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Collective effects in the photon statistics of thermal atomic ensembles
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We investigate the collective scattering of coherent light from a thermal alkali-metal vapor with temperatures
ranging from 350 to 450 K, corresponding to average atomic spacings between 0.7λ and 0.1λ. We develop
a theoretical model treating the atomic ensemble as coherent, interacting, radiating dipoles. We show that
the two-time second-order correlation function of a thermal ensemble can be described by an average of
randomly positioned atomic pairs. Our model illustrates good qualitative agreement with the experimental
results. Furthermore, we show how fine-tuning of the experimental parameters may make it possible to explore
several photon statistics regimes.
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I. INTRODUCTION

Since the pioneering experiment carried out by Hanbury
Brown and Twiss in 1956 [1,2], the study of photon statis-
tics has been of great importance in understanding various
phenomena in quantum optics. More recently, control of
light at few-photon levels has become critical to quantum
technologies, where different applications require different
regimes. One such regime is characterized by strong anti-
bunching, working towards the development of single-photon
sources. Such sources have many applications in quantum
computation, simulation, and sensing [3–5]. Another regime
is characterized by strong photon bunching, and sources dis-
playing this characteristic have technological applications in
imaging and interference experiments [6–9]. A common way
to characterize and classify a light field is by measuring
its second-order correlation function g(2)(τ ). Such studies
have been made for atomic beams [10], cold atoms [11–13],
thermal atomic vapor cells [14], and solid-state systems
[15]. Antibunched sources have sub-Poissonian statistics with
g(2)(0) � 1, while bunched sources have super-Poissonian
statistics with g(2)(0) � 1. An ideal thermal source has
g(2)(0) = 2, and such ideal or pseudo-thermal statistics have
been demonstrated in spinning glass discs [16,17], cold atoms
[13,18], and hot atomic vapors [14,19,20]. Conversely, recent
efforts in search of strongly antibunched sources have culmi-
nated in such sub-Poissonian statistics being measured for a
wide variety of sources, including cold atoms [21], Rydberg
atoms [22], single ions [23], and molecules [24,25], quan-
tum dots [26], solid-state sources such as nitrogen-vacancy
centers (NVCs) [27], and thermal vapors [28–30]. However,
there are very few demonstrations of both bunched and an-
tibunched regimes in a precise and controlled manner [25].
Ideally, a single system would be used to cross over between
regimes through tuning experimental parameters. Many ex-
perimental teams have focused on trapped atoms to achieve
such cross-over [31,32]. However, room temperature atomic

vapor experiments have the advantage of being simpler, less
expensive, and, most importantly, more compact and scalable.
Producing a full many-body description of these systems,
especially in the case of a dense atomic medium, nevertheless
remains a challenge [14,33,34]

Light propagation and light-matter interaction in dense
atomic samples are rich areas of study. The interplay between
matter and light gives rise to novel concepts, as introduced
in Dicke’s seminal work [35]. Important effects arise from
the dipole-dipole interactions, such as collective level shifts
and line broadening. As a consequence of the strong dipole-
dipole interactions, the behavior of an ensemble of N atoms
cannot be described by summing the response of a single
atom N times. Previous work has treated the subject of pho-
ton statistics for ensembles of two or more two-level atoms.
In Ref. [36], for example, the authors treated each atom as
interacting with the source field independently of the other
surrounding atoms and found substantial differences from the
single atom treatment. The appearance of nonclassical corre-
lations in the radiation of two atoms that are coherently driven
by a continuous laser source occurs even without any inter-
atomic interaction [37]. Several theoretical approaches can be
used to treat the system, including dipole-dipole interactions.
In Ref. [38], a dressed-atom approach to resonance fluores-
cence in intense laser fields was presented. It is found that the
inclusion of dipole-dipole interactions changes the spectrum
of the two-atom system considerably from that of a single
atom. For a two-atom system, both photon bunching and
antibunching can occur in the scattered radiation [39]. The co-
operative behavior and the dipole-dipole interaction are shown
to act to diminish the photon antibunching [40], while squeez-
ing can also occur in two-atom resonance fluorescence [41].
In these previous works, the treatment of two-atom systems
assumed that both atoms experienced the same electromag-
netic field, and their relative distance remained constant over
the radiation process. Although these assumptions simpli-
fied both analytical and numerical treatments, they were not
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fulfilled in realistic experiments. Even though numerous the-
oretical efforts have been made over the years, experimental
demonstrations that explore the temporal photon correlations
from a thermal vapor have been elusive. One study [14] in-
vestigated the photon statistics of a thermal vapor at different
temperatures. However, the results presented were strongly
influenced and complicated by rescattering due to the high
optical depth attained at higher temperatures in a conven-
tional millimeter-scale vapor cell. The confinement regimes
possible within nanocells substantially eliminated the issue of
rescattering, and thus, with respect to this paper, it is possible
to experimentally access previously unstudied high-density
regimes in the photon statistics of thermal vapors.

In this article, we study theoretically a dense thermal cloud
of rubidium atoms confined in a vapor cell. We closely follow
a methodology that includes dipole-dipole interactions and
considers that the atoms experience different intensities and
phases of the driving field, as described in Ref. [42]. Further-
more, in our study, we average the behavior of many possible
interatomic separations between the atomic pairs. This is
equivalent to studying the collective effects for an idealized
thermal vapor consisting of a random distribution of atoms
moving with different velocities. We discuss and illustrate
how these theoretical predictions relate to experimental obser-
vations of a nanoscale thermal vapor’s photon statistics with
varying density, as reported in Ref. [43]. The second-order
correlation function gives insight into the quantum nature of
the source, as has been probed experimentally. We show that
by controlling the atomic density, driving, and detuning, it
is possible to explore several regimes in the thermal vapor
photon statistics.

II. THEORETICAL MODEL

A. Two-atom master equation

We wish to analyze the dynamics of a dense thermal atomic
vapor. To investigate its photon statistics, we consider two
two-level atoms, at fixed positions r1 and r2 (where we also
define r12 = r1 − r2), with dipole moment deg for ground state
|g〉 and excited state |e〉, and transition frequency ω0. Note
this is a simplification of real alkali-metal atoms which are
multilevel, however, it is possible to isolate a particular level
using large magnetic fields [44].

The atoms are driven by an external laser field with
wave vector kL. In a running-wave laser field, the coupling
strength experienced by the ith particle is described by �i =
�R exp(−ikL · ri ) where �R is the maximum Rabi frequency
and ri is the atomic position vector. For an atomic vapor, loss
of energy from an excited atom can occur via spontaneous
emission or inelastic collisions. Elastic collisions may also
occur, inducing only a change of phase of induced electronic
oscillations. For the sake of simplicity, we assume that colli-
sions between atoms are not important and the only dissipative
terms are due to the spontaneous decays of the levels |e〉1,2

at a rate �. The Hamiltonian Ĥ that describes the system
is composed of three terms: the unperturbed Hamiltonian of
the atoms, the dipole-dipole interaction between the atoms,
and the coupling between the driving field and the atoms.
The dynamics of the system will be described by the reduced

atomic density operator ρ. Following closely Refs. [42,45],
the master equation can be written as

∂ρ

∂t
= − iω0

2∑
i=1

[
σ z

i , ρ
] − i

2

∑
i �= j

gi j[σ
+
i σ−

j + H.c., ρ]

+ i

2

2∑
i=1

[�i σ
+
i exp (iωLt ) + H.c., ρ]

−
2∑

i, j=1

γi j (σ
+
i σ−

j ρ + ρ σ+
i σ−

j − 2σ−
j ρ σ+

i ), (1)

where σ+
i = |ei〉〈gi| and σ−

i = |gi〉〈ei| are the usual raising
and lowering operators for the ith atom, 2γii = 2� is the Ein-
stein A coefficient for spontaneous emission from the single
atoms, and γi j (i �= j) and gi j are the collective parameters
describing the damping rate and interatomic coupling that
arises from the mutual influence of the atoms through the
electromagnetic field [see Appendix A for more detail]. By
solving the master equation for the steady state, we determine
a set of coupled equations of motion for the average values of
the atomic operators and atomic correlations [42] that can be
written in a vector form [see Appendix B for more detail]

Ṡ(t ) = M S(t ) + b, (2)

where M is a 15 × 15 matrix, S(t ) is a column vector,
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1 σ̃−
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, (3)

with

σ̃±
i (t ) = σ±

i exp (∓iωLt ), (4)

and

b≡
(

− i�∗
1

2
,

i�1

2
,− i�∗

2

2
,

i�2

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)T

,

(5)

where the T indicates “transpose.”

B. Photon statistics g(2)(t )

The radiative properties of the atomic system can be char-
acterized using the second-order correlation function g(2)(τ ).
The study of it reveals directly if a field is quantum or
classical. Coherent light has Poissonian statistics and is char-
acterized by g(2)(τ ) = 1. In a thermal (bunched) case, the
magnitude of fluctuations is greater than that for a coherent
state; g(2)(τ ) > 1, and the emitted light has super-Poissonian
statistics. In opposition, for g(2)(τ ) < 1 or antibunched light,
the photons have sub-Poissonian statistics. The most fun-
damental light source is an emitter of single photons, that
is, an emitting field that emits a single photon at a time,
corresponding to g(2)(0) = 0. To determine the photon statis-
tics at position R, we estimate the electric field operator
Ê(+)(R, t ) = Ê(+)

f (R, t ) + Ê(+)
sf (R, t ), where Ê(+)

f (R, t ) is the
incident field and Ê(+)

sf (R, t ) is the radiation field of the atomic
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FIG. 1. Scheme for the geometry for the observation of intensity
correlations. The photon statistics are considered to be measured at
a point in the far-field zone of the radiation emitted by the atomic
system (R1,2 � r12, λ, R̂ = R̂1 = R̂2). For simplicity, we consider
the direction of observation along the z axis and the driving field
kL = (kL, 0, 0).

dipole moment, known as the source-field term. For an atom at
position ri, the source-field term in the far field, k|R − ri| � 1
for all i (see Fig. 1), is given by

Ê(+)
sf (R, t ) = −k2

(
deg × R̂

) × R̂

4πε0r

2∑
i=1

e−ikR̂·riσ−
i

(
t − R

c

)
.

(6)

Therefore, the source-field expression relates the scattered
electric field to the properties of the atomic system. Detailed
calculations show that the autocorrelation function for two
laser driven two-level atoms is given by [45]

g(2)(R1, R2; t, t + τ ) = G(2)(R1, R2; t, t + τ )

G(1)(R1, t )G(1)(R2, t + τ )
, (7)

which is a measure of the probability of detecting a photon at
time t + τ at position R2, assuming the detection of a previous
emission having occurred at time t at position R1. In experi-
ments, the photon statistics are usually characterized by the
steady-state second-order correlation function g(2)

ss (t → ∞).
As in our study the correlation function is measured at a

point in the far-field zone then we consider R̂ = R̂1 = R̂2 and
R̂ = R/R becomes the direction of observation (see Fig. 1).
The first- and second-order correlation functions are defined
as

G(1)(R, t )

f (R)
=

2∑
i, j=1

〈σ+
i (t ) σ−

j (t )〉 exp(ikR̂ · ri j ) (8)

and

G(2)(R; 0, t )

f 2(R)
=

2∑
i, j,k,l=1

〈
σ+

i (0) σ+
k (t ) σ−

l (t ) σ−
j (0)

〉

× exp{ik[R̂ · (ri j + rkl )]}, (9)

where f (R) is a constant which depends on the geometry
of the system, such as the angle between the observation

direction and the atomic dipole moment. The first-order cor-
relation function for two atoms reduces to

G(1)(R, t )

f (R)
= 〈σ+

1 (t ) σ−
1 (t )〉 + 〈σ+

2 (t ) σ−
2 (t )〉

+ 〈σ+
1 (t ) σ−

2 (t )〉 exp(ikR̂ · r12)

+ 〈σ+
2 (t ) σ−

1 (t )〉 exp(−ikR̂ · r12). (10)

The two-time second-order correlation function G(2)(R; 0, t )
yields terms of different forms. Following the argu-
ments in Ref. [18]: (i) 〈σ+

j (0) σ+
j (t ) σ−

j (t ) σ−
j (0)〉,

i.e., terms with the same index, which correspond
to the single-atom contributions; (ii) for i �= j,
〈σ+

j (0) σ+
i (t ) σ−

i (t ) σ−
j (0)〉 = 〈σ+

j (0) σ−
j (0) σ+

i (t ) σ−
i (t )〉

and (iii) 〈σ+
i (0) σ+

j (t ) σ−
i (t ) σ−

j (0)〉 are terms that involve
two different atoms and that can be solved following an
appropriate form of the quantum regression theorem [46];
(iv) terms with i �= j in the form 〈σ+

i (0) σ+
i (t ) σ−

j (t ) σ−
j (0)〉

are related to the anomalous correlation, which, for a thermal
cloud, vanish on time averaging [18]; and, finally, (v)
〈σ+

i (0) σ+
j (t ) σ−

k (t ) σ−
i (0)〉, and the various permutations

thereof, drop out on time averaging due to the their random
phases [18]. Combined, this leads to

G(2)(R; 0, t )

f 2(R)
= 〈σ+

1 (0) σ+
1 (t ) σ−

1 (t ) σ−
1 (0)〉

+ 〈σ+
2 (0) σ+

2 (t ) σ−
2 (t ) σ−

2 (0)〉
+ 〈σ+

1 (0) σ+
2 (t ) σ−

1 (t ) σ−
2 (0)〉

+ 〈σ+
2 (0) σ+

1 (t ) σ−
2 (t ) σ−

1 (0)〉
+ 〈σ+

2 (0) σ+
1 (t ) σ−

1 (t ) σ−
2 (0)〉

+ 〈σ+
1 (0) σ+

2 (t ) σ−
2 (t ) σ−

1 (0)〉. (11)

In Ref. [47], the exact dynamics of a disordered three-
dimensional (3D) gas of up to N = 5 atoms was solved.
However, in our case, as N � 1, solving the exact dynamics of
the system would become rather complex, as the dimensions
of the density matrix ρ grow with 2N × 2N . To overcome
this limitation, we will solve the dynamics for two random
pairs and average the photon statistics of multiple different
random pairs. In the limit of many atoms, the first two terms
in the equation, which represent the single-atom contributions,
become relatively unimportant compared to the two-atoms’
contributions. However, if we calculate the photon statistics
by averaging over multiple pairs, this would, by default, lead
to (N − 1) counting of the single-atom contributions, which
disagrees with our previous statement. To correct this over-
counting, as we consider a large number of atoms, we neglect
in our calculations the single-atom contributions when we
calculate G(2)(R; 0, t ), which therefore simplifies to

G(2)(R; 0, t )

f 2(R)
= 〈σ+

1 (0) σ+
2 (t ) σ−

1 (t ) σ−
2 (0)〉

+ 〈σ+
2 (0) σ+

1 (t ) σ−
2 (t ) σ−

1 (0)〉
+ 〈σ+

2 (0) σ+
1 (t ) σ−

1 (t ) σ−
2 (0)〉

+ 〈σ+
1 (0) σ+

2 (t ) σ−
2 (t ) σ−

1 (0)〉. (12)
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Finally, we must also consider the different terms contributing to the denominator in Eq. (7),

G(1)(R, 0) G(1)(R, t )

f 2(R)
= [〈σ+

1 (0) σ−
1 (0)〉 + 〈σ+

2 (0) σ−
2 (0)〉 + 〈σ+

1 (0) σ−
2 (0)〉 exp(ikR̂ · r12) + 〈σ+

2 (0) σ−
1 (0)〉 exp(−ikR̂ · r12)]

× [〈σ+
1 (t ) σ−

1 (t )〉 + 〈σ+
2 (t ) σ−

2 (t )〉 + 〈σ+
1 (t ) σ−

2 (t )〉 exp(ikR̂ · r12) + 〈σ+
2 (t ) σ−

1 (t )〉 exp(−ikR̂ · r12)].
(13)

For a thermal vapor, due to averaging over the essentially random exp(±ikR̂ · r12) and exp(±2ikR̂ · r12) phase terms, this can
be reduced to

G(1)(R, 0) G(1)(R, t )

f 2(R)
= 〈σ+

1 (0) σ−
1 (0)〉〈σ+

1 (t ) σ−
1 (t )〉 + 〈σ+

2 (0) σ−
2 (0)〉〈σ+

2 (t ) σ−
2 (t )〉 + 〈σ+

1 (0) σ−
1 (0)〉〈σ+

2 (t ) σ−
2 (t )〉

+ 〈σ+
2 (0) σ−

2 (0)〉〈σ+
1 (t ) σ−

1 (t )〉 + 〈σ+
1 (0) σ−

2 (0)〉〈σ+
2 (t ) σ−

1 (t )〉 + 〈σ+
2 (0) σ−

1 (0)〉〈σ+
1 (t ) σ−

2 (t )〉. (14)

Moreover, in the limit of many atoms, we similarly neglect in our calculation the single-atom contributions from our pair
averaging, considering only the terms

G(1)(R, 0) G(1)(R, t )

f 2(R)
= 〈σ+

1 (0) σ−
1 (0)〉〈σ+

2 (t ) σ−
2 (t )〉 + 〈σ+

2 (0) σ−
2 (0)〉〈σ+

1 (t ) σ−
1 (t )〉 + 〈σ+

1 (0) σ−
2 (0)〉〈σ+

2 (t ) σ−
1 (t )〉

+ 〈σ+
2 (0) σ−

1 (0)〉〈σ+
1 (t ) σ−

2 (t )〉. (15)

Thus, we have the first- and second-order correlation functions expressed in terms of the atomic operator correlation functions.
We can now directly apply our steady-state solutions of the atomic operators to calculate the photon statistics of the system

Sss ≡ S(t → ∞) = −M−1b. (16)

However, the solution to the master equation only yields single time averages; to find the equation of motion for multitime
vectors we must take the single time equation of motion, multiplying on the left-hand side by σ+

i (0) and on the right by σ−
j (0)

[46]:
d

dt
〈σ+

i (0) S(t ) σ−
j (0)〉 = M〈σ+

i (0) S(t ) σ−
j (0)〉 + 〈σ+

i (0) σ−
j (0)〉b,

= M[〈σ+
i (0) S(t ) σ−

j (0)〉 + 〈σ+
i (0) σ−

j (0)〉M−1b]. (17)

The formal solution to this equation is given by

〈σ+
i (0) S(t ) σ−

j (0)〉 = −〈σ+
i σ−

j 〉ssM−1b + exp(Mt )[〈σ+
i S σ−

j 〉ss + 〈σ+
i σ−

j 〉ssM−1b],

= exp(Mt )〈σ+
i S σ−

j 〉ss + 〈σ+
i σ−

j 〉ss[exp(Mt ) − 1]M−1b. (18)

Inserting this solution back into the expression determined for G(2)(R; 0, t ) in Eq. (12), confirms that G(2)(R; 0, t = 0) = G(2)
ss (R)

(see Appendix C for more detail).

Please note that, in this study, g(2)(τ ) accounts for all
the emitted photons regardless of their frequencies. In our
envisaged experiment, the photodetection setup is not consid-
ered to discriminate between the different-frequency photons
over the relevant frequency range. While it is true that in a
thermal vapor the emitted photons will in general be sub-
ject to Doppler shifts, broadening their frequency spectrum,
the spectral response typically has a Doppler width of order
1 GHz, whereas photodetectors generally have a much larger
bandwidth (commonly spanning the visible and near-infrared
regime). While filters are often used experimentally to block
stray light, these generally have bandwidths of order 10 nm,
relative to which the Doppler width can still be considered
insignificant. We note that the Doppler shift will also have
a directional dependence, in that such an effect should be
minimal when considering scattering in the forward direction.
If, as is considered to be the case here, we do not discriminate
between photons of different frequencies, averaging over the
random orientations of the dipoles means that we do not
observe any directional dependence, however (in Fig. 1 the

photodetector is oriented perpendicular to the propagation
direction of the driving laser beam, for example). We also note
that having a very narrow band photon source is not always
an advantage; this, for example, requires the photons to be
“long” in the time domain. Nevertheless, if it were desirable
to study the statistics of photons within a very narrow range
of frequencies, this could be done by setting a narrow filter
about a frequency within the spectrum of the source and
recalculating the photon statistics following Refs. [48,49].

III. NUMERICAL RESULTS

The purpose of our studies is to model the first- and second-
order correlation functions of the electromagnetic field at a
point R in the far-field zone of the radiation emitted by the
atomic system (see Fig. 1). In the case of the rubidium D2
line of interest in this paper, the atomic transition wavelength
is λ = 780 nm, and the decay rate is � = 2π × 6 MHz. We
give our numerical results in units of decay rate � and wave-
length λ, however, making them in principle more general.
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One of the advantages of working with alkali-metal vapors
is the broad control over the number density obtainable by
tuning the cell’s temperature [50]. When dealing with thermal
vapors, the atoms are not static, as they collide with each
other and with the surface of the cell enclosing the vapor.
When an atom hits a surface, two things can happen: the
atom bounces back from the surface elastically or sticks to the
surface for a certain time before flying away. Atom-surface
interactions often cannot be easily understood or controlled,
and influence the atomic adsorption or desorption dynamics.
These in general directly impact the atomic density and its
relation to temperature. For simplicity, however, we neglect
explicit consideration of such effects in this paper.

The expected photon statistics of the thermal vapor are
calculated via a Monte Carlo simulation. Knowing the tem-
perature of the vapor, we can compute the atomic number
density, N . This is determined from the vapor pressure p, i.e.,
the gaseous phase’s pressure in equilibrium with a solid or
liquid bulk of the same material [51], and the temperature T .
The vapor pressure is given by

log10 p = 2.881 + 4.312 − 4040

T
, (19)

and the atomic number density by

N = 133.323p

kBT
,

for the liquid phase of rubidium where kB is the Boltzmann
constant. For a random 3D distribution of atoms, the spacing
between the atoms r has the distribution [52]

W3D(r) = 4πNr2e−4π/3Nr3
. (20)

The average distance between the atoms can then be found
from the atomic number density to be

rav =
∫ ∞

0
rW (r)dr ≈ 5

9
N−1/3. (21)

We can now randomly place two atoms inside a cubic box,
(0, L) × (−L/2, L/2) × (−L/2, L/2), the size of which en-
sures the average spacing. Moreover, we set a minimum
distance at which the two atoms can be placed at, i.e., if an
atom is at the center of a sphere, there will be at most one
other atom within a distance that depends on the interaction
strength and the mean relative velocity of the atoms. For our
simulations, we set this minimum possible distance between
the atoms to be 0.01λ, where, beyond that, other perturbations
to the model should be considered.

The atomic motion will also introduce Doppler broadening
of absorption lines from the natural linewidth (to account
for such effects in our numerical simulations, a random ve-
locity is attributed to each particle following a probability
based on the Boltzmann distribution, which is equivalent to
randomly attributing a laser detuning to each atom [53,54]).
Thus, to mimic the effects of temperature, we give each atom
an individual effective detuning. The average detuning is set
av/�; in our numerics i can then have any value on the
interval i = [av − 5 �, av + 5 �] according to probabili-
ties based on the Boltzmann distribution. However, although
we include the Doppler effect on the excitation, in our model
we neglect atomic motion during the emission. Having the

FIG. 2. Photon statistics for multiple atomic pairs in a running-
wave laser field with different driving frequencies, where we fixed
the average values of detuning for both atoms at av/� equal to
zero and T = 380 K (or 〈r12/λ〉 ∼ 0.35). (a) g(2)(τ�) as a function
of time for different driving Rabi frequencies �R/� = 5, 10, 15,
50. (b) g(2)(τ� = 0) and (c) first peak FWHM of the g(2)(τ�) as
functions of different driving Rabi frequencies. For each data point,
we run the simulation over 1500 pairs. Our units are chosen such that
the quantities are scaled by λ or �.

detector placed at infinity, the movement of the atom during
emission can be safely neglected; if the atom moves outside
the detector spot it will not contribute to the photon statis-
tic measurements. Having set the vapor’s temperature, we
compute the atomic density and, thus, the average distance
between two atoms. We apply Eq. (7) for a pair of atoms
randomly placed inside a cubic box that ensures the defined
average spacing, and fixing the driving direction along the x
direction (see Fig. 1). This process is repeated and averaged
over 1500 different realizations.

The presented model predicts varied behavior for the
photon statistics for a single pair of atoms under different
experimental conditions. We numerically simulated g(2)(τ ) for
different driving (see Fig. 2), temperatures (see Fig. 3), and

013719-5



RIBEIRO, CUTLER, ADAMS, AND GARDINER PHYSICAL REVIEW A 104, 013719 (2021)

FIG. 3. Photon statistics for multiple atomic pairs in a running-
wave laser field with �R/� = 20, where we fixed the average values
of detuning for both atoms at av/� equal to zero, for different
temperatures. (a) g(2)(τ�) as a function of time for different temper-
atures T = 450 K, 425 K, 400 K, 380 K, 370 K, 360 K, and 350 K.
(b) g(2)(τ� = 0) and (c) first peak FWHM of the g(2)(τ�) as func-
tions of different averaged inter-atomic distances (or, equivalently,
temperature) for multiple atomic pairs. For each data point, we run
the simulation over 1500 pairs. Our units are chosen such that the
quantities are scaled by λ or �.

detuning (see Fig. 4). From the time evolution of the photon
statistics, it is possible to retrieve g(2)(τ = 0) and estimate the
full width at half maximum (FWHM) of the first oscillation.
Periodic oscillations are predicted in the photon statistics of
a thermal gas for all our numerical simulations. These are
related to the coherent Rabi oscillations that the two-level
atoms undergo. In our model, the atoms are driven at the same
frequency and are more likely to emit at the same regular
interval with a periodicity related to the inverse of the Rabi
frequency. In an experimental configuration where the spatial
profile of the driving laser is relevant, these oscillations will
be difficult to observe, and the multilevel nature of real atoms
may add further complications. We observe that the photon

FIG. 4. Photon statistics for multiple atomic pairs in a running-
wave laser field with �R/� = 20, where we fixed the average values
of detuning for both atoms at av/� and T = 380 K (or 〈r12/λ〉 ∼
0.35). (a) g(2)(τ�) as a function of time for different averaged detun-
ings av/� = 0, 5, 10, and 15, similar results obtained for negative
values of detuning. (b) g(2)(τ� = 0) and (c) first peak FWHM of the
g(2)(τ�) as functions of different averaged detunings. For each data
point, we run the simulation over 1500 pairs. Our units are chosen
such that the quantities are scaled by λ or �.

statistics decay with time as decoherence sets in due to sponta-
neous emission [18], and the value of g(2)(τ ) approaches unity
for τ → ∞. From Figs. 2(b) and 2(c), we can observe that
the driving frequency does not significantly affect the value
at τ = 0, but, as explained above, the FWHM decreases as
we increase the driving frequency. As the laser field becomes
stronger, it dominates over the different dynamics of the sys-
tem, and the value of g(2)(0) saturates. Although we could
intuitively expect to detect an output light that is characteristic
of the laser field, with g(2)(0) = 1, as the intensity of the
driving increases, the scattering of the laser light when passing
the (random) thermal vapor will prevent this from happen-
ing. For temperatures where the dipole-dipole interaction can
be neglected, as we increase the driving field, the value of
g(2)(0) → 2, as is typical for a thermal light source. As we
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FIG. 5. Photon statistics for multiple atomic pairs in a running-
wave laser field with �R/� = 20, where we fixed the average values
of detuning for both atoms at av/� = 0 (circles), 15 (triangles), 20
(diamonds), and 35 (pentagons) for different atomic densities. For
each numerical data point we run the simulation over 1500 pairs.

increase the temperature and the dipole-dipole interactions
become more and more important, this value decreases.

We now discuss how the photon statistics of a thermal
vapor vary with temperature or, equivalently, interatomic dis-
tance. In Figs. 3(b) and 3(c), we show the results for our
model of the photon statistics g(2)(0) of a thermal vapor. As
the average interatomic distance increases, the g(2)(0) function
reaches a plateau; the plateau value differs depending on the
different averaged values of detuning, see Fig. 5. For two two-
level atoms, when the laser frequency is tuned to the atomic
resonance, i.e., av/� = 0, for small distances between the
atoms, the dipole-dipole interaction becomes so large that we
can never observe an antibunching effect. This will occur for
weak and strong driving [55]. However, in the case of a ther-
mal vapor, the increase of the dipole-dipole interactions leads
to a different response of the photon statistics. We observe that
the strong light-induced interactions will increase antibunch-
ing for small atomic distances. This behavior is maintained
even for av/� �= 0. However, at low densities, i.e., large in-
teratomic distances and weaker dipole-dipole interactions, for
av/� = 0, we see the plateau approaching g(2)(0) → 2 more
characteristic of a classic thermal source. The FWHM also
decreases with the increase of the dipole-dipole interactions;
by decreasing the atomic distance, we are also increasing the
decay rate [see Eq. (A18) in Appendix A], which leads to
a reduction of the coherence time. Finally, with Figs. 4(b)
and 4(c), we explore how the detuning affects the photon
statistics of the thermal vapor. To do so, we define the temper-
atures, T = 380 K, which correspond to an average distance
of 0.35λ. We can see that g(2)(τ = 0) is almost symmetric
around zero detuning, and for larger values of detuning, the
values g(2)(τ = 0) decrease. However, there is no significant
dependence of the FWHM on the detuning. In a system with
two two-level atoms, the antibunching effect can be increased
for finite values of detuning, in particular when the dipole-
dipole interaction and detuning cancel each other [41]. In
this special situation, the driving only targets the symmetric
state, and we observe that the strong light-induced interac-
tions will increase antibunching for small atomic distances.

This phenomenon occurs as the driving is done between the
ground-state and the system’s collective bright state, and the
two-atom system behaves effectively as a single two-level
system. This has been proven to be true even for arrays of
atoms as long as we are able to drive the collective bright
state of the ensemble [56]. Although there will not be such
a classic blockade effect in thermal vapors, our results show
that an increase of antibunching can still be observed for finite
values of detuning.

In Fig. 5, we compare how the g(2)(0) varies with density
for different values of average detuning. It is clear that it
is possible to tune the value of the g(2)(0) by changing the
detuning and temperature of the thermal vapor. Increasing the
value of the detuning will lead to a flattening of the curve
to values of g(2)(0) = 1. Furthermore, for higher tempera-
tures, it is theoretically possible, within this model, to achieve
g(2)(0) < 1, characteristic of sub-Poissonian statistics. How-
ever, at higher temperatures, i.e., smaller interatomic distances
and stronger dipole-dipole interactions, we expect this model
to predict that the photon statistics value of g(2) decreases
much faster than we would observe in an experiment. In
fact, in Ref. [43] where the author presented a study of the
photon statistics of a thermal vapor confined in a nanocell
[57–59], we observe exactly that. The confinement regimes
of order λ within these nanocells means that the atoms can be
closer to the surface, experiencing the typical atom-surface
shift of hundreds of megahertz, corresponding roughly to
/� ∼ 15 [59]. By comparing both results, the developed
theoretical model agrees with the photon statistics data pre-
sented in Ref. [43]. The expected discrepancy at relatively
small distances could be due to effects beyond our theoretical
models’ limits, such as collisional and motional dephasing of
the dipoles or three-body effects. Experiments that explore the
variation of detuning have not been performed yet. It would
be interesting to explore if, as our predictions indicate, the
increase in the detuning would lead to smaller values of g(2)(0)
without the need to access higher densities. Nevertheless,
by varying temperature, our theoretical predictions allow the
exploration of considerably different photon statistics regimes
in a thermal vapor.

IV. CONCLUSION

In conclusion, this paper presents a theory to calculate the
photon statistics of an ensemble of atoms in thermal vapor
cells. The qualitative agreement between the theory and the
experiment demonstrates that the photon statistics can be well
described by considering a simple model of pairwise interac-
tions. The effects of atomic motion were taken into account
in the expected Doppler shift. Our model allows for the ex-
ploration of different regimes of the g(2)(τ ) function in the
thermal vapor. By varying the laser intensity, atomic density,
and detuning, we moved between different photon statistics
regimes.

Further experimental work will be needed to determine
the necessary parameters to obtain g(2)(0) → 0. Moreover,
current nanocells’ flexibility allows the production of arbitrary
internal geometries and exploration of different dimensional-
ity [57]. A combination of these features may be a promising
avenue to generate single-photon sources with thermal vapors.
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Research into collective processes is an active area of study
with many open questions. Our results provide useful guide-
lines for further developments, as more experiments and new
technology arises. This knowledge can be exploited to design
new experimental setups with the potential for new quantum
technologies involving hot atomic vapors.

Additional data related to the findings reported in this paper
are made available by the source in Ref. [60].
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APPENDIX A: ENSEMBLE OF ATOMIC EMITTERS

We begin by investigating the modifications to the individ-
ual single-atom decay rates and emerging collective energy
shifts (we will follow closely Refs. [45,61] and references
therein). Assuming N identical emitters with a transition fre-
quency of ω0 and neglecting atomic motion or collisions, the
Hamiltonian of the system is given by Ĥ = ĤA + ĤF + Ĥint,
with

ĤA = h̄ω0

N∑
i=1

σ+
i σ−

i , (A1)

ĤF = h̄
∑
k,λ

ωkâ†
k,λâk,λ, (A2)

Ĥint = ih̄
N∑

i=1

∑
k,λ

gk,λ[âk,λ exp (ik · ri ) − H.c.](σ+
i + σ−

i ),

(A3)

and with gk,λ = √
ωk/(2ε0V )ek,λ · deg where we assume an

equal orientation and amplitude for the atomic transition
dipoles di = deg = 〈e|d|g〉. The equation of motion for the
field operators is given by

˙̂ak,λ = −iωk âk,λ − gk,λ

N∑
i=1

exp (−ik · ri )(σ
+
i + σ−

i ). (A4)

This can be solved by means of a retarded Green’s function as

âk,λ(t ) = âk,λ(t0) exp [−iωk (t − t0)]

−
∫ t

t0

dt ′ exp [−iωk (t − t ′)]gk,λ

×
N∑

i=1

exp (−ik · ri )(σ
+
i + σ−

i ). (A5)

Next, we will consider the equation of motion of any
atomic operator Ô

˙̂O = iω0

N∑
i=1

(σ+
i σ−

i , Ô)

−
∑
k,λ

N∑
i=1

gk,λ

[(
σ+

i + σ−
i , Ô

)
âk,λ exp (ik · ri )

− â†
k,λ

exp (−ik · ri )(σ
+
i + σ−

i , Ô)
]
. (A6)

Inserting Eq. (A5) back into the equation of motion, we can
replace

∑
k,λ → V/(2π )3

∫
d3k and abbreviating the contri-

bution from the incident field by Ein(t ), one finds

˙̂O = Ein(t ) + d2
eg

2ε0(2πc)3

∑
i, j

∫
�

d�k[1 − (ed · ek )2]

×
∫ t

t0

dt ′
∫ ∞

0
dω ω3 exp [−iω(t − t ′ − ek · ri j/c)]

× [
σ x

i (t ), Ô(t )
]
σ x

j (t ′)

− d2
eg

2ε0(2πc)3

∑
i, j

∫
�

d�k[1 − (ed · ek )2]

×
∫ t

t0

dt ′
∫ ∞

0
dω ω3 exp [iω(t − t ′ − ek · ri j/c)]

× σ x
j (t ′)

[
σ x

i (t ), Ô(t )
]
, (A7)

where we used the relation σ x
i = σ+

i + σ−
i , and the fact

that k ⊥ ek,1 ⊥ ek,2, such that
∑

λ |deg · ek,λ|2 = d2
eg(1 − (ed ·

ek ))2, where ed = deg/deg and ek = k/k.
Performing the Markov and rotating wave approximations,

we integrate over the solid angle, finding

˙̂O = Ein(t ) +
∑
i, j

[
σ x

i (t ), Ô(t )
]

× �

k3
0

∫ ∞

0

dk

2π
k3F (kri j )

×
[(

−iP
1

k + k0
+ πδ(k + k0)

)
σ+

j (t )

+
(

−iP
1

k − k0
+ πδ(k − k0)

)
σ−

j (t )

]

−
∑
i, j

�

k3
0

∫ ∞

0

dk

2π
k3F (kri j )

×
[
σ+

j (t )

(
iP

1

k − k0
+ πδ(k − k0)

)

+ σ−
j (t )

(
iP

1

k + k0
+ πδ(k + k0)

)]

× [
σ x

i (t ), Ô(t )
]
, (A8)

where we have defined

F (kri j ) = 3

2

∫
�

d�k

4π
(1 − (ed · ek )2) exp(ik · r). (A9)

From this one can now describe the quantities correspond-
ing to collective energy shifts and emission rates as

γi j = �F (k0ri j ), (A10)

g±
i j = �

k3
0

P
∫ ∞

0

dk

2π

k3F (kri j )

k ± k0
. (A11)

013719-8



COLLECTIVE EFFECTS IN THE PHOTON STATISTICS … PHYSICAL REVIEW A 104, 013719 (2021)

We now deduce the simplified equation of motion

Ô = Ein(t ) +
∑
i, j

[
σ x

i (t ), Ô(t )
]

×
{(−ig+

i j

)
σ+

j (t ) +
(
−ig−

i j + γi j

2

)
σ−

j (t )
}

−
∑
i, j

{(
ig−

i j + γi j

2

)
σ+

j (t ) + (
ig+

i j

)
σ−

j (t )
}

× [
σ x

i (t ), Ô(t )
]
. (A12)

Dropping the rapidly oscillating terms, we arrive at

Ô = i
∑

i

[(ω0 − g+
ii ) σ+

i (t ) σ−
i (t ) − g−

ii σ−
i (t ) σ+

i (t ), Ô(t )]

+ i
∑
i �= j

[gi j σ
−
i (t ) σ+

j (t ), Ô(t )]

+ 1

2

∑
i, j

γi j (2σ+
i (t ) Ô(t ) σ−

j (t ) − σ+
i (t ) σ−

j (t )Ô(t )

− Ô(t ) σ+
i (t ) σ−

j (t )), (A13)

where we may easily recognize a quantum Langevin equation.
Returning to the Schrödinger picture and writing the equation
of motion for the density operator ρ describing the mixed state
of the system

ρ̇ = i

h̄
[ρ, Ĥ] +L[ρ], (A14)

we find

Ĥ = h̄
∑

i

ω0σ
+
i σ−

i + h̄

2

∑
i �= j

gi j (σ
−
i σ+

j + H.c.), (A15)

L[ρ] =
∑
i, j

γi j

2
(2σ−

i ρσ+
j − σ+

i σ−
j ρ − ρσ+

i σ−
j ). (A16)

The parameters γi j and gi j can be written compactly as

gi j = 3�

2

{
−(1 − cos2 θdd )

cos (k0ri j )

k0ri j

+ (1 − 3 cos2 θdd )

[
sin (k0ri j )

(k0ri j )
2 + cos (k0ri j )

(k0ri j )
3

]}
,

(A17)

γi j = 3�

2

{
(1 − cos2 θdd )

sin (k0ri j )

k0ri j

+ (1 − 3 cos2 θdd )

[
cos(k0ri j )

(k0ri j )
2 − sin (k0ri j )

(k0ri j )
3

]}
,

(A18)

where cos θdd = ed · eri j .

APPENDIX B: SOLVING THE DYNAMICS OF A
TWO-ATOM SYSTEM DRIVEN BY A COHERENT LASER

FIELD

Consider two identical atoms with levels |e〉 j and |g〉 j ( j =
1, 2) at fixed positions r1 and r2 (separated by a distance
r12) with dipole moment deg and transition frequency ω0, as
described in Sec. II. They are driven by a resonant external

laser field with wave vector kL. The time evolution of the
reduced atomic density operator ρ in the laboratory frame is
given by the master equation [42,45]

∂ρ

∂t
= − i

h̄
[Ĥ, ρ] −

2∑
i, j=1

γi j (σ
+
i σ−

j ρ + ρσ+
i σ−

j − 2σ−
j ρσ+

i ),

(B1)

where we assume that the only dissipative terms are due to the
spontaneous decays of the levels |e〉1,2 and γi j (i �= j) is given
by Eq. (A18) and γii = �. The Hamiltonian Ĥ of the system
is given by

Ĥ = Ĥ0 + Ĥint + ĤL, (B2)

where

Ĥ0 = h̄ω0

2∑
i=1

σ z
i (B3)

is the unperturbed Hamiltonian of the atoms with σ z
i describ-

ing their energy. The second term represents the dipole-dipole
interaction between the atoms

Ĥint = 1

2
h̄

∑
i �= j

gi j (σ
+
i σ−

j + H.c.), (B4)

where gi j is defined by Eq. (A17). Finally, the third term de-
scribes the coupling between the driving field and the atoms,
which in the rotating-wave approximation is given by

ĤL = − h̄

2

2∑
i=1

[�iσ
+
i exp (iωLt ) + H.c.], (B5)

where ωL is the laser frequency and �i is the Rabi frequency
of the driving field at the position of the ith atom.

To study the dynamics of the system, we need to determine,
from the master equation given, correlation functions for the
atomic operators, for any atomic operator Q, in terms of the
reduced density operator ρ [42]

〈Q〉 = TrS[ρQ], (B6)

where the trace is only over the atoms plus the laser mode
subsystem. For the two-atom system, substituting the atomic
operators σ±

i (i = 1, 2) for O and using the master equation,
it is possible to obtain a closed system of 15 first-order differ-
ential equations

S1(t ) = 〈σ̃+
1 (t )〉,

S2(t ) = 〈σ̃−
1 (t )〉,

S3(t ) = 〈σ̃+
2 (t )〉,

S4(t ) = 〈σ̃−
2 (t )〉,

S5(t ) = 〈σ̃+
1 (t )σ̃−

1 (t )〉,
S6(t ) = 〈σ̃+

2 (t )σ̃−
2 (t )〉,

S7(t ) = 〈σ̃+
1 (t )σ̃−

2 (t )〉,
S8(t ) = 〈σ̃+

2 (t )σ̃−
1 (t )〉,

S9(t ) = 〈σ̃+
1 (t )σ̃+

2 (t )〉,
S10(t ) = 〈σ̃−

1 (t )σ̃−
2 (t )〉,
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S11(t ) = 〈σ̃+
1 (t )σ̃−

1 (t )σ̃−
2 (t )〉,

S12(t ) = 〈σ̃+
1 (t )σ̃+

2 (t )σ̃−
1 (t )〉,

S13(t ) = 〈σ̃+
2 (t )σ̃−

1 (t )σ̃−
2 (t )〉,

S14(t ) = 〈σ̃+
1 (t )σ̃+

2 (t )σ̃−
2 (t )〉,

S15(t ) = 〈σ̃+
1 (t )σ̃+

2 (t )σ̃−
1 (t )σ̃−

2 (t )〉,
where

σ̃±
i (t ) = σ±

i exp (∓iωLt ). (B7)

We assume that (σ±
i )2 = 0 and that the atomic operators for

different atoms commute at the same time

σ±
i σ±

j = σ±
j σ±

i and σ±
i σ∓

j = σ∓
j σ±

i for i �= j.
(B8)

Finally, the 15 equations of motion become

Ṡ1 = − i�∗
1

2
+ 2S12(γ12 − ig12) − S3(γ12 − ig12) + (−(1 + i1))S1 + i�∗

1S5, (B9)

Ṡ2 = i�1

2
+ 2S11(γ12 + ig12) − S4(γ12 + ig12) + (−(1 − i1))S2 − i�1S5, (B10)

Ṡ3 = − i�∗
2

2
+ iS6�

∗
2 + S1(−(γ12 − ig12)) + 2S14(γ12 − ig) + (−(1 + i2))S3, (B11)

Ṡ4 = i�2

2
+ 2S13(γ12 + ig12) − S2(γ12 + ig12) + (−(1 − i2))S4 − i�2S6, (B12)

Ṡ5 = −S7(γ12 + ig12) − S8(γ12 − ig12) + i�1S1

2
− i�∗

1S2

2
− 2S5, (B13)

Ṡ6 = − iS4�
∗
2

2
− S7(γ12 − ig12) − S8(γ12 + ig12) + i�2S3

2
− 2S6, (B14)

Ṡ7 = S5(−(γ12 + ig12)) − S6(γ12 − ig12) + i�2S1

2
+ i�∗

1S11 − i�2S14 + 2γ12S15 − i�∗
1S4

2
− (2 + i1 − i2)S7, (B15)

Ṡ8 = iS13�
∗
2 − iS2�

∗
2

2
+ S5(−(γ12 − ig12)) − S6(γ12 + ig12) − i�1S12 + 2γ12S15 + i�1S3

2
− (2 − i1 + i2)S8, (B16)

Ṡ9 = − iS1�
∗
2

2
+ iS14�

∗
2 + i�∗

1S12 − i�∗
1S3

2
− 2

(
1 + i

1 + 2

2

)
S9, (B17)

Ṡ10 = −2

(
1 − i

1 + 2

2

)
S10 − i�1S11 − i�2S13 + i�2S2

2
+ i�1S4

2
, (B18)

Ṡ11 = S13(−(γ12 − ig12)) − i�∗
1S10

2
+ (−(3 − i2))S11 − i�2S15 + i�2S5

2
+ i�1S7

2
, (B19)

Ṡ12 = iS15�
∗
2 − iS5�

∗
2

2
+ S14(−(γ12 + ig12)) + (−(3 + i2))S12 − i�∗

1S8

2
+ i�1S9

2
, (B20)

Ṡ13 = − iS10�
∗
2

2
+ S11(−(γ12 − ig12)) + (−(3 − i1))S13 − i�1S15 + i�1S6

2
+ i�2S8

2
, (B21)

Ṡ14 = − iS7�
∗
2

2
+ S12(−(γ12 + ig12)) + (−(3 + i1))S14 + i�∗

1S15 − i�∗
1S6

2
+ i�2S9

2
, (B22)

Ṡ15 = − iS11�
∗
2

2
+ i�2S12

2
− i�∗

1S13

2
+ i�1S14

2
− 4S15. (B23)

It is now possible to solve the set of equations for the steady state and study the photon statistics of our systems.

APPENDIX C: SOLVING SECOND-ORDER MULTITIME CORRELATION FUNCTION G(2)(R; 0, t )

As is referred to in the main text, the solution to the master equation only yields single time averages

Ṡ(t ) = MS(t ) + b.

To find the equation of motion for multitime vectors, we need to take the single-time equation of motion, multiplying on the
left-hand side by σ+

i (0) and on the right by σ−
j (0) [46]:

d

dt
〈σ+

i (0)S(t )σ−
j (0)〉 = M〈σ+

i (0)S(t )σ−
j (0)〉 + 〈σ+

i (0)σ−
j (0)〉b

= M[〈σ+
i (0)S(t )σ−

j (0)〉 + 〈σ+
i (0)σ−

j (0)〉M−1b].
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The formal solution to this equation is then given by

〈σ+
i (0)S(t )σ−

j (0)〉 = −〈σ+
i σ−

j 〉ssM−1b + exp(Mt )[〈σ+
i Sσ−

j 〉ss + 〈σ+
i σ−

j 〉ssM−1b]

= exp(Mt )〈σ+
i Sσ−

j 〉ss + 〈σ+
i σ−

j 〉ss[exp(Mt ) − 1]M−1b.

To find the vectors corresponding to 〈σ+
i Sσ−

j 〉ss we assume
once again that (σ±

i )2 = 0 and that the atomic operators for
different atoms commute at the same time. For i = 1, j = 2,
we find

〈σ+
1 S1σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ−

2 〉ss = 0,

〈σ+
1 S2σ

−
2 〉ss = 〈σ+

1 σ̃−
1 σ−

2 〉ss = Sss
11,

〈σ+
1 S3σ

−
2 〉ss = 〈σ+

1 σ̃+
2 σ−

2 〉ss = Sss
14,

〈σ+
1 S4σ

−
2 〉ss = 〈σ+

1 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
1 S5σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃−

1 σ−
2 〉ss = 0,

〈σ+
1 S6σ

−
2 〉ss = 〈σ+

1 σ̃+
2 σ̃−

2 σ−
2 〉ss = 0,

〈σ+
1 S7σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃−

2 σ−
2 〉ss = 0,

〈σ+
1 S8σ

−
2 〉ss = 〈σ+

1 σ̃+
2 σ̃−

1 σ−
2 〉ss = Sss

15,

〈σ+
1 S9σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ−
2 〉ss = 0,

〈σ+
1 S10σ

−
2 〉ss = 〈σ+

1 σ̃−
1 σ̃−

2 σ−
2 〉ss = 0,

〈σ+
1 S11σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃−

1 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
1 S12σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ̃−
1 σ−

2 〉ss = 0,

〈σ+
1 S13σ

−
2 〉ss = 〈σ+

1 σ̃+
2 σ̃−

1 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
1 S14σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
1 S15σ

−
2 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ̃−
1 σ̃−

2 σ−
2 〉ss = 0.

For i = 2, j = 1,

〈σ+
2 S1σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ−

1 〉ss = Sss
12,

〈σ+
2 S2σ

−
1 〉ss = 〈σ+

2 σ̃−
1 σ−

1 〉ss = 0,

〈σ+
2 S3σ

−
1 〉ss = 〈σ+

2 σ̃+
2 σ−

1 〉ss = 0,

〈σ+
2 S4σ

−
1 〉ss = 〈σ+

2 σ̃−
2 σ−

1 〉ss = Sss
13,

〈σ+
2 S5σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃−

1 σ−
1 〉ss = 0,

〈σ+
2 S6σ

−
1 〉ss = 〈σ+

2 σ̃+
2 σ̃−

2 σ−
1 〉ss = 0,

〈σ+
2 S7σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃−

2 σ−
1 〉ss = Sss

15,

〈σ+
2 S8σ

−
1 〉ss = 〈σ+

2 σ̃+
2 σ̃−

1 σ−
1 〉ss = 0,

〈σ+
2 S9σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ−
1 〉ss = 0,

〈σ+
2 S10σ

−
1 〉ss = 〈σ+

2 σ̃−
1 σ̃−

2 σ−
1 〉ss = 0,

〈σ+
2 S11σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃−

1 σ̃−
2 σ−

1 〉ss = 0,

〈σ+
2 S12σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ̃−
1 σ−

1 〉ss = 0,

〈σ+
2 S13σ

−
1 〉ss = 〈σ+

2 σ̃+
2 σ̃−

1 σ̃−
2 σ−

1 〉ss = 0,

〈σ+
2 S14σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ̃−
2 σ−

1 〉ss = 0,

〈σ+
2 S15σ

−
1 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ̃−
1 σ̃−

2 σ−
1 〉ss = 0.

For i, j = 1,

〈σ+
1 S1σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ−

1 〉ss = 0,

〈σ+
1 S2σ

−
1 〉ss = 〈σ+

1 σ̃−
1 σ−

1 〉ss = 0,

〈σ+
1 S3σ

−
1 〉ss = 〈σ+

1 σ̃+
2 σ−

1 〉ss = Sss
12,

〈σ+
1 S4σ

−
1 〉ss = 〈σ+

1 σ̃−
2 σ−

1 〉ss = Sss
11,

〈σ+
1 S5σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃−

1 σ−
1 〉ss = 0,

〈σ+
1 S6σ

−
1 〉ss = 〈σ+

1 σ̃+
2 σ̃−

2 σ−
1 〉ss = Sss

15,

〈σ+
1 S7σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃−

2 σ−
1 〉ss = 0,

〈σ+
1 S8σ

−
1 〉ss = 〈σ+

1 σ̃+
2 σ̃−

1 σ−
1 〉ss = 0,

〈σ+
1 S9σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ−
1 〉ss = 0,

〈σ+
1 S10σ

−
1 〉ss = 〈σ+

1 σ̃−
1 σ̃−

2 σ−
1 〉ss = 0,

〈σ+
1 S11σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃−

1 σ̃−
2 σ−

1 〉ss = 0,

〈σ+
1 S12σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ̃−
1 σ−

1 〉ss = 0,

〈σ+
1 S13σ

−
1 〉ss = 〈σ+

1 σ̃+
2 σ̃−

1 σ̃−
2 σ−

1 〉ss = 0,

〈σ+
1 S14σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ̃−
2 σ−

1 〉ss = 0,

〈σ+
1 S15σ

−
1 〉ss = 〈σ+

1 σ̃+
1 σ̃+

2 σ̃−
1 σ̃−

2 σ−
1 〉ss = 0.

For i, j = 2,

〈σ+
2 S1σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ−

2 〉ss = Sss
14,

〈σ+
2 S2σ

−
2 〉ss = 〈σ+

2 σ̃−
1 σ−

2 〉ss = Sss
13,

〈σ+
2 S3σ

−
2 〉ss = 〈σ+

2 σ̃+
2 σ−

2 〉ss = 0,

〈σ+
2 S4σ

−
2 〉ss = 〈σ+

2 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
2 S5σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃−

1 σ−
2 〉ss = Sss

15,

〈σ+
2 S6σ

−
2 〉ss = 〈σ+

2 σ̃+
2 σ̃−

2 σ−
2 〉ss = 0,

〈σ+
2 S7σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃−

2 σ−
2 〉ss = 0,

〈σ+
2 S8σ

−
2 〉ss = 〈σ+

2 σ̃+
2 σ̃−

1 σ−
2 〉ss = 0,

〈σ+
2 S9σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ−
2 〉ss = 0,

〈σ+
2 S10σ

−
2 〉ss = 〈σ+

2 σ̃−
1 σ̃−

2 σ−
2 〉ss = 0,

〈σ+
2 S11σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃−

1 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
2 S12σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ̃−
1 σ−

2 〉ss = 0,

〈σ+
2 S13σ

−
2 〉ss = 〈σ+

2 σ̃+
2 σ̃−

1 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
2 S14σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ̃−
2 σ−

2 〉ss = 0,

〈σ+
2 S15σ

−
2 〉ss = 〈σ+

2 σ̃+
1 σ̃+

2 σ̃−
1 σ̃−

2 σ−
2 〉ss = 0.

This calculation is independent of the form of the matrix
M and b and we can calculate G(2)(R; 0, t ) for the different
experimental parameters with this recipe.
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