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Abstract

Aluminosilicate glasses and melts are of paramount importance for geo- and materials sciences. They include most mag-
mas, and are used to produce a wide variety of everyday materials, from windows to smartphone displays. Despite this impor-
tance, no general model exists with which to predict the atomic structure, thermodynamic and viscous properties of
aluminosilicate melts. To address this, we introduce a deep learning framework, ‘i-Melt’, which combines a deep artificial neu-
ral network with thermodynamic equations. It is trained to predict 18 different latent and observed properties of melts and
glasses in the K2O-Na2O-Al2O3-SiO2 system, including configurational entropy, viscosity, optical refractive index, density,
and Raman signals. Viscosity can be predicted in the 100–1015 log10 Pa�s range using five different theoretical frameworks
(Adam-Gibbs, Free Volume, MYEGA, VFT, Avramov-Milchev), with a precision equal to, or better than, 0.4 log10 Pa�s
on unseen data. Density and optical refractive index (through the Sellmeier equation) can be predicted with errors equal
or lower than 0.02 and 0.006, respectively. Raman spectra for K2O-Na2O-Al2O3-SiO2 glasses are also predicted, with a rel-
atively high mean error of �25% due to the limited data set available for training. Latent variables can also be predicted with
good precisions. For example, the glass transition temperature, Tg, can be predicted to within 19 K, while the melt configu-
rational entropy at the glass transition, Sconf(Tg), can be predicted to within 0.8 J mol�1 K�1.

Applied to rhyolite compositions, i-Melt shows that the rheological threshold separating explosive and effusive eruptions
correlates with an increase in the fraction of non-bridging oxygens in rhyolite melts as their alkali/Al ratio becomes larger
than 1. Exploring further the effect of the K/(K + Na) ratio on the properties of alkali aluminosilicate melts with compositions
varying along a simplified alkali magmatic series trend, we observe that K-rich melts have systematically different structures
and higher viscosities compared to Na-rich melts. Combined with the effects of the K/(K + Na) ratio on other parameters,
such as the solubility, solution mechanisms and speciation of volatile elements, this could ultimately influence the eruptive
dynamics of volcanic systems emitting Na-rich or K-rich alkali magmas.
� 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

How do molten silicates move? How do they exchange
heat with other media? How do they crystallize? Questions
such as these underpin many practical problems, ranging
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from the dynamics of volcanic eruptions (Dingwell, 1996)
and the formation of igneous rocks (Bowen, 1928), to the
manufacture of novel glass, glass–ceramic and ceramic
materials, including the development of enhanced techno-
logical glass materials suitable for smartphone screens
(Varshneya and Bihuniak, 2017). To address such ques-
tions, knowledge of melt and glass physical properties, such
as viscosity, heat capacity and entropy, is necessary. These
properties, in turn, are ultimately governed by the liquid’s
composition and, therefore, atomic/ionic structure (see for
reviews Le Losq et al., 2019b; Mysen and Richet, 2019).
Some properties, such as silicate melt and glass heat capac-
ity, can be predicted reasonably well with existing models
(e.g., see for heat capacity Stebbins et al., 1984; Richet
and Bottinga, 1985; Richet, 1987; Tangeman and Lange,
1998; Webb, 2008; Giordano and Russell, 2017). However,
other properties are more difficult to model. This includes
viscosity, because of its complex dependence on tempera-
ture and melt composition. Silicate melt viscosity variations
with temperature, T, are, in most cases, non-Arrhenian. At
constant T, viscosity can exhibit large and non-linear vari-
ations with changing melt composition, particularly if T is
in the supercooled temperature domain. This domain is
located well below the liquidus, close to the glass transition
temperature, which separates melts from glasses. Such a sit-
uation is unfortunate because viscosity is of great interest: it
influences not only volcanic processes (Dingwell, 1996;
Papale, 1999; Gonnermann and Manga, 2013;
Gonnermann, 2015; Cassidy et al., 2018), but also glass-
forming processes in the glass manufacturing industry.

Currently, predictions of a property such as viscosity
rely on (i) empirical models, (ii) thermodynamic models,
or (iii) molecular dynamics (MD) simulations. Empirical
models are interpolative in nature, and bring no informa-
tion about the links between structural, thermodynamic
and dynamic properties of silicate melts. They can be suffi-
ciently precise to accurately predict some properties, such
as the glass and melt heat capacities (Stebbins et al., 1984;
Richet and Bottinga, 1985; Richet, 1987; Tangeman and
Lange, 1998; Russell and Giordano, 2017). In the case of
viscosity, empirical models rely on empirical equations
(Bottinga and Weill, 1972; Shaw, 1972; Persikov, 1991;
Hess and Dingwell, 1996; Hui and Zhang, 2007;
Giordano et al., 2008; Duan, 2014), such as the Arrhenius
or the Vogel-Fulcher-Tammann (VFT) laws. When com-
pared to experimental results, these empirical models can
exhibit poor predictive performance, markedly worse than
their initially communicated uncertainties (e.g., Robert
et al., 2013; Le Losq and Neuville, 2013; Sehlke and
Whittington, 2016; Di Genova et al., 2017). They provide
a practical way of making viscosity predictions, but their
usefulness is restricted by the chemical composition and
temperature range within which the models have been cali-
brated. In addition, these models do not provide any fur-
ther information about the flow process.

Thermodynamic models circumvent the shortcomings of
empirical models, particularly their interpolative nature and
the lack of physical/thermodynamic background that limits
understanding of the processes underlying melt flow. Ini-
tially, thermodynamic models for viscosity were limited to
mixtures of specific melts comprising only a few oxides
(e.g., Richet, 1984; Hummel and Arndt, 1985; Neuville
and Richet, 1991). Analogous attempts were made to model
other properties, such as the model of Mysen (1995) which
calculates the configurational heat capacity of silicate melts
from their fractions of tetrahedral SiO4 Q

n units (Q being a
tetrahedral unit and n the number of bridging oxygen it car-
ries; 4-n thus gives the number of non-bridging oxygens).
With recent advances in our knowledge of the links between
melt structure, thermodynamic properties and viscosity, it
has become possible to construct more complex thermody-
namic models of the properties of silicate melts, either
directly from the melt chemical composition or based on
knowledge of their structure. For example, Sehlke and
Whittington (2016) proposed a model, based on the
Adam-Gibbs theory of relaxation processes (Adam and
Gibbs, 1965, see Section 2.5.2), to predict the viscosity of
tholeiitic melts with an average error of 0.13 log10 Pa�s, in
the 100–1012 Pa�s range. Le Losq and Neuville (2017) also
proposed a model based on the Adam-Gibbs theory of
relaxation processes. Their model connects viscosity, heat
capacity, configurational entropy, structure and chemical
composition for melts in the Na2O-K2O-SiO2 system. In
this system, it allows viscosity predictions with an average
error lower than 0.2 log10 Pa�s in the 100–1012 Pa�s range.
A third example is the model proposed by Starodub et al.
(2019). It combines an associated solution model of melt
structure with the Avramov-Milchev equation of viscous
flow (Avramov and Milchev, 1988; Avramov, 2011) to pre-
dict melt viscosity in the 100–1012 Pa�s range in the Na2O-
K2O-Al2O3-SiO2 system.

Structure-thermodynamic models, like those discussed
above, can be precise and provide important information
about the links between composition, structure and proper-
ties. However, such models suffer from an important draw-
back: a good knowledge of melt structure is required. While
this can be achieved for silicate melts through, for instance,
29Si Nuclear Magnetic Resonance (NMR) spectroscopy
(e.g., Maekawa et al., 1991), such information is more dif-
ficult to obtain for aluminosilicate compositions. In such
compositions, Si-Al interactions broaden the 29Si NMR sig-
nal, and hence retrieving the Qn speciation is not routine: it
relies on various assumptions required for modeling the 29Si
NMR spectra (e.g., see the studies of Mysen et al., 2003;
Diallo et al., 2019; Sreenivasan et al., 2020). Critical pieces
of information are obtained through 17O NMR spec-
troscopy (e.g., Lee and Stebbins, 2009; Lee et al., 2016)
but do not directly provide information about the Qn speci-
ation used in existing structural-thermodynamic models
(e.g., Le Losq and Neuville, 2017; Starodub et al., 2019).
Raman spectroscopy may also be used (McMillan, 1984;
Matson and Sharma, 1985; Merzbacher and White, 1991;
Mysen, 1999), as shown by successful results for alkali sili-
cate and aluminosilicate glasses (Mysen, 1990, 2007; Mysen
and Frantz, 1992; Neuville and Mysen, 1996; Malfait et al.,
2007; Zakaznova-Herzog et al., 2007; Koroleva et al., 2013;
Nesbitt et al., 2021). However, the variations of the Raman
peak cross sections, which are needed to convert Raman
peak areas into Qn unit fractions, are not known
as well as would be desired. Furthermore, the peak-fitting
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protocols can be subject to discussion, as shown by a lack
of consensus visible when comparing different studies
(e.g., compare the methods described in the studies of
Mysen et al., 1982a; Mysen, 1990; You et al., 2005;
Malfait, 2009; Le Losq and Neuville, 2013; Le Losq
et al., 2014; Bancroft et al., 2018; Nesbitt et al., 2019,
2021). In any case, models that only rely on Qn fractions
are incomplete because many other structural details affect
the properties of aluminosilicate melts. These include, but
are not limited to, changes in Al coordination with compo-
sition, temperature and pressure (Stebbins et al., 2000,
2008; Toplis et al., 2000; Allwardt et al., 2005a, b;
Kiczenski et al., 2005; Neuville et al., 2006, 2007, 2008a,b;
Massiot et al., 2008; Lee et al., 2012; Le Losq et al., 2014;
Morin et al., 2014; Park and Lee, 2014; Drewitt et al.,
2015; Lee et al., 2020), Al-Si ordering between tetrahedral
units (Lee and Stebbins, 1999; Lee, 2005; Lee et al., 2016;
Allu et al., 2018), or excess non-bridging oxygens
(Stebbins and Xu, 1997; Stebbins et al., 1999; Oglesby
et al., 2002; Iuga et al., 2005; Thompson and Stebbins,
2011, 2012, 2013; Xiang et al., 2013). The complexity of
the atomic structure of melts and glasses is thus very high.
Because of this, developing thermodynamic models to pre-
dict the properties of multicomponent magmatic and indus-
trial melt/glass compositions is a difficult task.

MD simulation (Rapaport, 2004) is another pathway
that allows us to infer the structure and properties of com-
plex melts. Such models bring important structural,
dynamic and thermodynamic information by simulating
atomic movements at sub-microsecond timescales (Guillot
and Sator, 2007; Vuilleumier et al., 2009; Bauchy et al.,
2013; Wang et al., 2014; Dufils et al., 2017, 2020). They pro-
vide models that can be used to assess how melt behaves at
temperatures typically higher than 2000 K, how atoms
move and interact, and how this affects their physical prop-
erties such as viscosity and density. While such predictions
are very informative about processes at super-liquidus con-
ditions and can be useful for high-temperature applications
(e.g., modeling conditions in glass furnaces or planetary
magma oceans), they are less helpful at lower temperatures,
for example in the 700–1300 �C temperature range typical
of volcanic eruptions. Furthermore, MD simulation simu-
lates the system on very short timescales, typically less than
a microsecond for classical MD models, with even shorter
timescales for ab initio calculations. This is far removed
from glass-making conditions and from volcanological
timescales, which range from minutes to several thousands
of years and beyond.

In this study, we explore the use of an interesting
method for structural, thermodynamic and dynamic prop-
erty predictions: semiphysical neural networks also known
as grey-box neural networks (GBNN). These combine
physical equations with artificial neural networks, bringing
advantages in comparison to both traditional physical/ther-
modynamic models and ‘‘pure” machine learning models.
GBNNs leverage our current knowledge of physical sys-
tems by integrating existing physical equations, but add
the power of machine learning to infer connections between
variables not yet understood theoretically – for instance,
between glass chemical composition and configurational
entropy. GBNNs have been successful in many applications
(Willard et al., 2020), including the analysis of seismic
waveforms (e.g., Moseley et al., 2020; Smith et al., 2020)
and lake temperature modeling (Karpatne et al., 2018).
This has inspired recent efforts to model the viscosity of
ionic liquids with neural networks (Paduszyński and
Domańska, 2014; Beckner et al., 2018). For silicate melts,
there have been several attempts to predict melt and glass
properties using machine learning (see the reviews of
Tandia et al., 2019; Liu et al., 2019), stretching back to
the work of Dreyfus and Dreyfus (2003) on the prediction
of liquidus temperature with artificial neural networks.
Regarding melt viscosity, Hwang et al. (2020) recently pro-
posed an approach based on machine learning and the use
of ‘‘cationic fingerprinting” to predict the temperatures of
three reference viscosity points (101.5, 106.6 and 1012 Pa�s)
for Na2O-SiO2-Al2O3-CaO melts with an error of ±33 �C.
Cassar (2021) also proposed the ViscNet model, a GBNN
model that combines either the VFT or the MYEGA vis-
cosity equations (see Section 2.5.2) with a neural network
to perform viscosity predictions of silicate and aluminosili-
cate melts. Such results are very encouraging and showcase
the ability of GBNN to provide pragmatic, practical models
for property predictions.

Here, we go a step further by presenting a GBNN model
(‘‘i-Melt”) that combines several physical equations with a
deep learning neural network, and predicts many different
melt and glass properties of interest for geology and indus-
try. This includes melt viscosity, glass transition tempera-
ture, fragility and configurational entropy – all important
properties defining the mobility of the melt – as well as
the density and optical refractive index of glasses, which
are of interest for industrial applications. We also predict
Raman spectra, which are readily-observed and provide
information about the atomic structure of the glass. Other
properties, such as thermal expansion coefficients, can be
of interest but were left out of the modeling at this stage.
i-Melt is thus a GBNN ‘‘multitask” model, which has the
ability to predict different features/properties of the same
object: a silicate melt/glass. i-Melt was trained on melt
and glass compositions in the K2O-Na2O-Al2O3-SiO2 sys-
tem, for which a fairly complete, albeit sparse, experimental
dataset is available. In this system, i-Melt allows systematic
exploration of the links between melt/glass composition,
structure and properties, as we describe below. Building
on this, we are then able to comment on the source of the
compositional control on eruptive dynamics observed for
rhyolite melts, as well as on the possible importance of
the K/(K + Na) ratio in alkaline magmatic series.

2. METHODS

2.1. Experimental Design

The development of the deep learning model requires the
collection and compilation of viscosity, density, refractive
index data, and Raman spectra for glasses and melts in
the K2O-Na2O-Al2O3-SiO2 quaternary system (Fig. 1).
The viscosity of supercooled melts for peralkaline
compositions in this system is not well understood, and



Fig. 1. Datasets for melt viscosity (a), glass Raman spectroscopy (b), glass density (C) and glass refractive index (d). Each symbol corresponds
to a sample. The glass-forming domain at usual laboratory cooling rates is indicated in grey.
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we conducted additional experiments to complement the
existing dataset. We further compiled existing data as spec-
ified below, prior to developing the i-Melt framework in the
Python programming language, by using the PyTorch
library. All code and data necessary to reproduce this study
are available from Github at https://github.com/charlesll/i-
melt; future improvements will be also distributed via this
repository.

2.2. Datasets

Existing Raman spectra and observations of optical
refractive index, density and viscosity of alkali aluminosili-
cate glasses were selected by hand via a review of the exist-
ing literature. Validation of the accuracy of viscosity data
across different studies is critical and was checked on melt
compositions including Na2Si3O7, NaAlSi3O8 and NaAlSi2-
O6. We plotted all the literature data for such compositions,
and observed the mean trend of these data. Most data fall
within 0.1 log10 Pa�s, forming a clear general trend. Pub-
lished data with deviations larger than 0.1 log10 Pa�s com-
pared to this general trend were discarded. Density and
refractive index come from various publications, in partic-
ular from publications reviewed in Mazurin et al. (1987).
Raman spectra were published data from the IPGP and
Carnegie Institution for Science laboratories (see below
for details). All the data and their sources are provided in
the database available in the software repository. We thus
have four different streams of data:

– Dviscosity, the dataset of melt viscosity measurements,
composed of Xviscosity chemical composition entries
(mole fractions) as well as their associated temperatures
(Kelvin) and yviscosity observations (log10 Pa�s);

https://github.com/charlesll/i-melt
https://github.com/charlesll/i-melt
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– Ddensity, the dataset of glass density measurements, com-
posed of Xdensity chemical composition entries (mole
fractions) and ydensity observations (g cm�3);

– DRaman, the dataset of glass Raman spectra, composed
of XRaman chemical composition entries (mole fractions)
and yRaman spectra observations (normalised Raman
intensities);

– Doptical, the glass dataset of optical refractive index, com-
posed of Xoptical chemical composition entries (mole
fractions) as well as their associated wavelength (mm)
and yrefractive index observations.

Dviscosity, Ddensity and Doptical cover an important part of
the glass-forming domain of alkali aluminosilicates (Fig. 1).
These data were, thus, used to train the artificial neural net-
work with a ‘‘performance oriented” mindset, i.e. we want
the model predictions to be as accurate as possible. DRaman

covers a more limited set of compositions (Fig. 1). It was
used as a way of improving multitask learning: achieving
inductive transfer between related tasks using a shared rep-
resentation of the problem (Caruana, 1997). Multitask
learning is known to generally improve the performance
of learning. Here, Raman spectra encode structural infor-
mation that could assist the network in learning physical
properties, embedding a shared representation of the
composition-structure–property links in melts and glasses.

2.3. Sample synthesis and viscosity-density measurements

To extend the viscosity dataset for peralkaline alumi-
nosilicate melts, additional compositions were synthesized
at IPGP in Paris from reagent-grade K2CO3, Na2CO3,
Al2O3 and SiO2 dried oxide powders, following the proto-
col described in Le Losq and Neuville (2013). Viscosity
and density measurements follow the protocol used in the
Geomaterials laboratory at IPGP (Neuville, 2006; Le
Losq and Neuville, 2013; Le Losq et al., 2014). Chemical
Table 1
Composition of the synthesized glasses. Nominal (nom.) and analyzed
values on 10 different spots (for EPMA measurements) or glass chips (
interval).

Glass name %SiO2 %Al2O3

KA80.05 nom. mol% 80.00 5.00
nom. wt% 71.40 7.60
an. wt% 74.8(4) 7.6(1)

KA72.07 nom. mol% 72.00 7.00
nom. wt% 61.60 10.20
an. wt% 61.4(3) 10.2(2)

KA65.09 nom. mol% 65.00 8.75
nom. wt% 53.70 12.30
an. wt% 53.3(5) 12.5(4)

NA65.09 nom. mol% 65.00 8.75
nom. wt% 60.79 13.89
an. wt% 61.7(4) 13.7(2)

NA58.10 nom. mol% 58.00 10.50
nom. wt% 53.55 16.45
an. wt% 54.6(3) 16.4(2)
compositions (Table 1) have been measured using a
Cameca SX50 electron microprobe, with a 30nA current,
U = 30 kV, and 5 seconds of counting. Beam-induced alkali
loss was minimized by working with a defocused beam that
was moved continuously during the analysis. The mean and
standard deviation values reported in Table 1 are calculated
from 10 to 20 individual measurements on each sample.
The corresponding viscosity measurements are provided
in Table 2, and are affected by an error less than or equal
to 0.03 log10 Pa�s. All measured viscosities were Newtonian
– no dependence on the strain rate was observed.
2.4. Raman spectroscopy

Raman spectra of silicate and aluminosilicate glasses
acquired at IPGP (Paris, France) were recorded using a
T64000 Jobin-Yvon� Raman spectrometer equipped with
a confocal system, a 1024 � 1024 charge-coupled detector
(CCD) cooled by liquid nitrogen and an Olympus� micro-
scope. The optimal spatial resolution allowed by the confo-
cal system is 1–2 lm2 with a 100 � Olympus� objective, and
the spectral resolution is 0.7 cm�1. A Coherent� laser 70-C5
Ar+, having a wavelength of 488.1 or 514.532 nm, has been
used as the excitation line. Unpolarized Raman spectra that
were excited with a laser power of 100–150 mW on the sam-
ple were acquired between 20 and 1500 cm�1 on pieces of
glass from the starting materials.

Additional Raman spectra acquired at the Geophysical
Laboratory on glasses along the Na2Si4O9-Na2(NaAl)4O9

and K2Si4O9-K2(KAl)4O9 joins, previously published in
Mysen (1996, 1999), were added to the database. Those
spectra were acquired with a Dilor XY confocal microRa-
man spectrometer equipped with a cryogenic Thompson
Model 4000 CCD. The 488 nm line of a SpectraPhysics
model 2025 Ar+ laser operating at several hundred mW
at the sample was used for sample excitation.
(an.) compositions are reported. Standard deviations on measured
for density measurements) are given in parenthesis (1r confidence

%K2O %Na2O % total Density, g cm�1

15.00 0.00
21.00 0.00
15.1(2) 0.00(4) 97.5(1) 2.320(1)

21.00 0.00
28.20 0.00
27.4(3) 0.00(2) 99.0(1) 2.408(1)

26.25 0.00
34.00 0.00
31.7(3) 0.00(3) 97.5(1) 2.451(9)

0.00 26.25
0.00 25.32
0.03(2) 24.5(7) 99.9(2) 2.472(4)

0.00 31.50
0.00 30.00
0.05(2) 28.9(4) 99.9(1) 2.502(5)



Table 2
Viscosity measurements in log10 Pa�s. Errors on viscosity are lower or equal to 0.03 log10 Pa�s.
T, K KA80.05 T, K KA72.07 T, K KA65.09 T, K NA65.09 T, K NA58.10

1013.1 9.10 921.5 9.37 941.3 9.55 834.0 9.01 827.3 10.10
1001.8 9.32 891.0 10.17 935.1 9.71 829.0 9.18 836.9 9.73
989.6 9.51 872.0 10.75 919.4 10.13 813.8 9.61 817.6 10.51
981.6 9.78 852.0 11.40 913.6 10.32 803.2 9.94 796.2 11.42
967.6 10.05 898.7 10.78 798.6 10.09 805.7 10.97
949.7 10.50 892.0 10.96 787.5 10.50 847.1 9.36
940.3 10.83 882.1 11.28 779.9 10.81 855.9 9.09
928.2 11.05 867.3 11.86 773.7 11.07 828.3 10.01
918.4 11.32 855.4 12.29 772.9 11.07 834.4 9.81
905.1 11.63 762.6 11.52 787.4 11.80
896.6 11.92 756.3 11.74 777.4 12.36

752.1 11.95
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Preprocessing of the spectra was kept to minimum: (i)
the spectra were corrected for temperature and excitation
line effects (see details and references in Le Losq and
Neuville, 2013; Le Losq et al., 2014), (ii) the spectra were
normalised to their maximum intensity Imax such that
the intensity in each spectrum varies between 0 and 1
(Inormalised = [I � Imin]/[Imax � Imin], with Imin the minimum
intensity of a spectrum). The 400–1250 cm�1 portion of
Raman spectra, resampled with a step of 1 cm�1, was
retained as different spectra had different starting and
ending Raman shift values. After pre-processing, these
400–1250 cm�1 portions of the spectra were saved in a
HDF5 file for their future use.

2.5. Deep learning model

2.5.1. Overview

The i-Melt framework (Fig. 2) combines a deep artificial
neural network with various dynamic and thermodynamic
equations. This strategy allows the development of an intel-
ligent model that links different observables from the same
object (melt/glass). The artificial neural network is a feed
forward network with multiple interconnected hidden lay-
ers (Murphy, 2012; Goodfellow et al., 2016). It either pre-
dicts directly-observable glass properties including density,
refractive index and Raman spectra, or outputs the latent
Fig. 2. Schematic of i-Melt. An artificial neural network takes input mel
trained, relationships between chemistry, structure and properties of mel
variables (such as configurational entropy, Sconf, a property
that reflects the melt structure) required to predict proper-
ties such as melt viscosity through five theoretical and
empirical equations commonly used for reproducing
experimentally-observed variations of silicate melt viscosity
with temperature: Adam-Gibbs, MYEGA, Avramov-
Milchev, Tamman-Vogel-Fulcher and Free Volume The-
ory. In the next section, we will present the possibility of
performing such trans-theoretical predictions, i.e. the ability
to predict a given property using different theoretical/em-
pirical frameworks but a single, common artificial neural
network. The network predicts, given melt composition,
the different parameters of the different theoretical/empiri-
cal equations, which, in turn, provide different values of
the desired property. This allows one to predict melt viscos-
ity using, for instance, the Adam-Gibbs or Free Volume
equations depending on preference, and to compare final
predictions as well as observe the connection and correla-
tion between the different variables of the equations.

2.5.2. Trans-theoretical predictions

Various theories have been proposed to explain and
reproduce the variations of the viscosity of liquids with
parameters such as temperature, pressure or composition.
For instance, the Adam-Gibbs theory (Adam and Gibbs,
1965) has been particularly successful in reproducing
t composition, and outputs various melt and glass properties. Once
ts and glasses can be systematically explored.
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relaxation and viscosity data of silicate melts (Richet, 1984;
Scherer, 1984; Neuville and Richet, 1991; Bottinga et al.,
1995; Bottinga and Richet, 1996). It assumes that liquid
movements occur through cooperative molecular re-
arrangements; viscosity (g) can be expressed as a function
of temperature (T) and composition (x) via

log10g T ; xð Þ ¼ Ae xð Þ þ Be xð Þ
T Sconf T g; x

� �þ R T
T g
Cconf

p xð Þ=TdT
� � ;

ð1Þ
with Ae representing a high-temperature limit, Be a term
proportional to the energy barriers opposed to molecular
re-arrangements, and Sconf and Cp

conf the melt configura-
tional entropy and heat capacity, respectively. Cp

conf(Tg) is
calculated from the difference Cp

liquid(Tg) – Cp
glass(Tg); here,

Cp
liquid(Tg) was calculated from the model of Richet and

Bottinga (1985) and Cp
glass(Tg) is calculated from the

Dulong-Petit limit of 3R, with R the perfect gas constant.
Tg is the glass transition temperature. Here, we adopt the
empirical definition of Tg as equal to the temperature for
which g = 1012 Pa�s, and the associated melt relaxation time
is of � 100 s. The Tg calculated from this definition agrees
within 20–30 K with the Tg determined from calorimetric
measurements (e.g., Russell and Giordano, 2017), which
themselves depend on the cooling/heating rates during
calorimetric measurements. The adopted Tg definition is
thus coherent for viscosity modeling, as Tg derived from
the viscosity data refers to the relaxed melt and its equilib-
rium structure.

Alternatively, one might adopt the Free Volume theory
(Cohen and Grest, 1979, 1984), which states that melts pre-
sent liquid-like and solid-like molecular cells, their mobility
being ensured by atomic diffusivity within/between liquid-
like cells. This takes the form

log10g T ;xð Þ ¼ AFV xð Þ

þ 2BFV xð Þ= T � T FV xð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � T FV xð Þð Þ2 þCFV xð ÞT

� �r� �
;

ð2Þ
with AFV xð Þ again representing the high-temperature limit,
BFV xð Þ a constant that depends on the molecular volume,
CFV xð Þ a constant that has a dimension of temperature
and that should be positive, and T FV xð Þ a constant identified
as the temperature at which continuity of liquid-like cells is
reached.

Beyond the Free Volume and Adam-Gibbs models,
many other theories have been proposed to describe the vis-
cous flow of liquids. Among those, some are empirical like
the Vogel-Fulcher-Tamman (VFT) equation:

log10g T ; xð Þ ¼ AVFT xð Þ þ BVFT xð Þ= T � T VFT xð Þð Þ; ð3Þ
with AVFT, BVFT and TVFT adjustable parameters. Others
are based on different physical theories like the Avramov
and Milchev (1988) (AM) model, or derive from the
Adam-Gibbs theory like the MYEGA model (Mauro
et al., 2009). Both propose equations relating viscosity, tem-
perature as well as Tg(x) and m(x), the glass transition
temperature and the fragility (equal to the gradient of the
log10 viscosity versus inverse temperature curve at Tg) of a
melt with composition x. The AM model is expressed as
(Avramov, 2011):

log10g T ;xð Þ ¼ AAM xð Þþ 12�AAM xð Þð Þ T g xð Þ=T� �m xð Þ= 12�AAM xð Þð Þ

ð4Þ
with AAM a pre-exponential terms proportional to
log10gðT ! 1Þ. Similarly, the MYEGA equation takes
the form:

log10g T ;xð Þ ¼ Ae xð Þ
þ 12�Ae xð Þð Þ T g xð Þ=T� �

e m xð Þ= 12�Ae xð Þð Þ�1ð Þ Tg xð Þ
T �1

� �
ð5Þ

with Ae a pre-exponential term proportional to
log10gðT ! 1Þ that was taken as equal to that in the
Adam-Gibbs theory (Eq. (1)) because the MYEGA equa-
tion is a daughter product of the Adam-Gibbs theory. In
practice, all the above equations model the viscosity depen-
dence on temperature of silicate melts very well.

While the equations presented above are popular for sil-
icate melts, no over-riding consensus exists towards any one
model appropriate for all liquids. In fact, some of those
models rely on very different theoretical backgrounds.
The i-Melt approach circumvents the problem of choosing
one particular theory by proposing a trans-theoretical

approach. The artificial neural network is trained to predict
melt viscosity using all five theoretical/empirical frame-
works (Eqs. (1)–(5)). It provides optimal common values
for parameters that appear in multiple theories, such as
the glass transition temperature Tg. As a result, it allows
comparison of viscosity predictions between the different
theories, and observation of how parameters from the dif-
ferent theories correlate with each other, potentially provid-
ing insight into physical inter-relationships.

2.5.3. Data preparation: Train-Validation-Testing split and

standardisation

If a model performs well when tested against the training
dataset, but fails at making reliable predictions on new,
unseen datasets, it is said to be ‘overfitting’. This is a com-
mon problem affecting machine learning models. Here, we
deploy several strategies to mitigate it. First, we monitor
the phenomenon: the available datasets were split into three
different, randomly chosen training, validation and testing

subsets using the chemical_splitting rampy package func-
tion (Le Losq, 2018; Le Losq et al., 2019a) that relies on
the scikit-learn (Pedregosa et al., 2011) train_test_split()
algorithm. The data were randomly separated by composi-
tion to avoid the pitfall of having the same glass/melt com-
position in the different training, validation and testing

subsets, a phenomenon known as ‘data leakage’
(Kaufman et al., 2012). As we wanted a significant amount
of data in the testing subset for viscosity (because this is the
most difficult property to predict here), Dviscosity was sepa-
rated with 20% of the compositions in the testing subset,
15% in the validation subset, and 65% in the training subset.
Doptical and Ddensity were separated with 70% of the compo-
sitions in training, 15% in validation and 15% in testing.
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DRaman was divided in only two train and validation subsets
due to its small size, with a 85–15 ratio. This is not problem-
atic, because we do not aim at precise predictions of Raman
spectra but rather use this dataset as a way to improve the
general predictive capacity of the trained neural network
through multitask learning.

During the training process, the training subset was used
for training the model while the validation subset was used
for monitoring overfit and to trigger early stopping. The
latter method consists in stopping the training process when
the Root-Mean-Square-Error (RMSE), measured between
predictions and observations, on the validation data subset
stops decreasing and starts diverging from that measured
using the training data subset. This allows stopping the
training process before the over-fitting phenomenon
appears (Goodfellow et al., 2016). The final predictive abil-
ities of the trained neural networks were then evaluated
using the entirely unseen testing data subset.

After train-validation-test splitting, an important step in
any machine learning data preprocessing is standardization
of the data. In practice, appropriate data scaling is often
essential to obtaining good convergence within algorithms
(Goodfellow et al., 2016). The goal of re-scaling is to pro-
mote feature variations near unity and to ensure that all
features have comparable numerical ranges: failure to do
so tends to lead to instabilities in the gradient back-
propagation process that is central to training neural net-
works. In the present study, we have implemented a custom
approach. All chemical compositions inputs are in mole
fractions, which (by definition) take values between 0 and
1. Therefore, these inputs do not require rescaling. The
intensity of the Raman spectra were normalised to lie in
the range 0 and 1: taking the Raman spectrum of a given
composition, its intensities I were normalised according to
the equation (I-min(I))/(max(I)-min(I)). Other outputs
such as viscosity, density and refractive index were not
scaled, as scaling the outputs was not found to affect net-
work convergence. However, with unscaled outputs, it is
essential to initialise the bias of the output layer of the neu-
ral network to match the expected numerical range of the
predictions to be made, as developed for (e.g.) Mixture
Density Networks (Bishop, 2006). After pre-processing,
the different scaled training, validation and testing data sub-
sets were saved in Hierarchical Data Format HDF5 files for
their future use.

2.5.4. i-Melt model technical implementation

i-Melt is implemented in the Python programming lan-
guage, using the Pytorch machine learning library (Paszke
et al., 2019). It takes four inputs: the mole fractions of
the SiO2, Al2O3, Na2O and K2O components. These are
fed into to a neural network composed of k hidden layers,
each one having a given number of activation units (a.k.a.
neurons). Here, we chose to keep the same number of acti-
vation units in the different hidden layers. Alternative net-
work structures (e.g. a ‘‘triangular” architecture with
progressively fewer activation units in the deeper hidden
layers) were explored, but did not markedly alter results.
Following testing of various alternatives, we adopted the
now-popular rectifier linear unit, ReLU (Glorot et al.,
2011), as the activation function of activation units, so that
an activation unit receiving input, x, returns output
y = max(0,x). The outputs of the hidden layers were finally
fed into two output linear layers. The first output layer
returns vectors that are Raman spectra, calculated from
the linear sum of the last neural network hidden layer.
The second output linear layer returns 17 different values:

– the parameters Ae, AAM, AFV and AVFT (Eqs. (1) to (5)),
as well as the coefficients B1 to B3 and C1 to C3 of the
Sellmeier equation (see Eq. (6) below) for the calculation
of the glass refractive index n, are directly given by the
linear outputs; and

– the parameters Sconf(Tg), CFV, Tg, TFV, TVFT, the melt
fragility m, and the glass density d are given by the expo-
nential of the outputs of the linear layer.

The use of the exponential function in the latter case was
inspired by a similar strategy proposed by Bishop (2006) for
Mixture Density Networks. It ensures that quantities are
assigned positive values in accordance with their physical
meaning. We also found the use of this strategy to aid rapid
convergence during training. Indeed, we tested affecting the
final output layer by relu() or sigmoid() activation func-
tions, which also output only positive values, but this
resulted in a much slower training; convergence was actu-
ally not achieved in most cases. Be, BFV and BVFT

were calculated from Eqs. (1) and (5) and the knowledge
of the other parameters; for instance, Be = (12 – Ae)

/(Tg Sconf(Tg)), with Ae, Tg and Sconf(Tg) values given
by the neural network. The coefficients B1 to B3 and C1

to C3 are used to predict the refractive index at given wave-
length, n kð Þ, via the Sellmeier equation:

n kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B1 � k2

k2 � C1

þ B2 � k2

k2 � C2

þ B3 � k2

k2 � C3

� �s
: ð6Þ

The artificial neural network allows us, therefore, to
input chemical compositions and to obtain predictions for:

– melt viscosity, within five distinct theoretical or empiri-
cal frameworks,

– glass transition temperature,
– latent variables like configurational entropy and
fragility,

– glass density,
– glass refractive index as a function of wavelength, and
– glass Raman spectra.

These predictions depend on a large number of tuneable
parameters integral to the neural network. During network
training, these parameters are optimized, seeking values
that enable good average predictive performance when
applied to examples in our database of observed glass
properties.

2.5.5. Training i-Melt

During training, we monitored the root-mean square
errors (RMSE) between measurements and predictions for
viscosity from Eqs. (1) to (5) as well as density, optical
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refractive index and Raman spectra, on the training and
validation data subsets. A loss function was also added
for known Sconf(Tg) values from the dataset Dviscosity. This
was necessary because Sconf(Tg) is a parameter that is diffi-
cult to evaluate because of its strong correlation with Be.

This correlation prevents Eq. (1) from having a non-
ambiguous solution. In practice, the neural network can
predict a nearly constant value for the first and large vari-
ations for the second, and still obtain good predictive
results for viscosity. Addition of a loss function for known
Sconf(Tg) solved this problem. The total loss Ltotal was com-
puted from the sum of the different loss functions Li,
Ltotal ¼

P
wiLi, affected by scaling factors wi that were

adjusted manually such that each loss was around unity
after training. Back-propagation was performed using the
automatic differentiation methods implemented in Pytorch.

Batch training was performed using the Adam optimizer
with a learning rate of 0.0006 (manually tuned), and mon-
itoring the global loss on the training and validation data
subsets. Early stopping, which consists in stopping the
training process when the first signs of over-fitting are
detected (Goodfellow et al., 2016), was used to avoid over-
fitting: when the global loss function on the validation data
subset ceased to decrease for more than a given number of
epochs (manually tuned), training was halted and the net-
work exhibiting the best validation loss was saved. Dropout
(Srivastava et al., 2014), a method that entails randomly
turning off a given fraction of activation units at each train-
ing iteration, was also tested. This method is known to pro-
mote generalization and reduce overfitting.

2.5.6. Optimization of the artificial neural network

architecture

Before presenting any results regarding the performance
of the model, we first document the optimal architecture
and the way we searched for it. This optimal architecture
is important as it determines its performance to fit the exist-
ing data, its sensitivity to overfitting, and its generalization
ability (i.e. its ability to provide precise and accurate predic-
tions for new, unseen compositions). Several methods allow
searching for the optimal neural network architecture, like
random search (Bergstra and Bengio, 2012) or Bayesian
optimization (Snoek et al., 2012). In this study, the architec-
ture of the hidden layers was optimized via a random search
process (Bergstra and Bengio, 2012). With sufficient itera-
tions, such random search allows sampling the model space
with a good precision.

Two numerical experiments were performed. The first
explored how the neural network architecture affected its
performance. For this experiment, we randomly varied
the number of hidden layers from 1 to 6, that of hidden
activation units from 10 to 500 and the dropout parameter
p from 0 to 0.5. 3000 neural networks with different archi-
tectures were generated using the random number genera-
tor from the python library numpy. The results of this test
show that a moderately deep neural network with 3 to 5
layers and 200–300 units per layer provide the best results,
with limited overfitting (Supplementary Fig. 1). Those
results indicate that moderately deep neural network gener-
alizes better than shallow ones on this problem with small
datasets. The dropout method helps slightly in preventing
overfitting, but is not a critical feature in the present case
(Supplementary Fig. 1). Following this test, we selected a
reference architecture with 4 layers, 300 neurons per layer,
and a dropout of 0.01.

The second test investigated the effect of the number of
training compositions in the training dataset on the overall
performance of the model, using the reference architecture
selected following the random training phase (see above).
Deep neural networks are generally known to be ‘‘data-
eager”, requiring large datasets for efficient training. To
identify the point at which we can start trusting the results
of i-MELT, we generated new training datasets for Dviscosity

with different numbers of compositions, from �20 up to
more than 120 (Supplementary Fig. 1). In practice, this rep-
resents many more data points, as there are multiple viscos-
ity measurements for each composition (on average, �10
observations per composition). For the system considered
here, we find satisfactory performance once the dataset
reaches around 70 distinct compositions. With more than
~70 compositions in the training dataset, RMSE values
between model predictions and measurements become
lower than 0.6 log10 Pa�s. Furthermore, the training and
validation subsets exhibit similar RMSE values, indicating
that any overfitting problem is limited (Supplementary
Fig. 1). With the chosen data splitting (see above), we have
113 different compositions in training Dviscosity (over a total
of 173), and 160 (over a total of 223) and 139 individual
compositions (total 205) in the training Doptical and Ddensity,
respectively. The datasets are thus large enough for training
efficiently the networks. The only limit is for Raman
spectra, with training DRaman having only 48 compositions
(total 58). As already explicitly presented, we thus do not
expect high performance for Raman spectra predictions.

To make the final predictions and further limit the over-
fitting problems, we trained 100 candidate neural networks
with the reference architecture, and selected the 10 best
ones. All reported predictions by i-Melt are calculated from
the average of those from the 10 best neural networks, fol-
lowing the bagging method (Breiman, 1996) that promotes
generalization (good predictions on new samples) of
machine learning algorithms. This further allows us to pro-
vide error bars and error envelopes, which can be calculated
from the standard deviation of the predictions of the 10
neural networks. The use of the bagging method, combined
with the developed training protocol, allowed i-Melt to pro-
vide good generalization abilities. Furthermore, multi-task
learning is performed here, as the neural network is trained
to predict different features (properties like density or Tg,
observables like Raman spectra. . .) from the same objects.
This helped further limiting overfitting because artificial
neural networks learning to predict multiple related fea-
tures/observables tend to show better prediction abilities
compared to those trained to predict only a given task/pa-
rameter/feature (Caruana, 1997). We observed this by per-
forming a few tests, training a few neural networks to only
predict viscosity. Those resulted in RMSE of �0.5–0.6 log10
Pa�s, higher than those of neural networks trained to pre-
dict multiple properties (equal to or lower than 0.4 log10
Pa�s, see below).
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3. RESULTS

3.1. Melt and glass property predictions

Using the unseen samples from the testing data subsets,
it is possible to test whether i-Melt can provide good predic-
tions despite limited experimental datasets. Trans-
theoretical predictions of g (Fig. 3, see also Supplementary
Fig. 2) are possible with good precision. The RMSE values
are equal to 0.4 log10 Pa�s on the testing data subset
(Table 3). For comparison, the RMSE of the best empirical
magma viscosity models typically are higher than, or equal
to 0.6 log10 Pa�s (e.g. Giordano et al., 2008). Eqs. (1) to (5)
all yield similar values (Supplementary Fig. 2, Table 3). In
detail, predictions in the supercooled temperature domain
are affected by larger errors than predictions in the sub-
liquidus to super-liquidus domain: testing RMSE values
(all equations considered) are in the range 0.5–0.7 log10 Pa�s
when considering only data in the 107–1015 Pa�s range,
whereas they are in the range 0.2–0.3 log10 Pa�s for data
below 107 Pa�s.

The melt/glass properties are also well predicted by i-
Melt. Known viscous Tg and Sconf(Tg) are predicted within
19 K and 0.8 J mol�1 K�1, respectively (Table 3, Supple-
mentary Fig. 3). The glass density and refractive index are
predicted to within 0.02 g cm�3 and 0.006, respectively
(Table 3). For the two latter properties, a few outliers are
visible and correspond to extreme compositions along the
SiO2-Al2O3 join (Fig. 1c, d , Supplementary Fig. 3) for
which only a few data points are available. This is therefore
unsurprising, particularly considering that there are large
variations in glass and melt properties along this join
(e.g., Okuno et al., 2005; Ando et al., 2018).
Fig. 3. Prediction examples of melt viscosity. Viscosity can be
predicted using various theories with a great accuracy, as shown by
examples highlighting the good match between measurements
(symbols) and model (curves) predictions from the Adam-Gibbs
and Free Volume theories.
3.2. Structural information through Raman spectra

predictions

In addition to physical and thermodynamic properties,
i-Melt has the ability to predict structure-dependent fea-
tures such as Raman spectra of glass. Considering the very
small experimental Raman dataset (Fig. 1b), global varia-
tions of Raman signals have been well-captured. The 400–
1250 cm�1 portion of the glass Raman spectra can be pre-
dicted within a relative error of �25% (average relative
RMSE between observed and predicted spectra from the
validation data subset). For instance, Fig. 4a shows exam-
ples of the prediction of the Raman spectra of glasses along
the Na2O-SiO2 binary join.

Structural information can be extracted from i-Melt
Raman spectra predictions. Fig. 4b shows, for instance,
the large decrease in the signals assigned to bending/stretch-
ing of Qn-Qn intertetrahedral vibrations in the glass net-
work (Bell et al., 1968; Sen and Thorpe, 1977; Furukawa
et al., 1981; McMillan, 1984) with addition of Na2O in
SiO2. These variations are accompanied by increasing
intensity near 1100 cm�1, a signal that results from SiAO
stretching in Q3 units (Brawer and White, 1975, 1977;
Furukawa et al., 1981; Mysen et al., 1982a; McMillan,
1984). When the Na2O fraction is above 0.3, we further
see the increase of the intensity of a signal near 950 cm�1

that can be assigned to SiAO stretching in Q2 units
(Brawer and White, 1975, 1977; Furukawa et al., 1981;
Mysen et al., 1982a; McMillan, 1984).

The analysis of predicted signals, such as those showed
in Fig. 4b, through peak fitting or decomposition methods
(e.g., see Mysen et al., 1982a; Herzog and Zakaznova-
Herzog, 2011) can allow extracting further structural infor-
mation about the glass. At the moment, for the sake of sim-
plicity, we focus on extracting a simple parameter: RRaman,

the ratio of intra- and inter-tetrahedral aluminosilicate
vibrations. RRaman is the ratio between ALW, the integrated
intensity in the 0–670 cm�1 range, and AHW, the integrated
intensity in the 800–1300 cm�1 range:

RRaman ¼ ALW

AHW
: ð7Þ

ALW integrates the signals assigned to bending/stretch-
ing of Qn-Qn intertetrahedral vibrations in the glass net-
work (Bell et al., 1968; Sen and Thorpe, 1977; Furukawa
et al., 1981; McMillan, 1984), and AHW those assigned to
stretching of AlAO and SiAO bonds in Qn units (Brawer
and White, 1975, 1977; Virgo et al., 1980; Furukawa
et al., 1981; Mysen et al., 1982a,b; McMillan, 1984). The
integration boundaries were selected by observing all the
spectra plotted together. They correspond to common
Raman shifts that delimit the frequencies of the inter-
tetrahedral Qn � Qn and intra-tetrahedral Qn vibrational
regions. While some small changes could be made in some
cases, our selection of common boundaries for all glass
Raman spectra robustly captures the general trend.

RRaman is a simple but interesting parameter, because it
appears to correlate with structural parameters like NBO/
T (number of non-bridging oxygens per tetrahedral unit,
see Mysen et al., 1982b), and, as such, it was used to pro-



Table 3
Root-mean-square errors (RMSE) between predictions and measurements.

Data subset Training Validation Testing

Adam-Gibbs (Eq. (1), log10 Pa�s) 0.3 0.3 0.4
Free Volume (Eq. (2), log10 Pa�s) 0.3 0.4 0.4
VFT (Eq. (3), log10 Pa�s) 0.3 0.4 0.4
MYEGA (Eq. (5), log10 Pa�s) 0.3 0.4 0.4
Avramov-Milchev (Eq. (4), log10 Pa�s) 0.3 0.4 0.4
Density (g cm�1) 0.01 0.02 0.01
Raman spectra (%, relative RMSE) 20 25 -
Refractive index 0.003 0.004 0.006
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pose viscosity models based on the Raman spectra of
glasses (Giordano and Russell, 2018). i-Melt can predict
RRaman within an error of ±0.5, such that we can use the
model to obtain first-order information about RRaman vari-
ations and glass structure. For instance, along the Na2O-
SiO2 binary, we observe that the addition of network mod-
ifier Na2O to silica is accompanied by a strong decrease in
RRaman that originates from the increase in the glass NBO/T
(Fig. 5a). This observation thus corroborates the findings of
Giordano and Russell (2018). RRaman thus can serve as a
Fig. 4. Glass Raman spectra along the SiO2-Na2O binary. (a) Comparis
Ranges of Si-O-Si intertetrahedral (Qn-Qn) vibrations and SiAO stretchin
of the predicted Raman intensities (a. u.) as a function of Raman shifts
measure of the glass SiO2-AlO2 network connectivity
(i.e. formation of T-O-T bonds, with T = Si, Al): the higher
Rraman is, the higher the aluminosilicate network connectiv-
ity, the lower the NBO/T. Because of such link, RRaman may
be linked to variations in melt properties, as suggested by
the study of Giordano and Russell (2018). However, look-
ing at sodium tectosilicate glasses with Al/Na = 1 (Fig. 5b),
RRaman is also influenced by other effects. Indeed, it
decreases with decreasing the silica content in fully poly-
merized tectosilicate melts. This reflects the evolution of
on between experimental (plain lines) and predicted (dashed lines).
g vibrations in Qn units are indicated at the top. (b) 2D contour plot
(cm�1) and Na2O content (mol fraction).



Fig. 5. RRaman parameter (a. u., see text) as a function of silica mol fraction in (a) silicate Na2O-SiO2 and (b) tectosilicate NaAlO4-SiO2

glasses. Symbols are data, dashed lines are model predictions (mean of predictions from 10 models), and the blue shaded area show the 2r
confidence intervals (standard deviations of predictions from 10 models).
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Raman spectra as Al substitutes Si along the SiO2-NaAlO4

join, which results from structural variations such as
decreasing intertetrahedral bond angles (Seifert et al.,
1982; Neuville and Mysen, 1996).

There is a substantial data gap for Rraman between �2
and �4 (the value corresponding to that of silica glass)
because there are very few Raman spectra in the dataset
at SiO2 concentrations above �90 mol%, and Rraman varies
strongly with silica content at this level. This data gap orig-
inates from the difficulty to obtaining samples above
�90 mol% SiO2, and only one spectrum (that of silica) con-
strains the model at very high RRaman values.. At such high
silica concentrations, unmixing can happen during quench
for Na2O-SiO2 compositions (e.g., Jarry and Richet,
2001). In addition, high liquidus temperatures make the
synthesis of glasses difficult for Al-bearing compositions
(Schairer and Bowen, 1955, 1956). Nevertheless, informa-
tion from new experiments in silica-rich melts could be
important to bring information to the model about melt/-
glass structural behavior between an extreme composition
like SiO2 and multicomponent melts/glasses.

3.3. Model internal consistency

The ability to predict the melt fragility, m, permits
further testing of the internal consistency of i-Melt.
Experimental data indicate that a direct correlation
between m and the ratio of the configurational heat capac-
ity at Tg over the configurational entropy at the glass tran-
sition, Cp

conf(Tg)/S
conf(Tg), exists (Webb, 2008; Russell and
Giordano, 2017). This is predicted by the Adam and Gibbs
theory because (Toplis et al., 1997a):

m ¼ Be

Sconf T g

� �
T g

1þ Cconf
p T g

� �
Sconf T g

� �
" #

: ð8Þ

We find that i-Melt also predicts this correlation (Fig. 6).
The model predictions fall between the trends found by the
experimental studies of Russell and Giordano (2017) and
Webb (2008). The model is, thus, internally consistent.
Some scatter is visible in Fig. 6. It most probably arises
from the propagation of the uncertainties affecting
the different predicted values (i.e., m and Sconf(Tg))

as well as the melt and glass Cp calculations. The combina-
tion and propagation of all those sources of uncertainties
probably explains the greater scatter observed in Fig. 6
compared to experimental studies (Webb, 2008; Russell
and Giordano, 2017). Finally, some outliers are also
visible, and correspond to compositions mostly on the
SiO2-Al2O3 join. Along this binary, no supercooled viscos-
ity data are available to constrain the melt fragility, and
melt/glass Cp predictions probably are affected by
important errors. The combination of those two problems
probably explains the occurrence of the observed outliers.

3.4. Systematic predictions in the Na2O-Al2O3-SiO2 and

K2O-Al2O3-SiO2 systems

The Na2O-K2O-Al2O3-SiO2 system is of paramount
importance for alkali magmatic melts, particularly rhyolites



Fig. 6. Glass fragility versus melt Cp
conf(Tg)/S

conf(Tg) ratio. Sym-
bols are predictions of the deep learning framework on the different
subsets of the Dviscosity dataset (mean of predictions from 10
models). The dashed line is the relationship observed by Webb
(2008, abbreviated W2008 in the figure) using experimental heat
capacity data, and the dotted line is that observed by Russell and
Giordano (2017, abbreviated RG2017 in the figure). Except two
extreme outliers that corresponds to Al2O3-SiO2 melts with more
than 30 mol% Al2O3, a general good agreement is observed.
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and granites. With i-Melt, we can go a step further and
observe how several properties vary with composition in
this system. For the sake of clarity, we focus here on show-
ing variations in the ternary Na2O-Al2O3-SiO2 and K2O-
Al2O3-SiO2 systems. To calculate properties, we first gener-
ated 10,000 random compositions in the ternary Na2O-
Al2O3-SiO2 and K2O-Al2O3-SiO2 systems, from 50 mol%
SiO2 to 100 mol% SiO2, and asked i-Melt to predict several
glass and melt properties.

3.4.1. Glass properties

i-Melt allows systematic exploration of the variations of
the viscous glass transition temperature with melt composi-
tion (Fig. 7a, b). In the Na2O-Al2O3-SiO2 and K2O-Al2O3-
SiO2 systems, the model predicts the well known decrease of
Tg with addition of alkali metals, and increase with addi-
tion of SiO2, and, to a lesser extent, Al2O3 (Fig. 7a, b). In
the potassic aluminosilicate system, there is a local Tg max-
imum near the KAlSi2O6 composition on the SiO2-KAl2O4

binary, at �66 mol% SiO2 (Fig. 7b). This maximum corre-
lates with a maximum in liquidus temperatures (Tliquidus).
That of leucite KAlSi2O6 is of 1693 �C (Schairer and
Bowen, 1955). It corresponds to a local maximum along
the SiO2-KAl2O4 binary that correlates with the Tg maxi-
mum observed in Fig. 7b. No such maximum in Tg is
observed on the sodic SiO2-NaAl2O4 binary, in agreement
with the absence of a Tliquidus maximum along this binary
(Schairer and Bowen, 1956). This agrees with the general
correlation between Tg and Tliquidus (e.g., see Sakka and
MacKenzie, 1971 and references therein), leading us to sug-
gest that a model such as i-Melt could also predict Tliquidus.

Compared to Tg, glass density or optical refractive index
display simpler variations with glass composition (Fig. 7c–
f). As it is well known, glass density mostly depends on the
concentrations of Na2O and Al2O3 added to SiO2. i-Melt
reproduces this dependence well. The glass optical refrac-
tive index variations show a different pattern, the addition
of Al2O3 having a greater effect than that of Na2O at com-
parable molar contents. The optical refractive index actu-
ally does not correlate strongly with any of the
thermodynamic/dynamic variables. This is expected
because the optical refractive index is mostly controlled
by the electronic properties of the atoms present in the
glass. Interestingly, glass density correlates with fragility
(Spearman correlation coefficient rs = 0.87). Similar varia-
tions are thus visible when comparing melt fragility and
glass density in the ternary sodium and potassium alumi-
nosilicate diagrams (Figs. 7 and 8).

3.4.2. Melt fragility

Two of the selected viscosity equations (Eqs. (4) and (5))
share melt fragility as a common parameter in their expres-
sions. Melt fragility is equal to the slope of the log10 of vis-
cosity versus the inverse of temperature at Tg, and scales
with the ratio between Cp

conf and Sconf at Tg (Eq. (8)). In
the investigated system, melt fragility varies smoothly with
the SiO2 and Al2O3 concentrations (Fig. 8a, b). Increasing
melt SiO2 content leads to large decreases in melt fragility,
an observation that agrees with previous ones in alkali (e.g.,
Toplis et al., 1997a) and even alkaline-earth (e.g.,
Bechgaard et al., 2017) aluminosilicate compositions.
Changing the K/(K + Na) ratio does not lead to large
changes in fragility (Fig. 8c–f), in agreement with the obser-
vations of Robert et al. (2019). At constant silica concentra-
tion, depolymerized alkali silicate melts are slightly more
fragile than polymerized tectosilicate melts. i-Melt predicts
that peraluminous Al-rich melts generally are more and
more fragile with increasing Al concentration. However,
at ratios of Al/(Al + Na + K) higher than �0.6, the model
is forced to extrapolate due to the lack of data (Fig. 1). This
observation could indicate that (i) extrapolations are not
fully robust and should be considered with care, or (ii) high
Al concentrations indeed lead to high melt fragility.

3.4.3. Configurational entropy of alkali aluminosilicate melts

Sconf(Tg) shows a complex dependence on melt compo-
sition and structure because it has two sources: (i) a topo-
logical origin that results from the network topology
(distribution of bond angles, bond distances, etc.), and (ii)
a chemical one that results from the mixing of cations in
the atomic structure. The later source shows variations that
can be complex. Indeed, mixing between two cations in sil-
icate and aluminosilicate melts can be random (Neuville
and Richet, 1991; Neuville and Mysen, 1996) or not
(Seifert et al., 1982; Lee, 2005; Neuville, 2006; Le Losq
and Neuville, 2013, 2017; Robert et al., 2019). It can occur
between Si and Al ‘‘network formers” (Neuville and Mysen,
1996), between ‘‘network modifier” metal cations (Richet,
1984; Neuville and Richet, 1991; Lee et al., 2003) or



Fig. 7. Deep learning framework predicted variations in (a,b) glass transition temperature Tg, (c,d) relative density and (e,f) refractive index at
589 nm in the upper part (SiO2 > 50 mol%) of the ternary Na (left) and K (right) aluminosilicate systems.
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between the ‘‘charge compensator” metal cations that com-
pensate the electrical charge deficit of AlO4

- units in alumi-
nosilicate compositions (e.g., Neuville and Richet, 1991;
Robert et al., 2019). Such mixing effects usually are difficult
to predict, and subject to interpretation.

i-Melt helps solve this problem by enabling systematic
quantification and visualization of such phenomena. As
observed in Fig. 9, Sconf(Tg) displays systematic variations
as a function of the chemical composition of alkali alumi-
nosilicate melts. Increasing Al concentration leads to
decreasing Sconf(Tg) (Fig. 9a,b). The Al/(Na + K) ratio
also largely affects the way Na and K mix. Without Al, their
interaction results in an entropy excess (Fig. 9c) and, hence,
in a decrease in melt viscosity because viscosity is propor-
tional to the inverse of Sconf(Tg) (Eq. (1)). This pattern
changes with increasing Al/(Na + K), because as Al is
introduced into the glass network, the role of alkali metals
changes (see chapters 4 and 8 of Mysen and Richet, 2019).
In the presence of Al, Na and K are present in different
structural environments (McKeown et al., 1985; Jackson
et al., 1987; Le Losq and Neuville, 2017), inducing less
and less excess entropy of mixing as Al/(Na + K) increases



Fig. 8. Melt fragility, m, of melts in the upper part (SiO2 > 50 mol%) of the K2O-Na2O-Al2O3-SiO2 system. Fragility is represented in the
upper part of the ternary sodium (a) and potassium (b) aluminosilicate systems, as well as as a function of the silica fraction and the potassium
to total alkali ratio of silicate, peralkaline and tectosilicate melts (c, d, e, f).
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(Le Losq et al., 2017; Robert et al., 2019). As a result,
Sconf(Tg) varies more and more linearly upon mixing Na
and K in Al-rich melts (Fig. 9d–f). Finally, i-Melt predicts
small Sconf(Tg) values for K-rich and Al-rich melts (Fig. 9b,
f), in agreement with experimental findings (Richet and
Bottinga, 1984; Le Losq and Neuville, 2013; Le Losq
et al., 2017; Robert et al., 2019). This is explained by Al
and K respectively promoting the polymerization of the
melt network (decrease in NBO/T) and the formation of
larger cooperative molecular domains involved in the melt
viscous flow (e.g., Riebling, 1966; Taylor and Rindone,
1970; Rammensee and Fraser, 1982; Mysen, 1988; Toplis
et al., 1997b; Mysen and Toplis, 2007; Xiang et al., 2013;
Le Losq et al., 2017). The variations in Sconf(Tg) with the
composition of aluminosilicate melts, thus, depend mostly
on (i) how metal cations interact together, and (ii) on
how those interactions are affected by the presence of Al,
and by Si-Al interactions.

3.4.4. Extrapolations

As ‘‘intelligent” as they can be, machine learning algo-
rithms still are interpolative in nature. Therefore, it is not
necessarily wise to ask them to perform predictions outside
the range of their training dataset. Here, we tested how the
model generally behaves when performing such extrapola-
tions by (i) removing some density and optical refractive
index data along the SiO2-Al2O3 join and (ii) trying to pre-
dict a value for a composition very far from those included



Fig. 9. Configurational entropy at Tg, S
conf(Tg), of melts in the upper part (SiO2 > 50 mol%) of the K2O-Na2O-Al2O3-SiO2 system. Sconf(Tg)

vary non-linearly with oxide contents in the ternary diagrams (a) Na2O-Al2O3-SiO2 and (b) K2O-Al2O3-SiO2. In silicate melts (c), a mixed
alkali effect (MAE) is observed upon Na-K mixing. It disappears as [Al]/[Na + K] increases (d, e, f).
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in its training dataset, the Tg of Al2O3. Regarding (i), the
model tends to provide a constant value for density or opti-
cal refractive index when asked to make predictions for
compositions beyond those included in its training set. This
situation is both good and bad. It is good because it indi-
cates that the model does not ‘‘explode”, i.e. starts to pre-
dict small or large values very different from the mean
ones when extrapolating (this is what happens traditionally
with polynomial functions, for instance). It obviously is bad
because it means that i-Melt will remains mostly interpola-
tive in nature for some parameters like fragility, at least for
the moment. Turning to the second test, we first estimated
the Al2O3 Tg from the data of Secrist et al. (1965) and
Urbain et al. (1982). Secrist et al. (1965) estimated a viscos-
ity of 4 � 1010 Pa�s at 1173 K from the rate of crystalliza-
tion of vapor-formed Al2O3 amorphous films. Fitting the
high temperature viscosity data of Urbain et al. (1982) for
Al2O3 and this point with equation (3), we have for
Al2O3 melt AVFT = �2.8 ± 0.1, BVFT = 1842 ± 176 and
CVFT = 1035 ± 19, and Tg = 1035 ± 19 K. i-Melt predicts
a Tg of 815 ± 37 K for Al2O3. This Tg estimation is realistic
(the model did not ‘explode’) but significantly below the
value calculated from viscosity data. This highlights that
extrapolations with models like i-Melt may produce appar-
ently realistic results, but still may be far from the true
value.

With limited data, it is inevitable that i-Melt has to
extrapolate for some predictions. Following the above
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discussion, caution is needed. Fortunately, for some prop-
erties, results appear to be broadly plausible. This is the
case for Sconf(Tg). For instance, the model predicts a con-
tinuous decrease of Sconf(Tg) with increasing Al2O3 in the
peraluminous field (Fig. 9a, b), a prediction that agrees with
experimental data in sodium peraluminous melts (Le Losq
et al., 2014). To conclude, this discussion highlights that, if
necessary, machine learning model extrapolations can be
performed but should be considered with care, making sure
that predictions are realistic compared to the known trends
of material properties.

4. DISCUSSION

Several questions motivated the development of i-Melt
and its current focus on the Na2O-K2O-Al2O3-SiO2 system:

– How are chemical composition, atomic structure and
physical properties of such alkali aluminosilicate melts
connected?

– How do changes in the Na/K ratio affect the structure
and properties of alkali aluminosilicate melts? What role
does this play in the eruptive dynamics of volcanic erup-
tions involving rhyolite magmas?

4.1. Exploration of composition-structure–property links

As i-Melt allows a systematic exploration of the links
between different observed and latent variables, we can
investigate the contributions of topological (i.e, the geome-
try and interconnectivity of the T-O-T network, with
T = Si,Al) and chemical effects (i.e., effects resulting from
mixing different cations in similar sites) to different proper-
ties. For example, RRaman, and, therefore, the glass network
topology correlates with the glass transition temperature
(Fig. 10a). It also correlates with quantities proportional
to energy barriers opposed to ionic mobility in melts like
the BFV term of the Free Volume viscosity equation
(Fig. 10b, Eq. (2)). This result agrees very well with the gen-
eral knowledge of the influence of the topology/connectiv-
ity of the aluminosilicate network on melt transport
properties (e.g., Bockris et al., 1955; Mysen et al., 1980;
Mysen, 1991).

However, the correlation between RRaman and glass tran-
sition temperature Tg is not perfect. Some influence of the
glass composition on the RRaman versus Tg relationship is
visible in Fig. 10a. It probably originates from metal cation
chemical mixing effects that can affect Tg (Isard, 1969; Day,
1976). Indeed, while cationic mixing effects only slightly
influence properties directly linked to the aluminosilicate
network connectivity (Le Losq and Neuville, 2017), they
strongly affect properties such as Sconf(Tg) that are influ-
enced by cationic / molecular interactions and steric hin-
drance effects (Richet, 1984; Hummel and Arndt, 1985;
Neuville and Richet, 1991; Neuville and Mysen, 1996;
Maehara et al., 2005; Goldstein, 2011). This agrees with
predictions for Sconf(Tg). The results in Fig. 10c show a
clear effect of melt composition on the Sconf(Tg) versus

RRaman relationship. Such chemical effects also affect CFV
(Eq. (2), Fig. 8d). This latter term encompasses local catio-
nic influences on melt free volumes in the Free Volume the-
ory (Cohen and Grest, 1979). As a result, it can be expected
that mixing different cations will affect this term, explaining
the observation made in Fig. 10d. Results actually suggest a
link between CFV and Sconf(Tg), as corroborated by a
Spearman correlation coefficient, rs, of 0.86 between the
two variables.

Other properties show interesting correlations. Fig. 11
shows the Spearman correlation coefficients between the
different variables/properties predicted by i-Melt. We
observe high correlations between the parameters of the
Free Volume and the VFT equations. For example, BFV

and BVFT are highly correlated (rs = 0.997). While Be is
not strongly correlated with the latter variables, the ratio
Be/S

conf(Tg) is (rs = 0.989 and 0.996 with BFV and BVFT,
respectively). BFV and BVFT play the role of some kind of
activation energies in Eqs. (2) and (3). They thus are related
to the energy barriers opposed to the atomic movements at
the root of viscous flow. The ratio Be/S

conf(Tg) also is
related to those energy barriers (see below, Eqs. (9), (10)).
The strong correlations between RRaman and Be/S

conf(Tg),

BFV and BVFT (Fig. 11) thus indicates that the SiO2-Al2O3

aluminosilicate network connectivity and topology mostly
controls those energy barriers. This may explain the broad
correlation between the network topology as quantified by
RRaman and the glass transition temperature of alkali alumi-
nosilicate melts, discussed previously (Figs. 10, 11).

Properties in the denominator in Eqs. (1) to (5) show
more complex correlations among themselves, and with
other variables (Fig. 11). A generally strong correlation is
observed between variables in the denominator of Eqs. (1)
to (5) and the pre-exponential terms reflecting high temper-
ature viscosity limits, namely AVFT, AAM, AFV and Ae

(Fig. 11). For example, rs = -0.87 for the correlation
between Sconf(Tg) and Ae, rs = -0.972 for the correlation
between CVFT and AVFT, and rs = 0.80 for that between
AAM and the fragility, m. This reflects a numerical correla-
tion between the pre-exponential terms and the denomina-
tors of viscosity Eqs. (1)–(5). A way to avoid such
correlations, which can bias calculations, is to set the AVFT,
AAM, AFV and Ae pre-exponential terms to composition-
independent values. Such practice agrees with the general
idea that there is a common high temperature viscosity limit
(Shaw, 1972; Persikov, 1991; Russell et al., 2003; Giordano
et al., 2008; Russell and Giordano, 2017). However, this
can be questioned for alkali aluminosilicate melts. Indeed,
the study of Robert et al. (2019) suggests that, for alkali
tectosilicate melts, Ae could vary as a function of the melt
Al/Si ratio. This agrees with earlier findings of Toplis
(1998), who showed that Ae actually varies as a function
of the ratio Be/(Al + Si) for various alkali and alkaline
earth melt compositions. In the present model, AVFT, Ae,

AFV or AAM are allowed to vary with melt composition,
such that we can check if the model corroborates the find-
ings of Robert et al. (2019) and Toplis (1998). In Fig. 12a,
we observe that, for compositions covering a wide compo-
sitional field of the glass forming domain (see inset in
Fig. 12b), values of Ae range between ��1.0 and ��2.5
log10 Pa�s, those of AFV between ��2.0 and ��3.5 log10



Fig. 10. Melt and glass properties vary in a complex way with glass network topology. i-Melt reveals that parameters such as (a) the viscous
glass transition temperature Tg and (b) BFV, an activation energy term in the Free Volume theory (Eq. (2)), correlate broadly with RRaman.
Other terms also show more complex variations, influenced by cationic mixing interactions and steric hindrance effects, such as the glass
configurational entropy Sconf(Tg) (c) or the free volume parameter CFV (d). Each symbol represents the calculation for a randomly generated
composition (n = 10,000) in the glass-forming domain of the Na2O-K2O-Al2O3-SiO2 system (Fig. 1).
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Pa�s, those of AAM between ��0.2 and ��1.0 log10 Pa�s,
and those of AVFT between ��6.0 and �3.7 log10 Pa�s.
The distributions of those parameters are asymmetric and
complex. Ae and AVFT clearly are trimodal, while AFV

and AAM distributions are asymmetric and present sharp
terminations on one of their side. This suggests the exis-
tence of complex compositional effects. Fig. 12b corrobo-
rates this idea, and actually the findings of Robert et al.
(2019). There is a general effect of the melt Al/Si ratio on
the value of Ae. AFV also shows variations that correlate,
albeit in a complex manner, with Al/Si, while AAM does
not show systematic variations with Al/Si (not shown).
Those results thus corroborate the suggestion that for melts
in ternary and quaternary systems, the pre-exponential
terms in Eqs. (1) and (2) may slightly depend on composi-
tions, and particularly on the Al and Si concentrations
and ratios.

4.2. Links between the Adam-Gibbs and the Free Volume

theories

The above analysis highlighted important correlations
between variables from different theories (Fig. 11). The
trans-theoretical character of i-Melt allows us to go further:
it allows systematic inference for a given property using dif-
ferent theories, and observation of the relationship between
the latent variables of these theories. Here, we are interested
in exploring the links between the Adam-Gibbs and Free



Fig. 11. Spearman correlation matrix between the different variables predicted by i-Melt or calculated from those predictions. The large the
circles, the larger the correlation. A correlation of 1 or �1 means a perfect monotonic (possibly non linear) correlation. Spearman correlation
coefficients were calculated from the predictions for the 10,000 randomly generated composition in the glass-forming domain of the Na2O-
K2O-Al2O3-SiO2 system (inset in Fig. 10).
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Volume theories to test the proposition of Hodge (1994): it
should be possible to build a Free Volume version of the
Adam-Gibbs theory.

In the Free Volume theory, solid-like and liquid-like
molecular cells are distinguished and separated by a critical
volume, v*. Viscous flow occurs via cooperative molecular
movements between liquid-like cells. In the Adam-Gibbs
theory, viscous flow occurs via cooperative motions of
molecular segments of a size z*(T), characterized by an
intrinsic entropy Sc*. The two theories thus share common
philosophical underpinnings, including the important
assumption that viscous flow occurs via cooperative move-
ments of molecular entities in the melt. This relationship
can be recognized upon consideration of the parameters
of Eqs. (1) and (2). Indeed, BFV embeds some structural
information because it depends on v*:
BFV ¼ v�zo; ð9Þ
where zo is an adjustable parameter. Similarly, the ratio
Be/S

conf(Tg) embeds molecular subunit length-scale
information as (Toplis, 1998)

Be=S
conf Tg

� � ¼ Dl z� Tg

� �	 

=R; ð10Þ

with Dm the energy barriers opposed to the rearrangement
of molecular subunits of size z*(Tg), and R the perfect
gas constant. We can consider v* and z* as structural
parameters embedding information about the volume or
length-scale of the cooperative molecular regions. There-
fore, these parameters should both depend on melt or glass
structure. This is confirmed by the fact that both BFV and
Be/S

conf(Tg) correlate well with RRaman (Fig. 11). This find-
ing supports the idea that it should be possible to develop a



Fig. 12. High temperature viscosity limit. (a) histograms of the
high temperature viscosity limits AVFT, Ae, AFV and AAM predicted
for 10,000 melt composition randomly selected from the glass-
forming domain of the Na2O-K2O-Al2O3-SiO2 system. (b) Ae

versus Al/(Al + Si) diagram highlighting a possible compositional
dependence of Ae. The ternary diagram shows again the randomly
selected compositions.
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Free Volume version of the Adam-Gibbs theory (Hodge,
1994; Liu et al., 2015). More generally, the links between
BFV, Be/S

conf(Tg) and RRaman support the general hypothe-
sis that melt viscous flow occurs when a critical molecular
length-scale is reached. This length-scale can be indirectly
observed through Raman signals (Fig. 10b) and strongly
influences the glass transition temperature Tg (Fig. 10a).
4.3. Structure and properties of alkali-rich molten lavas

4.3.1. Influence on the eruptive dynamics of silicic volcanoes

One question that motivated the implementation of i-
Melt is: why, in terms of melt structure and properties,
are eruptions of silicic volcanoes found to be more explo-
sive when the rhyolite melt is rich in K and Al (Di
Genova et al., 2017). Indeed, the compositions of silicic
lavas compiled by Di Genova et al. (2017), form two clus-
ters when viewed in terms of the rheological agpaitic index
([Na+ + K+ + Ca2+ + Mg2+ + Fe2+] / [Fe3+ + Al3+]) and
K/(K + Na) ratios, associated with effusive and explosive
eruptions (Fig. 13a). According to Di Genova et al.
(2017), this correlation seems to stand regardless of the
many other critical parameters driving the dynamics of vol-
canic eruptions, such as pre-eruptive volatile content,
degassing path or nanolite content (e.g., Villemant and
Boudon, 1998; Andújar and Scaillet, 2012; Di Genova
et al., 2017, 2020; Moitra et al., 2018; Cáceres et al.,
2020). The eruptive style of rhyolite eruptions thus seems
influenced by small variations in magma composition,
linked to the influence of potassium and trivalent cations
(Al3+ mainly, but also Fe3+) on the silicate melt rheology.

Most of the lavas emitted at silicic volcanic systems,
such as Yellowstone or Long Valley (U.S.A.), contain more
than 95% of Na2O, K2O, Al2O3 and SiO2. Therefore, melts
in the Na2O-K2O-Al2O3-SiO2 system may be considered as
simplified analogues of the lavas involved in silicic volcanic
eruptions, and i-Melt can be used to glimpse the links
between eruptive dynamics and the composition, structure,
and properties of magmas. Of course, this will not take the
effect of volatile elements into account, but, as highlighted
previously, the correlation reported by Di Genova et al.
(2017) is actually apparently independent of melt water
content. In any case, the following should be considered
with care as i-Melt remains limited to a simple quaternary
system. In the future, more complete versions of models
such as i-Melt will allow more robust exploration of the
links between eruptive dynamics and the composition,
structure, and properties of magmas.

i-Melt reveals that the two data point clusters observed
in Fig. 13a are associated with different Sconf(Tg) values.
One data point cluster, associated with explosive eruptions,
contains Sconf(Tg) values typically below �9 J mol�1 K�1 ,
while the other cluster, associated with effusive eruptions,
incorporates values above this threshold. Those Sconf(Tg)

variations indicate that decreasing the rheological agpaitic
index and increasing K/(K + Na) leads to fewer available
configurations available for viscous flow molecular move-
ments. This results in increasing the melt viscosity, explain-
ing potentially the volcanic eruptive style chemical
clustering observed in Fig. 13a.

To go further, we can look at what happens when the
composition of a rhyolite shifts from a sodic peralkaline
one to a potassic peraluminous one (pink-cyan line in
Fig. 13a). Such a shift is accompanied by important
changes in melt structure. In particular, predicted Raman
spectra show the apparition of a depolymerized Q3 unit sig-
nal in peralkaline melts, while this signal is barely present in
peraluminous melts (Fig. 13b). Following the methodology



Fig. 13. Influence of Al and K/(K + Na) ratios on rhyolite structure and properties. (a) configurational entropy maps as a function of the
ratio K/(K + Na) and the rheological agpaitic index, calculated as (Na2O + K2O + CaO + MgO + FeO)/(Al2O3 + Fe2O3). On top of the
maps, symbols of rhyolite effusive (purple circles) and explosive (black squares) eruptions from Di Genova et al. (2017) are represented. Some
scatter in the Sconf(Tg) contour map is visible and results from model noise. The cyan to pink line is a compositional transect used in (b) to (d).
(b) Raman spectra predicted for melts along the cyan-pink transect shown in (a). (c) Example of peak-fitting of the Raman spectra with four
gaussian peaks (see text). (d) Evolution of the NBO/T calculated from melt composition (dashed grey line) and from Q3 peak areas, converted
using the Q3 Raman cross-section from Mysen (2007).
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developed in previous studies (Seifert et al., 1982; Neuville
and Mysen, 1996; Le Losq and Neuville, 2013; Le Losq
et al., 2014), the spectra can be modeled with four bands,
assigned to SiAO asymmetric vibrations (T2S), SiAO
stretching in Q3 units and Si-O stretching in two types of
Q4 units (Fig. 13c). While the structure of peraluminous
melts is dominated by tightly bonded Q4 units, as shown
by strong intensity near 500 cm�1 (Fig. 13b), that of peral-
kaline melts sees the apparition of Q3 units (Fig. 13c) that
testify for the depolymerization of the melt as the ratio
(Na + K)/Al becomes higher than 1 and as alkali elements
start to play a network modifier role. As a consequence, the
calculated NBO/T increases significantly in peralkaline
melts as the (Na + K)/Al ratio increases above 1
(Fig. 13d). The transition observed in Fig. 13a thus seems
mostly related to the importance of the absence/presence
of non-bridging oxygens in the melt structure, and to their
influence on melt properties.



Fig. 14. Influence of the K/(K + Na) ratio on the viscosity and
atomic structure of alkali aluminosilicate melts, mimicking the
evolution from a basanite-like mafic pole to a phonolite-like pole.
(a) Viscosity (log10 Pa�s) at 1100 �C of the melts as a function
of their silica mol fraction. Two trends are visible for Na-rich
melts with K/(K + Na) = 0.33, and K-rich melts with
K/(K + Na) = 0.66. (b) and (c) Predicted evolution of the Raman
spectra of Na-rich and K-rich melt compositions, respectively.
Mean predictions are generated feeding the 10 models with 100
melt compositions generated linearly between the end-member
poles (see text for details).
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Observations made with i-Melt thus bring important
pieces of information: (i) while the configurational entropy
varies rather smoothly when going from peralkaline to per-
aluminous melts (Fig. 13a), the structure changes substan-
tially with the onset of Q3 units (Fig. 13b–d), and (ii) as
already identified by Di Genova et al. (2017), the role of
aluminum is more important than that of potassium: most
of the variance in Fig. 13a is actually associated with vari-
ations in the rheological agpaitic index. The structural and
thermodynamic variations, observed in Fig. 13, are associ-
ated with very important changes in term of melt viscosity.
Indeed, the compositional change forming the trend shown
in Fig. 13a (pink-cyan line) is accompanied by a change of
the viscosity of more than three orders of magnitudes at
1000 �C (Supplementary Fig. 4).

The above discussion allows understanding structural,
thermodynamic and rheological changes possibly at the
source of the effusive/explosive clustering observed in
Fig. 13a. However, one should remember that, here, only
a simplified system is considered. Other variables, such as
melt water and iron contents, may have important, and
possibly indirect, roles too in the correlation observed in
Fig. 13a. For instance, an increase in the Al/(Na + K) ratio
of aluminosilicate melts, in addition to strongly affecting
melt polymerization and properties, promotes iron reduc-
tion (Dickenson and Hess, 1982). Such a phenomenon
could promote the rapid appearance of iron-bearing nano-
lites, and hence act as an accelerator in the increase of
magma viscosity to promote the explosivity of the eruption
(Di Genova et al., 2017, 2020; Cáceres et al., 2020).

4.3.2. K/Na ratio and the properties of magmas along

alkaline magmatic series

In addition to rhyolites, melts along a basanite-
phonolite differentiation trend typically show high concen-
trations of sodium and potassium. The properties of such
melts could, therefore, be affected by the different impact
of Na and K on the melt structure and properties. To test
this idea, it is possible to use i-Melt to study the influence
of the K/(K + Na) ratio on the properties and structure
of basanite-like to phonolite-like simplified melt composi-
tions. Here, we simulate how the properties of a melt
change when it evolves from an initial composition with
55 mol% SiO2 and Al2O3/SiO2 = 0.18 to a final composi-
tion with 67 mol% SiO2 and Al2O3/SiO2 = 0.20. The
K/(K + Na) of the sodic trend is fixed at 0.33, and that
of the potassic trend at 0.66. NBO/T of the melts will evolve
from 0.63 down to 0.13, such values being reflective of those
typical of a basanite-phonolite trend.

Simulating the properties of the melts along such a
basanite-like to phonolite-like evolution trend, we observe
a systematically higher viscosity of the potassic melts
(Fig. 14a); the most mafic melts show a difference of �0.5
log10 unit, while the most evolved melts display a viscosity
difference of more than an order of magnitude. The predic-
tion of the Raman spectra of the quenched melts along the
two differentiation trends also show systematic differences.
We observe that the decrease in NBO/T upon melt differen-
tiation is accompanied by decreasing Q3 and Q2 Raman sig-
nals for both series (Fig. 14b, c). However, K-rich melts
appear systematically richer in Q3 units, and depleted in
Q2 units compared to Na-rich melts. This is expected
because the equilibrium constant of the reaction
2Q3 = Q2 + Q4 is higher in K-rich silicate melts than in
Na-rich silicate melts (Maekawa et al., 1991). We further
observe stronger signals in the 400–600 cm�1 region in
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K-rich phonolite-like melts, providing evidence for a higher
Qn-Qn interconnection, in agreement with their higher
viscosity.

From those results, the K/(Na + K) ratio along a
basanite-phonolite differentiation trend may play a role
on the properties of the magmas, and, ultimately on the
eruptive dynamics at surface. However, it should be
reminded that water content is the primary factor linked
to the effusive/explosive dynamics of eruptions involving
phonolite melts (Andújar and Scaillet, 2012). Therefore,
we expect the K/(Na + K) ratio to play a secondary role
compared to water content. However, this role is not
insignificant, particular given the strong influence of melt
K/(Na + K) on various parameters such as the iron redox
state (Cicconi et al., 2015), the diffusion and solubility of
volatile elements like F and Cl (Balcone-Boissard et al.,
2009; Dalou et al., 2015) or the speciation and solubility
of dissolved water (e.g., Behrens et al., 2001; Le Losq
et al., 2015). In conjunction with the potential influence
of K/(Na + K) on Fe-free and volatile-free melt structure
and properties (Fig. 14), this invites further studies of the
differences in terms of eruptive mechanisms and dynamics
between Na-rich and K-rich alkaline magma series. In par-
ticular, the hypothesis that K-rich alkaline magma series
may be linked more frequently to explosive dynamics can
be proposed and should be tested.

5. CONCLUSION

i-Melt, a model integrating a feed-forward neural net-
work and physical equations, was developed to predict
alkali aluminosilicate melt and glass properties, including
configurational entropy, glass transition temperature, fragi-
lity, viscosity, density, optical refractive index and Raman
spectra. The model allows making predictions with a good
precision in the glass forming domain. Extrapolations are
possible but should be done with care. We see models like
i-Melt, therefore, as a pragmatic compromise between
informative, accurate but limited theoretical models and
mono-task empirical models. i-Melt can readily be extended
to include quantities of interest across a range of domains
and applications, including glass toughness and hardness.
In general, the present results show that the possibility of
combining machine learning with physical and thermody-
namic models offers exciting new perspectives.

Applied to rhyolite compositions, i-Melt reveals that the
reported chemical tipping point between effusive and explo-
sive eruptions is largely linked to the disappearance of non-
bridging oxygens in Al-rich compositions, which lowers
melt configurational entropy and triggers a strong increase
in melt viscosity. Results on simplified alkaline magmatic
series further indicate that K-rich melts present systemati-
cally higher viscosities, being linked to slight differences in
the atomic structure as suggested by the predicted Raman
spectra of the glasses. When considering this result together
with the other reported effects of the K/(K + Na) ratio on
iron redox state, volatile solubility, speciation and diffusiv-
ity in phonolitic melts, it can be expected that Na-rich or
K-rich alkaline magmatic series may be associated with
slightly different eruptive dynamics.
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