
Quantum Science and Technology

PAPER • OPEN ACCESS

The controlled SWAP test for determining quantum entanglement
To cite this article: Steph Foulds et al 2021 Quantum Sci. Technol. 6 035002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.234.0.68 on 08/09/2021 at 14:37

https://doi.org/10.1088/2058-9565/abe458
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstzsO0BdvA0PcPVleBD7sXC2ZawHb_5D4f69rqJz79cnyC2t43lxEy4y0HMjlJwJnZP9oXfAkTXVDQj4BUoCphiYvv-OTHFL6kvBMdJ9RDF7Yim5NXaZ2T4WD_1atus92eWBsNm-jJUwI6r0rJN0lzq6z8QcOgcHaYH0nF43LA1lnmHGT8-JdEcZiyPJS4Y7OLaJQ0Bc_W8i-zlyXo6NBjhTIKpjMkSbwYSj7Measn2DJeq8WWeuW_USdZXej1a6DGfIJGJ7P9PsdWFxtJXZ_voiitoRDJozaY&sig=Cg0ArKJSzJ4bPz8sNvV1&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Quantum Sci. Technol. 6 (2021) 035002 https://doi.org/10.1088/2058-9565/abe458

OPEN ACCESS

RECEIVED

9 October 2020

REVISED

26 January 2021

ACCEPTED FOR PUBLICATION

8 February 2021

PUBLISHED

1 April 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.
Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

The controlled SWAP test for determining quantum
entanglement

Steph Foulds1,∗ , Viv Kendon1 and Tim Spiller2

1 Department of Physics, Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE,
United Kingdom

2 Department of Physics and York Centre for Quantum Technologies, University of York, York YO10 5DD, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: stephanie.c.foulds@durham.ac.uk

Keywords: quantum physics, quantum information, quantum entanglement, entanglement test, controlled SWAP test

Abstract
Quantum entanglement is essential to the development of quantum computation,
communications, and technology. The controlled SWAP test, widely used for state comparison,
can be adapted to an efficient and useful test for entanglement of a pure state. Here we show that
the test can evidence the presence of entanglement (and further, genuine n-qubit entanglement),
can distinguish entanglement classes, and that the concurrence of a two-qubit state is related to the
test’s output probabilities. We also propose a multipartite measure of entanglement that acts
similarly for n-qubit states. The average number of copies of the test state required to detect
entanglement decreases for larger systems, to four on average for many (n � 8) qubits for
maximally entangled states. For non-maximally entangled states, the number of copies required to
detect entanglement increases with decreasing entanglement. Furthermore, the results are robust
to second order when typical small errors are introduced to the state under investigation.

1. Introduction

Quantum entanglement is an essential resource for obtaining a quantum advantage in communications [15,
37], metrology [10, 42], imaging [1, 32], and computation [8, 13, 34]. Quantum teleportation [9] uses
pre-shared entanglement to transfer an unknown quantum state from one location to another using only
classical channels. It provides a fundamental primitive for quantum information processing. Teleportation
has been realised optically [17, 46] and with ion traps [41], as approaches towards distributed quantum
computation [5].

In general, the amount of entanglement in a state determines its usefulness. For example, information
can only be teleported perfectly by maximally entangled states [43], which are necessarily pure. The current
widely-used method for experimentally determining entanglement, quantum state tomography, does not
scale well with an increasing number n of qubits [6]. This makes practical alternative tests of interest. In this
paper, we investigate a method for detecting entanglement and quantifying the amount of entanglement in
a multipartite pure state: the controlled SWAP test.

The controlled SWAP test for entanglement discussed here is an adapted version of the widely used
controlled SWAP test for state comparison, which determines whether a pair of states are inequivalent, and
requires only a single application of the test to achieve this. This elegance can be applied to the detection
and quantification of entanglement in a state, and so is promising as a more efficient alternative to quantum
state tomography. The controlled SWAP test for entanglement was first introduced in [7], and then used by
Gutowski et al [23] to prove a series of computational complexity results, by using repeated applications of
the controlled SWAP test for entanglement as a product state test. Although detecting entanglement can be
done efficiently, the inverse problem—determining whether a given state is a separable, i.e., a product
state—is NP-HARD [22]. Our purpose in this paper is practical: to determine the conditions under which
the controlled SWAP test for entanglement is likely to be experimentally useful.
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The paper is laid out as follows. First, pure state entanglement and its measures are introduced in
section 2. The controlled SWAP test for state comparison is then explained in section 2.2, leading on to its
adaptation to the controlled SWAP test for entanglement in section 3. Then in section 4.1, we present the
outcomes of the test for a range of pure states, and the corresponding results in terms of a multipartite
measure of entanglement in section 4.2. The efficiency of the test for these various states is considered in
section 4.3, and finally several typical error scenarios are investigated in section 5.

2. Background

With |ψ1〉 a normalised superposition of the single qubit computational basis states |0〉 and |1〉

|ψ1〉 = A0 |0〉+ A1 |1〉 ,

with A0, A1 ∈ C, the probabilities of measuring outcomes 0 and 1 follow respectively from P(|0〉) = |A0|2
and P(|1〉) = |A1|2. Using the notation |i〉 |j〉 = |ij〉 with i, j ∈ {0, 1} for the basis states of multiple qubit
systems, a general two-qubit state takes the form [33]

|ψ2〉 = A00 |00〉+ A01 |01〉+ A10 |10〉+ A11 |11〉 , (1)

with Aij ∈ C and normalisation
∑

i,j |Aij|2 = 1.
A composite system |ψ2〉 is in an entangled state if it cannot be written as a product state for its

component systems, i.e. |ψ2〉 �= |ψ1〉 |φ1〉 for any pure states |ψ1〉, |φ1〉. The concurrence [44]

C2 = 2|A00A11 − A01A10| (2)

is a measure of two-qubit entanglement, with 0 � C2 � 1, so a separable or ‘product’ state has C2 = 0 and a
maximally entangled state has C2 = 1. There are many other measures of entanglement which quantify the
amount of entanglement in a state, though for bipartite pure states they can all be shown to be equivalent to
the entropy of the subsystems [35].

For two qubit states, concurrence is simpler to calculate, so more convenient for our work. More
generally, an entanglement measure has to satisfy certain properties, such as not increasing on average
under local operations and classical communication (LOCC) [33]. In essence, it must be true that [40]

ε(ρ) �
∑
j=1

pjε(ρj), (3)

where ε is an entanglement measure, j refers to the outcomes of a local measurement, and pj the probability
of these outcomes.

For two qubit entangled states, the possibilities are straightforward. There are four orthogonal
maximally entangled two-qubit states [33, 38], known as the Bell states:

∣∣Φ±〉 = |00〉 ± |11〉√
2

,

∣∣Ψ±〉 = |01〉 ± |10〉√
2

. (4)

Under reversible LOCC, Bell states can be transformed into one another, but cannot be transformed into a
state with less than maximal entanglement. Bell states are therefore considered equivalent to one another
and form a unique class of maximally entangled two-qubit states.

For systems with more than two qubits, there are multiple distinct classes of entanglement, based on
whether the states can be transformed into each other under reversible LOCC. Within each class, there is a
subset of maximally entangled states. For example, for three qubits, there are two types of pure entangled
states, GHZ [12] and W states, which are inequivalent under reversible LOCC. For more qubits, GHZ and
W states naturally generalise, alongside further distinct types of entangled states. In the computational basis
for n qubits where n � 3, the maximally entangled GHZ and W states are [14]

|GHZn〉 =
1√
2

(|0〉n + |1〉n), (5)

|Wn〉 =
1√
n

n∑
i=1

|0 . . . 1i . . . 0〉 , (6)

2
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where we have introduced the notation |0〉n for n qubits all in state |0〉. Under reversible LOCC, GHZ and
W states remain maximally entangled within their respective classes. However, GHZ states are considered
more entangled than W states, based on various pure state entanglement measures; while W states are more
robust, as loss or measurement of some qubits can still leave an entangled state of the remainder [14]. In
this paper, we focus on these two types of entangled states, which are of particular interest due to their
applications in quantum computing [12, 27, 29].

Reversible (unitary) transformations of quantum states can be represented as quantum gates, the model
used in this paper. An important and relevant single-qubit example is the Hadamard gate H [33]:

H |0〉 = 1√
2

(
|0〉+ |1〉

)
and H |1〉 = 1√

2

(
|0〉 − |1〉

)
. (7)

Multi-qubit gates of relevance include the two-qubit CNOT gate which flips the target qubit only if the
control qubit is |1〉. It can be represented by the matrix

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (8)

where the first qubit is the control and the second the target. The three-qubit Toffoli gate has two controls
and one target: the target qubit is flipped only if both the controls are |1〉. It has the matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where the first two qubits are the controls.

2.1. Experimentally determining entanglement
The most commonly used method for determining entanglement is quantum state tomography. Quantum
state tomography builds a system’s density matrix entry by entry in order to derive its entanglement. A large
ensemble of identical states is prepared to carry out the required number of measurements [2, 4, 28]. The
density matrix grows exponentially with the system size and so this method becomes unfavourable for large
systems. For an n-qubit state, the number of measurements required is typically [2, 6] in the order of 3n.

If only the entanglement of the system is of interest, there are alternative methods that are arguably
more efficient. Entanglement witnesses are functionals of a state’s density matrix that can be directly
measured and determine whether a state is entangled. To obtain the witness of an n-qubit state, as few as
2n − 1 measurements are required. However, the witness must be optimised for the state, and so this is not
a general method [19, 24, 39].

Many attempts have been made to improve upon the above methods in terms of efficiency and
generality. The experiment in Walborn et al [38] determines how entangled two-qubit states are by
measuring only the final polarisation. This method is able to detect and distinguish Bell states; the
probability of measuring the

∣∣Ψ−〉 Bell state is then related to the concurrence to quantify the
entanglement. Thousands of measurements are needed to achieve sufficient statistics. Theory extending this
method to any number of qubits is provided by Harrow and Montanaro [26]. Further proposals include
Ekert et al [16] which is also based on the controlled SWAP test for state comparison, and Amaro et al [3]
which is an improved witness-based method.

2.2. The controlled SWAP test for equivalence
The controlled SWAP test for equivalence is a widely applied method for determining whether two given
pure n-qubit states |ψ〉 and |φ〉 are equivalent, detailed in [11] and its optical implementation in [7]. The
circuit for this procedure can be seen in figure 1(a). Three states are required, with the initial composite
state |Ψ〉= |ψ〉A|φ〉B|0〉C . A Hadamard gate is applied to the control qubit C, followed by a controlled-SWAP
gate on the two test states A and B, controlled on the single qubit [7, 18, 20]. The SWAP gate is applied
according to the state at the control qubit C: if |C〉 = |0〉C there is no change, whereas |1〉C will result in the

3
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Figure 1. The quantum circuit for an equivalency SWAP test on the two states |ψ〉 and |φ〉. H is a Hadamard gate from
equation (7). (a) The SWAP gate swaps all qubits in the test states on the condition that the control qubit is in state |1〉. (b) Shows
the SWAP gate broken down into individual gates for the one-qubit test state case. The central gate, shown in red, is a Toffoli gate
from equation (9) and the two gates either side in blue are CNOT gates from equation (8), where the crossed circles are
controlled on the dots. The final CNOT gate—not necessary for the test outcome—returns the system to its initial state in the
case of equivalent states.

Figure 2. The quantum circuit used to carry out an SWAP test for entanglement on test state |A〉 and copy state |B〉. H denotes a
Hadamard gate. Initially, |C〉 = |0〉n

C . (a) Shows the SWAP gate broken down into individual gates in the case of a two-qubit test
state, composed of CNOT gates and Toffoli gates. The final two CNOT gates are to return the test and copy states to their original
states (in some cases) and so are optional. (b) Shows the circuit for an n-qubit test state in compact form.

states of A and B being swapped [18]. In the case of a single qubit state comparison, the SWAP gate is
composed of two CNOT gates [33] and a Toffoli gate [33], as shown in figure 1(b) [7, 30].

Finally, another Hadamard gate is applied to the control qubit. The resulting composite state is then

|Ψ〉 = 1

2
[(|φ〉A|ψ〉B + |ψ〉A|φ〉B)|0〉C + (|φ〉A|ψ〉B − |ψ〉A|φ〉B)|1〉C].

It is clear that if |φ〉 = |ψ〉, the control qubit will be in |0〉C with absolute certainty. Measuring the control
qubit in |1〉C therefore proves that the two states A and B are inequivalent. If the two states are identical,
confidence of this outcome is increased by repeating the test and obtaining multiple measurements of |0〉C

with no measurements of |1〉C [7, 18, 20].

3. The controlled SWAP test for entanglement

The controlled SWAP (c-SWAP) test for state comparison can be modified to instead test for entanglement.
This is outlined for the two-qubit state case in van Dam et al [7], along with a potential optical setup.
Harrow and Montanaro [25] discuss multiple applications of the c-SWAP test as a product-state test,
proving its correctness for all numbers of qubits and its optimal soundness. Following this, Gutoski et al
[23] prove the product-state c-SWAP test is a complete problem for the complexity class BQP. This section
details the theory of the c-SWAP test for entanglement.

The quantum circuit used for state comparison, figure 1, is adapted to figure 2. Two copies of the state to
be tested for entanglement are required, labelled |A〉A and |B〉B, and several control qubits—one control
qubit for each qubit in the test state. Figure 2(a) shows the quantum circuit for the simplest case, a two
qubit entangled state. Initially, the control state is in |00〉C . The two Hadamard gates and the SWAP gate act
on each qubit in the control state. The SWAP gate is applied to the corresponding qubits in the test states
such that the ith qubits in the test and copy states are swapped with one another if the ith qubit in the
control is |1〉C. The initial composite state is

|Ψ〉 = |A〉A|B〉B|00〉C.

4
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Passing this system through the entire test in figure 2 gives the final result

|Ψ〉 = 1

4

∑
ijrs

|ij〉A|rs〉B [(AijBrs + AisBrj + ArjBis + ArsBij)|00〉C,

+ (AijBrs − AisBrj + ArjBis − ArsBij)|01〉C,

+ (AijBrs + AisBrj − ArjBis − ArsBij)|10〉C,

+ (AijBrs − AisBrj − ArjBis + ArsBij)|11〉C ] .

Ideally, the copy state is an exact copy of the test state. In this case, the above equation reduces to

|Ψ〉 = 1

2

∑
ijrs

|ij〉A|rs〉B

[
(AijArs + AisArj)|00〉C

+ (AijArs − AisArj) |11〉C

]
and so the probability of the control being in |01〉C or |01〉C is zero. This expression can in fact be written in
terms of the concurrence C2 (as given by equation (2)):

|Ψ〉 =
[
|A〉A|A〉B

± 1

2
C2 ·

1

2
(−|00〉A|11〉B + |01〉A|10〉B + |10〉A|01〉B − |11〉A|00〉B)

]
|00〉C

± 1

2
C2 ·

1

2

(
|00〉A|11〉B − |01〉A|10〉B − |10〉A|01〉B + |11〉A|00〉B

)
|11〉C (10)

with the ±s being + in the case that A00A11 > A01A10 and − if A00A11 < A01A10. If the system is in a
product state then C2 = 0; applying this to the above equation gives

|Ψ〉 = |A〉A|A〉B|00〉C (11)

and so the control state is |00〉C with certainty. Any measurement of |11〉 for the control qubits therefore
proves a non-zero concurrence, and evidences the presence of entanglement [7] in state |A〉.

Note that if the test state is a product state, and only then, the final state is the same as the initial state.
In this case, the test is non-destructive and so the output state can be used as an input state in the next test
iteration.

To expand the setup to any number of qubits n, the test simply requires n control qubits, as shown in
figure 2(b). The summation notation above as derived by [7] demonstrates that certain outcomes of the
control state evidence entanglement in the test state. However, fully investigating the capability of the
c-SWAP test requires the derivation of the expanded resulting state, which we discuss in the next section.

4. The controlled SWAP test on ideal states

We have analytically derived the final probability distributions in the control state for the most general pure
two-qubit and three-qubit test states. The final expressions are quite lengthy, and are given in appendices A
and B respectively. Specialising to more symmetric classes of states, for which these expressions simplify, we
then extrapolated the probability expressions to those for n-qubit states, verified these by computation up to
six qubits for non-symmetric test states, and to eight qubits for symmetric test states. In this section, we
present the results for GHZ and W states, discuss their relationship to the amount of entanglement in the
test state, and investigate the resource efficiency of the test.

4.1. Bell, GHZ, and W states
If the test state is a product state, then only |0〉 will be measured for any qubit in the control state. In the
ideal case, where the copy state is an exact copy of the test state (unequal copy states are investigated in
section 5.2), a measurement of any number of |1〉s in the control evidences the presence of entanglement.
These states, with one or more |1〉s, that provide evidence of entanglement we call entanglement signatures.

If the test state is a Bell state and the copy state is an exact copy, for example |A〉 = |B〉 =
∣∣Ψ+

〉
from

equation (4), the resulting probability distribution in the control state is:

5
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P(|00〉C) =
3

4
,

P(|01〉C) = 0,

P(|10〉C) = 0,

P(|11〉C) =
1

4
. (12)

As seen in section 3, any measurement of |11〉C evidences some amount of entanglement for any two-qubit
state. Therefore this is the entanglement signature for all two-qubit systems.

When |A〉 = |B〉 = |GHZn〉 as in equation (5), the probability results in the control state are

P(|0〉n
C ) =

1

2
+

1

2n
,

P(|even no. of 1s〉C) =
1

2
− 1

2n
(13)

where n is the number of qubits in the test state. All other states have zero probability. The states
|even no. of 1s〉C are the entanglement signatures for any GHZ-like state. The GHZn probability results are
unique within each n.

When |A〉 = |B〉 = |Wn〉 as in equation (6), the probability expressions in terms of n are

P(|0〉n
C ) =

1

2
+

1

2n
,

P(|exactly two 1s〉C) =
1

2
− 1

2n
(14)

with |exactly two 1s〉C as the entanglement signatures for W-like states. For n = 2, the equations for both
GHZ and W reduce to those for Bell states, and so for much of the paper we only consider Bell states as the
GHZ/W n = 2 case.

As seen in figure 3, the probability of measuring |0〉n
C and the entanglement signatures each converge to

1
2 as n increases, for both maximally entangled cases. The entanglement signature probabilities are always
greater for GHZ states than for W states, and as n increases so does the signature probability. This suggests
that the entanglement signature probabilities are related to the amount of entanglement in the test states.

4.2. Quantifying the amount of entanglement
If |A〉 = |B〉, the two-qubit probability expressions in terms of the concurrence C2 from equation (2) are

P(|00〉C) = 1 − C2
2

4
,

P(|01〉C) = 0,

P(|10〉C) = 0,

P(|11〉C) =
C2

2

4
. (15)

Therefore, if the control state’s probability distribution is obtained (from repeats of the c-SWAP test), these
results can be used to calculate the concurrence.

Exploration of the results of the c-SWAP test for a range of example states leads us to propose a more
general expression for the amount of multipartite entanglement Cn:

Cn = 2P(|even no. of 1s〉C)
1
2 (16)

which is consistent with two-qubit concurrence from equation (2). Cn therefore has a range of
0 � Cn � 2( 1

2 − 1
2n )

1
2 , with the upper limit tending to

√
2 as n →∞. Figure 4 shows the behaviour of this

expression Cn for the GHZn and Wn states. As expected, the W state has a value of Cn consistently lower
than that of a GHZ state. As n approaches infinity the Cn of both W states and GHZ states tends to

√
2, but

at a lower rate (as a function of n) in the W case.
As previously discussed, a valid measure of entanglement must satisfy the equation (3) for any

state, i.e.:

Cn(|ψ〉) �
∑
j=1

pjCn−1(|ψ〉j)

6
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Figure 3. The probability results for maximally entangled GHZ and W states for increasing number of qubits n. P0 refers to
P(|0〉n

C ), Peven to P(|even no. of 1s〉n
C ), and Ptwo to P(|exactly two 1s〉n

C ).

Figure 4. The value of Cn from equation (16) against number of qubits for the GHZ state from equation (5) and W state from
equation (6).

for any |ψ〉. It is trivial to prove that this condition is satisfied for all W-like states (the probability
expressions of which are shown in appendix (C.3)), and of course all GHZ-like states (because measuring a
single qubit destroys all GHZ-like entanglement). From the results in appendix B we have shown
computationally that this condition is satisfied for any three-qubit pure state, and we thus conjecture that it
is true for any n-qubit pure state.

4.3. Efficiency
The resource we will be considering as an indicator of efficiency is the number of copies of the test state
required for the test. If the operator of the test is only interested in detecting some entanglement in the test
state (without obtaining knowledge of the amount, or whether it is genuine n-qubit entanglement), only
one entanglement signature needs to be detected. It is straightforward to calculate the average number of
iterations of the test, and therefore the average number of copies, required to reveal the first entanglement
signature. The expected number of copies is simply

Eany(no. of copies) =
2

P(|even no. of 1s〉C)
.

Therefore, the less entangled the state, the lower the entanglement signature probability, and the higher the
number of measurements required. This can be illustrated in terms of proposed measure of entanglement
Cn from equation (16):

Eany(no. of copies) =
8

C2
n

7
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Figure 5. The expected number of copies against the amount of entanglement Cn to find any entanglement in n-qubit test states.
The vertical line segments show the upper limit of Cn for each n. The crosses show the crossover points where the number of
copies equal 3n, the quantum state tomography minimum scaling. Therefore those values of Cn between each coloured cross and
the vertical line segment of the same colour represent the regime for each n (colour) under which the c-SWAP test is more
favourable than quantum state tomography.

shown in figure 5. This expression depends on n only through Cn, which for a maximally entangled state
increases with increasing n from a value of one for n = 2 towards an upper bound of

√
2. Thus, for

maximally entangled states, entanglement can be detected on average with eight copies or fewer. With
increasing level of entanglement, the expected number of copies decreases at a rate inversely proportional to
the square of Cn; as such, there is a large range of Cn for which the expected number of copies is reasonably
low.

Also plotted in figure 5 are the values of E(Y) = 3n, the minimum number of copies required for
quantum state tomography. This figure therefore illustrates the range of Cn of a given n-qubit state for
which the c-SWAP test requires less copies (on average) than quantum state tomography:
( 8

3n )
1
2 < Cn � 2( 1

2 − 1
2n )

1
2 (the upper bound of which is Cn’s absolute maximum). For example,

0.31 < C4 � 1.32 for four-qubit states and 0.18 < C5 � 1.37 for five-qubit states. When evidencing
entanglement, there is a large regime in which the c-SWAP test outperforms quantum state tomography in
terms of required number of copies. This is especially true for large systems, where for almost any amount
of entanglement the c-SWAP test would be more suited than quantum state tomography.

However, if knowledge that the test state is genuinely n-qubit entangled is required then the required
number of copies increases. Instead of detecting any one entanglement signature, one more than the total
number of entanglement signatures for the (n − 1)-qubit case must be observed. Therefore the expected
number of copies are En(no. of copies) = 2[ 1

2 Eany(no. of copies)]x(n). Example values for x(n) are:

x(n)[GHZ − like] = 2n−2,

x(n)[W − like] =
1

2
(n − 1)(n − 2) + 1

and the respective plots of En(no.ofcopies) are shown in figure 6(b). The GHZ state and W state cases are
shown in figure 6(a). The scaling with both n and Cn is not favourable. However, the values of
E(no.ofcopies) for quantum state tomography have again been plotted and there is a regime where the
number of copies required for the c-SWAP test are less than 3n, for states with high entanglement and less
than five qubits. Therefore, carrying out this more detailed c-SWAP test is still favourable for highly
entangled small systems.

5. Robustness against errors

To examine the robustness of the c-SWAP test we consider a range of possible errors. Clearly, it is possible
that the pure state supplied is not exactly as expected. One typical example of this is that errors in the test
and copy state could occur as errors in their existing non-zero amplitudes, which will be referred to as
unbalanced. Another typical error could be an additional non-zero amplitude introduced into the state,
referred to as corrupted. Furthermore, a quantum state can also interact (entangle) with its environment
and through this suffers a level of decoherence. For example, dephasing, energy dissipation, and scattering
all cause decoherence, which from an ensemble perspective introduces mixture (and non-zero entropy).

8
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Figure 6. Expected number of copies needed to find genuine n-qubit entanglement. (a) Shows test states |A〉 = |GHZn〉
= 1√

2
(|0〉n + |1〉n) and |A〉 = |Wn〉 = 1√

n

∑n
i=1 |0 . . . 1i . . . 0〉. Also the minimum scaling for quantum state tomography, E(no.

of copies) = 3n. (b) Shows general GHZ-like (continuous line) and W-like states (dotted line) in terms of the amount of
entanglement Cn . The greater n, the greater En(no. of copies). Also shown are the crossover points (marked with crosses) for
minimum scaling for quantum state tomography, E(no. of copies) = 3n, such that values of Cn right of the tomography plots give
numbers of copies less than 3n.

From a state perspective, errors in the state amplitudes arise [33]. In this example it may be that only the
copy state contains error and so the test state and copy state are not equivalent, which we refer to as
unequal, as would be expected from sampling a mixed ensemble. Here we also investigate an example
unequal case, where the copy state is unbalanced but the test state is not.

5.1. Unbalanced
Our first example of error is to vary the amplitudes of otherwise maximally entangled states. Consider an
unbalanced n-qubit GHZ state:

|A〉 = |B〉 = sin
(π

4
+ δ

)
|0〉n + cos

(π
4
+ δ

)
|1〉n. (17)

The c-SWAP test results therefore are

P(|0〉n
C ) =

[
1

2
+

1

2n

]
+

(
2 − 4

2n

)
cos2 δ sin2 δ,

P(|even no. of 1s〉C) =

[
1

2
− 1

2n

]
−
(

2 − 4

2n

)
cos2 δ sin2 δ

which are shown in figure 7(a) (as well as the unbalanced Bell state which is the n = 2 case). The error
introduced by a small non-zero value of δ is Δ = (2 − 4

2n )δ2. The n dependence goes to zero exponentially,
so the leading order is independent of n. Therefore the error is approximately 2δ2 for small delta and so in
this case the test is robust, by which we mean that the leading order is δ2, as opposed to δ.

An unbalanced GHZ3 state can replicate the probability results given by a W3 state. This happens in the

above parametisation when δ = ±
(

sin−1
√

2
3 − π

4

)
≈ ±0.17, i.e.

|A〉 = |B〉 =
√

2

3
|000〉+

√
1

3
|111〉

or |A〉 = |B〉 =
√

1

3
|000〉+

√
2

3
|111〉 .

This requires amplitude percentage errors of 15% and 18%, a large margin of error. If necessary this
uncertainty can be overcome by measuring one qubit and then applying the two-qubit c-SWAP test to the
remaining state, to detect any remaining entanglement. The result would always be zero for an unbalanced
GHZ3 but not for a W3 state. This ‘mimic’ case is only possible with three-qubit states.

Consider an unbalanced W state with error introduced to one amplitude and the compensating error
spread across the remaining amplitudes:

|A〉 = |B〉 =
√

1

n
cos δ |00 . . . 01〉+

√
1

n − 1
− 1

n(n − 1)
cos2 δ

n∑
j=2

∣∣0 . . . 1j . . . 0
〉
. (18)

9
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Figure 7. Unbalanced states with various numbers of qubits n, where the continuous line is P(|0〉n). (a) Shows the probability
results against δ for unbalanced GHZ test states from equation (17). The dashed line denotes P(|even no. of 1s〉C). (b) Shows the
results for unbalanced W test states from equation (18). The dashed line denotes P(|exactly two 1s〉C).

This gives

P(|0〉n
C ) =

[
1

2
+

1

2n

]
− 1

2n2(n − 1)
sin2 δ (4(n − 1) + (n − 2)sin2 δ)

P(|exactly two 1s〉C) =

[
1

2
− 1

2n

]
+

1

2n2(n − 1)
sin2 δ (4(n − 1) + (n − 2)sin2 δ)

shown in figure 7(b). For small δ, the error Δ = 2
n2 δ

2. The n-dependence tends to zero with increasing n.
Unlike the GHZ case, there is no term independent of n and so for large n there is very little variation in
probability for any δ.

5.2. Unequal
While the c-SWAP test requires two copies of the test state, it may be that the two generated states are not
equivalent (|A〉 �= |B〉) if these are drawn from a mixed ensemble.

Consider the error case |A〉 = |GHZn〉 (or |A〉 =
∣∣Φ+

〉
in the n = 2 case) and

|B〉 = sin
(π

4
+ δ

)
|0〉n + cos

(π
4
+ δ

)
|1〉n, (19)

giving:

P(|0〉n
C ) =

[
1

2
+

1

2n

]
− 1

2n
sin2 δ,

P(|odd no. of 1s〉C) =
1

2
sin2 δ,

P(|even no. of 1s〉C) =

[
1

2
− 1

2n

]
−
(

1

2
− 1

2n

)
sin2 δ

shown in figure 8(a). Any measurement of an odd number of |1〉s in the control therefore demonstrates that
the test state and copy state are not equivalent.

This is similar to the c-SWAP test for equivalence from section 2.2, where any measurement of |1〉 in the
control qubit demonstrates the two test states are inequivalent. The equivalency c-SWAP test applied to the
same test states from equation (19) that we have just considered for the entanglement c-SWAP gives the
resulting probability of measuring |1〉C (and therefore certainty of inequivalence) as:

P(|1〉C) =
1

2
cos δ sin δ

which with small δ approximates to Δ1 =
1
2δ. This is in fact less robust than the entanglement test, the

errors for which are all second order: for small δ, the errors satisfy Δ0 =
1

2n δ
2, Δodd = 1

2δ
2, and

Δeven = ( 1
2 − 1

2n )δ2.
Interestingly, the unequal states signature probability, P(|odd no. of 1s〉C), has no n-dependence. Where

it is present, the n-dependence again is confined to the coefficients and the error tend to zero exponentially

10
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Figure 8. Unequal states for various numbers of qubits n. The continuous line denotes P(|0〉n). (a) Shows the probability results
against δ for inequivalent copy states where one is a GHZ state and the other is equation (19). The dashed line denotes
P(|even no. of 1s〉C) and the dotted line denotes P(|odd no. of 1s〉C) (which is the same for all n). (b) Shows the results for one W
state and copy state equation (20). The dashed line denotes P(|exactly two 1s〉C) and the dotted line denotes P(|exactly one 1〉).

with n. As its error has no term independent of n, P(|0〉n
C ) tends to 1

2 for large systems and so cannot be
used as indicator of large error. P(|odd no. of 1s〉C) and P(|even no. of 1s〉C) however always vary with δ.

Similarly, |A〉 �= |B〉 for the W case can be investigated where |A〉 = |Wn〉 and

|B〉 =
√

1

n
cos δ |00 . . . 01〉+

√
1

n − 1
− 1

n(n − 1)
cos2 δ

n∑
j=2

∣∣0 . . . 1j . . . 0
〉
. (20)

This gives:

P(|0〉n
C ) =

[
1

2
+

1

2n

]
− n − 1

4n2

⎛
⎝cos2 δ + 1 − 2 cos δ

√
1 +

sin2 δ

n − 1

⎞
⎠

P(|exactly one 1s〉C) =
n − 1

2n2

⎛
⎝cos2 δ + 1 − 2 cos δ

√
1 +

sin2 δ

n − 1

⎞
⎠

P(|exactly two 1s〉C) =

[
1

2
− 1

2n

]
− n − 1

4n2

⎛
⎝cos2 δ + 1 − 2 cos δ

√
1 +

sin2 δ

n − 1

⎞
⎠

shown in figure 8(b). For small δ, Δ0 = Δtwo 1s =
1

4n2 δ
2 and Δone 1 =

1
2n2 δ

2. The leading order errors vanish
inversely with increasing n2.

5.3. Corrupted
Another source of error is to ‘corrupt’ an entangled state by introducing an additional non-zero amplitude.
The following cases assume the test state and copy state are exact copies. The case

|A〉 = |B〉 = cos δ |GHZn〉+ sin δ |0 . . . 1〉 (21)

gives:

P(|0〉n
C ) =

[
1

2
+

1

2n

]
+

1

2n
sin2 δ (2 + (2n−1 − 3)sin2 δ),

P(|even no. of 1s〉C) =

[
1

2
− 1

2n

]
− 1

2n
sin2 δ (2 + (2n−1 − 3)sin2 δ)

shown in figure 9(a). For small δ, the error is Δ = 2
2n δ

2 and so again the errors tend to zero exponentially
with n. Unlike the other GHZ examples, the individual signature probabilities are not equal to one another.
The probabilities for states ending with |1〉s and those ending with |0〉s have different values, with the
former independent of n. This is due to the final |1〉 in the additional state and alternative ‘extra’ states give
different individual probabilities.

11
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Figure 9. Corrupted states with various numbers of qubits n. The continuous line denotes P(|0〉n). (a) Shows the probability
results against δ for states equation (21). The dotted line denotes P(|even no. of 1s〉C). (b) Shows the results for states
equation (22). The dotted line denotes P(|exactly two 1s〉C).

Unlike the GHZ case, the corrupted W state results depend on which state is added. For example if

|A〉 = |B〉 = cos δ |Wn〉+ sin δ|0〉n (22)

then

P(|0〉n
C ) =

[
1

2
+

1

2n

]
+

n − 1

2n
sin2 δ (2 − sin2 δ),

P(|exactly two 1s〉C) =

[
1

2
− 1

2n

]
− n − 1

2n
sin2 δ (2 − sin2 δ)

shown in figure 9(b). For small δ the errors are Δ = (1 − 1
n )δ2. The leading order is therefore independent

of n, with the n dependence tending to zero inversely with n.

6. Summary and conclusions

Entanglement is essential for quantum information processes such as quantum teleportation. The
controlled SWAP test is a proposed method to detect and quantify entanglement for any n-qubit pure state.
We have investigated when it is practical to use and potentially more efficient than quantum state
tomography. In terms of the required number of copies of the test state, the c-SWAP test for entanglement
is more efficient for detecting entanglement for almost all states except two-qubit states. The average
number of copies required to detect the presence of entanglement can be as low as four for larger high
fidelity maximally entangled states. For perfect Bell states, it typically requires eight copies, and for states
that are not maximally entangled it can rise to a thousand or more, with more copies required the less
entangled the state is. The number of qubits n in the state has considerably less effect on this value, which in
fact decreases with increasing n, and so the number of copies scales extremely well with system size.
Detecting genuine n-qubit entanglement is more involved, and scales far less favourably with both n and the
amount of entanglement, but is feasible for small numbers of qubits.

It should be noted that the short gate sequence required for the c-SWAP test for entanglement is more
complicated than the single qubit rotations typically [2] required for quantum state tomography. Especially
for linear optics [31], additional ancillary resources are needed if a probabilistic set up is used, to teleport in
the gates, for example [9, 21]. In other settings however, for example Rydberg atomic qubits [36], the long
range interactions may facilitate the multi-qubit Toffoli gates [45], making the c-SWAP test more viable.

The test is also able to distinguish classes of entanglement in almost all cases (there is one case of three
qubits for which the test is fooled, but this requires 18% amplitude error in the generated state). The results
from a two-qubit test state are directly related to the concurrence of the state. Further, a multipartite
measure of entanglement has been constructed that is given by any state’s c-SWAP test results. Hence, the
c-SWAP test can be used to estimate amount of entanglement in the test state, though only suited to
achieving this with small highly entangled systems.

The suitability of the entanglement SWAP test for experimental implementation is highlighted by the
fact that various typical small deviations from ideal states all give second order errors for any number of

12
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qubits. This favourable error dependence allows the entanglement to be estimated accurately in a practical
set up.

Future work, beyond the results reported here, could investigate in more detail the application of the
controlled SWAP test to mixed states and other types of entangled states (qudits, coherent states). This
would expand on our consideration of corrupted, unbalanced, and unequal test and copy states, and
provide further information to support the practical application of the c-SWAP test for entanglement.
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Appendix A. Two-qubit probability results

For completely general test states from equation (1) where |A〉 �= |B〉:

P(|00〉C) =
1

4
[4(A00

2B00
2 + A01

2B01
2 + A10

2B10
2 + A11

2B11
2)

+ 2(A00B01 + A01B00)2 + 2(A00B10 + A10B00)2

+ 2(A01B11 + A11B01)2 + 2(A10B11 + A11B10)2

+ (A00B11 + A01B10 + A10B01 + A11B00)2 ] ,

P(|01〉C) =
1

4

[
2(A00B01 − A01B00)2 + 2(A10B11 − A11B10)2

+ (A00B11 − A01B10 + A10B01 − A11B00)2
]

,

P(|10〉C) =
1

4

[
2(A00B10 − A10B00)2 + 2(A01B11 − A11B01)2

+ (A00B11 + A01B10 − A10B01 − A11B00)2
]

,

P(|11〉C) =
1

4
(A00B11 − A01B10 − A10B01 + A11B00)2 (A.1)

If |A〉 = |B〉:

P(|00〉C) = 1 − (A00A11 − A01A10)2

= 1 − 1

4
C2

2,

P(|01〉C) = 0,

P(|10〉C) = 0,

P(|11〉C) = (A00A11 − A01A10)2

=
1

4
C2

2 (A.2)

where C2 is the concurrence.

Appendix B. Three-qubit probability results

For completely general test states where |A〉 = |B〉:

P
(
|000〉C

)
=

1

2

[
2
(
A000

4 + A001
4 + A010

4 + A011
4

+ A100
4 + A101

4 + A110
4 + A111

4
)

13



Quantum Sci. Technol. 6 (2021) 035002 S Foulds et al

+ 4A000
2(A001

2 + A010
2 + A100

2)

+ 4A011
2(A001

2 + A010
2 + A111

2)

+ 4A101
2(A001

2 + A100
2 + A111

2)

+ 4A110
2(A010

2 + A100
2 + A111

2)

+ 2(A000A011 + A001A010)2

+ 2(A000A101 + A001A100)2

+ 2(A000A110 + A010A100)2

+ 2(A001A111 + A011A101)2

+ 2(A010A111 + A011A110)2

+ 2(A100A111 + A101A110)2

+ (A000A111 + A001A110 + A010A101 + A011A100)2
]

,

P
(
|001〉C

)
= 0,

P
(
|010〉C

)
= 0,

P
(
|011〉C

)
=

1

2

[
2(A000A011 − A001A010)2

+ 2(A100A111 − A101A110)2

+ (A000A111 − A001A110 − A010A101 + A011A100)2
]

,

P
(
|100〉C

)
= 0,

P
(
|101〉C

)
=

1

2

[
2(A000A101 − A001A100)2

+ 2(A010A111 − A011A110)2

+ (A000A111 − A001A110 + A010A101 − A011A100)2
]

,

P
(
|110〉C

)
=

1

2

[
2(A000A110 − A010A100)2

+ 2(A001A111 − A011A101)2

+ (A000A111 + A001A110 − A010A101 − A011A100)2
]

,

P
(
|111〉C

)
= 0 (B.1)

For general GHZ-like test states where |A〉 �= |B〉, |A〉 = A000 |000〉+ A111 |111〉 and
|B〉 = B000 |000〉+ |111〉B111:

P
(
|000〉C

)
= A000

2B000
2 + A111

2B111
2

+
1

8
(A000B111 + A111B000)2,

P
(
|001〉C

)
=

1

8
(A000B111 − A111B000)2

= P
(
|010〉C

)
= P(|100〉C) = P

(
|111〉C

)
,

P
(
|011〉C

)
=

1

8
(A000B111 + A111B000)2

= P
(
|101〉C

)
= P

(
|110〉C

)
(B.2)

For general W-like test states where |A〉 �= |B〉, |A〉 = A001 |001〉+ A010 |010〉+ A100 |100〉 and
|B〉 = B001 |001〉+ B010 |010〉+ B100 |100〉:

P(|000〉C) = A001
2B001

2 + A010
2B010

2 + A100
2B100

2

+
1

4
[(A001B010 + A010B001)2 + (A001B100 + A100B001)2

+ (A010B100 + A100B010)2 ] ,
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P(|001〉C) =
1

4
[(A001B010 − A010B001)2

+ (A001B100 − A100B001)2 ] ,

P(|010〉C) =
1

4
[(A001B010 − A010B001)2

+ (A010B100 − A100B010)2 ] ,

P(|011〉C) =
1

4
(A001B010 + A010B001)2,

P(|100〉C) =
1

4
[(A001B100 − A100B001)2

+ (A010B100 − A100B010)2 ] ,

P(|101〉C) =
1

4
(A001B100 + A100B001)2,

P(|110〉C) =
1

4
(A010B100 + A100B010)2,

P(|111〉C) = 0. (B.3)

Appendix C. n-qubit probability results

For general unbalanced GHZ case |A〉 = |B〉 = α0|0〉n + α1|1〉n:

P(|0〉n
C ) = 1 − 2n−1 − 1

2n−2
α2

0α
2
1,

P(|even no. of 1s〉C) =
2n−1 − 1

2n−2
α2

0α
2
1. (C.1)

For general unbalanced W case |A〉 = |B〉 = a1 |00 . . . 1〉+ a2
∑n

j=2

∣∣0 . . . 1j . . . 0
〉

:

P(|0〉n
C ) = 1 − (n − 1)a2

2

(
a2

1 +
n − 1

2
a2

2

)
,

P(|exactly two 1s〉C) = (n − 1)a2
2

(
a2

1 +
n − 1

2
a2

2

)
. (C.2)

For general GHZ-like states where |A〉 �= |B〉, |A〉 = α0|0〉n + α1|1〉n and |B〉 = β0|0〉n + β1|1〉n:

P(|0〉n
C ) = α2

0β
2
0 + α2

1β
2
1 +

1

2n
(α0β1 + α1β0)2,

P(|odd no. of 1s〉C) =
1

2
− (α0β0 + α1β1)2,

P(|even no. of 1s〉C) =
2n−1 − 1

2n
(α0β1 + α1β0)2. (C.3)

For general W-like states where |A〉 �= |B〉, |A〉 =
∑n

i=1 ai |0 . . . 1i . . . 0〉, |B〉 =
∑n

j=1 bj

∣∣0 . . . 1j . . . 0
〉

:

P(|0〉n
C ) =

n∑
i=1

⎛
⎝a2

i b2
i +

1

8

n∑
j=1,j�=i

(aibj + ajbi)
2

⎞
⎠ ,

P(|exactly one 1〉C) =
1

4

n∑
i=1

n∑
j=1,j�=i

(aibj − ajbi)
2,

P(|exactly two 1s〉C) =
n∑

i=1

n∑
j=1,j�=i

1

8
(aibj + ajbi)

2. (C.4)

and the individual probabilities are:

P(|0 . . . 1i . . . 0〉C) = 1
4

∑n
j=1,j�=i (aibj − ajbi)2, P(

∣∣0 . . . 1i . . . 1j . . . 0
〉

C
) = 1

4 (aibj + ajbi)2.
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[9] Bennett C H, Brassard G, Cŕepeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown quantum state via dual

classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895–9
[10] Braunstein S L and Caves C M 1994 Statistical distance and the geometry of quantum states Phys. Rev. Lett. 72 3439–43
[11] Buhrman H, Cleve R, Watrous J and de Wolf R 2001 Quantum fingerprinting Phys. Rev. Lett. 87 167902
[12] Cabello A 2002 Bell’s theorem with and without inequalities for the three-qubit Greenberger–Horne–Zeilinger and W states

Phys. Rev. A 65 032108
[13] Chuang I L, Gershenfeld N and Kubinec M 1998 Experimental implementation of fast quantum searching Phys. Rev. Lett. 80

3408–11
[14] Dür W, Vidal G and Cirac J 2000 Three qubits can be entangled in two inequivalent ways Phys. Rev. A 62 062314
[15] Ekert A K 1991 Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661–3
[16] Ekert A K, Alves C M, Oi D K, Horodecki M, Horodecki P and Kwek L C 2002 Direct estimations of linear and nonlinear

functionals of a quantum state Phys. Rev. Lett. 88 217901
[17] Gao W-B et al 2010 Teleportation-based realization of an optical quantum two-qubit entangling gate Proc. Natl Acad. Sci. 107

20869–74
[18] Garcia-Escartin J C 2013 Swap test and Hong–Ou–Mandel effect are equivalent Phys. Rev. A 87 052330
[19] Gerke S, Vogel W and Sperling J 2018 Numerical construction of multipartite entanglement witnesses Phys. Rev. X 8 031047
[20] Gottesman D and Chuang I 2001 Quantum digital signatures (arXiv:quant-ph/0105032v2)
[21] Gottesman D and Chuang I L 1999 Demonstrating the viability of universal quantum computation using teleportation and

single-qubit operations Nature 402 390–3
[22] Gurvits L 2003 Classical deterministic complexity of Edmonds’ problem and quantum entanglement Proc. of the 35th Annual

ACM Symp. on Theory of Computing, STOC ’03 (New York: ACM) 10–9
[23] Gutoski G, Hayden P, Milner K and Wilde M M 2015 Quantum interactive proofs and the complexity of separability testing

Theory Comput. 11 59–103
[24] Gühne O, Lu C-Y, Gao W and Pan J-W 2007 Toolbox for entanglement detection and fidelity estimation Phys. Rev. A 76

030305(R)
[25] Harrow A and Montanaro A 2010 An efficient test for product states with applications to quantum Merlin–Arthur games

Proc.—Annual IEEE Symp. on Foundations of Computer Science, FOCS 633–42
[26] Harrow A and Montanaro A 2013 Testing product states, quantum Merlin–Arthur games and tensor optimization J. ACM 60

1–43
[27] Hillery M, Bužek V and Berthiaume A 1999 Quantum secret sharing Phys. Rev. A 59 1829–34
[28] James D, Kwiat P, Munro W and White A 2001 Measurement of qubits Phys. Rev. A 64 052312
[29] Joo J, Park Y-J, Lee J, Jang J and Kim I 2005 Quantum secure communication via a W state J. Korean Phys. Soc. 46 763–8

JKPS 46(4)
[30] Kang M, Heo J and Choi S 2019 Implementation of swap test for two unknown states in photons via cross-Kerr nonlinearities

under decoherence effect Sci. Rep. 9 6167
[31] Knill E, Laflamme R and Milburn G J 2001 A scheme for efficient quantum computation with linear optics Nature 409 46–52
[32] Moreau P-A, Toninelli E, Gregory T and Padgett M J 2019 Imaging with quantum states of light Nat. Rev. Phys. 1 367–80
[33] Nielsen M and Chuang I L 2010 Quantum Computation and Quantum Information 10th edn (Cambridge: Cambridge University

Press)
[34] Pati A K and Braunstein S L 2012 Role of entanglement in quantum computation J. Indian I. Sci. 89 295–302

IISC 89:3
[35] Popescu S and Rohrlich D 1997 Thermodynamics and the measure of entanglement Phys. Rev. A 56 R3319–21
[36] Saffman M 2016 Quantum computing with atomic qubits and Rydberg interactions: progress and challenges J. Phys. B: At. Mol.

Opt. Phys. 49 202001
[37] Shannon K, Towe E and Tonguz O K 2020 On the use of quantum entanglement in secure communications: a survey

(arXiv:2003.07907)
[38] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Experimental determination of entanglement

with a single measurement Nature 440 1022–4
[39] Walborn S, Souto Ribeiro P, Davidovich L, Mintert F and Buchleitner A 2007 Experimental determination of entanglement by a

projective measurement Phys. Rev. A 75 032338
[40] Walter M, Gross D and Eisert J 2017 Multi-partite entanglement (arXiv:1612.02437v2)

16

https://orcid.org/0000-0001-9714-2184
https://orcid.org/0000-0001-9714-2184
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0002-6551-3056
https://orcid.org/0000-0003-1083-2604
https://orcid.org/0000-0003-1083-2604
https://doi.org/10.1103/physreva.63.063803
https://doi.org/10.1103/physreva.63.063803
https://doi.org/10.1088/1367-2630/aac485
https://doi.org/10.1088/1367-2630/aac485
https://doi.org/10.1088/1367-2630/15/12/125020
https://doi.org/10.1088/1367-2630/15/12/125020
https://doi.org/10.1038/nature02608
https://doi.org/10.1038/nature02608
https://doi.org/10.1038/nature02608
https://doi.org/10.1038/nature02608
https://doi.org/10.1088/1367-2630/15/12/125004
https://doi.org/10.1088/1367-2630/15/12/125004
https://doi.org/10.1007/bf01011339
https://doi.org/10.1007/bf01011339
https://doi.org/10.1007/bf01011339
https://doi.org/10.1007/bf01011339
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.72.3439
https://doi.org/10.1103/physrevlett.72.3439
https://doi.org/10.1103/physrevlett.72.3439
https://doi.org/10.1103/physrevlett.72.3439
https://doi.org/10.1103/physrevlett.87.167902
https://doi.org/10.1103/physrevlett.87.167902
https://doi.org/10.1103/physreva.65.032108
https://doi.org/10.1103/physreva.65.032108
https://doi.org/10.1103/physrevlett.80.3408
https://doi.org/10.1103/physrevlett.80.3408
https://doi.org/10.1103/physrevlett.80.3408
https://doi.org/10.1103/physrevlett.80.3408
https://doi.org/10.1103/physreva.62.062314
https://doi.org/10.1103/physreva.62.062314
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.88.217901
https://doi.org/10.1103/physrevlett.88.217901
https://doi.org/10.1073/pnas.1005720107
https://doi.org/10.1073/pnas.1005720107
https://doi.org/10.1073/pnas.1005720107
https://doi.org/10.1073/pnas.1005720107
https://doi.org/10.1103/physreva.87.052330
https://doi.org/10.1103/physreva.87.052330
https://doi.org/10.1103/physrevx.8.031047
https://doi.org/10.1103/physrevx.8.031047
https://arxiv.org/abs/quant-ph/0105032
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.4086/toc.2015.v011a003
https://doi.org/10.4086/toc.2015.v011a003
https://doi.org/10.4086/toc.2015.v011a003
https://doi.org/10.4086/toc.2015.v011a003
https://doi.org/10.1103/physreva.76.030305
https://doi.org/10.1103/physreva.76.030305
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1103/physreva.59.1829
https://doi.org/10.1103/physreva.59.1829
https://doi.org/10.1103/physreva.59.1829
https://doi.org/10.1103/physreva.59.1829
https://doi.org/10.1103/physreva.64.052312
https://doi.org/10.1103/physreva.64.052312
https://www.jkps.or.kr/journal/view.html?uid=6933
https://www.jkps.or.kr/journal/view.html?uid=6933
https://doi.org/10.1038/s41598-019-42662-4
https://doi.org/10.1038/s41598-019-42662-4
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1038/s42254-019-0056-0
http://journal.library.iisc.ernet.in/index.php/iisc/article/view/105
http://journal.library.iisc.ernet.in/index.php/iisc/article/view/105
https://doi.org/10.1103/physreva.56.r3319
https://doi.org/10.1103/physreva.56.r3319
https://doi.org/10.1103/physreva.56.r3319
https://doi.org/10.1103/physreva.56.r3319
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://arxiv.org/abs/2003.07907
https://doi.org/10.1038/nature04627
https://doi.org/10.1038/nature04627
https://doi.org/10.1038/nature04627
https://doi.org/10.1038/nature04627
https://doi.org/10.1103/physreva.75.032338
https://doi.org/10.1103/physreva.75.032338
https://arxiv.org/abs/1612.02437


Quantum Sci. Technol. 6 (2021) 035002 S Foulds et al

[41] Wan Y et al 2019 Quantum gate teleportation between separated qubits in a trapped-ion processor Science 364 875–8
[42] Wang K, Wang X, Zhan X, Bian Z, Li J, Sanders B C and Xue P 2018 Entanglement-enhanced quantum metrology in a noisy

environment Phys. Rev. A 97 042112
[43] Werner R F 2001 All teleportation and dense coding schemes J. Phys. A: Math. Gen. 34 7081–94
[44] Wootters W K 2001 Entanglement of formation and concurrence Quantum Inf. Comput. 1 27–44
[45] Yu D, Gao Y, Zhang W, Liu J and Qian J 2020 Scalability and high-efficiency of an (n + 1)-qubit Toffoli gate sphere via blockaded

Rydberg atoms (arXiv:2001.04599)
[46] Zhang C, Chen J F, Cui C, Dowling J P, Ou Z Y and Byrnes T 2019 Quantum teleportation of photonic qudits using linear optics

Phys. Rev. A 100 032330

17

https://doi.org/10.1126/science.aaw9415
https://doi.org/10.1126/science.aaw9415
https://doi.org/10.1126/science.aaw9415
https://doi.org/10.1126/science.aaw9415
https://doi.org/10.1103/physreva.97.042112
https://doi.org/10.1103/physreva.97.042112
https://doi.org/10.1088/0305-4470/34/35/332
https://doi.org/10.1088/0305-4470/34/35/332
https://doi.org/10.1088/0305-4470/34/35/332
https://doi.org/10.1088/0305-4470/34/35/332
https://doi.org/10.26421/QIC1.1
https://doi.org/10.26421/QIC1.1
https://doi.org/10.26421/QIC1.1
https://doi.org/10.26421/QIC1.1
https://arxiv.org/abs/2001.04599&tnqx200b;
https://doi.org/10.1103/physreva.100.032330
https://doi.org/10.1103/physreva.100.032330

	The controlled SWAP test for determining quantum entanglement
	1.  Introduction
	2.  Background
	2.1.  Experimentally determining entanglement
	2.2.  The controlled SWAP test for equivalence

	3.  The controlled SWAP test for entanglement
	4.  The controlled SWAP test on ideal states
	4.1.  Bell, GHZ, and W states
	4.2.  Quantifying the amount of entanglement
	4.3.  Efficiency

	5.  Robustness against errors
	5.1.  Unbalanced
	5.2.  Unequal
	5.3.  Corrupted

	6.  Summary and conclusions
	Acknowledgments
	Data availability statement
	Appendix A.  Two-qubit probability results
	Appendix B.  Three-qubit probability results
	Appendix C.  -qubit probability results
	ORCID iDs
	References


