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Abstract
SNP data sets can be used to infer a wealth of information about natural populations, 
including information about their structure, genetic diversity, and the presence of loci 
under selection. However, SNP data analysis can be a time- consuming and challeng-
ing process, not in the least because at present many different software packages 
are needed to execute and depict the wide variety of mainstream population- genetic 
analyses. Here, we present SambaR, an integrative and user- friendly R package which 
automates and simplifies quality control and population- genetic analyses of biallelic 
SNP data sets. SambaR allows users to perform mainstream population- genetic analy-
ses and to generate a wide variety of ready to publish graphs with a minimum num-
ber of commands (less than 10). These wrapper commands call functions of existing 
packages (including adegenet, ape, LEA, poppr, pcadapt and StAMPP) as well as new 
tools uniquely implemented in SambaR. We tested SambaR on online available SNP 
data sets and found that SambaR can process data sets of over 100,000 SNPs and 
hundreds of individuals within hours, given sufficient computing power. Newly devel-
oped tools implemented in SambaR facilitate optimization of filter settings, objective 
interpretation of ordination analyses, enhance comparability of diversity estimates 
from reduced representation library SNP data sets, and generate reduced SNP panels 
and structure- like plots with Bayesian population assignment probabilities. SambaR 
facilitates rapid population genetic analyses on biallelic SNP data sets by removing 
three major time sinks: file handling, software learning, and data plotting. In addition, 
SambaR provides a convenient platform for SNP data storage and management, as 
well as several new utilities, including guidance in setting appropriate data filters. The 
SambaR source script, manual and example data set are distributed through GitHub: 
https://github.com/menno dejon g1986/ SambaR.
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1  |  INTRODUC TION

Modern- day population geneticists risk spending as much time 
studying computer software as studying their actual scientific ques-
tions. They also risk spending as much time generating plots as gen-
erating new data. These time sinks can negatively affect the quality 
of research outcomes, as they eat away time needed for (a) under-
standing the theoretical underpinnings of analysis methods and (b) 
interpretation of analysis outcomes.

Integration of computer programs into one single software 
pipeline removes the necessity of getting acquainted with the 
technicalities of each program and therefore promotes increased 
efficiency and, by avoiding incorrect usage, increased accuracy. 
Efficiency will be improved further if this integrative software 
package automatically translates the results into ready- to- publish 
graphs. For two reasons a good candidate for such a wrapper and 
plotting software is an R package: many tools for population- 
genetic analyses are written in R (R Core Team, 2019), and R con-
tains powerful graphing tools.

Here, we introduce the R package SambaR, which stands for: 
“Snp datA Management and Basic Analyses in R.” SambaR is a col-
lections of functions which increase the power of existing R tools for 
population- genetic analyses. SambaR aims to free users from the dis-
proportionate time investment which currently is needed for tasks 
related to (a) managing input and output files, (b) learning the trivi-
alities of computer software and (c) generating and polishing plots. 
SambaR automates the integrated usage of proven and widely used 
R packages for population genetic analyses and generates over 100 
ready- to- publish graphs to depict data quality control and analyses 
outcomes. The pipeline consists of less than 10 commands, which 
suffice to perform a wide variety of population genetic analyses on 
SNP data sets, including quality control, population structure anal-
yses, population differentiation analyses, genetic diversity analyses, 
and selection analyses. Users are guided through the workflow by an 
accompanying manual, as well as by built- in explicit error messages.

A major asset of SambaR is that the pipeline is designed with the 
aim to circumvent the trade- off between automation and customiza-
tion. By default, SambaR runs most analyses using different methods 
and/or varying filter and parameter settings, allowing users to ex-
plore the data and parameter space and to choose appropriate filter 
settings. This way SambaR enables rapid data processing without 
taking relevant choices and decisions away from the users.

Apart from streamlining population- genetic analyses, SambaR is 
also meant to provide a convenient and user- friendly platform for 
SNP data management. SambaR stores the input data in three data 
objects. Analysis outcomes are added to these existing data objects, 
rather than stored in additional data objects. Output tables and plots 
are automatically exported to subdirectories, categorized by analy-
sis type. In addition, SambaR contains tools which allow to subset 
(based on sample/locus names), subsample and intersect data sets 
(i.e., finding overlap between SNP data sets), and to detect small 
subsets of SNPs which are most informative with respect to popu-
lation structure.

Here, we describe SambaR and test the software on previously 
published SNP data sets. We also discuss new tools implemented in 
SambaR, including: (a) output plots which can help users to optimize 
their filtering settings, (b) a Bayesian population assignment (BPA) 
test, (c) the “distinctive clustering- score,” a metric for objective 
measurement of the distinctiveness of population clusters based on 
sample loadings on ordination axes, and (d) functions which extract 
and export reduced SNP panels of various sizes.

2  |  MATERIAL S AND METHODS

2.1  |  Technical details

SambaR is implemented as an R package and can run on any operat-
ing system. The software has been tested on Windows, Linux and 
Mac computers. SambaR will install up to 2 GB of dependencies (i.e., 
other R packages needed by SambaR for plotting and data analysis). 
Due to this dependency on other packages, for full use SambaR re-
quires recent R versions (currently 4.0.0 or higher).

2.2  |  SambaR pipeline

The SambaR pipeline consists of seven main functions (Figure 1, 
Table S1):

• The “getpackages” function installs and downloads dependen-
cies. Optionally users can edit an automatically generated control 
file (“mypackageslist.txt”) to prevent SambaR from attempting to 
install certain packages. The control file classifies packages into 
three categories: “essential,” “recommended,” and “optional.” 
Essential packages are required for SambaR to run without errors. 
Recommended packages are needed for key analyses.

• The “importdata” function uses the read.PLINK function of the 
adegenet package (Jombart, 2008; Jombart & Ahmed, 2011) to 
import a SNP data set (from binary PED/MAP format) into R and 
to store this data as a genlight object (Jombart, 2008) named 
“mygenlight.” Sample- specific and locus- specific information are 
stored in two auxiliary dataframes called “inds” and “snps,” re-
spectively (Figure 1). The function will incorporate in the “inds” 
dataframe sample information provided in an optional sample file. 
The function will also incorporate in the “snps” dataframe read 
depth and positional information found in optionally provided 
vcftools and STACKS output files. Monomorphic sites present in 
the input data file will be excluded from subsequent analyses.

• The “filterdata” function executes quality control. This function 
adds to the “inds” and “snps” dataframe boolean vectors (i.e., 
inds$filter, snps$filter and snps$filter2) which determine which 
samples and loci are included in subsequent analyses (Figure 1). 
Current filter options include: missing data per locus, missing 
data per sample, minor allele count per locus, locus specific de-
viation from HWE, read depth per locus, read depth per sample, 
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F I G U R E  1  Schematic overview of the SambaR pipeline. [Colour figure can be viewed at wileyonlinelibrary.com]
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transitions versus transversions, and, if genome locations are pro-
vided by the user, spacing between SNPs. Relatedness between 
samples is estimated by the kinship coefficient (Waples et al., 
2018) and by the KING- robust measure (Waples et al., 2018).

• The “findstructure” function uses various R packages to perform 
principal components analysis (PCA) and principal coordinates 
analysis (PCoA), multidimensional scaling (MDS), discriminant 
analysis of principal components (DAPC, Jombart et al., 2010), 
correspondence analyses (CA), admixture analyses (using the R 
package LEA), and in addition generates structure- like plots with 
Bayesian population assignment (BPA) probabilities (see below). 
PCoA analyses are performed on three different types of genetic 
distance estimates: Nei's genetic distance, Hamming's genetic 
distance, and pairwise sequence dissimilarity. If the user provides 
sample locations (i.e., geographical coordinates), SambaR also 
generates geographical maps and in addition runs Tess3r (Caye et 
al., 2018) to perform tessellation analyses.

• The “calcdistance” function generates population differentia-
tion measures for all pairwise population comparisons. These 
estimates include Dxy, FSTπ (Hudson et al., 1992), Nei's genetic 
distance and Weir and Cockerham (1984) FST, the latter two 
generated using functions of the StAMPP package (Pembleton 
et al., 2013). In addition to genome wide estimates, the function 
also generates locus specific FST estimates, using three different 
metrics (Nei et al., 1977; Cockerham & Weir, 1987; Wright, 1943, 
Supporting Information Methods). D statistics are generated 
using ABBA- BABA calculations described in Durand et al. (2011).

• The “calcdiversity” function performs 1D and 2D site frequency 
spectrum (SFS) analyses, calculates nucleotide diversity and pair-
wise sequence dissimilarity estimates, and screens the genome 
for runs of homozygosity (using the R package detectRUNS, 
Biscarini et al., 2018). If users provide the number of chromo-
somes to the nchroms flag (i.e., number of biggest scaffolds to 
include), SambaR will in addition generate karyotype plots (Gel & 
Serra, 2017) showing genome wide variation.

• The “selectionanalyses” function uses the R packages Fsthet 
(Flanagan & Jones, 2018), OutFLANK (Whitlock & Lotterhos, 
2015), PCadapt 4.1.0 (Luu et al., 2017, 2019) and GWDS (De Jong 
et al., 2021) to search for SNPs under balancing or diversifying 
selection. The function also executes Fisher's exact tests for as-
sociations between allele frequencies and population assignment.

2.3  |  Plotting

During execution of SambaR's main functions, results are automati-
cally exported into ready- to- publish plots in four different file for-
mats: eps, pdf, png, and, depending on the operating system, wmf. 
Layout settings, including font type, font size and colour coding 
matching population assignment, are coherent. Plots are generated 
with various settings allowing users to select plots according to per-
sonal preferences. Function arguments allow users to customize 

colour coding and font type, as well as the size and location of the 
legend. Default font and symbol sizes ensure readability even if plots 
are scaled down. Output files are stored in subdirectories named 
QC, Structure, Divergence, Diversity, Demography, Selection and 
Inputfiles. These subdirectories are located within a main directory 
called SambaR_output.

Several subsets of plots are automatically combined by SambaR 
into multitile figures and exported in the pdf format. For more ad-
vanced R users, SambaR provides a function to create custom multit-
ile figures with user defined combinations of SambaR plots.

2.4  |  List of R packages used by SambaR

Currently SambaR uses the following R packages to perform 
population- genetic analyses: adegenet (Jombart, 2008; Jombart & 
Ahmed, 2011), ape (Paradis & Schliep, 2018), detectRUNS (Biscarini 
et al., 2018), FactoMineR (Lê et al., 2008), Factoextra (Kassambara 
& Mundt, 2019), HybridCheck (Ward & Van Oosterhout, 2016), 
LEA (Frichot & François, 2015), OutFLANK (Whitlock & Lotterhos, 
2015), pcadapt (Luu et al., 2017, 2019), poppr (Kamvar et al., 2014), 
StAMPP (Pembleton et al., 2013), qvalue (Storey et al., 2019), tess3r 
(Caye et al., 2018), SNPRelate (Zheng et al., 2012), and zoo (Zeileis & 
Grothendieck, 2005).

For plotting, Sambar makes use of the R packages: circlize (Gu 
et al., 2014), colorspace (Zeileis et al., 2019), gplots (Warnes et al., 
2019), grid (Murrell, 2005), gridGraphics (Murrell & Wen, 2019), gri-
dExtra (Auguie, 2017), karyoploteR (Gel & Serra, 2017), mapplots 
(Gerritsen, 2018), migest (Abel, 2019), plot3D (Soetaert, 2017), plyr 
(Wickham, 2011), RColorBrewer (Neuwirth, 2014), raster (Hijmans, 
2019), rworldmap (South, 2011), scales (Wickham & Seidel, 2019), 
scatterplot3D (Ligges & Mächler, 2003), VennDiagram (Chen, 2018) 
and vioplot (Adler & Kelly, 2019).

2.5  |  Analyses outside of the R environment 
which are supported by SambaR

SambaR also facilitates the usage of software outside of R. These in-
clude Admixture (Alexander et al., 2009), Bayesass (Mussmann et al., 
2019), Bayescan (Foll & Gaggiotti, 2008), GCTA (Yang et al., 2011); 
PLINK (Chang et al., 2015; Gaunt et al., 2007; Purcell et al., 2007; for 
linkage disequilibrium, inbreeding and relatedness calculations) and 
Stairwayplot (Liu & Fu, 2015). SambaR does so by creating input files 
for these programs, such as site frequency spectrum vectors needed 
for Stairwayplot, and by generating plots from their output files.

2.6  |  Highlighted features of SambaR

In the sections above we described the SambaR pipeline. In the fol-
lowing we will highlight particular features of SambaR, which include 
population- genetic tools uniquely implemented in SambaR.
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2.6.1  |  Data filtering recommendations

As outlined above, the main purpose of SambaR's “importdata” func-
tion is to import SNP data into R. In addition, the “importdata” func-
tion also generates plots which users can consult for choosing filter 
settings (with regard to levels of missing data) appropriate for their 
research questions.

Users are recommended to execute population structure analy-
ses with a strict “snpmiss” filter that sets the maximum proportion 

of missing data of retained SNPs close to zero. This prevents dis-
tortion of ordination plots due to variation in levels of missing data 
between samples (Figure 2, Figures S1 and S2). The strictness of the 
SNP filter is however limited by the quality of the data, because a 
sufficient number of retained SNPs are needed to discern popula-
tion structure. The “Data_quality”- plot (Figure 2a) shows the number 
of retained SNPs as a function of missing data thresholds, and there 
by allows users to choose the minimum threshold that is needed to 
retain the desired number of SNPs.

F I G U R E  2  SambaR guides users choosing appropriate filter settings. SambaR output plots visualise the effect of filter settings on 
analyses outcomes, and thereby guide users towards selecting filter settings which return unbiased results, illustrated here using a RADseq 
data set of the island channel fox and the closely related mainland grey fox (Funk et al., 2016). (a) SambaR output plot depicting the number 
of retained SNPs and retained samples as a function of filter settings. Snpmiss stands for the maximum allowed proportion of missing data 
points per SNP. Indmiss stands for the maximum allowed proportion of missing data points per individual/sample). (b) SambaR output plot 
depicting sample heterozygosity against sample levels of missing data. Inclusion of samples with high proportions of missing data leads to 
underestimates of genetic diversity. (c) SambaR output plot depicting the outcome of principal coordinate analyses based on Hamming's 
genetic distance and using different SNP filter settings. Inclusion of SNPs with high levels of missing data leads to distorted PCoA plots, 
in which samples with high levels of missing data cluster towards the centre of the plot and samples with low levels of missing data cluster 
towards the plot edges. Colour coding according to Funk et al. (2016). The channel fox island populations are: Santa Catalina Island (sca, 
orange), Santa Cruz Island (sci, green), San Clemente Island (sli, yellow), San Miguel Island (smi, blue), San Nicolas Island (sni, red), and Santa 
Rosa Island (sri, purple). [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(c)

(b)

www.wileyonlinelibrary.com
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For genetic diversity analyses, SambaR users are recommended 
to exclude samples for which the heterozygosity estimates are prob-
ably biased by relatively high proportions of missing data. These 
samples can be identified using the “Heterozygosity_vs_missing-
ness” plot (Figure 2b).

SambaR performs population structure, diversity and differ-
entiation analyses on a thinned data set containing maximum one 
SNP per 500 bp (default settings). In contrast, selection analyses 
are performed on a nonthinned data set, because the detection of 
linked outlier SNPs strengthens inference about selection events. 
Although it is common practice to filter SNP data sets based on link-
age disequilibrium considerations, SambaR users interested in ge-
netic diversity and selection analyses are recommended to not thin 
their data set prior to importing the data into R, unless because of 
size limitations. Full, nonthinned, data sets facilitate the generation 
of dense Manhattan plots.

2.6.2  |  Pairwise sequence dissimilarity, nucleotide 
diversity (π), Watterson's theta and Dxy

The SambaR- function “calcpi,” which is invoked by several main 
functions, calculates for each pair of individuals pairwise sequence 
dissimilarity estimates (Supporting Information Methods). These 
estimates are subsequently used to calculate several dependent 
population- genetic measures, including nucleotide diversity (π), 
Watterson's theta, Tajima's D, FSTπ and Dxy (Supporting Information 
Methods).

SambaR generates estimates of genome wide diversity scores to 
facilitate comparisons of genetic diversity between SNP data sets. 

Users can enable this estimation by providing input value to the nr-
sites flag of the “calcdiversity” function. This input value should be 
an estimate of the total number of sequenced sites in the filtered se-
quencing read data set from which the SNP data set is derived. The 
calculation assumes that users did not select at maximum one SNP 
per read (pair), filtered their genotype file prior to extracting biallelic 
SNPs (not vice versa), and did not thin their data based on linkage 
disequilibrium calculations.

2.7  |  Analyses

Accurate execution of discriminant analyses of principle compo-
nents (DAPC, Jombart et al., 2010), as implemented in the “ade-
genet” package, depends on several parameters. These parameters 
include the number of principal components to retain, the number 
of clusters (K), and the inclusion or exclusion of a priori population 
structure information. SambaR explores DAPC parameter space by 
generating DAPC plots for various combinations of number of re-
tained principal components, number of retained clusters (by default 
two to six), and inclusion and exclusion of a prior population struc-
ture information (Figure 3). SambaR runs DAPC for five different val-
ues of retained principal components, one based on the a- score, and 
the other four corresponding to various percentages (i.e., 20, 50, 80 
and 95%) of explained variance.

To guide users in selecting the most appropriate DAPC plot, 
SambaR generates the following summary statistics plots:

• a- score as a function of number of retained PCs, generated by the 
function optim.a.score() (Figure S3)

F I G U R E  3  SambaR generates output plots for a range of settings, but leaves the final decision to the user. SambaR circumvents the 
trade- off between automation and customization by running analyses for a range of parameter settings. Afterwards, users can compare 
the output plots and select the output plots corresponding to the most appropriate setting. This exploration of parameter space is most 
exhaustive for DAPC analyses. By default, SambaR generates >50 output plot which depict the outcome of DAPC analyses given different 
combinations of parameter settings (including number of clusters, number of retained principal components, and inclusion of a priori 
population assignment information). The exploration of DAPC parameter space is here illustrated by a small subset of SambaR output plots 
for DAPC analyses on a SNP data set of 414 North American polar bears (Viengkone et al., 2017). (a) DAPC- plots depicting ordination axes 
1– 2 for K = 4, with a priori defined population assignment, and for 33 retained principal components (20% explained variance). B. Idem, 
but for ordination axes 1– 3. (c) DAPC- plots depicting ordination axes 1– 2 for K = 4, without a priori defined population assignment, and for 
238 retained principal components (80% explained variance). (d) Idem, but for ordination axes 1– 3. Comparison between plots makes the 
user aware that DAPC inferred clusters only agree with expected population structure if this information is provided a priori. Colour coding 
according to Viengkone et al. (2017). DS, Davis Strait (pink); FB, Foxe Basin (red); SH, Southern Hudson Bay (purple); WH, Western Hudson 
Bay (grey). [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

www.wileyonlinelibrary.com
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• The estimated number of successful predictions as a function of 
number of retained PCs (i.e., x- value for cross- validation, gener-
ated by the function xvalDapc(), Figure S3)

• Explained variance as a function of number of retained PCs 
(Figure S3)

• BIC- value as a function of the number of clusters (Figure S3)
• Heatmaps depicting the overlap between predefined populations 

and DAPC inferred clusters (Figure S4)

SambaR also performs a chi- squared test for the goodness of fit 
between a priori defined populations and DAPC inferred clusters for 
K equalling the number of a priori defined populations.

2.7.1  |  Selection of most informative SNPs

Depending on the study system, a relatively low number of highly in-
formative SNPs can be sufficient to assign individuals to populations 
(Von Thaden et al., 2020). These subsets of highly informative SNPs 
allow for low- cost determination of sample ancestry. Thus, there is a 
need for software to detect the most informative SNPs within a SNP 
data set. SambaR contains a function, invoked by the “findstructure” 

function, which detects SNPs with the highest standard deviation in 
population minor allele frequencies (given a predefined set of popu-
lations). Not included are SNPs for which data is lacking for one or 
more populations, nor SNPs of which the minor allele is missing in or 
more populations.

SambaR exports PED and MAP files of subsets of various sizes 
(50, 100, 150, and 250 SNPs) of these most informative SNPs, along-
side estimates of population allele frequencies. SambaR also gen-
erates PCoA plots (Figure 4) and Bayesian population assignment 
(BPA) test plots (Figure S5) showing population structuring inferred 
from these reduced SNP panels.

2.7.2  |  Bayesian population assignment test

SambaR contains a function, invoked by the “findstructure” func-
tion, which calculates for each individual the posterior probabil-
ity that this individual belongs to a set of predefined populations, 
using as input the population minor allele frequencies and in-
dividual genotypes. The question addressed by this Bayesian 
population assignment (BPA) test is: among a set of predefined 
populations, which population is most likely to be the origin of 

F I G U R E  4  SambaR generates small subsets of highly informative SNPs, which could be used for low- cost population assignment. SambaR 
generates subsets of SNPs which are highly informative with regard to an a priori defined population structure, and which could be used 
for the design of SNP panels aimed at low- cost population assignment of samples of unknown origin. Furthermore, SambaR calculates a so 
called “dc- score,” designed to objectively quantify the distinctiveness with which populations cluster away from each other in ordination 
plots. Low dc- scores are indicative of distinct clustering. The usefulness of these low information SNP panels and the dc- score is here 
illustrated for a ~ 22 K SNP data set of 394 coyotes (Canis latrans) sampled throughout the United States (Heppenheimer et al. 2018). 
(a) PCoA plots depicting population structure according to small subsets of randomly selected SNPs. Associated dc- scores are depicted 
above each plot. (b) PcoA plots depicting population structure according to small subsets of highly informative SNPs generated by SambaR. 
Associated dc- scores are depicted above each plot. Unlike subsets of randomly selected SNPs, small subsets of selected SNPs separate out 
populations distinctly. A subset of 125 informative SNPs generates a dc- score of 0.28, compared to 0.98 for a subset of 125 random SNPs. 
Colour coding according to Heppenheimer et al. (2018). [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

www.wileyonlinelibrary.com
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a particular individual? The test is similar to previously published 
methods (Baudouin et al., 2004; Peatkau et al., 1995), with minor 
modifications (see Supporting Information Methods for more 
details).

Because the BPA test assumes independency of loci, SambaR 
performs the calculations on a thinned data set (if genomic locations 
of SNPs are provided). By default, the thinned data set includes 
maximum 1 SNP per 500 bp. This threshold is arbitrary and can be 
changed by the user when running the “filterdata” function.

Also excluded from the calculation are all SNPs for which one 
of either allele is missing in one or multiple populations, because 
these loci make the assignment probability converge to 0 or 1 im-
mediately. A limitation of the BPA test is therefore that the test 
can only be applied to SNP data sets in which a sufficient number 
of SNPs have both alleles present in all populations. Depending 
on the study system, a few hundred biallelic SNPs might suffice 
(Figure S5).

The reliability of the BPA test depends on the precision of the 
allele frequency estimates, which in turn depends on sample sizes. 
SambaR users are therefore advised to exercise caution when in-
terpreting the BPA test results for data sets with a small or uneven 
number of individuals per population. Reliable estimation of popula-
tion allele frequencies generally requires 30 or more individuals per 
population (Fung & Keenan, 2014).

Another potential shortcoming of the BPA test is circular reason-
ing. This occurs if the population specific allele frequency estimates 
are calculated based on a data set which includes the individual for 
which the population assignment is being investigated. SambaR 
therefore recalculates population minor allele frequencies by ex-
cluding data for the investigated individual before running the BPA 
test (see Supporting Information Methods).

2.7.3  |  dc- score

SambaR aims to facilitate an objective interpretation of ordination 
analyses by calculating the “dc- score,” which we introduce here. 
The dc- score, or “distinct clustering”- score, measures the overlap 
between population clusters in a two- dimensional space defined by 
two ordination axes (by default the first and second). The score is 
calculated by dividing the mean Euclidian distance of samples from 
their population centre by the mean Euclidian distances between 
population centres (Figure S6, Supporting Information Methods). 
A dc- score close to zero indicates the absence of overlap between 
population clusters, whereas a dc- score greater than one indicates 
that the mean distance between population centres is smaller than 
the mean distance of samples to their population centre. Percentage 
of explained variance per ordination axis is not considered in the 
calculation. The dc- score is not a substitute to population differ-
entiation measures such as FST and Dxy. The single purpose of the 
dc- score is to objectively quantify the clustering of samples within 
ordination plots, to avoid subjective statements such as: “popula-
tions clearly clustered separately.”

3  |  RESULTS AND DISCUSSION

3.1  |  Data size limits and run time

To explore the data size limitations and run time of SambaR, we used 
SambaR to analyse online available whole genome sequencing (WGS) 
and reduced representation library (RRL) SNP data sets on three com-
puters with different capacities. The findings indicate that the run time 
of SambaR, and whether it completes without encountering memory 
allocation errors, mainly depends on the capacities of the computer 
(Table S2). The run time estimates (Table S2) can provide guidance for 
users to match computational capacity to the data set in question, or 
alternatively to filter down data sets to computational capacity.

On High Performance Clusters, SambaR can process data sets 
of more than 100.000 SNPs and more than hundred individuals 
within hours. On ordinary desktop computers, data sets containing 
both over 200 K SNPs and over 100 individuals are likely to result in 
memory allocation errors, depending on the memory dimensions of 
the computer. Data sets of less than 100 K SNP and less than 100 
individuals are typically processed in less than an hour on an aver-
age desktop computer (Table S2). Due to the data size limitations, 
SambaR cannot be applied to whole genome resequencing data sets 
(which typically contain millions of SNPs, even after stringent filter-
ing), unless the data is thinned.

3.2  |  Data filtering recommendations

We explored the effect of levels of missing data on the outcome of or-
dination analyses using a published RADseq SNP data set of the island 
channel fox (Urocyon littoralis, Funk et al., 2016). PCoA analyses plots 
based on Hamming's genetic distance using SNP data sets with a relaxed 
SNP filter threshold resulted in distorted ordination plots (Figure 2c), 
with sample loadings on ordination axes being a function of their propor-
tion of missing data points (Figure S1). This distortion was not observed 
for a relatively small data set of 700 SNPs, which was obtained after ex-
cluding all SNPs with more than one percent missing data points. Similar 
findings were observed when running principal component analyses 
(PCA, Figure S2). These findings support SambaR's recommendation to 
perform structure analyses with a relatively low number of high- quality 
SNPs rather than with a high number of low- quality SNPs.

For diversity analyses, in contrast, SambaR users are recom-
mended to use a data set which exhibits no relationship between the 
proportion of missing data points and heterozygosity per sample. 
For the island channel fox data set, it can be argued that individuals 
with more than ten procent missing data should be excluded from 
the analyses (Figure 2b).

3.3  |  DAPC analyses

We calculated the goodness of fit between a priori defined populations 
and DAPC inferred populations for a RADseq data set of 414 polar 
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bears (Ursus maritimus, Viengkone et al., 2017). DAPC analyses with 
33 retained principal components, K = 4, and with prior population in-
formation, resulted in a graph similar to Figure 1 in Viengkone et al. 
(2017). DAPC analyses with 238 retained principal components, K = 4, 
and without prior population information, resulted in a graph similar to 
Figure 2 in Viengkone et al. (2017). For both settings overlap between 
predefined populations and DAPC clusters was poor (Figure S3), and 
this was reflected in the highly significant goodness of fit test p- values 
(X2 = 298, df = 9, p = 0 and X2 = 278, df = 9, p = 0).

Chi- squared tests for goodness of fit between DAPC inferred 
and three a priori defined European roe deer populations (De Jong 
et al., 2020) resulted in nonsignificant p- values (X2 = 4.35, df = 4, 
p = 0.36 for both 20% and 80% explained variance), indicating DAPC 
inferred clusters generally corresponded to the predefined popula-
tion structure (Figure S4).

3.4  |  Selection of high informative SNPs and 
BPA test

We tested the power of reduced SNP panels to infer population struc-
ture in a data set of 394 coyotes (Canis latrans) sampled throughout 
the United States (Heppenheimer et al., 2018). SambaR generates 
these reduced SNP panels by selecting the SNPs with the highest 
standard deviation in minor allele frequency across populations. 
PCoA analyses indicated that random subsets of ≤500 SNPs gener-
ally gave poor power in resolving population structure (Figure 4). In 
contrast, PCoA analyses using small subsets of SNPs with the highest 
standard deviation in minor allele frequencies among populations, 
separated out predefined populations (Figure 4). Similar findings 
were observed when comparing the results of BPA tests on random 
and nonrandom SNP subsets (Figure S5). These findings illustrate 
that reduced SNP panels which are generated by selecting SNPs with 
high standard deviation in population minor allele frequencies, have 
the potential of low- cost population assignment.

3.5  |  dc- score

To evaluate the usefulness of the dc- score, we compared the dc- 
score of the PCoA analyses on random and selected SNP subsets of 
the coyote data set (Heppenheimer et al., 2018). A strong correlation 
was observed between dc- score and the size of the SNP data set, 
ranging from 0.34 for 1,000 SNPs to 0.98 for 125 SNPs (Figure 4). 
For subsets comprised of most informative SNP's, the dc- score was 
less dependent on number of retained SNPs, and ranged between 
0.24 for 500 SNPs and 0.28 for 125 SNPs (Figure 4).

4  |  CONCLUSION

SambaR facilitates rapid population genetic analyses on biallelic SNP 
data sets by removing three major time sinks: file handling, software 

learning, and data plotting. In addition, SambaR provides a conveni-
ent platform for SNP data storage and management, guides users to 
adapt appropriate filter settings with regard to levels of missing data, 
and provides new tools. These newly developed utilities allow for 
generating reduced SNP panels, for generating structure- like plots 
with Bayesian populations assignment probabilities, and for objec-
tive interpretation of ordination analyses using the so called “distinct 
clustering”- score.
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