
1

Reinforcement Learning for Edge Device Selection
using Social Attribute Perception in Industry 4.0

Peiying Zhang, Peng Gan, Gagangeet Singh Aujla, and Ranbir Singh Batth

Abstract—In the 5G era, the problem of data islands in various
industries restricts the development of artificial intelligence tech-
nology, so data sharing is proposed. High-quality data sharing
directly affects the effectiveness of machine learning models, but
data leakage and abuse will inevitably occur in the process. As a
consequence, in order to solve this problem, federated learning
is proposed. This method uses the personalized data of multiple
edge devices to train the model. The central server collects the
training results of the edge devices and updates the global model,
and then iteratively tests and updates the model through the
edge devices. However, edge devices may have problems such
as unbalanced load and exit from the training process, which
makes the training time of the model long and the effect is poor.
Therefore, in the process of federated learning, the selection of
reliable and high-quality edge devices becomes crucial. On this
basis, in this paper, we introduces reinforcement learning (RL)
to pre-select edge devices and obtain a set of candidate devices,
then determines reliable edge devices through social attribute
perception. Simulation experiment data analysis demonstrate that
this scheme can improve the reliability of federated learning and
complete the training process in a shorter time, the efficiency of
federated learning increased by approximately 10.3%.

Index Terms—Data Sharing, Federated Learning, Edge Com-
puting, Reinforcement Learning, Social Attribute Perception

I. INTRODUCTION

In the era of Industry 4.0, smart technologies are diffusely
used in the Internet of Things [1], [2], such as smart wearable
devices [3], [4], smart homes, digital healthcare [5], smart
transportation, and vehicular networks [6]. The application
of these smart technologies in Industry 4.0 has improved the
efficiency and fault tolerance of industrial production, enabling
the existing industrial system to face the challenges of complex
environments. These applications generate a large amount of
personalized data. Recent years, in order to make applications
more intelligent and gradually apply to Industry 4.0, machine
learning has been used to train models on these data. However,
traditional machine learning concentrates large amounts of

This work is partially supported by the Start-Up Fund from the Durham
University, and partially supported by the Major Scientific and Technolog-
ical Projects of CNPC under Grant ZD2019-183-006, partially supported
by Shandong Provincial Natural Science Foundation, China under Grant
ZR2020MF006, and partially supported by ”the Fundamental Research Funds
for the Central Universities” of China University of Petroleum (East China)
under Grant 20CX05017A. (Corresponding authors: Gagangeet Singh Aujla
and Peiying Zhang.)

Peiying Zhang and Peng Gan are with the College of Computer Science and
Technology, China University of Petroleum (East China), Qingdao 266580,
China. (E-mail: zhangpeiying@upc.edu.cn, ganpeng.upc@qq.com)

G.S. Aujla is with the School of Computing Science, Durham University,
United Kingdom. E-mail: gagi aujla82@yahoo.com

R.S. Batth is with the School of Computer Science Engineering, Lovely
Professional University, India. E-mail: ranbir.21123@lpu.co.in

user data in a single data center for training, which causes
the inevitable leakage of user privacy data during the training
process. For example, in an intelligent medical system, patient
information will be processed centrally on a central server,
which will inevitably cause the leakage of patient information,
because some patients do not want others to know this infor-
mation. To avoid data leakage, federated learning is proposed
[7]–[10]. Federated learning as a new distributed privacy
protection machine learning training [11]–[15] framework has
received more and more attention, which prevents users from
exposing their data to enterprises or other participants, thereby
protecting their privacy and data security to a certain extent. It
is a new type of decentralized machine learning method under
Industry 4.0. Fig.1 shows the application of federated learning,
it distributes existing training models to multiple edge devices
(personal devices), and uses the local data of the edge device
to train the model. The central server accepts and integrates
the training results of each edge device to update the global
model. Through continuous iteration of the above steps, the
improved global model will be continuously downloaded to the
local for verification, and finally a smarter, low-latency, low-
overhead, privacy-protecting, and user-friendly model will be
obtained.

Global

server

Base

Station

1.Downloading model parameters

Cellular

network

3.Uploading the new parameters4. Summarizing client update results

2.Updating the model with local data

Client

Fig. 1: An application of federated learning.

TABLE I: Three types of federated learning characteristics.

Category Data feature over-
lap

User overlap Training method

Horizontal feder-
ated learning

Small quantity Large amount Divided by user di-
mension.

Longitudinal fed-
erated learning

Large amount Small quantity Divided by data
feature dimensions.

Federated trans-
fer learning

Small quantity Small quantity Transfer learning.

2

As shown in TABLE I, federated learning can be classified
into three categories based on the characteristics of feder-
ated learning data and the amount of user overlap, namely
horizontal federated learning, vertical federated learning, and
federated transfer learning. Each participant in the three types
of federated learning only needs to maintain the user’s local
data, which is the main reason for the protection of user
privacy. In addition to privacy protection, the advantages of
federated learning are also reflected in the following two
points:

(1) Federated learning can complete model training on
large-scale data.

(2) The data required for training has the characteristics of
flexibility and personalization.

Although federated learning provides a good solution for
solving user privacy problems, it still has the following chal-
lenges:

(1) Poisoning attack: As revealed in Fig.2, during the train-
ing process, malicious edge devices will attack the training
data set, thereby affecting the prediction of the model. There-
fore, it is particularly important to choose trusted and safe
edge devices to participate in the training process during the
federated learning process, which directly affects the accuracy
and safety of the training model.

Train the model with poisoning attacks

Local database

with poisoning

data
Model training

Update

Local

model

Model training

Local

database
Update

Local model

2.Train the model by local data

1.Download the

globally shared model

3.Upload the local model

Based stationBased station

Global server

4. Summarizing client update results

Model suffers

poisoning attack

Fig. 2: Data poisoning and model poisoning.

(2) Load balancing of edge devices participating in federated
learning: The problem of load imbalance caused by limited
computing resources of edge devices is still a bottleneck
restricting the efficiency of federated learning.

(3) Reliability of edge devices participating in federated
learning: federated learning is a continuous iterative process.
Throughout the training process, edge devices continue to
communicate with the central server. However, in fact, not all
equipment can fully participate in the entire training process,
which seriously affects the quality of the final training results.

To settle the above problems, we introduced an edge device
selection strategy before federated learning with reinforcement
learning (RL) and social attribute perception (RL-SAP). As
indicated in Fig.3, we first initialize the environment and
obtain resource information of optional edge devices. Then
we use reinforcement learning and social attribute perception
to select edge devices that participate in federated learning,
and on this basis, we carry out model distribution, training,

and aggregation of training results. Through the above steps,
the problem of unreliable equipment participating in model
training can be effectively avoided. The main contributions of
this paper are as follows:

(1) Firstly, in order to achieve load balancing, it is essential
to ensure that the computing power and communication effi-
ciency of the equipment participating in the training meet the
requirements. Therefore, we use reinforcement learning (RL)
methods to pre-select optional edge devices. Specifically, we
construct a four-layer policy network as the RL agent, and then
extract the three attributes of the edge device CPU, memory,
and bandwidth to form the feature matrix as the agent’s
training environment. By convolution and softmax operations
on the feature matrix, we can obtain the probability that the
edge device is selected, thereby obtaining a pre-selected set of
edge devices.

(2) Secondly, on the basis of the set of candidate edge
devices, we determine the final edge devices participating in
training in line with the perception of social attributes, which
ensures the reliability of the devices.

(3) Finally, we design and implement the experiment of the
scheme proposed in this paper, and verify the feasibility of the
scheme from the efficiency of training.

Global server Clients

1.Initialization

2.Resource request

3.Edge device selection

4.Distribution

5.Scheduled update and

upload

6.Aggregation

Request

Resource information

Gloab model & schedule

Update model

Update model

ACK

ACK

Fig. 3: The RL-SAP flow chart.

The rest of this paper is organized as follows. Section II
analyzes the research status of Federated Learning. Section III
describes the pre-selection process of edge devices based on
reinforcement learning. Section IV introduces the process of
determining edge devices based on social attribute perception.
Section V compares and analyzes the effectiveness of the
proposed scheme from four angles. Section VI summarizes
this article and introduces future work.

II. RELATED WORK

Federated learning is an emerging machine learning tech-
nology. Literature [16] introduces federated learning to the
public for the first time, which is a decentralized machine
learning for model training through mobile devices. Following
the literature [16], scholars have mainly conducted research
on improving the security of the federated learning protocol

3

[17], [18]. However, the methods in these literatures mainly
aim at minimizing the computational overhead or time of
general computing tasks, and do not fundamentally improve
the efficiency of model training. Literature [18]–[22] have
carried out research on privacy protection in response to the
problem of information leakage in the process of federated
learning. Literature [19] proposes a dual shielding protocol
for the privacy tracking problem that may be caused in the
process of federated learning, and the central server needs to
provide proof of the correctness of the aggregation results to
the edge devices participating in the training. The literature
[21] combines secure multi-party computing with gradient
selection, where secure multi-party computing is used to
protect user information, and gradient selection is used to
reduce communication overhead. In the literature [21], secure
multi-party computing and gradient selection are balanced.
In addition, a method based on secret sharing and gradient
selection is proposed. But this scheme will cause additional
communication overhead and computational overhead. The
literature [22] proposes the PEFL scheme for privacy leakage
caused by shared parameters, which enhances privacy pro-
tection in a non-interactive way and improves the efficiency
of federated learning. Literature [23]–[26] mainly focus on
improving the efficiency of federated learning. Literature [23]
introduces a new federated learning algorithm called CatFe-
dAvg, which not only improves the communication efficiency,
but also improves the learning quality by using the strategy of
maximizing category coverage. Literature [24] puts forward
the STC compression method with the goal of reducing
communication overhead. Through this data compression tech-
nology, the communication cost is reduced by three orders of
magnitude, and it is significantly better than the joint average.
In the literature [26], aiming at the problem of excessive
consumption of communication resources in the process of
federated learning, a multi-objective evolutionary algorithm
is used to optimize the neural network model in federated
learning. This solution can reduce the overall test errors while
minimizing overhead.

Literature [27], [28] focus on the application of federated
learning. Literature [28] applies federated learning to the
smart keyboard to predict the next word. The literature [27]
utilizes federated learning and convolutional neural networks
to intrusion detection for the intrusion detection problems in
the deep learning process. As a consequence, the efficiency
of intrusion detection has improved. In the process of fed-
erated learning, the reliability of equipment directly affects
the accuracy and efficiency of model training. However, none
of the above-mentioned literatures has studied the reliability
of mobile devices. Therefore, literature [29]–[31] carry out
research on equipment reliability, and literature [29] uses
reputation as a measure of equipment to ensure the reliability
of federated learning. In order to ensure the accuracy of
prediction, the literature [31] combines differential privacy
and SMC to ensure the reliability of participating training
equipment without affecting privacy. At the same time, the
scheme avoids the threat of reasoning to a certain extent.

This paper is similar to the literature [29], [30], focusing
on the reliability of the equipment participating in the training

process. Fig.4 reveals the process of selecting edge devices in
this paper.

III. EDGE DEVICE PRE-SELECTION

A. Algorithm description and model establishment

This section mainly uses RL algorithms to pre-select edge
devices participating in federated learning.

This paper constructs a four-layer policy network as a RL
agent, which includes an input layer, a convolutional layer,
a softmax layer, and an output layer. In order to enable the
agent to be trained in as realistic an environment as possible,
we extracted the three attributes of each edge device and
used them to form a feature matrix as the agent’s training
environment. Then the convolution layer receives the feature
matrix and performs convolution operation on it. Finally, the
softmax layer outputs the probability of each edge device
being selected.

The key to using RL algorithms to calculate the probability
distribution of edge devices being selected lies in the level
of understanding of all edge devices. We selected the three
attributes of the edge device’s CPU, bandwidth, and memory
as the input of the agent. But in fact, the attributes of edge
devices are far more than these three. The more attributes of
the selected edge device, the higher the complexity of the
algorithm. Therefore, after comprehensive consideration, we
only selected the above three attributes.

This method learns in line with the load balance of edge
devices under different available resources. Firstly, it is neces-
sary to determine the matching relationship between the model
training task and the edge devices participating in training.
Therefore, we solve it by finding the optimal scheduling
strategy vector, and realize it by strengthening Q-learning.
When the central server delivers the model, it needs to consider
the real-time load of the edge devices participating in training,
so we weigh the workload status of the edge devices from three
aspects: memory utilization, CPU utilization, and bandwidth
utilization. This paper defines these three measurement ele-
ments as vectors, and the state vector of the edge device can
be expressed by the following formula.

ᾱ = (memory,cpu,bandwidth) . (1)

B. Edge device pre-selection algorithm based on reinforce-
ment learning

We learn in line with the network load balance under
different model distribution strategies, collect the load status
of different edge devices through local macro base stations,
and save the final learning results for the final determination
of edge devices. We redefine the state and rewards in RL as
follows.

(1) Status: The state in the RL [32]–[37] process corre-
sponds to the network load status after the trained model is
delivered to a certain edge mobile device. Assuming that the
number of optional edge mobile devices is K, so there are K
states in the entire system. We evaluate the load balance status
of the entire network based on the degree of load balance.

4

1.Optional edge equipment

under the central server

2.Edge device

preselected set

3.The edge device that ultimately

participated in the training

Social

attribute

perception

D1 D2 Dn

action

reward

D1 Dm D(n-k) D1 D(n-m)

Fig. 4: Pre-selection of edge devices based on reinforcement learning.

Firstly, we calculate the load center value of different
resources of the entire network in line with the load status of
all optional edge devices participating in federated learning.
The calculation method is shown in equation 2, and then the
load balance is calculated.

lm =
1
k

k

∑
i=1

num rem
i , (2)

among them, num rem
i denotes the number of m resources

available on the edge device i, and k indicates the number of
optional edge devices. Based on equation 2, we can calculate
the degree of load balance, the calculation method is shown
in equation 3.

lb =
1
k

ξ

∑
m=1

k

∑
i=1

(
li
m− lm

)2
. (3)

meanwhile, we measure the real-time load of the edge
device after the model is delivered to the edge device i in
line with equation 4.

ε ji =
ξ

∑
m=1

wm
ji (1−µ ji) , (4)

where m= 1 denotes memory resources, m= 2 represents CPU
resources, and m = 3 means bandwidth resources. wm

ji is the
weight of each resource after model j is delivered to edge
device i. µm

ji indicates the utilization rate of m resources, as
revealed in equation 5.

µ
m
ji =

amo rem

num rem
i
. (5)

The notation amo rem denotes the number of m resources
required during model training. Equation 6 is the calculation
method of num rem

i .

num rem
i = tot rem

i −amo rem, (6)

where tot rem
i represents the total amount of m resources on

the edge device i.
(2) Reward: We define the reward function of reinforce-

ment learning as −lb(s,a), where s and a represent the current
state and action of the edge device, and lb(s,a) denotes the
degree of load balance. If an edge device is overloaded or fully
loaded during model training, set the reward value to -1.

This paper uses Q-learning algorithm for RL. It records the
Q value of each state of the edge device and stores the Q
value of each step in the Q table, which can be regarded as a
long-term reward. The Q value of each state can be expressed
by the following formula.

Q(s,a) = Re(s,a)+δ .maxQ
(

s
′
,a
′
)
, (7)

among them, Re(s,a) represents the reward in the initial state,
s
′

and a
′

represent the next state and action, respectively. δ is
the learning parameter, δ ∈ [0,1]. If the value of δ approaches
0, direct rewards are mainly considered. If it approaches 1, we
need to pay special attention to future rewards. Each step of
Q(s,a) will be iterated until the optimal result is obtained.

The process of pre-selecting optional edge devices using the
above mentioned Q-learning of RL is revealed in Algorithm
1.

Algorithm 1 Training

1: Input: Parameters of policy network;
2: Output: The probability of each edge device being se-

lected;
3: Initialize all agent’s parameters;
4: while iteration≤ E poch do
5: for TASKS ∈ trainingSet do
6: getFeatureMatrix();
7: probability = agent.getOut put(M f);

%Get the probability distribution of edge device;
8: CandidateEdgedevice = sample(probability);
9: getGradient(CandidateEdgedevice);

10: Calculate reward;
11: Clear gradients;
12: end for
13: iteration++;
14: end while

C. Algorithm complexity analysis

The time complexity of our proposed RL-based edge device
pre-selection algorithm is O(CTasks (Edn ∗d +CTask)). Among
them, CTasks represents the number of iterations of the training
task, Edn represents the number of all optional edge devices,

5

d represents the dimension of the state vector, and CTask is the
inherent complexity of each training task. It is worth noting
that the time complexity of the RL-based edge device pre-
selection algorithm is greatly affected by factors such as the
learning rate, the size of the selected convolution kernel, and
so on. Therefore, only the general time complexity can be
given here.

IV. SOCIAL ATTRIBUTE PERCEPTION

A. Social attribute constraints

Federated learning updates and tests the model continuously
iteratively. However, in the process of federated learning, some
devices cannot iteratively interact with the central server in real
time. Therefore, after pre-selecting the optional edge devices
participating in the training in line with the method in section
3, it is necessary to consider the social attributes [38], [39] of
mobile edge devices , so as to determine the reliable mobile
terminal that ultimately meets the conditions.

Due to the edge mobile devices participating in training
are mainly used by users, they have strong social attributes.
Therefore, we measure whether the connection is reliable in
line with the social attributes of the mobile device. The social
attributes considered in this paper mainly include the activity
of the device and the intimacy with the central server.

Device activity: Some mobile devices in the network have
higher network resource utilization and higher activity. Such
devices frequently interact with other devices and central
servers. Therefore, how to quantify the activity of the device
is of great significance for selecting the edge device that
ultimately participates in the training process. This paper
assumes that the number oTAf other devices interacting with
the device within a certain period of time is ∑

n
y=1 τ (x,y), and

the total number of optional devices is n. Then the ratio actx
of ∑

n
y=1 τ (x,y) to n represents the activity of the device.

actx =
∑

n
y=1 τ (x,y)

n
. (8)

τ (x,y) =
{

1,x,y have interactive behavior,
0,other. (9)

Device and central server intimacy: We measure the
difference in social attributes between devices based on the
degree of interaction between the device and the central server,
that is, the intimacy between the mobile device and the central
server. we assume that the interaction duration between the
device and the central server in the time period T is T1,
the interaction interval is T2, and T = T1 +T2. Therefore, the
interaction intimacy can be defined as the ratio of the average
interaction interval to the time period T. The following formula
represents the average interaction interval.

Avg(T2) =
∑

f req
i=1 (starti+1− endi)

f req
, (10)

among them, f req represents the number of interactions be-
tween the device and the central server in the time period
T, starti+1 denotes the time when i+1 interaction starts, and
endi indicates the time when i interaction ends. Therefore, the

intimacy C between the device and the central server is shown
in equation 11.

δx, j =
∑

f req
i=1 starti+1− endi

T. f req
. (11)

If there is no interaction between the edge mobile device and
the central server during the T period, the intimacy between
them is denoted by the intimacy in the previous period. Since
the reference value of information decreases with time, we
update the intimacy according to the principle of exponential
function decay.

kx, j =
f req

∑
i=1

exp
(
− (nt− starti)

T

)
.

(
endi− starti

T

)
, (12)

among them, kx, j represents the new intimacy, and nt rep-
resents the current moment. According to equation 12, the
communication probability CProx, j between the edge device
and the central server can be expressed by equation 13.

CProx, j =
2

1+ exp(−kx, j/δx, j)
−1, (13)

among them, kx, j represents the updated intimacy, which
can be calculated by formula (12). δx, j represents the initial
intimacy, which is calculated by formula (11). We compre-
hensively consider the importance of device activity and its
intimacy with the central server, and uses equation 14 to
determine the edge devices that will ultimately participate
in the training model. Where α is the weighting factor. The
weight factor needs to be updated in real time according to the
situation to effectively distinguish the importance of different
terminals.

ωk = (1−α)actx +αCProx, j. (14)

B. Physical domain constraints

Due to the rapid increase of IoT data [40], traditional
cellular technology consumes a lot of network resources and
cannot meet the needs of IoT applications. Therefore, this
paper uses the way that two users communicate directly (D2D)
technology in the communication between the edge device
and the central server. D2D communication enables data to be
transmitted directly between devices, which can greatly reduce
time delay. Thence, when selecting edge devices, we also need
to consider the constraints of the physical domain to ensure
that a reliable D2D link is established.

If the device a interacts with the central server b through
D2D communication, then the device a will act as a D2D
transmitter to construct a communication link to the central
server. The signal to interference noise ratio (SINR) received at
the central server should be greater than a given threshold. This
value ensures reliable multi-hop communication, as revealed
in the following equation.

γdea,se =

∣∣hdea,se
∣∣2 Pdea

|hmec,se|2 Pmec +σ2
≥ γ

th
de, (15)

where hdea,se represents the channel gain between the device
a and the central server, and hmec,se indicates the channel
gain between the multiplexed cellular user and the central

6

server. Pdea denotes the transmit power of device a, and Pmec

represents the transmit power of cellular user c. γdea,se is the
SINR of the channel between the device a and the central
server, and γ th

de represents the threshold limit that needs to be
met.

From equation 16, it can be seen that the signal-to-noise
ratio threshold is the minimum threshold that meets the task
delay.

RD2D
de = B log2

[
1+min

(
γde,se

)]
, (16)

γ
th
de = 2

RD2D
de
B −1, (17)

where B denotes the bandwidth of the D2D communication
link. γde,se represents the interference-to-noise ratio between
the equipment and the central server.

The minimum required transmit power constraint for equip-
ment a and the central server to maintain reliable transmission
can be expressed by equation 18.

Pmin
dea

=
γ th

de

(
|hmec,se|2 Pmec +σ2

)
∣∣hdea,se

∣∣2 , (18)

where se represents the first hop relay.
The edge device pre-selection algorithm based on reinforce-

ment learning ensures the stability of the entire federated
learning process by learning the load balancing of the entire
federated learning network. On the other hand, the use of
social attribute perception to select the final edge device
ensures the reliability of the edge device and effectively avoids
the problem of edge device withdrawal from training and data
poisoning. After using RL-SAP to select these reliable devices,
they will download the latest training model from the central
server and use the local private data to train the model. Then
the training results are handed over to the central server to
aggregate and update the model parameters. In this iteration,
a safe and stable model can be obtained.

V. EXPERIMENT ANALYSIS

This chapter mainly verifies the performance of RL-SAP
through simulation experiments. We divide the simulation
experiment analysis into two parts.

(1) Firstly, the RL-based edge device pre-selection algo-
rithm proposed in this paper was verified through the Matlab
simulation platform. Since selecting the appropriate edge
device to participate in the training of the model before
federated learning is essentially to find a better scheduling
strategy for training tasks, we compared RL-SAP with other
task scheduling strategies. They are the WLB-ACO algorithm
in the literature [41], the HETS algorithm and the Full-local
strategy proposed in the literature [42].

(2) Secondly, the edge device selection scheme based on so-
cial attribute perception is verified through the NS2 simulation
platform. The algorithms involved in the comparison mainly
include the SDFM algorithm proposed in [43], the Random
Walk algorithm proposed in [44] and the Bulle Rap algorithm
proposed in [45]. This paper designs four experiments to verify
the effectiveness of the proposed scheme from load balance,
training time, average completion delay, and training accuracy.

We describe and summarize the above algorithms, as shown
in TABLE II.

TABLE II: Algorithm Idea Description..

Algorithm Description

WLB-ACO In WLB-ACO, the ant colony optimization method
is used to assign tasks to worker agents in parallel in
order to make correct decisions for scheduling tasks.

HETS In HETS, the prioritization is done by calculating
the edge priority as well as the node priority. HETS
algorithm selects the task after all its incoming edges
are scheduled.

Full-local Full-local centralize the training tasks to the local
server.

SDFM SDFM learns the social characteristics of vehicles in
a distributed manner, and then transmits messages in
a ”storage-carry-forward” mode.

Random Walk The Random Walk model is used to study the task
allocation problem in edge computing.

Bulle Rap Bubble rap is a social-based forwarding algorithm
that uses the centrality and community of the real
human flow trajectory to enhance delivery perfor-
mance.

The above simulation experiments are all carried out on
the windows 10 operating system, and the final experimental
results are displayed by the origin drawing tool. In addition,
for the convenience of viewing, we summarize the relevant
parameter settings of the simulation experiment in TABLE
III.

TABLE III: Simulation experiment parameter setting.

Parameter name Value

Memory required for training(GB) [1,4]

CPU cycles required for training(MHZ) 50

Training delay(ms) [200, 1500]

Edge device CPU frequency(GHZ) 3

Wireless channel bandwidth(MHZ) 5

Number of optional edge devices 5

Learning factor 0.5

A. Edge device pre-selection algorithm based on reinforce-
ment learning

Experiment 1: Fig.5 indicates the change in load balance
of edge devices when the available resources are different. As
revealed in the Fig.5, with the increase of available resources,
except for the Full-Local algorithm, the load balance of the
other three algorithms gradually decreases. The main reason
for this result is that Full-loacl places the entire training task on
the central server. Therefore, as time goes by, the load balance
of the entire federated learning network will not decrease with
the increase of available resources. In addition, because RL-
SAP comprehensively considers the three attributes of the
edge device’s CPU, bandwidth and memory, and regardless
of whether the edge device is overloaded or not, RL-SAP
will still select the edge device with the lowest load balance

7

in the entire training process to participate in the training.
Therefore, compared with the WLB-ACO algorithm and the
HETS algorithm, the RL-SAP algorithm has always been
at a lower degree of load balance. Through the analysis of
specific data, the load balance of RL-SAP is reduced by 28.2%
compared with WLB-ACO and 28.7% compared with HETS.

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

Lo
ad

 ba
lan

ce

E d g e d e v i c e a v a i l a b l e r e s o u r c e s

 R L - S A P
 W L B - A C O
 H E T S
 F u l l - L o c a l

Fig. 5: Load balance under different computing resources.

In addition, in order to verify the performance of the RL-
SAP algorithm when the available resources and model size
are constant, we use different training models as experimental
factors to observe the load balance of the four algorithms when
facing different training tasks. The experimental results are
shown in Fig.6. It can be clearly seen from the Fig.6 that
the RL-SAP algorithm can still maintain a low load balance
when facing different training tasks. This is because RL-SAP
takes minimizing the load balance as the training goal, so it
can always find the strategy that minimizes the load balance
of the entire federated learning network. In addition, the load
balance of the Full-Local algorithm does not increase with
the change of the model, because the load balance of the
Full-Local algorithm depends on the resources required for
the training task.

Experiment 2: Fig.7 indicates the time required for the
training process under different available resources. In this
experiment, the model we trained is the MNIST dataset carried
by tensorflow, which contains 50,000 training images. As
revealed in the Fig.7, because the RL-SAP algorithm first uses
the RL algorithm to consider the load balance of the edge
device, and then uses the social attribute perception algorithm
to ensure the reliability of the edge device. Therefore, when the
RL-SAP algorithm is used to schedule the federated learning
task, there will be no edge device overload or withdrawal
from training, and the time required for federated learning
is therefore reduced. Through the analysis of specific data,
the speed of the RL-SAP algorithm proposed in this article
is 10.3% higher than that of the WLB-ACO algorithm, and
14.5% higher than that of Full-local, but there is no significant
improvement compared to the HETS algorithm.

Similar to the experimental purpose in Fig.6, in order to
verify the time performance of the RL-SAP algorithm in

1 2 3 4 5
0

1

2

3

4

5

Lo
ad

 ba
lan

ce

M o d e l

 R L - S A P
 W L B - A C O
 H E T S
 F u l l - L o c a l

Fig. 6: Load balance in different scenarios.

0 2 0 4 0 6 0 8 0 1 0 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Tra
inin

g t
im

e(s
)

E d g e d e v i c e a v a i l a b l e r e s o u r c e s

 R L - S A P
 W L B - A C O
 H E T S
 F u l l - L o c a l

Fig. 7: Training time under different computing resources.

the face of different training tasks, we use different training
models as experimental factors. The experimental results are
shown in Fig.8. Obviously, RL-SAP can maintain better time
performance when facing different training tasks. The reason
for this result is the same as that shown in Fig.7. Because the
load of the edge device and the frequency of interaction with
the central server are considered comprehensively, RL-SAP
can complete the training task faster.

B. Edge device pre-selection algorithm based on reinforce-
ment learning

Experiment 3: Fig.9 describes the relationship between the
number of different edge devices and the average training com-
pletion delay. As displayed in the Fig.9, the average training
completion delay of the four algorithms shows a downward
trend with the increase of edge devices. Among them, the edge
device selection scheme based on social attribute perception
proposed in this paper is always at a low level. Compared with
the Random Walk algorithm, the solution in this article has an
average performance when there are fewer devices involved
in training. However, as the number of devices increases, RL-

8

1 2 3 4 5
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0
Tra

inin
g t

im
e(s

)

M o d e l

 R L - S A P
 W L B - A C O
 H E T S
 F u l l - L o c a l

Fig. 8: Training time in different scenarios.

SAP performs better, while Random Walk gradually stabilizes.
This is mainly because RL-SAP considers the load balance of
the edge device while ensuring the frequency and intimacy
between it and the central server. Therefore, the edge device
participating in the training process is more reliable and the
required communication delay is smaller. The other three
algorithms may take a long time to complete the training
due to the overload of the edge device. Compared with
the SDFM algorithm and BubbleRap algorithm, he average
training completion time has been reduced by 18% and 25%
respectively.

0 2 0 4 0 6 0 8 0 1 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

Av
era

ge
 co

mp
let

ion
 de

lay
(m

s)

N u m b e r o f e q u i p m e n t

 R L - S A P
 S D F M
 B u b b l e R a p
 R a n d o m W a l k

Fig. 9: Average completion delay under different number of
devices.

Experiment 4: In addition, we also verify the effectiveness
of the algorithm from the accuracy of the training results,
and compare the federated learning algorithm that does not
consider the reliability of the equipment participating in the
training and the Reliable-FL algorithm proposed in [29]. As
shown in Fig.10, the scheme proposed in this paper improves
the accuracy of training results by 5.7% compared to the FL
algorithm without considering the reliability of the equipment,
and improves by 0.9% compared with Reliable-FL. However,
the overall training accuracy is slightly insufficient compared

to the FedCS algorithm. This is mainly due to the considera-
tion of the activity of the edge device and the intimacy with the
central server, which ensures the reliability of the equipment
participating in the training, and to a large extent avoids the
problem that the edge device cannot continue to iteratively up-
date the training model with the central server. Therefore, the
accuracy of training is greatly improved. Compared with the
Reliable-FL algorithm, because the algorithm only considers
the reliability of the edge device training model data and lacks
consideration of iterative interaction, the accuracy is relatively
poor.

1 2 3 4 5

9 0

9 2

9 4

9 6

9 8

1 0 0

Ac
cu

rac
y o

f tr
ain

ing
 re

su
lts(

%)

M o d e l

 R L - S A P
 F L
 R e l i a b l e - F L
 F e d C S

Fig. 10: Training accuracy of different models.

VI. CONCLUSION

Although federated learning provides a good solution to the
problem of user privacy leakage in the process of machine
learning. However, in the process of training the model, there
is a lack of consideration of the reliability of the edge devices
participating in the training, resulting in long training time,
low efficiency, and insufficient training accuracy. In response
to this problem, this paper proposes an edge device selection
scheme based on reinforcement learning and social attribute
perception, and the feasibility of the scheme is verified from
multiple angles of the network load balance of the training
process, the time required for training, the average training
completion delay, and the accuracy of the training results. The
results demonstrate that this scheme can effectively improve
the efficiency of model training and the accuracy of training
results. However, this solution is still insufficient in consid-
eration of the training completion delay. Therefore, future
work will focus on ensuring the reliability of the edge devices
participating in the training, while studying how to reduce the
training completion delay and further improve the efficiency
of model training.

REFERENCES

[1] Haipeng Yao, Pengcheng Gao, Jingjing Wang, Peiying Zhang, and Zhu
Han. Capsule network assisted iot traffic classification mechanism for
smart cities. IEEE Internet of Things Journal, 6(5):7515–7525, 2019.

[2] Xiaodong Ren, Gagangeet Singh Aujla, Anish Jindal, Ranbir Singh
Batth, and Peiying Zhang. Adaptive recovery mechanism for sdn
controllers in edge-cloud supported fintech applications. IEEE Internet
of Things Journal, PP(99):1–1, 2021.

9

[3] Sudip Misra and Subhadeep Sarkar. Priority-based time-slot allocation
in wireless body area networks during medical emergency situations:
An evolutionary game-theoretic perspective. IEEE J. Biomed. Health
Informatics, 19(2):541–548, 2015.

[4] Sudip Misra, Soumen Moulik, and Han-Chieh Chao. A cooperative
bargaining solution for priority-based data-rate tuning in a wireless body
area network. IEEE Trans. Wirel. Commun., 14(5):2769–2777, 2015.

[5] Sudip Misra, Vivek Tiwari, and Mohammad S. Obaidat. Lacas: learning
automata-based congestion avoidance scheme for healthcare wireless
sensor networks. IEEE J. Sel. Areas Commun., 27(4):466–479, 2009.

[6] Bhaskar Das, Sudip Misra, and Utpal Roy. Coalition formation for
cooperative service-based message sharing in vehicular ad hoc networks.
IEEE Trans. Parallel Distributed Syst., 27(1):144–156, 2016.

[7] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions. IEEE
Signal Process. Mag., 37(3):50–60, 2020.

[8] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Transactions on
Intelligent Systems and Technology, 10(2):1–19, 2019.

[9] Advances and open problems in federated learning. 2019.
[10] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao

Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao.
Federated learning in mobile edge networks: A comprehensive survey.
IEEE Commun. Surv. Tutorials, 22(3):2031–2063, 2020.

[11] Haipeng Yao, Danyang Fu, Peiying Zhang, Maozhen Li, and Yunjie Liu.
Msml: A novel multi-level semi-supervised machine learning framework
for intrusion detection system. IEEE Internet of Things Journal, 2018.

[12] Neeraj Kumar, Jatinder Manhas, and Vinod Sharma. A comparative anal-
ysis to visualize the behavior of different machine learning algorithms
for normalized and un-normalized data in predicting alzheimer’s disease.
Journal of Computational & Theoretical Nanoence, 16(9), 2019.

[13] Chaman Verma, Veronika Stoffova, Zoltán Illés, Sudeep Tanwar, and
Neeraj Kumar. Machine learning-based student’s native place identifi-
cation for real-time. IEEE Access, 8(99):1–15, 2020.

[14] Peiying Zhang, Chunxiao Jiang, Xue Pang, and Yi Qian. Stec-iot: A
security tactic by virtualizing edge computing on iot. IEEE Internet of
Things Journal, 8(4):2459–2467, 2021.

[15] Peiying Zhang, Xue Pang, Neeraj Kumar, Gagangeet Singh Aujla,
and Haotong Cao. A reliable data-transmission mechanism using
blockchain in edge computing scenarios. IEEE Internet of Things
Journal, PP(99):1–1, 2020.

[16] H. Brendan Mcmahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. Communication-efficient learning of deep
networks from decentralized data. 2016.

[17] Sheng Shen, Tianqing Zhu, Di Wu, Wei Wang, and Wanlei Zhou. From
distributed machine learning to federated learning: In the view of data
privacy and security. CoRR, abs/2010.09258, 2020.

[18] Alberto Blanco-Justicia, Josep Domingo-Ferrer, Sergio Martı́nez, David
Sánchez, Adrian Flanagan, and Kuan Eeik Tan. Achieving security and
privacy in federated learning systems: Survey, research challenges and
future directions. CoRR, abs/2012.06810, 2020.

[19] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin.
Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf.
Forensics Secur., 15:911–926, 2020.

[20] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko
Ludwig. Hybridalpha: An efficient approach for privacy-preserving
federated learning. In the 12th ACM Workshop, 2019.

[21] Chen Xiaojun Zeng Shuai Dong Ye, Hou Wei. Efficient and secure
federated learning based on secret sharing and gradients selection.
Journal of Computer Research and Development, 57(10):2241, 2020.

[22] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and
Sen Liu. Efficient and privacy-enhanced federated learning for industrial
artificial intelligence. IEEE Trans. Ind. Informatics, 16(10):6532–6542,
2020.

[23] Dipankar Sarkar, Sumit Rai, and Ankur Narang. Catfedavg: Optimis-
ing communication-efficiency and classification accuracy in federated
learning. CoRR, abs/2011.07229, 2020.

[24] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech
Samek. Robust and communication-efficient federated learning from
non-i.i.d. data. IEEE Trans. Neural Networks Learn. Syst., 31(9):3400–
3413, 2020.

[25] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jad-
babaie, and Ramtin Pedarsani. Fedpaq: A communication-efficient
federated learning method with periodic averaging and quantization.
arXiv, 2019.

[26] Hangyu Zhu and Yaochu Jin. Multi-objective evolutionary federated
learning. IEEE Trans. Neural Networks Learn. Syst., 31(4):1310–1322,
2020.

[27] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen,
and Min Chen. In-edge ai: Intelligentizing mobile edge computing,
caching and communication by federated learning. 2018.

[28] Andrew Hard, Kanishka Rao, Rajiv Mathews, Franoise Beaufays, and
Daniel Ramage. Federated learning for mobile keyboard prediction.
2018.

[29] Jiawen Kang, Zehui Xiong, Dusit Niyato, Yuze Zou, and Mohsen
Guizani. Reliable federated learning for mobile networks. IEEE Wireless
Communications, 2019.

[30] Takayuki Nishio and Ryo Yonetani. Client selection for federated
learning with heterogeneous resources in mobile edge. 2018.

[31] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th ACM Workshop
on Artificial Intelligence and Security, AISec’19, page 1–11, New York,
NY, USA, 2019. Association for Computing Machinery.

[32] Jie Lei, Qiao Luan, Xinhui Song, Xiao Liu, Dapeng Tao, and Mingli
Song. Action parsing-driven video summarization based on reinforce-
ment learning. IEEE Trans. Circuits Syst. Video Technol., 29(7):2126–
2137, 2019.

[33] Chen Zhong, Mustafa Cenk Gursoy, and Senem Velipasalar. Deep
reinforcement learning-based edge caching in wireless networks. IEEE
Trans. Cogn. Commun. Netw., 6(1):48–61, 2020.

[34] Vincent Franois-Lavet, Peter Henderson, Riashat Islam, Marc G. Belle-
mare, and Joelle Pineau. An introduction to deep reinforcement learning.
Foundations and trends in machine learning, 11(3-4):1,3–15,17–25,27–
55,57–69,71–77,79–99,101–105,107–111,113–145, 2018.

[35] Godfrey Kibalya, Joan Serrat, Juan Luis Gorricho, Dorothy Okello, and
Peiying Zhang. A deep reinforcement learning-based algorithm for
reliability-aware multi-domain service deployment in smart ecosystems.
Neural Computing and Applications, pages 1–23, 2020.

[36] Haipeng Yao, Bo Zhang, Peiying Zhang, Sheng Wu, and Song Guo.
Rdam: A reinforcement learning based dynamic attribute matrix rep-
resentation for virtual network embedding. IEEE Transactions on
Emerging Topics in Computing, PP(99):1–1, 2018.

[37] Peiying Zhang, Chao Wang, Chunxiao Jiang, and Zhu Han. Deep
reinforcement learning assisted federated learning algorithm for data
management of iiot. IEEE Transactions on Industrial Informatics,
PP(99):1–1, 2021.

[38] Xiang Wang, Supeng Leng, and Kun Yang. Social-aware edge caching
in fog radio access networks. IEEE Access, 5:8492–8501, 2017.

[39] Liudong Chen, Nian Liu, Chenchen Li, and Jianhui Wang. Peer-to-peer
energy sharing with social attributes: A stochastic leader-follower game
approach. IEEE Trans. Ind. Informatics, 17(4):2545–2556, 2021.

[40] Xiaolin Fang, Junzhou Luo, Guangchun Luo, Weiwei Wu, Zhipeng Cai,
and Yi Pan. Big data transmission in industrial iot systems with small
capacitor supplying energy. IEEE Trans. Ind. Informatics, 15(4):2360–
2371, 2019.

[41] Younes Hajoui, Omar Bouattane, Mohamed Youssfi, and Elhocein
Illoussamen. New load balancing framework based on mobile agent and
ant-colony optimization technique. In New load balancing Framework
based on mobile AGENT and ant-colony optimization technique, 2017.

[42] Anum Masood, Ehsan Ullah Munir, M. Mustafa Rafique, and Samee Ul-
lah Khan. Hets: Heterogeneous edge and task scheduling algorithm for
heterogeneous computing systems. In IEEE International Conference
on IEEE International Conference on High Performance Computing and
Communications, IEEE International Symposium on Cyberspace Safety
and Security, 2015.

[43] Rui Tian, Zhenzhen Jiao, Guiyun Bian, Zhiqing Huang, and Yibin Hou.
A social-based data forwarding mechanism for v2v communication in
vanets. In International Conference on Communications and Networking
in China, 2016.

[44] Jie Zhang, Hongzhi Guo, and Jiajia Liu. Adaptive task offloading in
vehicular edge computing networks: a reinforcement learning based
scheme. Mob. Networks Appl., 25(5):1736–1745, 2020.

[45] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based
forwarding in delay-tolerant networks. IEEE Transactions on Mobile
Computing, 10(11):1576–1589, 2011.

