

〈Jφ〉 = 2Q, (2.23)

and the metric gives a vev for the stress tensor,

〈Ttt〉 = − µ

2`2 , 〈Tzz〉 = µ

2`2 , 〈Tφφ〉 = − µ
`2
. (2.24)

We see that the energy density of the soliton solutions is negative when µ is positive. We
can write explicitly [6]

〈Ttt〉 = −
( 4π`

3∆φ

)3 1
4`

1− 3Φ2

2Φ2
max
±
(

1− Φ2

Φ2
max

)3/2
 . (2.25)

We see that the minus branch always has 〈Ttt〉 ≥ 0, and the plus branch has 〈Ttt〉 < 0 for
Φ ∈ [0,ΦS), where

ΦS =
√

3
2 Φmax = 2π`. (2.26)

– 6 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
5

In addition to the soliton solutions, another solution with these boundary conditions
is simply to take the Poincaré-AdS solution, with a constant gauge field A = −2Q

r0
dφ. If

φ were not periodic, this is just pure AdS in Poincaré coordinates, and the gauge field is
pure gauge. Taking φ to be periodic with period ∆φ, the gauge field has a constant Wilson
loop Φ = −2Q

r0
∆φ for all r, which can’t be set to zero by a gauge transformation.

It is useful to think of this solution as a quotient of AdS4×S7. For Φ = 0, the quotient
has fixed points at r = 0, so this is not a smooth solution. Furthermore, for the antiperiodic
boundary conditions we consider, this solution is unstable as a solution of string theory, as
a string wrapped around the φ circle will become tachyonic for sufficiently small r. This
solution decays by tachyon condensation, whose likely endpoint is the AdS soliton [24, 25].

However, for Φ 6= 0, the identification involves a shift of the angular coordinates on
the sphere. The solution with a constant gauge field uplifts as in (2.10). Since the gauge
potential is constant, if φ is not periodically identified we can eliminate the gauge field
by coordinate redefinitions φ̃i = φi + Aφ

4` φ. The periodic identification of φ at fixed φi
then acts as (φ, φ̃i) ∼ (φ + ∆φ, φ̃i + Φ/4`). This is now a smooth quotient, with no fixed
points,4 and the circle in the higher-dimensional space has a minimum size Φ/8, so for Φ
larger than the string scale the tachyon is lifted, and this is a physical solution. It is then
interesting to compare this solution to the soliton. We will discuss the phase structure in
section 2.4, but we first discuss in more detail the supersymmetric solutions at the special
value Φ = ΦS .

2.3 Supersymmetric solutions

The configuration with zero energy, µ = 0, which occurs on the plus branch of solitons
at Φ = ΦS = 2π`, is supersymmetric. At this value of Φ, the Poincaré-AdS solution is
also supersymmetric. The supersymmetry of the soliton in the Euclidean section has been
noted before [10], but we give a slightly more careful analysis taking into account the
antiperiodic boundary conditions for the fermions on the φ circle. Our remark is that the
supersymmetric soliton solutions are perfectly well behaved in the Lorentzian section. We
will explicitly exhibit the Killing spinors for this solution, and see how they arise from the
higher-dimensional perspective.

For the solitons with µ = 0, we can write r0 =
√
` |Q|. The form of the solution can

be simplified by a coordinate transformation

r = r0

√
cosh(ρ), (2.27)

where the configuration reads

ds2 = `2

4 dρ
2 + |Q|

`

[
cosh (ρ)

(
−dt2 + dz2

)
+ sinh (ρ)2

cosh(ρ) dφ
2
]
, (2.28)

A = 2Q
r0

( 1√
cosh ρ

− 1
)
dφ. (2.29)

4More carefully, the identification is free of fixed points so long as Φ 6= 8π`n for integer n, so that the
action on the φi coordinates is globally non-trivial.
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We use a Majorana basis for the Clifford algebra

γ0 = −i
(

0 σ2
σ2 0

)
, γ1 = −

(
σ3 0
0 σ3

)
, γ2 = i

(
0 −σ2
σ2 0

)
, γ3 =

(
σ1 0
0 σ1

)
. (2.30)

There are two independent solutions to the Killing spinor equation on this background:

χ1 =
exp

(
−iπ φ

∆φ

)
cosh (ρ)1/4


sinh ρ

2
− cosh ρ

2
i cosh ρ

2
i sinh ρ

2

 , (2.31)

χ2 =
exp

(
−iπ φ

∆φ

)
cosh (ρ)1/4


− cosh ρ

2
sinh ρ

2
i sinh ρ

2
i cosh ρ

2

 . (2.32)

The two spinors χ1 and χ2, can be projected over four chiral spinors and therefore the
soliton solution is 1/2 BPS. They close on the following Killing vectors:

χ†2γ
0γµχ2∂µ = χ†1γ

0γµχ1∂µ = 2`
r0
∂t , (2.33)

χ†1γ
0γµχ2∂µ = −2`

r0
(∂φ + i∂z) .

There is still the issue that the spinors χ1 and χ2 seem to be ill-defined at ρ = 0, as they
have an explicit dependence on φ, however this dependence corresponds exactly to the form
of the Killing spinors of Minkowski in cylindrical coordinates:

χ1|ρ=0 = exp
(
−iπ φ

∆φ

)
0
−1
i
0

 , (2.34)

χ2|ρ=0 = exp
(
−iπ φ

∆φ

)
−1
0
0
i

 . (2.35)

Hence, our Killing spinors interpolate smoothly between half of the Killing spinors of
Minkowski and half of the Killing spinors of AdS4. Indeed, we see that we have solutions of
the Killing spinor equation with non-trivial dependence on φ, whereas we would normally
expect the Killing spinors to be constant along these flat directions. This satisfies the
Killing spinor equation (2.8) due to a cancellation between the derivative ∂φ and the gauge
potential Aφ in the covariant derivative Dφ.

For Φ = ΦS = 2π`, the Poincaré -AdS solution is also supersymmetric. This follows
trivially from the fact that it gives the large r asymptotics of the supersymmetric soliton
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solution; if the soliton preserves some supersymmetry, the metric it approaches at large r
must preserve at least the same amount of supersymmetry. Taking the large ρ limit gives

χ1 = exp
(
−iπ φ

∆φ

)
e
ρ
4


1
−1
i
i

 , (2.36)

χ2 = exp
(
−iπ φ

∆φ

)
e
ρ
4


−1
1
i
i

 . (2.37)

On pure AdS4, the theory has four Killing spinors; if we introduce a Wilson loop on
this background with A = Aφdφ, we have that the local solutions to the Killing spinor
equation are

χAdS
1 = exp

( iAφ
2` φ

)
r1/2


1
−1
0
0

 , χAdS
2 = exp

( iAφ
2` φ

)
r1/2


0
0
1
1

 , (2.38)

χAdS
3 = exp

( iAφ
2` φ

)
r1/2 (t+φ)
−r1/2 (t+φ)
−r1/2z−`2r−1/2

−r1/2z+`2r−1/2

 , χAdS
4 = exp

( iAφ
2` φ

)
−r1/2z+`2r−1/2

r1/2z+`2r−1/2

r1/2 (t−φ)
r1/2 (t−φ)

 .

(2.39)

The second two spinors, χAdS
3 and χAdS

4 , are not invariant under the identification which
makes φ periodic, so this breaks at least half the supersymmetry. The first two, χAdS

1
and χAdS

2 , are invariant (up to sign) if Aφ = 2πn`/∆φ, so Φ = 2πn`, for integer n.
Thus, the identified Poincaré-AdS solution with φ periodic and Φ = 2π` has the same
supersymmetry as the soliton solution. The preserved supersymmetries correspond to
the Poincaré supersymmetries of the boundary theory, while the broken ones correspond
to superconformal symmetries of the boundary theory, which are broken as the periodic
identification introduces a choice of scale, breaking the conformal symmetry.

It is also instructive to understand how the dependence on φ arises from a higher-
dimensional perspective. Thought of as solutions on AdS4 × S7, the Killing spinors corre-
sponding to Poincaré supersymmetries have the structure

χ ∼ F (r)G(µi)e−
i
2 (φ̃1+φ̃2+φ̃3+φ̃4)χ0, (2.40)

where χ0 is a constant spinor. The dependence on the φ̃i is fixed by the fact that these
are contractible cycles on S7, so all fermions are antiperiodic around them. Thus, under
the quotient action (φ, φ̃i) ∼ (φ + ∆φ, φ̃i + Φ/4`) with Φ = ΦS = 2π`, these spinors are
antiperiodic, χ→ −χ, and they survive the identification, as we are keeping precisely the
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sector of spinors which are antiperiodic under the quotient action.5 Another way to say
this is to rewrite φ̃i = φi + π

2
φ

∆φ , which gives

χ ∼ F (r)G(µi)e−iπ φ
∆φ e−

i
2 (φ1+φ2+φ3+φ4)χ0. (2.41)

Dimensionally reducing over the φi then gives the Killing spinors with a Wilson line writ-
ten above.

Thus, for Φ = ΦS , we have two supersymmetric solutions; the soliton with µ = 0 and
the quotient of AdS. We next turn to the comparison between these two solutions.

2.4 Phase diagram

We now consider the phase transitions between the different solutions. We consider the
standard AdS boundary conditions fixing the leading asymptotic falloff of the metric and
gauge field A. The boundary conditions are then parametrized by ∆φ and Φ. We note
that the U(1) gauge field, and hence Φ, take values in a circle. This is most evident from
the perspective of the uplift (2.10); a shift of Φ → Φ + 8π`n for integer n shifts the φi
by 2πn. The range of physically inequivalent values is thus Φ ∈ [−4π`, 4π`). We can
restrict attention to positive Φ, as we have done so far; corresponding results for negative
Φ are obtained by reversing the sign of Q for the soliton. For Φ ∈ [0,Φmax], there are
three different solutions for each choice of ∆φ and Φ; the two branches of solitons and
Poincaré-AdS with the appropriate identification on φ. For Φ ∈ (Φmax, 4π`], we just have
Poincaré-AdS.

In Lorentzian signature, these solutions should all be dual to some states in the dual
CFT. For Φ = 0, the solution on the lower soliton branch is the AdS soliton, and this is
conjectured to be dual to the ground state of the CFT [2]. It is reasonable to assume that
the lowest-energy solution remains dual to the ground state as we turn on Φ. The energy
for the soliton solutions is plotted in figure 1. For Φ ∈ [0,ΦS), the lowest energy solution
is the lower soliton branch. At Φ = ΦS , the two supersymmetric solutions discussed in
the previous section both have zero energy, so they are degenerate. For Φ ∈ (ΦS , 4π`],
Poincaré-AdS is the lowest-energy solution.

As for the AdS soliton, the energy 〈Ttt〉 = − µ
2`2 should be interpreted as a Casimir

energy of the ground state. We see that turning on a Wilson line initially increases (re-
duces the magnitude of) the Casimir energy, presumably by deforming the spectrum of
fields charged under this U(1)R symmetry. It is surprising that for Φ > ΦS the energy is
zero, independent of the Wilson line Φ. The cancellation between bosons and fermions is
restored at the supersymmetric point, but it’s unexpected that this continues for higher
values of the Wilson line. It would be interesting to investigate this directly from the field
theory perspective.

The other mystery is the precise nature of the ground state at Φ = ΦS . In our su-
pergravity analysis, we have two degenerate solutions. This is the first example we know

5Note we have considered a quotient action which acts in the same way on all the φi because we are
focusing for simplicity on the minimal gauged supergravity in four dimensions, but this supersymmetry
argument requires only that the sum of the shifts

∑
i
∆φ̃i = 2π.
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Figure 1. The rescaled energy density, Y = 27∆φ3

8π3`2 〈Ttt〉, vs the rescaled magnetic flux, X =
Φ/Φmax, for the two branches of soliton solutions. The lower branch crosses the axis at XS =
ΦS/Φmax =

√
3/2.

of with distinct supersymmetric solutions with the same boundary conditions, which are
degenerate in energy. It is possible that this degeneracy is lifted by subleading effects, for
example by considering the Casimir energy for bulk fields on these two geometries. This is
certainly an interesting issue to investigate, but it seems unlikely that this will lift the de-
generacy: the bulk solutions are supersymmetric, so the natural guess is that contributions
to the bulk Casimir from bosonic and fermionic fields will cancel. Also, there is a phase
transition between the two solutions which is at least very near the supersymmetric point;
it would be surprising if it were then not precisely at this point. The alternative possibility
is that the supersymmetric ground state in the field theory is dual to a superposition of
these two geometries. This would be very interesting if true: the calculation of observables,
such as correlation functions, in this ground state, would then involve contributions from
both geometries. If these observables could be calculated on the CFT side, they would give
a unique probe of relative phase information in the superposition of bulk geometries.

It is also interesting to note that the Poincaré-AdS solution is supersymmetric for
Φ = 2πn`. Since Φ is periodic with period 8π`, there are four physically inequivalent
values giving supersymmetric solutions, which we can take to be n = −1, 0, 1, 2. For odd
n, the unbroken Killing spinors in Poincaré-AdS are antiperiodic on the φ circle, while for
even n, they are periodic. For the odd cases, there is a degenerate soliton solution, but for
the even cases Poincaré-AdS is the only supersymmetric solution. It would be interesting
to understand this difference between odd and even n from the field theory perspective.

– 11 –
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2.5 Euclidean partition function

It is also interesting to consider the phase structure from a Euclidean perspective, to make
contact with previous work on supersymmetric partition functions [13–15, 17]. Previous
work on this area has focused on the Euclidean theory with an S1 × Σg boundary, where
Σg is a Riemann surface of genus g > 1, but this was extended to consider genus 1 in [10],
corresponding to the case we have considered so far. We will comment on the extension of
our discussion to higher genus in section 3.

The Euclidean continuation of our solutions are solutions with an S1 × R2 boundary.
These are usually treated thinking of the S1 as the Euclidean time circle, so Φ is a chemical
potential for the R-charge of the theory and the boundary path integral is interpreted as
the partition function Z = Tr eiΦJRe−∆φH of the CFT on R2. For Φ = 2π`, this partition
function becomes a supersymmetric index.

In the saddle-point approximation, Z ≈ e−SE , where SE is the action of the Euclidean
solutions. For the solitons, the Wick rotated metric is

ds2 = r2

`2

(
dτ2 + dz2

)
+ dr2

f(r) + f(r)dφ2 , (2.42)

with f(r) = r2

`2 −
Q2

r2 − µ
r as before. The Euclidean action is

SE
V

= − lim
R→∞

[(∫ R

r0
dr
√
gE
R

2 −
1
8FµνF

µν + 3
`2

)
+
(
K
√
h− 2

`

√
h

)
r=R

]
= − µ

2`2 , (2.43)

where V is the coordinate volume element on the boundary, V =
∫
dτdφdz. The Poincaré-

AdS solution with a constant Wilson line always has zero action. Since the Euclidean action
is proportional to µ, the phase structure is the same as in our Lorentzian discussion above;
for Φ ∈ [0,ΦS), the dominant saddle-point is the lower soliton branch, for Φ ∈ (ΦS , 4π`] it
is Poincaré-AdS. There is a phase transition at Φ = ΦS .

For the supersymmetric case Φ = ΦS , the partition function is an index, which can be
computed by supersymmetric localization. For the present case, the CFT calculation gives
an answer which vanishes to leading order in N [12], in agreement with the bulk calculation.
This calculation has previously been matched to the bulk result from Poincaré-AdS; we
observe that both bulk saddles match the CFT result, and as discussed previously it will
be interesting to understand further what the precise bulk dual of the index is.

An interesting issue here is the calculation of the expectation value of the R charge in
the ensemble. In the CFT, we can calculate the partition function exactly only at Φ = ΦS ,
so we can’t extract a value for the R-charge from this; thermodynamically, to calculate
the R-charge we need to consider the variation ∂Z

∂Φ . Holographically, we can evaluate the
partition function for general Φ, but at the supersymmetric point the degeneracy prevents
us from evaluating the R-charge. The soliton saddle has 〈Jφ〉 = 2Q, corresponding to a
non-zero R-charge density, while Poincaré-AdS has 〈Jφ〉 = 0. Since they are degenerate
at Φ = ΦS , we don’t know what value to use. Thermodynamically, the phase transition
implies Z is not a smooth function of Φ, so ∂Z

∂Φ is ill-defined at Φ = ΦS .

– 12 –
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2.6 Fixed charge

Since we are in four bulk dimensions, we can also define a holographic correspondence with
alternative boundary conditions, where we fix F ν ≡

√
hnµF

µν at the boundary (where
nµ is the unit normal to the boundary), instead of fixing Aµ [26]. This corresponds to
fixing ∆φ and Q. With these boundary conditions, Poincaré-AdS is not a solution. For
the soliton solutions, we can solve (2.17) to determine r0 as a function of ∆φ and Q. We
can see that ∆φ is small at both r0 → 0 and r0 → ∞, with a maximum at r4

0 = Q2`2,
which implies µ = 0, where ∆φ = ∆φmax = π

√
`3

Q . Thus, the supersymmetric solution in
this case corresponds to the maximum value of ∆φ.

In the Euclidean action, we need to add a boundary term associated with the change
in boundary conditions [26]

S∂
V

= − lim
R→∞

(1
2
√
hNµAνF

µν
)
r=R

= −2Q2

`2r0
, (2.44)

so

S′ = S + S∂ = −
(
µ

2`2 + 2Q2

`2r0

)
V. (2.45)

In figure 2, we plot the action for these solutions as a function of ∆φ at fixed Q. We see
that there are again two branches of solutions, coalescing at the supersymmetric solution
at ∆φ = ∆φmax. The lower branch corresponds to the solutions with µ < 0, which are
always the dominant saddle for these boundary conditions.

3 Generalization to higher genus

It is straightforward to extend this discussion to the Euclidean partition function of the
field theory on S1 ×Σg, where Σg is a Riemann surface of genus g > 1, studied in [10, 12–
14]. The non-linear form of Euclidean gauged N = 2 supergravity was constructed in [27].
The relevant solutions are obtained from the analytic continuation of a black hole with
horizon Σg, carrying both electric and magnetic charges,

ds2 = r2ds2
Σg + dr2

f(r) + f(r)dφ2, (3.1)

with
f(r) = r2

`2
− 1− µ

r
+ P 2 −Q2

r2 , (3.2)

where ds2
Σg is the unit constant negative curvature metric on Σg, and we have a gauge field

F = 2PεΣg + 2Q
r2 dφ ∧ dr, (3.3)

where εΣg is the volume form of ds2
Σg . Note that in the analytic continuation, we have

analytically continued the electric charge Q but not the magnetic charge P , hence the
difference in sign in the metric function. We want to restrict the parameters so that f(r)

– 13 –
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Figure 2. The action ε = `
2π|Q|S

′/V vs ∆ =
√

|Q|`
4π`2 ∆φ, at fixed Q. There are two solitons for

each boundary condition for ∆φ < ∆φmax. The supersymmetric solution is at the maximum value
∆φ = ∆φmax.

has at least one real positive root; we take as before r0 to be the largest positive root,
f(r0) = 0.

The solution considered in [12] has µ = Q = 0, and P = ±`/2. This is a supersym-
metric black hole, first studied in [7]; the contributions of the field strength and the spin
connection on Σg in (2.8) cancel, to allow us to find two chiral Killing spinors, namely the
solution is 1/4 BPS. For these parameters, f(r) has a double root at r0 = `/

√
2,

f(r) =
(
r

`
− `

2r

)2
. (3.4)

The geometry near r = r0 is thus H2 × Σg; in Lorentzian signature, this is an extremal
black hole, with a near-horizon AdS2 region.

The solution is regular for φ ∈ R, but we can obtain solutions with periodic φ by
quotienting this solution, as in our previous discussion of Poincaré-AdS. As before, we
can consider adding a Wilson line along the φ circle in the quotient; this corresponds to
a chemical potential for the R-charge in the partition function. This quotient will have
unbroken supersymmetry if Φ = 2πn` for integer n. Recall that Φ is periodic with period
8π`, so there are four physically inequivalent values giving supersymmetric solutions, which
we can take to be n = −1, 0, 1, 2. For odd n, the unbroken Killing spinors are antiperiodic
on the φ circle, while for even n, they are periodic.

– 14 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
5

In [10], the solutions with µ = 0 but non-zero Q were considered;

f(r) =
(
r

`
− `

2r

)2
− Q2

r2 (3.5)

with
A = AΣg +

(2Q
r
− 2Q

r0

)
dφ, (3.6)

where AΣg is a gauge potential on the Riemann surface giving the magnetic part of F . The
largest root of f is at

r0 = `√
2

√
1 + |Q|/

√
2`. (3.7)

This is now a single root, so the geometry near r = r0 is R2 × Σg, and we need to choose
φ periodic with period

∆φ = 4π
f ′(r0) = π`r0

|Q|
. (3.8)

There is a boundary Wilson line Φ = 2Q
r0

∆φ = ±2π`, and the solution is supersymmetric,
with antiperiodic Killing spinors.

Thus, as in the earlier discussion, there are two supersymmetric solutions with antiperi-
odic Killing spinors for Φ = ±2π`; the quotiented solution with Q = 0 and the soliton-like
solution with non-zero Q. The action of these solutions is equal [10],

SE = −
√

2π
3 (g − 1)N3/2. (3.9)

This reproduces the value of the twisted topological index calculated in the field theory
using localization methods [14]. It is in principle straightforward to extend this analysis to
more general solutions with scalars, although explicitly constructing the soliton solutions
is challenging [10].

As in the genus one case, it would be very interesting to understand further the degen-
eracy between these two solutions. It would also be interesting to understand the difference
between odd n (where we have this degeneracy) and even n (where the Q = 0 solution is
the unique supersymmetric solution) from the field theory perspective.

If we want to consider different values of Φ, we can detune this solution by considering
the geometry with µ also non-zero,

f(r) =
(
r

`
− `

2r

)2
− µ

r
− Q2

r2 . (3.10)

We leave a complete understanding of the space of possible smooth non-supersymmetric
solutions for future work; it is not trivial in this case to solve for µ,Q in terms of the natural
boundary parameters ∆φ,Φ, or to establish the range of parameters for which there is a
positive root r0.
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4 Five dimensions

4.1 Minimal gauged supergravity

The discussion so far has been in four bulk dimensions; it is easy to generalise the con-
struction to higher dimensions. Here we will consider in particular Einstein-Maxwell-AdS
in five bulk dimensions constructed in several papers [28–35]. We follow [9, 23]. The action
principle is

S (g,A) = 1
8πG

∫
d5x

(√
−g

[
R

2 + 6
`2
− 1

8FµνF
µν
]

+ 1
24
√

3
F ∧ F ∧A

)
, (4.1)

with field equations

∂µ
(√
−gFµν

)
= 0 ,

Rµν − 1
2gµνR−

1
2

[
Fµρ Fν

ρ − 1
4gµνFρσF

ρσ
]
− 6
`2
gµν = 0 . (4.2)

where we have used that our solutions shall satisfy F ∧ F = 0. In our conventions, the
Killing spinor equations can be written in terms of a single complex spinor, Ψ, as follows(

∂µ+ 1
4ωµ

abγab−
i

8
√

3
γµλαF

λα+ i
2
√

3
Fµαγ

α
)

Ψ+`−1
(

i
2γµ−

√
3

2 Aµ

)
γ4Ψ∗= 0 . (4.3)

where γ4 = iγ0γ1γ2γ3 is the gamma matrix along the fifth dimension and Ψ∗ is the complex
conjugate of Ψ.

The theory we considered here is obtained by a dimensional reduction of type IIB
supergravity over the five-sphere with the ansatz [23]

ds2
10 = ds2

5 + `2
3∑
i=1

dµ2
i + µ2

i

(
dφi + 1√

3`
A

)2
(4.4)

F5 = G5 + ∗5G5 (4.5)

G5 = −4
`
ε5 + `2√

3

3∑
i=1

µidµi ∧
(
dφi + 1√

3`
A

)
∧ ∗5dA (4.6)

where ∗5 is the Hodge dual with respect to the five-dimensional metric ds2
5 and ε5 is its

volume form.

4.2 Soliton solutions

By double analytic continuation of the electrically charged black hole solutions with a flat
boundary, we obtain a solution

ds2 = r2

`2

(
−dt2 + dy2 + dz2

)
+ dr2

f(r) + f(r)dφ2, (4.7)

where
f(r) = r2

`2
− µ

r2 −
q2

r4 . (4.8)
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This is a solution of Einstein-Maxwell with the gauge field

A =
(√

3q
r2 −

√
3q
r2

0

)
dφ, (4.9)

where r0 is the largest root of f(r), f(r0) = 0. We can write

µ =
(
r6

0 − q2`2
)

`2r2
0

. (4.10)

The solution is smooth at r = r0 if φ has period

∆φ = 4π
f ′(r0) . (4.11)

The flux through the φ circle at r → ∞ is Φ =
∮
A =

√
3q
r2
0

∆φ. The boundary data is ∆φ
and Φ, so it is convenient to re-express the bulk parameters in terms of these; we have

q = r2
0√
3

Φ
∆φ, (4.12)

with

r0 = π`2

2∆φ

(
1±

√
1− Φ2

Φ2
max

)
, (4.13)

where Φmax =
√

3
2π`. We see that for Φ < Φmax, there are two branches of solutions.

The + branch approaches the AdS soliton as Φ → 0, while the − branch approaches
Poincaré-AdS, and they coalesce at Φ = Φmax. We have µ = 0 when r6

0 = q2`2, that is
when

r2
0 = Φ2`2

3∆φ2 ⇒ 2− 3 Φ2

Φ2
max
± 2

√
1− Φ2

Φ2
max

= 0, (4.14)

which is satisfied on the + branch at Φ = ΦS = 2
√

2
3 Φmax, that is ΦS = 2π√

3`.

4.3 Supersymmetric solutions

To solve the Killing spinor equation at the supersymmetric point µ = 0, we introduce the
change of coordinates

r = |q`|2/3 cosh(ρ)1/3, (4.15)

in terms of which the metric and gauge field read

ds2 = `2

9 dρ
2 + r2

0
`2

[
cosh (ρ)2/3

(
−dt2 + dy2 + dz2

)
+ sinh (ρ)2

cosh(ρ)4/3dφ
2
]
, (4.16)

A =
√

3q
r2

0

( 1
cosh(ρ)2/3 − 1

)
dφ, (4.17)

where in this section we take r0 = |q`|1/3 and ∆φ = 2π`5/3
3q1/3 . The calculation shall be carried

in the same basis as in the D = 4 with the extra vielbein

e4 = r0
`

cosh(ρ)1/3dy . (4.18)
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There are four independent solutions to the Killing spinor equation on this background:

Ψ1 = cosh(ρ)−1/3


sρcφ + icρsφ
−cρcφ + isρsφ
cρsφ − isρcφ
sρsφ + icρcφ

 , Ψ2 = cosh(ρ)−1/3


cρcφ + isρsφ
−sρcφ + icρsφ
−sρsφ + icρcφ
−cρsφ − isρcφ

 , (4.19)

Ψ3 = cosh(ρ)−1/3


sρsφ − icρcφ
−cρsφ − isρcφ
−cρcφ − isρsφ
−sρcφ + icρsφ

 , Ψ4 = cosh(ρ)−1/3


cρsφ − isρcφ
−sρsφ − icρcφ
sρcφ + icρsφ
cρcφ − isρsφ

 , (4.20)

where sρ = sinh
(ρ

2
)
, cρ = cosh

(ρ
2
)
, sφ = sin

(
π

∆φφ
)
and cφ = cos

(
π

∆φφ
)
, which implies

that the solution is 1/2 BPS. As a cross-check we verify the formulae which relate Killing
spinors and Killing vectors as given in section 2 of [9]. The most general Killing spinor for
this solution is

Ψ =
4∑
i=1

ciΨi . (4.21)

where the ci are real constants. It statisfies that

ΨT
(
γ4
)†
γ0Ψ = 0 , (4.22)

ΨT
(
γ4
)†
γ0γµγ4Ψ∗ = Kµ , (4.23)

where the components of the Killing vector are

Kt = 2`
r0

(
c2

1 + c2
2 + c2

3 + c2
4

)
, (4.24)

Kφ = 4`
r0

(c3c4 + c1c2) , (4.25)

Kz = −4`
r0

(c1c4 − c3c2) , (4.26)

Ky = −2`
r0

(
c2

1 − c2
2 + c2

3 − c2
4

)
. (4.27)

Let us note that in an asymptotic expansion, the leading term of the spinors is

lim
ρ→∞

e−
ρ
6 Ψ1 =


exp

(
i π
∆φφ

)
− exp

(
−i π

∆φφ
)

−i exp
(
i π
∆φφ

)
i exp

(
−i π

∆φφ
)

 , lim
ρ→∞

e−
ρ
6 Ψ2 =


exp

(
i π
∆φφ

)
− exp

(
−i π

∆φφ
)

i exp
(
i π
∆φφ

)
−i exp

(
−i π

∆φφ
)

 , (4.28)

lim
ρ→∞

e−
ρ
6 Ψ3 =


−i exp

(
i π
∆φφ

)
−i exp

(
−i π

∆φφ
)

− exp
(
i π
∆φφ

)
− exp

(
−i π

∆φφ
)

 , lim
ρ→∞

e−
ρ
6 Ψ4 =


−i exp

(
i π
∆φφ

)
−i exp

(
−i π

∆φφ
)

exp
(
i π
∆φφ

)
exp

(
−i π

∆φφ
)

 . (4.29)
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On pure AdS5, the theory has four Killing spinors; if we introduce a Wilson loop on this
background with A = Aφdφ. Indeed, a basis for the local solutions to the Killing spinor
equation in the Poincaré patch are

ΨAdS
1+ = ∆+


0
1
0
0

 , ΨAdS
1− = ∆−


−1
0
0
0

 , ΨAdS
2+ = ∆+


0
0
0
1

 , ΨAdS
2− = ∆−


0
0
1
0

 , (4.30)

ΨAdS
3+ = ∆+


0

φ+ t

`2r−1

z + iy

 , ΨAdS
3− = ∆−


−φ− t

0
z − iy
−`2r−1

 , (4.31)

ΨAdS
4+ = ∆+


`2r−1

z − iy
0

t− φ

 , ΨAdS
4− = ∆−


−z − iy
`2r−1

−φ+ t

0

 . (4.32)

where ∆± =
√
r exp

(
±i
√

3Aφ
2` φ

)
. The most general solution to the Killing spinor equation

in this basis is

ΨAdS =
4∑
i=1

αiΨAdS
i+ +

4∑
i=1

α∗iΨAdS
i− (4.33)

where the constants α∗i are the complex conjugate of αi. Again we can see from the Killing
spinors that the identification in φ breaks half of the supersymmetries of AdS5.

For Φ = ΦS = 2π√
3`, we can also obtain a supersymmetric solution from Poincaré-AdS

with a constant Wilson loop along the φ circle in the bulk. As in four dimensions, this is
easily seen from the uplift of the theory to ten dimensions. The theory we considered here
is obtained by a dimensional reduction [23]

ds2
10 = ds2

5 + `2
3∑
i=1

dµ2
i + µ2

i (dφi + 1√
3`
A)2; (4.34)

The coordinates φi are 2π periodic. The ten-dimensional metric is thus invariant under
shifts of the Wilson loop by Φ→ Φ + 2π

√
3`, making this a periodic variable. Quotienting

Poincaré-AdS with a Wilson loop on the φ circle corresponds to a quotient of AdS5 × S5

by (φ, φ̃i) ∼ (φ+ ∆φ, φ̃i + Φ/
√

3`), so the ten-dimensional Killing spinors will be invariant
under the quotient if Φ = 2π√

3n` for integer n. Given the periodicity of Φ, there are three
physically inequivalent cases, n = −1, 0, 1. For n = −1, 1, we have a degeneracy between
the Poincaré-AdS solution and the supersymmetric soliton. The main qualitative difference
between the four- and five-dimensional cases is that we only have one case with a unique
supersymmetric solution here.
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5 Conclusions

We have shown that the simplest D = 4 and D = 5 gauged supergravities theories, which
allow for charged solutions, contain in its spectrum of supersymmetric solutions Lorentzian
planar solitons. These solitons can be seen as a supersymmetric extension of the rather
well-known AdS soliton of Horowitz and Myers [2]. The existence of these supersymmetric
solitons poses an holographic puzzle. One usually expects that for given boundary condi-
tions, at least with sufficient supersymmetry, the gravitational solution would be completely
fixed. This solution would then be dual to a supersymmetric state in the dual CFT. How-
ever, as we have explictly shown this is not the case. One possible way out would be if the
solutions were supersymmetric with respect to different realizations of the supersymmetry
algebra in AdS4 [36]. However in the different realizations, for the same supersymmetry
and same boundary conditions for the metric, the form of the Killing spinors is different.
Our explicit construction of the Killing spinors shows that the soliton Killing spinors are
asymptotically the Killing spinors of a locally AdS spacetime. Hence, these configura-
tions are indeed completely indistiguishable from the boundary point of view. Moreovoer,
the Killing spinors for the solitons provide an smooth interpolation between some Killing
spinors of MinkowskiD and AdSD, for D = 4 and D = 5.

The simplicity of the susy AdS soliton make us conjecture that these 1/2 BPS solutions
can be generalized to have different charges by the introduction of running scalars in D = 4
and D = 5 gauged supergravity [23, 37–39]. Furthermore, we believe that this susy AdS
soliton should also be part of the spectrum of any gauged supergravity in any dimension
that contains a consistent supersymmetric truncation with a U(1) gauge field. Therefore
the degeneracy of susy states we presented here, it is very likely, a generic feature of these
boundary conditions.

The structure of the soliton seems to be well suited to be interpreted in the context
of holographic superconductivity [40]. Indeed, from the holographic point of view, the
boundary of the soliton is a cylinider with a current flowing along the circle. The current
is flowing without any electromagnetic field on the surface of the cylinder and there is
a magnetic field piercing the cylinder. It would be worth understanding if the periodic
oscillation of the critical temperature of the superconductor takes place holographically as
expected due to the Little-Parks effect [41].

An interesting question to be further explored is whether other boundary conditions
can yield a degeneration in the spectrum of supersymmetric solutions. Asymptotically
locally AdS, everywhere regular supersymmetric solutions in the pure Einstein-Maxwell
theory with a negative cosmological constant exist in four dimensions but with a much
more complex structure than the one discussed here [42].

Acknowledgments

We thank Bernard de Wit, Jerome Gauntlett and Mario Trigiante for enlightening dis-
cussions and comments. We would like to thank the support of Proyecto de cooperación
internacional 2019/13231-7 FAPESP/ANID. The research of AA is supported in part by

– 20 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
5

the Fondecyt Grants 1210635, 1181047 and 1200986. SFR is supported in part by STFC
through grant ST/T000708/1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B 195 (1982) 481 [INSPIRE].

[2] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy
conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

[3] M.A. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65 [INSPIRE].

[4] M. Astorino, Charging axisymmetric space-times with cosmological constant, JHEP 06
(2012) 086 [arXiv:1205.6998] [INSPIRE].

[5] Y.-K. Lim, Electric or magnetic universe with a cosmological constant, Phys. Rev. D 98
(2018) 084022 [arXiv:1807.07199] [INSPIRE].

[6] D. Kastor and J. Traschen, Geometry of AdS-Melvin Spacetimes, Class. Quant. Grav. 38
(2021) 045016 [arXiv:2009.14771] [INSPIRE].

[7] L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological
Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].

[8] M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B
545 (1999) 434 [hep-th/9808097] [INSPIRE].

[9] J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged
supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. 70 (2004)
089901] [hep-th/0304064] [INSPIRE].

[10] N. Bobev, A.M. Charles and V.S. Min, Euclidean black saddles and AdS4 black holes, JHEP
10 (2020) 073 [arXiv:2006.01148] [INSPIRE].

[11] S.L. Cacciatori and D. Klemm, Supersymmetric AdS4 black holes and attractors, JHEP 01
(2010) 085 [arXiv:0911.4926] [INSPIRE].

[12] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS4 from supersymmetric
localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].

[13] F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional
supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].

[14] F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc.
Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].

[15] P. Benetti Genolini, J.M. Perez Ipiña and J. Sparks, Localization of the action in AdS/CFT,
JHEP 10 (2019) 252 [arXiv:1906.11249] [INSPIRE].

[16] C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories,
JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].

[17] A. Zaffaroni, AdS black holes, holography and localization, Living Rev. Rel. 23 (2020) 2
[arXiv:1902.07176] [INSPIRE].

– 21 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(82)90007-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB195%2C481%22
https://doi.org/10.1103/PhysRevD.59.026005
https://arxiv.org/abs/hep-th/9808079
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808079
https://doi.org/10.1016/0031-9163(64)90801-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C8%2C65%22
https://doi.org/10.1007/JHEP06(2012)086
https://doi.org/10.1007/JHEP06(2012)086
https://arxiv.org/abs/1205.6998
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.6998
https://doi.org/10.1103/PhysRevD.98.084022
https://doi.org/10.1103/PhysRevD.98.084022
https://arxiv.org/abs/1807.07199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07199
https://doi.org/10.1088/1361-6382/abd141
https://doi.org/10.1088/1361-6382/abd141
https://arxiv.org/abs/2009.14771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.14771
https://doi.org/10.1016/0550-3213(92)90684-4
https://arxiv.org/abs/hep-th/9203018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9203018
https://doi.org/10.1016/S0550-3213(98)00846-3
https://doi.org/10.1016/S0550-3213(98)00846-3
https://arxiv.org/abs/hep-th/9808097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808097
https://doi.org/10.1103/PhysRevD.70.089901
https://arxiv.org/abs/hep-th/0304064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304064
https://doi.org/10.1007/JHEP10(2020)073
https://doi.org/10.1007/JHEP10(2020)073
https://arxiv.org/abs/2006.01148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01148
https://doi.org/10.1007/JHEP01(2010)085
https://doi.org/10.1007/JHEP01(2010)085
https://arxiv.org/abs/0911.4926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.4926
https://doi.org/10.1007/JHEP05(2016)054
https://arxiv.org/abs/1511.04085
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.04085
https://doi.org/10.1007/JHEP07(2015)127
https://arxiv.org/abs/1504.03698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.03698
https://arxiv.org/abs/1605.06120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06120
https://doi.org/10.1007/JHEP10(2019)252
https://arxiv.org/abs/1906.11249
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11249
https://doi.org/10.1007/JHEP08(2016)059
https://arxiv.org/abs/1605.06531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06531
https://doi.org/10.1007/s41114-020-00027-8
https://arxiv.org/abs/1902.07176
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.07176


J
H
E
P
0
7
(
2
0
2
1
)
0
1
5

[18] D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl.
Phys. B 120 (1977) 221 [INSPIRE].

[19] E.S. Fradkin and M.A. Vasiliev, Model of Supergravity with Minimal Electromagnetic
Interaction, LEBEDEV-76-197 (1976) [INSPIRE].

[20] B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl.
Phys. B 184 (1981) 77 [Erratum ibid. 222 (1983) 516] [INSPIRE].

[21] B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2
Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].

[22] B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity-Matter
Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

[23] M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl.
Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

[24] A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE
space-times, JHEP 10 (2001) 029 [hep-th/0108075] [INSPIRE].

[25] G.T. Horowitz and E. Silverstein, The Inside story: Quasilocal tachyons and black holes,
Phys. Rev. D 73 (2006) 064016 [hep-th/0601032] [INSPIRE].

[26] D. Marolf and S.F. Ross, Boundary Conditions and New Dualities: Vector Fields in
AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

[27] B. de Wit and V. Reys, Euclidean supergravity, JHEP 12 (2017) 011 [arXiv:1706.04973]
[INSPIRE].

[28] J.H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys.
B 226 (1983) 269 [INSPIRE].

[29] P.S. Howe and P.C. West, The Complete N = 2, D = 10 Supergravity, Nucl. Phys. B 238
(1984) 181.

[30] J.H. Schwarz, Spontaneus Compactification Of Extended Supergravity In Ten-Dimensions, in
12th International Congress on Mathematical Physics (IAMP), CALT-68-1049, Boulder,
U.S.A. (1983) [INSPIRE].

[31] M. Günaydin and N. Marcus, The Spectrum of the S5 Compactification of the Chiral N = 2,
D = 10 Supergravity and the Unitary Supermultiplets of U(2, 2/4), Class. Quant. Grav. 2
(1985) L11 [INSPIRE].

[32] H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2
D = 10 Supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

[33] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 Supergravity, Nucl.
Phys. B 259 (1985) 460 [INSPIRE].

[34] M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in
Five-Dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].

[35] A. Baguet, O. Hohm and H. Samtleben, Consistent Type IIB Reductions to Maximal 5D
Supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].

[36] K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity,
JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].

– 22 –

https://doi.org/10.1016/0550-3213(77)90041-4
https://doi.org/10.1016/0550-3213(77)90041-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB120%2C221%22
http://inspirehep.net/record/111784
https://doi.org/10.1016/0550-3213(83)90548-5
https://doi.org/10.1016/0550-3213(83)90548-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB184%2C77%22
https://doi.org/10.1016/0550-3213(84)90425-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB245%2C89%22
https://doi.org/10.1016/0550-3213(85)90154-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB255%2C569%22
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1016/S0550-3213(99)00419-8
https://arxiv.org/abs/hep-th/9903214
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9903214
https://doi.org/10.1088/1126-6708/2001/10/029
https://arxiv.org/abs/hep-th/0108075
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0108075
https://doi.org/10.1103/PhysRevD.73.064016
https://arxiv.org/abs/hep-th/0601032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0601032
https://doi.org/10.1088/1126-6708/2006/11/085
https://arxiv.org/abs/hep-th/0606113
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0606113
https://doi.org/10.1007/JHEP12(2017)011
https://arxiv.org/abs/1706.04973
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.04973
https://doi.org/10.1016/0550-3213(83)90192-X
https://doi.org/10.1016/0550-3213(83)90192-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB226%2C269%22
https://doi.org/10.1016/0550-3213(84)90472-3
https://doi.org/10.1016/0550-3213(84)90472-3
http://inspirehep.net/record/191376
https://doi.org/10.1088/0264-9381/2/2/001
https://doi.org/10.1088/0264-9381/2/2/001
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C2%2CL11%22
https://doi.org/10.1103/PhysRevD.32.389
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD32%2C389%22
https://doi.org/10.1016/0550-3213(85)90645-5
https://doi.org/10.1016/0550-3213(85)90645-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB259%2C460%22
https://doi.org/10.1016/0370-2693(85)90361-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB154%2C268%22
https://doi.org/10.1103/PhysRevD.92.065004
https://arxiv.org/abs/1506.01385
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01385
https://doi.org/10.1007/JHEP12(2011)014
https://arxiv.org/abs/1110.2688
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.2688


J
H
E
P
0
7
(
2
0
2
1
)
0
1
5

[37] A. Anabalon, D. Astefanesei, D. Choque and J.D. Edelstein, Phase transitions of neutral
planar hairy AdS black holes, JHEP 07 (2020) 129 [arXiv:1912.03318] [INSPIRE].

[38] A. Anabalón, D. Astefanesei, D. Choque, A. Gallerati and M. Trigiante, Exact holographic
RG flows in extended SUGRA, JHEP 04 (2021) 053 [arXiv:2012.01289] [INSPIRE].

[39] A. Anabalon, D. Astefanesei, A. Gallerati and M. Trigiante, New non-extremal and BPS
hairy black holes in gauged N = 2 and N = 8 supergravity, JHEP 04 (2021) 047
[arXiv:2012.09877] [INSPIRE].

[40] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys.
Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[41] W. Little and R. Parks, Observation of Quantum Periodicity in the Transition Temperature
of a Superconducting Cylinder, Phys. Rev. Lett. 9 (1962) 9.

[42] A. Anabalón, B. de Wit and J. Oliva, Supersymmetric traversable wormholes, JHEP 09
(2020) 109 [arXiv:2001.00606] [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP07(2020)129
https://arxiv.org/abs/1912.03318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.03318
https://doi.org/10.1007/JHEP04(2021)053
https://arxiv.org/abs/2012.01289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.01289
https://doi.org/10.1007/JHEP04(2021)047
https://arxiv.org/abs/2012.09877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.09877
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/0803.3295
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.3295
https://doi.org/10.1103/PhysRevLett.9.9
https://doi.org/10.1007/JHEP09(2020)109
https://doi.org/10.1007/JHEP09(2020)109
https://arxiv.org/abs/2001.00606
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.00606

	Introduction
	Four dimensions
	Gauged N = 2 supergravity
	Planar solitons
	Supersymmetric solutions
	Phase diagram
	Euclidean partition function
	Fixed charge

	Generalization to higher genus
	Five dimensions
	Minimal gauged supergravity
	Soliton solutions
	Supersymmetric solutions

	Conclusions

