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QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the
Standard Model. A discovery and detailed study of instanton-generated processes at colliders would
provide a new window into the phenomenological exploration of QCD and a vastly improved fundamental
understanding of its nonperturbative dynamics. Building on the optical theorem, we numerically calculate
the total instanton cross section from the elastic scattering amplitude, also including quantum effects arising
from resummed perturbative exchanges between hard gluons in the initial state, thereby improving in
accuracy on previous results. Although QCD instanton processes are predicted to be produced with a large
scattering cross section at small center-of-mass partonic energies, discovering them at hadron colliders is a
challenging task that requires dedicated search strategies. We evaluate the sensitivity of high-luminosity
LHC runs, as well as low-luminosity LHC and Tevatron runs. We find that LHC low-luminosity runs in
particular, which do not suffer from large pileup and trigger thresholds, show a very good sensitivity for
discovering QCD instanton-generated processes.
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I. INTRODUCTION

Instantons are arguably the best motivated nonperturba-
tive effects in the Standard Model (SM), and yet they have
not been observed so far. Our motivation in this paper is to
reexamine QCD instanton contributions to high-energy
scattering processes at hadron colliders building up on
the recent work [1] in establishing a robust QCD instanton
computational formalism focused on applications to proton
colliders and to discuss experimental signatures.
The status of the SM as the theory of the currently

accessible fundamental interactions in particle physics is
well established. To a large extent, the evidence for the SM
as the most precise theoretical framework for describing
strong and electroweak interactions comes from comparing
perturbative calculations with the data from particle experi-
ments. The reliance on the weakly coupled perturbation
theory is justified at high energies thanks to the asymptotic
freedom in the Yang-Mills theory. But there is another
consequence of the non-Abelian nature of the theory that
necessitates an inclusion of nonperturbative effects. The
non-Abelian nature of QCD and of the weak interactions is

known to give rise to a rich vacuum structure in the
Standard Model. This vacuum structure is well understood
in the semiclassical picture [2,3] and amounts to aug-
menting the perturbative vacuum with an infinite set of
topologically nontrivial vacuum sectors in a Yang-Mills
theory.
Instanton field configurations [4] are classical solutions

of Yang-Mills equations of motion in the Euclidean space
which interpolate between the different semiclassical vac-
uum sectors in the theory. At weak coupling instantons
provide dominant contributions to the path integral and
correspond to quantum tunneling between different vac-
uum sectors of the SM. These effects are beyond the reach
of ordinary perturbation theory, and in particular in the
electroweak theory they lead to the violation of baryon plus
lepton number (Bþ L), while in QCD instantons processes
violate chirality [5,6],

gþ g → ng × gþ
XNf

f¼1

ðqRf þ q̄LfÞ; ð1:1Þ

where Nf is the number of light (i.e., nearly massless
relative to the energy scale probed by the instanton) quark
flavors. The QCD instanton-generated process (1.1) with
two gluons in the initial state going to an arbitrary number
of gluons in the final state along with 2Nf quarks will be
the focus of our discussion in Sec. II.
The purpose of this paper is to provide the most up-to-

date computationally robust calculation of QCD instanton
contributions to high-energy scattering processes relevant
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for hadron colliders. At the level of the partonic instanton
cross section, there are two main ingredients in the
approach we follow. We shall use the optical theorem
approach that will effectively allow us to sum over all final
states with an arbitrary number of gluons. This is achieved
by evaluating the imaginary part of the forward elastic
scattering amplitude computed in the background of the
instanton–anti-instanton configuration. This formalism was
originally developed in [7] based on the instanton–anti-
instanton field configuration constructed in [8].
The second ingredient of our approach relies on the

inclusion of certain higher-order effects in the instanton
perturbation theory. Specifically we will take into account
resummed radiative exchanges between the hard partons in
the initial state [9,10], as they provide the dominant
contribution to breaking the classical scale invariance of
QCD in quantum theory. Inclusion of these quantum effects
(often referred to in the instanton literature as the hard-hard
quantum corrections) is required in order to resolve the
well-known nonperturbative infrared (IR) problem that
arises from contributions of QCD instantons with large
scale sizes, as was first shown in [1]. We will see that
contributions of QCD instantons with large sizes are
automatically cut off by the inclusion of these quantum
effects.
To a large extent the theory formalism we employ in this

paper for computing QCD instanton rates is the same as in
the earlier work [1], but we are able to carry out a more
complete evaluation of instanton integrals without relying
on the saddle-point approximation. Specifically, in
Sec. II D we will numerically compute integrals over all
instanton–anti-instanton collective coordinates that corre-
spond to positive modes of the instanton–anti-instanton
action. Only the final integration over the single negative
mode that gives rise to the imaginary part of the amplitude,
as required by the optical theorem, will be carried out in the
saddle-point approximation. This provides a more robust
prediction leading on average to an order of magnitude
increase in instanton partonic cross sections in our case.
There is also a number of other more minor technical
improvements, in particular in relation to the computation
of the mean number of gluons in the final state in Sec. II E.
Our results summarized in Tables I and II present cross
sections for instanton-generated processes at partonic and
hadronic levels for the LHC and the Tevatron as well as for
30 TeV and 100 TeV future hadron colliders.
In Sec. III we explain how to generalize the calculation

of the instanton process to the case where a jet is emitted
from one of the initial state partons. We find that cross
sections calculated for the processes where the instanton
recoils against a jet with large momentum are too small to
be observable at any present or envisioned high-energy
collider. In order to obtain sensitivity to instantons is to
disentangle their spherical radiation profile, made of fairly
soft jets from the perturbative backgrounds.

The event topology of instanton events with its spherical
energy distribution between a large number of final-state
objects is visibly distinguishable from the usual few-jets
events generated in perturbative-QCD processes at the
LHC, as discussed in Sec. IVA, but QCD instanton
processes occur predominantly at small partonic center-
of-mass energies. The combination of both these character-
istics suggests that QCD-instanton events are soft bombs
[1], using the terminology of Ref. [11], where the phe-
nomenology of such events was first investigated in the
context of beyond the Standard Model physics. In our case
the soft bombs are fully Standard Model made. At high-
energy colliders, such events struggle to pass trigger and
event reconstruction cuts. In Secs. IV B 1 and IV C we
assess whether the comparably large hadronic instanton
cross sections might give rise to visible signatures at
hadron colliders, in particular the LHC or the Tevatron.
Examination of data collected with a minimum bias trigger
shows that it should be possible to either discover instan-
tons or severely constrain their cross section. We conclude
with a summary in Sec. V.

II. COMPUTATION OF THE INSTANTON
PARTONIC CROSS SECTION

Instanton gauge fields Ainst
μ ðxÞ are the solutions to the

self-duality equation, Fμν ¼ F̃μν, and as such, instantons
are local minima of the Euclidean action. In QCD, the
instanton configuration contains the gauge field and the
fermion components,

Aμ ¼ Ainst
μ ðxÞ; q̄Lf ¼ ψ ð0ÞðxÞ; qRf ¼ ψ ð0ÞðxÞ; ð2:1Þ

where the gauge field Ainst
μ is the instanton solution [4] of

topological charge 1,

Aa inst
μ ðxÞ ¼ 2ρ2

g

η̄aμνðx − x0Þν
ðx − x0Þ2ððx − x0Þ2 þ ρ2Þ ; ð2:2Þ

and the constants η̄aμν are the ’t Hooft eta symbols [5].
The fermionic components ψ ð0Þ in (2.1) are known as
the instanton fermion zero modes. They are given by the
(nonvanishing) solutions of the Dirac equation in the Aa inst

μ

instanton background, γμDinst
μ ψ ð0Þ ¼ 0. The Euclidean

action of the BPST instanton is

S½Ainst
μ � ¼ SI ¼

8π2

g2
¼ 2π

αsðμrÞ
; ð2:3Þ

where for the later convenience we have included the
dependence of the coupling constant on the renormalisation
group (RG) scale μr. For more details on instantons and
their applications relevant to the material in this section, an
interested reader can consult a selection of review articles in
Refs. [12–16]. Our presentation in Secs. II A and II B
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follows a recent overview of QCD instanton calculus
in Ref. [1].

A. QCD instantons and scattering amplitudes

The scattering amplitude for the 2 → ng þ 2Nf instan-
ton-generated process (1.1) is computed by expanding the
path integral around the instanton field configuration (2.1).
The amplitude takes the form of an integral over the

instanton collective coordinates,

A2→ngþ2Nf
¼

Z
d4x0

Z
∞

0

dρDðρÞe−SI
Yngþ2

i¼1

Ainst
LSZðpi; ρÞ

×
Y2Nf

j¼1

ψ ð0Þ
LSZðpj; ρÞ: ð2:4Þ

The integral (2.4) is over the instanton position xμ0 and the
scale-size collective coordinate ρ, and it involves the
instanton density function DðρÞ, the semiclassical sup-
pression factor e−SI by the instanton action (2.3), and
the product of vector boson and fermion field configura-
tions, one for each external leg of the amplitude, computed
on the instanton solutions, and Lehmann–Symanzik–
Zimmermann (LSZ) reduced.
The instanton density DðρÞ in (2.4) arises from comput-

ing quadratic fluctuation determinants in the instanton
background in the path integral. This is a one-loop effect
in the perturbation theory around the instanton, and the
result is given by [5]

Dðρ; μrÞ ¼ κ
1

ρ5

�
2π

αsðμrÞ
�

2NcðρμrÞb0 ; ð2:5Þ

where κ is the normalization constant of the instanton
density in the MS scheme [17–19],

κ ¼ 2e5=6−1.511374Nc

π2ðNc − 1Þ!ðNc − 2Þ! e
0.291746Nf

≃ 0.0025e0.291746Nf ; ð2:6Þ

and b0 ¼ ð11=3ÞNc − ð2=3ÞNf.
Expressions for the LHZ-reduced instanton field inser-

tions on the right-hand side (RHS) of the integral in (2.4)
are obtained from the momentum-space representation of
the instanton solution (2.2),

Aa inst
LSZ ðp; λÞ ¼ lim

p2→0
p2ϵμðλÞAa inst

μ ðpÞ

¼ ϵμðλÞη̄aμνpν
4iπ2ρ2

g
eip·x0 ; ð2:7Þ

where ϵμðλÞ is the polarization vector for a gluon with
a helicity λ. A similar expression also holds for the LSZ-

amputated fermion zero modes, in this case, ψ ð0Þ
LSZ ∝ ρ

rather than Ainst
LSZ ∝ ρ2 for the gauge field.

Combining all the ingredients above, it is now easy to see
that the ρ integral in the leading-order instanton amplitude
(2.4) is powerlike divergent—a well-known fact that signals
the breakdown of the leading-order instanton calculation in
QCD at large distances (ρ≳ 1=Λ) where the coupling
becomes strong and the semiclassical approximation is
invalidated. Instantons are solutions to classical equations,
and unless quantum effects due to field fluctuations around
instantons are appropriately taken into account, there is no
scale in the microscopic QCD Lagrangian to cut off large
values of the instanton size—ρ is a classically flat direction.
To break classical scale invariance we need to include
quantum corrections that describe interactions of the exter-
nal states. This amounts to inserting propagators in the
instanton background between pairs of external fields in the
preexponential factor in (2.4) and resumming the resulting
perturbation theory. The dominant effect comes from
interactions between the two initial hard gluons [9] (these
are the states that carry the largest kinematic invariant
p1 · p2 ¼ ŝ=2). In Ref. [10] Mueller has shown that these
quantum corrections formally exponentiate and the resulting
expression for the resummed quantum corrections around
the instanton generates the factor

e−ðαsðμrÞ=16πÞρ2E2 logE2=μ2r ; ð2:8Þ

where E is the partonic centre of mass (CoM) energy,
E2 ≡ ŝ. This exponential factor provides an automatic cutoff
of the large instanton sizes, and the instanton integral over ρ
can now be safely evaluated.
To proceed, we need to select a value for the renorm-

alization scale μr. Recall that the integrand in (2.4) contains
the factor

ðρμrÞb0e−
2π

αsðμrÞ ¼ e−
2π

αsð1=ρÞ; ð2:9Þ

where ðρμrÞb0 comes from the instanton density and the

factor e−
2π

αsðμrÞ accounts for the contribution of the instanton
action SI ¼ 2π

αsðμrÞ. The RHS of (2.10) is RG invariant at one

loop, it does not depend on the choice of μr, and instead the
scale of the running coupling constant is set at the inverse
instanton size. To take advantage of this and to remove
large powers of ρ from the integrand, from now on and until
the end of this section, we will set the RG scale value at the
instanton size,

μr ¼ 1=ρ: ð2:10Þ

The amplitude integrand including Mueller’s exponen-
tiated quantum effect is given by
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A2→ngþ2Nf
¼ κ

Z
d4x0

Z
∞

0

dρ
ρ5

�
2π

αs

�
6

e−
2π

αsð1=ρÞ−
αsð1=ρÞ
16π ρ2E2 logE2ρ2

×
Yngþ2

i¼1

Ainst
LSZðpi;ρÞ

Y2Nf

j¼1

ψ ð0Þ
LSZðpj;ρÞ: ð2:11Þ

Keeping a careful track of the powers of ρ, the resulting
integral in (2.11) is proportional to the following expression
(we note that the integral over the instanton position

R
d4x0

gives the delta function of the momentum conservation that
we drop, along with the overall constant and ρ-independent
factors):

A2→ngþ2Nf
∼
Z

∞

0

dρðρ2Þngþ2þNf−5=2e−
αsð1=ρÞ
16π E2ρ2 logðE2ρ2Þ− 2π

αsð1=ρÞ:

ð2:12Þ

The integral is no longer divergent in the IR limit of large ρ
and can be evaluated and the resulting expression for the
amplitude can be used to compute the instanton cross
section. In the following section we will obtain the instanton
cross section in a more efficient manner using the optical
theorem approach in the following section (Sec. II B).
Before we conclude this section, we would like to

comment on the structure of the leading-order instanton
expression (2.11). Note that the integrand on the right-hand
side of (2.11) contains a simple product of bosonic and
fermionic components of instanton field configurations,
one for each external line of the amplitude. Such a fully
factorized structure of the field insertions implies that at the
leading order in instanton perturbation theory there are no
correlations between the momenta of the external legs in
the instanton amplitude. Emissions of individual particles
in the final state are mutually independent, apart from the
overall momentum conservation. The expression in (2.11)
looks like a multiparticle pointlike vertex integrated over
the instanton position and size. Thanks to its pointlike
structure, the instanton vertex in the center-of-mass frame
describes the scattering process into a spherically sym-
metric multiparticle final state. The number of gluons ng is
unconstrained and can be as large as is energetically
viable [20,21] (in practice, the dominant contribution will
come from hngi ∼ 4π=αs ≫ 1), and a fixed number of
quarks (a qLq̄R pair for each light quark flavor).

B. The optical theorem approach

To compute a total parton-level instanton cross section
σ̂insttot for the process gg → X, we use the optical theorem to
relate the cross section to the imaginary part of the forward
elastic scattering amplitude computed in the background of
the instanton–anti-instanton (IĪ) configuration,

σ̂insttot ¼ 1

E2
ImAIĪ

4 ðp1; p2;−p1;−p2Þ; ð2:13Þ

where E ¼ ffiffiffî
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 þ p2Þ2

p
is the partonic CoM

energy.
For the reader’s convenience in Appendix A we outline

main steps of the formalism to represent the forward
elastic scattering amplitude as the integral over collective
coordinates of the instanton–anti-instanton field configu-
ration following the valley method approach developed
in [7,8,22–25].
For our purposes it is sufficient to simply note that the

instanton–anti-instanton gauge field is a trajectory in the
topological charge zero sector of the field configuration
space parametrized by instanton and anti-instanton collec-
tive coordinates. This trajectory interpolates between the
sum of infinitely separated instanton and anti-instanton and
the perturbative vacuum,

R → ∞∶ AIĪ
μ ðxÞ → AI

μðx − x0Þ þ AĪ
μðx − x0 − RÞ; ð2:14Þ

R → 0∶ AIĪ
μ ðxÞ → 0: ð2:15Þ

The configuration AIĪ
μ ðxÞ for arbitrary values of the col-

lective coordinates is determined by solving the gradient
flow equation known as the valley equation.
The collective-coordinate integral for the amplitude

reads

AIĪ
4 ðp1; p2;−p1;−p2Þ

¼
Z

∞

0

dρ
Z

∞

0

dρ̄
Z

d4R

×
Z

dΩDðρÞDðρ̄Þe−SIĪ−
αs
16πðρ2þρ̄2ÞE2 logE

2

μ2r

× Ainst
LSZðp1ÞAinst

LSZðp2ÞAinst
LSZð−p1ÞAinst

LSZð−p2ÞKferm:

ð2:16Þ
In the expression above we integrate over all collective
coordinates: ρ and ρ̄ are the instanton and anti-instanton
sizes, Rμ ¼ ðR0; R⃗Þ is the separation between the I and Ī
positions in the Euclidean space, and Ω is the 3 × 3 matrix
of relative IĪ orientations in the SUð3Þ colour space. DðρÞ
and Dðρ̄Þ represent the instanton and the anti-instanton
densities (2.5) and the field insertions Ainst

LSZðpÞ and

Ainst
LSZðp0Þ are the LSZ-reduced instanton and anti-instanton

fields (2.7). For each pair of the gluon legs with the same
incoming/outgoing momentum we have

1

3

X3
a¼1

1

2

X
λ¼1;2

Aa inst
LSZ ðp; λÞAa inst

LSZ ð−p; λÞ

¼ 1

6

�
2π2

g
ρρ̄

ffiffiffiffi
s0

p �
2

eiR·p; ð2:17Þ

and now for the combination of all four external gluon
insertions in (2.16) we have
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Ainst
LSZðp1ÞAinst

LSZðp2ÞAinst
LSZð−p1ÞAinst

LSZð−p2Þ

¼ 1

36

�
2π2

g
ρρ̄

ffiffiffiffi
s0

p �
4

eiR·ðp1þp2Þ: ð2:18Þ

The contribution eiR·ðp1þp2Þ arises from the exponential
factors eipi·x0 and e−ipi·x̄0 from the two instanton and two
anti-instanton legs, which upon the Wick rotation to the

Minkowski space becomes eR0

ffiffiffi
s0

p
.

The final factor on the right-hand side of (2.16) (apart
from the expression in the exponent) is the overlap of
fermion zero modes Kferm, which we will define near the
end of the section.
We now turn to the exponent in (2.16). The action of

the instanton–anti-instanton configuration was computed
in [7,23,24], it is a function of a single variable z known as
the conformal ratio of the (anti-)instanton collective coor-
dinates,

z ¼ R2 þ ρ2 þ ρ̄2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ ρ2 þ ρ̄2Þ2 − 4ρ2ρ̄2

p
2ρρ̄

; ð2:19Þ

and it takes the form SIĪðzÞ ¼ 4π
αs
SðzÞ where

SðzÞ ¼ 3
6z2 − 14

ðz − 1=zÞ2 − 17

− 3 logðzÞ
�ðz − 5=zÞðzþ 1=zÞ2

ðz − 1=zÞ3 − 1

�
: ð2:20Þ

For more detail on the derivation of the instanton–anti-
instanton valley trajectory and the plot of the action as the

function of the interinstanton separation we refer the reader
to Appendix A and Refs. [7,8,23,24].
The second term in the exponent in (2.16) is recognized

as Mueller’s quantum effect of the hard-hard gluon
exchanges in the initial state (2.8) and the similar factor
for the anti-instanton gluon exchanges in the final state.
The final factor appearing in (2.16) that needs to be

defined isKfermðzÞ. This simply comes from calculating the
overlap between the instanton and anti-instanton fermion
zero modes [26],

ω ¼
Z

d4xψ Ī
0ðxÞiDψ I

0ðxÞ: ð2:21Þ

The authors of Ref. [26] also found an integral expression
for this which was then calculated analytically in [27], and
this expression is then raised to the power 2Nf, the number
of fermions. It arises from the 2Nf fermions in the final
state of the process (1.1). As the instanton–anti-instanton
action function SðzÞ, the fermion factor KfermðzÞ is a
function of a single variable—the conformal ratio z defined
in (2.19). We have

Kferm ¼ ðωfermÞ2Nf ; ð2:22Þ

where ωfermðzÞ was computed in [27],

ωfermðzÞ ¼
3π

8

1

z3=2 2F1

�
3

2
;
3

2
; 4; 1 −

1

z2

�
: ð2:23Þ

Putting everything together we can now write down the
instanton cross section (2.13) as the finite-dimensional
integral in the form

σ̂insttot ≃
1

E2
Im

κ2π4

36 × 4

Z
dρ
ρ5

Z
dρ̄
ρ̄5

Z
d4R

Z
dΩ

�
2π

αsðμrÞ
�

14

ðρ2EÞ2ðρ̄2EÞ2KfermðzÞ

× ðρμrÞb0ðρ̄μrÞb0 exp
�
R0E −

4π

αsðμrÞ
SðzÞ − αsðμrÞ

16π
ðρ2 þ ρ̄2ÞE2 log

E2

μ2r

�
: ð2:24Þ

To further simplify the integrand we would like to select
a natural value for the renormalization scale that removes
the ðρμrÞb0ðρ̄μrÞb0 factor in the preexponent. Hence we
choose the value of μr to be set by the geometric average of
the instanton sizes,

μr ¼ 1=
ffiffiffiffiffi
ρρ̄

p
; ð2:25Þ

and as the result, all the running coupling constants
appearing on the right-hand side of (2.24) are given by
the following one-loop expression,

4π

αsð1=
ffiffiffiffiffi
ρρ̄

p Þ ¼
4π

αsðEÞ
− b0 log ðρρ̄E2Þ: ð2:26Þ

C. More on instanton–anti-instanton interaction

It can be useful to separate the instanton–anti-instanton
interaction potential Uint from the total action SIĪ,

UintðzÞ ¼ SI þ SĪ − SIĪðzÞ ¼
4π

αsðμrÞ
ð1 − SðzÞÞ; ð2:27Þ

where

SI ¼
2π

αsðμrÞ
¼ SĪ ð2:28Þ

denote the individual actions of the single instanton and
the single–anti-instanton. It then follows from our earlier
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discussion that in the limit of large separations, the
interaction potential vanishes, and in the opposite limit
where the individual instantons mutually annihilate, the
interaction cancels the effect of the individual instanton
actions,

lim
z→∞

Uint ¼
6

z2
þO

�
1

z4
log z

�
→ 0; ð2:29Þ

lim
z→1

Uint¼2SI

�
1−

6

5
ðz−1Þ2þOððz−1Þ3Þ

�
→2SI: ð2:30Þ

The exponent of the instanton–anti-instanton action appear-
ing in the optical theorem expression for the instanton
total cross section (2.24), can be interpreted as the series
expansion in powers of the instanton interaction potential,

exp

�
−

4π

αsðμrÞ
SðzÞ

�
¼

X∞
n¼0

1

n!
ðUintÞn exp ð−SI − SĪÞ;

ð2:31Þ

where n is the number of the cut propagators in the
imaginary part of the forward elastic scattering amplitude,
i.e., the number of final state gluons in the instanton
process. The expression (2.31) will be useful for in the
following section for obtaining the mean number of final
state gluons from our optical-theorem-based approach.
We should further note that the expression (2.20)

given above corresponds to the action of the instanton–

anti-instanton configuration for the choice of the relative
orientation matrix Ω that corresponds to the maximal
attraction between the instanton and the anti-instanton.
In general one should integrate over all relative orientations
on the right-hand side of (2.24). The result of this
integration (see Appendix B) is

Z
dΩe−

4π
αsðμrÞSðz;ΩÞ ¼ 1

9
ffiffiffi
π

p
�

3

Uint

�
7=2

e−
4π

αsðμrÞSðzÞ

¼ 1

9
ffiffiffi
π

p
�

3αsðμrÞ
4πð1 − SðzÞÞ

�
7=2

e−
4π

αsðμrÞSðzÞ:

ð2:32Þ

D. The master integral

We now introduce dimensionless integration variables,

r0 ¼ R0E; r ¼ jR⃗jE; ð2:33Þ

y ¼ ρρ̄E2; x ¼ ρ=ρ̄; ð2:34Þ

and use them to write down the instanton parton-level
cross-section σ̂insttot integral in (2.24) in the form

σ̂insttot ðEÞ ¼
1

E2
Im

Z þ∞

−∞
dr0er0Gðr0; EÞ; ð2:35Þ

where

Gðr0; EÞ ¼
κ2π4

217

ffiffiffi
π

3

r Z
∞

0

r2dr
Z

∞

0

dx
x

Z
∞

0

dy
y

�
4π

αs

�
21=2

�
1

1 − SðzÞ
�

7=2

×KfermðzÞ exp
�
−
4π

αs
SðzÞ − αs

4π

xþ 1=x
4

y log y

�
: ð2:36Þ

Here κ, SðzÞ, and KfermðzÞ are given by (2.6), (2.20),
(2.22), and (2.23), and the conformal ratio variable z is
expressed in terms of our dimensionless variables via

z ¼ 1

2
ðξþ ðξ2 − 4Þ1=2Þ; where ξ ¼ r20 þ r2

y
þ xþ 1

x
;

ð2:37Þ

in agreement with the expression (2.19).
The final ingredient we need is the expression (2.26) for

the running couplings in terms of the y variable,

4π

αs
ðy;EÞ ¼ 4π

αsðEÞ
− b0 log y

¼ 4π

0.416
þ 2b0 log

E
1 GeV

− b0 log y; ð2:38Þ

as follows from (2.26) and (2.34). We will thus set 4π
αs
¼

4π
αs
ðy;EÞ in the integrand (2.36) [including the function in

the exponent and the nonexponential terms in the integrant
in (2.36)].
To compute the instanton cross section (2.35) we first

numerically evaluate the integral (2.36) and obtain the
values for Gðr0; EÞ for a wide range of both arguments, r0
and E. After that we perform the final integration over r0 in
(2.35) by expanding the integrand in

σ̂insttot ðEÞ ¼
1

E2
Im

Z þ∞

−∞
dr0er0þlogGðr0;EÞ; ð2:39Þ

around the stationary point solution for r0 of the function
r0 þ logGðr0; EÞ in the exponent,
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r0ðEÞ∶ ∂r0 logGðr0; EÞ ¼ −1; ð2:40Þ

for each value of E. The saddle-point evaluation of the r0
integral (2.39) gives

σ̂insttot ðEÞ ≈
1

E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

−∂2
r0 logG

s ����
r0¼r0ðEÞ

er0ðEÞþlogGðr0ðEÞ;EÞ

¼ 1

E2

ffiffiffiffiffiffiffi
2π

W00

r ����
r0¼r0ðEÞ

er0ðEÞ−Wðr0ðEÞ;EÞ; ð2:41Þ

where we have defined

Wðr0; EÞ ¼ − logG0ðr0; EÞ;
W0ðr0; EÞ ¼ −∂r0 logGðr0; EÞ: ð2:42Þ

The numerical integration in (2.36) was carried out using
the PYTHON package SCIPY [28] for E in the range in 10 <
E < 2000 GeV and for a wide range in r0 to accommodate

a sufficiently large interval around the expected values of the
saddle point r0ðEÞ in (2.40). In Fig. 1 we plot the resulting
functionsWðr0; EÞ andW0ðr0; EÞ for fixed values ofE ¼ 10,
15, 30 GeV in the range 0 < r0 < 100 alongside the r0. The
function Wðr0; EÞ plays the role of the effective instanton–
anti-instanton Euclidean action [this is because it arises from

integrating theexponentof theclassical actione−
4π
αs
SðzÞ over the

collective coordinates of non-negative modes of the IĪ
configuration on the RHS of (2.36)]. The saddle-point value
for r0 is given by the equation W0ðr0; EÞ ¼ 1 for each fixed
value of E, as dictated by (2.40) above.
Having determined Wðr0; EÞ and its derivatives as

functions of r0 and E we can now carry out the final
integration over r0 using the saddle-point approximation
formula (2.41) for the imaginary part of the forward elastic
scattering amplitude and hence for the partonic instanton
cross section σ̂insttot ðEÞ. Our final results for the partonic
instanton cross section (2.35) are displayed in Table I.
Then the hadronic cross sections are calculated from

these partonic cross sections using the NNPDF3.1luxQED

TABLE I. The instanton cross section presented for a range of partonic C.o.M. energies
ffiffiffî
s

p ¼ E and the mean number of gluons at this
energy calculated using Eq. (2.46).ffiffiffî
s

p
[GeV] 50 100 150 200 300 400 500

hngi 9.43 11.2 12.22 12.94 13.96 14.68 15.23
σ̂insttot [pb] 207.33 × 103 1.29 × 103 53.1 5.21 165.73 × 10−3 13.65 × 10−3 1.89 × 10−3

TABLE II. Hadronic cross sections for QCD instanton processes at a range of colliders with different CoM energies ffiffiffiffiffiffiffispp̄
p evaluated

using Eq. (2.43). The minimal allowed partonic energy is Emin ¼
ffiffiffiffiffiffiffiffi
ŝmin

p
.

Emin [GeV] 50 100 150 200 300 400 500

σpp̄→I
ffiffiffiffiffiffiffispp̄

p ¼ 1.96 TeV 2.62 μb 2.61 nb 29.6 pb 1.59 pb 6.94 fb 105 ab 3.06 ab
σpp→I

ffiffiffiffiffiffiffispp
p ¼ 14 TeV 58.19 μb 129.70 nb 2.769 nb 270.61 pb 3.04 pb 114.04 fb 8.293 fb

σpp→I
ffiffiffiffiffiffiffispp

p ¼ 30 TeV 211.0 μb 400.9 nb 9.51 nb 1.02 nb 13.3 pb 559.3 fb 46.3 fb
σpp→I

ffiffiffiffiffiffiffispp
p ¼ 100 TeV 771.0 μb 2.12 μb 48.3 nb 5.65 nb 88.3 pb 4.42 pb 395.0 fb

FIG. 1. Left: Wðr0; EÞ plotted for E ¼ 10, 15, 30 GeV and 0 < r0 < 100. Right: W0ðr0; EÞ plotted for E ¼ 10, 15, 30 GeV and
0 < r0 < 100. NB one should ignore the small spike at r0 ¼ 60 as this is merely an artifact of the numerical accuracy of our
differentiation and integration functions.
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NNLO dataset with αsðMZÞ ¼ 0.118 [29,30] and displayed
in Table II. These are calculated using the usual formula

σpp→Iðŝ> ŝminÞ

¼
Z

spp

ŝmin

dx1dx2fðx1;Q2Þfðx2;Q2Þσ̂ðŝ¼x1x2sppÞ; ð2:43Þ

where spp is the center-of-mass energy of the hadron
collider, σ̂ is the partonic instanton cross section, and
ŝmin is the minimum invariant mass squared of the produced

system. NB here we are only considering the gluon initiated
process; otherwise we require a sum over such integrals.

E. Mean number of final state gluons

In our approach of computing the total partonic cross
section via the optical theorem in (2.35) and (2.36) we have
already effectively summed over the number gluons ng in
the final state. This sum can be uncovered by using the
series expansion (2.31) of the exponent of the instanton–
anti-instanton action on the right-hand side of (2.36),

Gðr0; EÞ ¼
κ2π4

217

ffiffiffi
π

3

r Z
∞

0

r2dr
Z

∞

0

dx
x

Z
∞

0

dy
y

�
4π

αs

�
21=2

�
1

1 − SðzÞ
�

7=2
KfermðzÞ

×
X∞
ng¼0

1

ng!
ðUintÞng exp

�
−
4π

αs
−
αs
4π

xþ 1=x
4

y log y

�
: ð2:44Þ

The mean value of ng (i.e., the value that gives the dominant contribution to the integral) is then easily found to be given by
the expectation value of the interaction potential,

hngi ¼ hUinti; ð2:45Þ
where the expectation value of hUinti is obtained by inserting Uint ¼ 4π

αsðy;EÞ ð1 − SðzÞÞ into the integrand on the right-hand

sides of (2.35) and (2.36) and normalizing by 1=ðE2σ̂insttot Þ.
In practice, we compute

hngi ¼
1

Gðr0; EÞ
κ2π4

217

ffiffiffi
π

3

r Z
∞

0

r2dr
Z

∞

0

dx
x

Z
∞

0

dy
y

�
4π

αsðy;EÞ
�

21=2
�

1

1 − SðzÞ
�

7=2

×KfermðzÞ
4π

αsðy;EÞ
ð1 − SðzÞÞ · exp

�
−

4π

αsðy;EÞ
SðzÞ − αsðy;EÞ

4π

xþ 1=x
4

y log y

�
: ð2:46Þ

On the right-hand side we have integrated over the y, x, r variables. The variable r0 is taken to be at its saddle-point value for
each fixed value of the energy E.
To account for the possibility of the new shifted saddle point we do the following:

hngi ¼
1

Im
Rþ∞
−∞ dr0er0Gðr0; EÞ

× Im
Z þ∞

−∞
dr0er0

κ2π4

217

ffiffiffi
π

3

r Z
∞

0

r2dr
Z

∞

0

dx
x

Z
∞

0

dy
y

�
4π

αsðy;EÞ
�

21=2
�

1

1 − SðzÞ
�

7=2

×KfermðzÞ
4π

αsðy;EÞ
ð1 − SðzÞÞ · exp

�
−

4π

αsðy;EÞ
SðzÞ − αsðy;EÞ

4π

xþ 1=x
4

y log y

�
: ð2:47Þ

III. INSTANTON RECOIL BY A JET

In this section we explain how to generalize the
calculation of the instanton process presented above to
the case where a jet is emitted from one of the initial state
partons. This is of course an important process for collider
studies as it allows one to recoil the instanton-generated
multiparticle final state by a high-pT jet.
When the jet is carrying momentum p produced

from an initial parton p1, the secondary gluon q entering

the instanton vertex will necessarily have a virtuality
q2 ¼ −Q2 ≠ 0.1 In the partonic center-of-mass frame
we have

1In the complementary scenario where a high-pT jet is emitted
from the instanton vertex in the final state, no virtualities arise, all
momenta entering and leaving the instanton vertex are on-shell,
and the formalism presented in the earlier section requires no
modifications.
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p1 ¼ ð
ffiffiffî
s

p
=2; 0; pLÞ; p2 ¼ ð

ffiffiffî
s

p
=2; 0;−pLÞ;

where jpLj ¼
ffiffiffî
s

p
=2;

p1 ¼ qþ p; p ¼ ðjpT j; pT; 0Þ;
Q2 ¼ −q2 ¼ −ðp1 − pÞ2 ¼

ffiffiffî
s

p
pT: ð3:1Þ

Here we have assumed for simplicity that the jet momen-
tum p is transverse; i.e., it does not have a longitudinal
component.
The kinematic-invariant CoM energy for the parton-level

process is, as before,
ffiffiffî
s

p
, where ŝ ¼ ðp1 þ p2Þ2. On the

other hand, the invariant mass entering the instanton vertexffiffiffiffi
s0

p
is now different,

s0 ¼ ðqþ p2Þ2 ¼ ŝ − 2Q2 ¼
ffiffiffî
s

p
ð

ffiffiffî
s

p
− 2pTÞ: ð3:2Þ

The virtuality Q of an incoming gluon leg, induced by a
no-zero pT , introduces a multiplicative form factor e−Qρ

into the instanton vertex. This is a well-known result
[25,27,31] that is a direct consequence of Fourier
transforming the instanton field to the momentum space

to obtain Ainst
LSZðqÞ, where the momentum q has a large

virtuality, Q2. For the instanton cross section one needs to

compute, Ainst
LSZðqÞAinst

LSZðp2ÞAinst
LSZð−qÞAinst

LSZð−p2Þ, in anal-
ogy with Eq. (2.18), which gives the overall form factor

exp ð−Qðρþ ρ̄ÞÞ ¼ exp

�
−
Q
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðxþ 1=xþ 2Þ

p �
; ð3:3Þ

that needs to be included in the integral (2.24). On the right-
hand side of this equation we used our standard dimension-
less variables x and y defined in (2.33) and (2.34).
The second modification of the integral in (2.24) is that

the energy variable E corresponds to the instanton vertex
energy E ¼ ffiffiffiffi

s0
p

defined in (3.2), which is smaller than the
overall invariant mass

ffiffiffî
s

p
of the parton-level process.

In summary, the instanton parton-level cross section
σ̂insttot ð

ffiffiffî
s

p
; pTÞ is computed as follows:

(1) For each pair of physical variables ŝ, pT , introduce
the auxiliary variables E and Q,

Q2 ¼ pT

ffiffiffî
s

p
; E2 ¼ ŝ − 2Q2: ð3:4Þ

(2) Numerically compute the integral,

G̃ðr0; E;QÞ ¼ κ2π4

217

ffiffiffi
π

3

r Z
∞

0

r2dr
Z

∞

0

dx
x

Z
∞

0

dy
y

�
4π

αs

�
21=2

�
1

1 − SðzÞ
�

7=2

×KfermðzÞ exp
�
−
4π

αs
SðzÞ − αs

4π

xþ 1=x
4

y log y −
Q
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

�
xþ 1

x
þ 2

�s �
ð3:5Þ

and use it to evaluate the expression for the cross
section,

IðE;QÞ ¼ 1

E2
Im

Z þ∞

−∞
dr0er0G̃ðr0; E;QÞ; ð3:6Þ

in the saddle-point approximation, as before.
(3) The cross section in physical variables is then

obtained via

σ̂insttot ð
ffiffiffî
s

p
; pTÞ ¼ IðE;QÞjQ2¼pT

ffiffî
s

p
;E2¼ŝ−2pT

ffiffî
s

p : ð3:7Þ

Table III presents the results for the instanton cross
section at parton level for a range of partonic CoM energies

ffiffiffî
s

p
and for a fixed value of the recoiled jet transverse

momentum pT ¼ 150 GeV. The resulting cross sections
fixed are negligibly small. To complement these results we
have also computed instanton cross sections for the case
where pT is scaled with the energy. Table IV presents the
results at parton level where the recoiled jet transverse
momentum is chosen as pT ¼ ffiffiffî

s
p

=3.
From the results in Tables IV and III we see that the

cross sections calculated for the processes where the
instanton recoils against a jet with large momentum are
too small to be observable at any present or envisioned
high-energy collider. While increasing the transverse
momentum for objects that are difficult to reconstruct by

TABLE III. The instanton partonic cross section recoiled against a hard jet with pT ¼ 150 GeV emitted from an initial state and
calculated using Eq. (3.7). Results for the cross section are shown for a range of partonic CoM energies

ffiffiffî
s

p
.ffiffiffî

s
p

[GeV] 310 350 375 400 450 500

σ̂insttot [pb] 3.42 × 10−23 1.35 × 10−18 1.06 × 10−17 1.13 × 10−16 9.23 × 10−16 3.10 × 10−15
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recoiling them against a hard object is often a popular
method to improve the sensitivity of the LHC to new
physics (see, e.g., [32–35]), the instanton shields itself from
such an option. Consequently, the only way to obtain
sensitivity to instantons is to disentangle their spherical
radiation profile, made of fairly soft jets, from SM QCD
backgrounds.

IV. SEARCH FOR INSTANTON EVENTS AT
HADRON COLLIDERS

A. Topology of instanton events

Since the global event topology of instanton processes is
spherically symmetric, and therefore distinctly different
from perturbative-QCD events, event shape observables
[36] can be a powerful way to identify these processes.
The sphericity tensor is defined as

Sαβ ¼
P

ip
α
i p

β
iP

ijpij2
; ð4:1Þ

where α, β run over spatial indices and i runs over
the number of particles. This tensor will have three
eigenvalues λ1 ≥ λ2 ≥ λ3, with λ1 þ λ2 þ λ3 ¼ 1. The sphe-
ricity observable is then defined as S ¼ 3

2
ðλ2 þ λ3Þ.

Sphericity takes values between 0 and 1 with higher values
denoting a higher degree of spherical symmetry. Therefore
we would expect instanton processes to have a higher
sphericity than background processes which in general
have some angular dependence.

Sphericity is defined as

S0 ¼
π2

4
min
n⃗

�P
ijp⃗⊥;i × n⃗jP

ijp⃗⊥;ij
�

2

; ð4:2Þ

where n⃗ is a unit vector with a zero longitudinal compo-
nent. Again, S0 takes values between 0 and 1, with 1
representing a completely isotropic event and 0 being a
pencil-like event. This variable is closely related to thrust
which is defined as

τ ¼ 1 −max
n⃗

P
ijp⃗i · n⃗jP
ijp⃗ij

; ð4:3Þ

where n⃗ is a unit vector. Thrust is 0 for pencil-like
events and 0.5 for spherically symmetric events. The vector
n⃗ which maximizes this expression is known as the
thrust axis.
The final shape variable we consider is broadening. The

thrust axis automatically divides the event into a left
hemisphere, L, and a right hemisphere, R. Left and right
broadening is then defined as

BL ¼
X
i∈L

jp⃗i × n⃗jP
ijp⃗ij

; BR ¼
X
i∈R

jp⃗i × n⃗jP
ijp⃗ij

; ð4:4Þ

where n⃗ is the thrust axis. Total broadening B is then the
sum of the left and right broadening, B ¼ BL þ BR, and
takes values between 0 and 0.5 with 0.5 being spherically
symmetric.

TABLE IV. The cross section presented for a range of partonic CoM energies
ffiffiffî
s

p ¼ E where the recoiled pT is scaled with the energy,
pT ¼ ffiffiffî

s
p

=3.ffiffiffî
s

p
[GeV] 100 150 200 300 400 500

σ̂insttot [pb] 1.68 × 10−7 1.20 × 10−9 3.24 × 10−11 1.84 × 10−13 4.38 × 10−15 2.38 × 10−16

FIG. 2. The distribution of the pT of the leading jet for our background processes and instantons at the LHC (left) and Tevatron (right).
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To show the different shapes for these observables
between various perturbative SM processes and instanton
events at the LHC and the Tevatron, we generate the
background events using PYTHIA 8 [37]. For the perturba-
tive SM processes we consider the ones with the largest
cross section and jet-rich final states, i.e., high- and low-pT
multijet events, min-bias events, tt̄ production events, and
W þ jets events. For the signal we use RAMBO [38] to
populate the phase space of the instanton final state. Each
event contains four qq̄ pairs and a Poisson-distributed
number of gluons, with a mean in accordance with ng in
Table I.
All processes are analyzed using FASTJET [39]. For

the LHC we reconstruct jets using the anti-kT algorithm
[40] with a cone size of R ¼ 0.4 and pT ≥ 10 GeV. At
the Tevatron jets were analyzed using the kT algorithm
[40] with a cone size of R ¼ 0.7 and were required to
have pT ≥ 5 GeV. Leptons are required to have pT ≥
0.5 GeV. It should be noted that the instanton processes

are not showered or hadronized, but this should not
significantly affect the analysis as the position and
energy of the reconstructed jets are conserved to a
good accuracy.
We show in Fig. 2 the distribution for the pT of the

leading jet, in Fig. 3 broadening, in Fig. 4 sphericity, and in
Fig. 5 thrust for the LHC and the Tevatron, respectively.
The differences in the histograms between LHC and
Tevatron originate in the different jet definitions and pT
thresholds. This leads to more spherical events and thus
higher values for thrust and sphericity at the Tevatron. For
the backgrounds we include the processes that have the
largest perturbatively calculable cross sections. Most of
these processes, in particular high-energy multijets and
W þ jets events, show a more pronounced pencil-like
structure than the instanton events. Overall, analyzing
events with event shape observables provides a powerful
method to discriminate instanton events from large
Standard Model backgrounds.

FIG. 3. The distribution of the broadening of events for our background processes and instantons at the LHC (left) and Tevatron
(right).

FIG. 4. The distribution of the sphericity of events for our background processes and instantons at the LHC (left) and Tevatron (right).
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B. QCD instanton search at the LHC

1. Searches in high-luminosity LHC runs

As a result of the trigger cuts imposed, we find that the
LHC has very little sensitivity to QCD instantons in current
and future high-luminosity runs. QCD instanton events
produce no isolated leptons or a large amount of missing
transverse energy, and so appear only as multiparticle
events consisting of soft jets.
Missing transverse energy higher-level triggers require at

least ETmis ≥ 70 GeV while single jet triggers are as high as
pT;j ≥ 360 GeV [41]. In Sec. III we have shown that the
emission of a hard jet from an initial state parton is not a
viable strategy to produce an instanton. Further, the prob-
ability that one of the partons that originates in the instanton
process has such a large momentum is very small as well. If
one of the instanton-induced partons has a transverse
momentum to pass the single-jet trigger requirements, the
center-of-mass energy of the instanton

ffiffiffiffi
s0

p
has to be at least

of Oð700Þ GeV. According to Table II, this renders the
hadronic instanton cross section too small to be observable.
Thus, one would have to resort to multijet triggers, either

with four jets ofpT;j ≥ 85 GeVor six jets ofpT;j ≥ 45 GeV.
Both such trigger requirements result in for instantons fairly
high partonic center-of-mass energies of Oð300Þ GeV.
Generating 100000 signal events as described in Sec. IVA
and reconstructing them with the anti-kT jet algorithm, we
find that none of the events passes multijet triggers, which
results in an upper limit on the instanton cross section that
passes such trigger cuts of σtriggerpp→I ≲ 10 fb. Disentangling
instanton processes with less than 10 fb of cross section from
large QCD backgrounds during the event reconstruction step
is a highly challenging task.
Because of increased pileup in future high-luminosity

LHC runs and at future hadron colliders, e.g., the FCC-hh,
trigger thresholds for jets will have to be increased, which
will significantly reduce sensitivity to QCD instanton
processes. Special trigger strategies would have to be

developed for instantons to pass trigger requirements in
such a jet-rich environment. One could speculate about the
inclusion of event-shaped observables directly in the trigger
strategy and a highly optimized interplay between high-
level and low-level triggers. As shown in Sec. IVA in
Figs. 2–5 instanton events have a very different event
topology compared to QCD-induced multijet or resonance-
associated production processes. Incorporating such
observables in the trigger setup and reconstruction strate-
gies might retain some sensitivity to instanton processes in
future runs at high-energy hadron colliders.

2. Search in low-luminosity LHC runs

Rather than focusing on high-luminosity runs, we
propose to pursue a different search strategy. The biggest
obstacles to the discovery of QCD instanton processes are
the high trigger thresholds, which are a necessity to
avoid triggering on pileup in high-luminosity runs. Low-
luminosity LHC runs had minimalistic trigger requirements
[42], i.e., min-bias triggers which required only a single
charged track with an energy of 400 MeV. Remarkably,
practically all QCD instanton events would pass min-bias
triggers. ATLAS and CMS [43] both are in possession of
unprescaled min-bias datasets which are, however, often
only used to determine the luminosity for low-pileup runs,
rather than searching for new phenomena.
To assess whether these datasets can provide sensitivity

to QCD instanton processes, we generate event samples as
outlined in Sec. IVAwith a hadronic center-of-mass energy
of

ffiffiffi
s

p ¼ 13 TeV. For the event selection we require that
each event should have at least six jets nj ≥ 6 with a
minimum pT;j ≥ 10 GeV and that these jets form a thrust
value of τ ≥ 0.2. This already confidently separates instan-
ton signal events from QCD-induced background events.
For an instanton with a minimum

ffiffiffiffi
s0

p
≥ 100 GeV, which

can be imposed through a requirement on the invariant
mass of the final state jets, we find sffiffi

b
p ¼ 50.1 and for

FIG. 5. The distribution of the thrust of events for our background processes and instantons at the LHC (left) and Tevatron (right).

KHOZE, MILNE, and SPANNOWSKY PHYS. REV. D 103, 014017 (2021)

014017-12



ffiffiffiffi
s0

p
≥ 200 GeV we have sffiffi

b
p ¼ 7.1. This shows a very good

sensitivity for instanton processes in min-bias events,
which can be further increased by lowering the pT;j

requirements.

C. QCD instanton search at the Tevatron

We deduce from the observations in Sec. IV B 1 that
future runs at high-energy high-luminosity colliders are
likely to become even less sensitive to QCD instanton
processes. Consequently, looking into the other direction
instead, e.g., at the Tevatron, might provide yet another way
to search for QCD instantons. In the top row of Table II we
show the hadronic cross sections at Tevatron energies,
depending on the partonic center-of-mass energy of the
instanton process.
We recast several jet-rich searches and measurements by

CDF [44–46]. While a large fraction of instanton events
would pass the trigger criteria, the event selection criteria
applied in the analysis removed the predominant fraction of
instanton events. Thus, the results provided in [44–46] did
not allow one to set an experimental constraint on the
instanton cross section. However, if this data were rean-
alyzed and event reconstruction strategies following
Secs. IVA and IV B 1 were applied, the Tevatron could
set stringent limits on the hadronic instanton cross section.

V. CONCLUSIONS

Instantons are the best motivated, yet unobserved, non-
perturbative effects predicted by the StandardModel. Being
able to study instantons in scattering processes would
provide a new window to the phenomenological explora-
tion of the QCD vacuum, and it would allow the tensioning
of nonperturbative theoretical methods developed for gauge
theories with data.
In our calculation we used the optical theorem to

calculate the total instanton cross section from the elastic
scattering amplitude by carrying out an integral over the
instanton collective coordinates, and taking into account
the hard-hard initial state interactions calculated in [10].
The inclusion of these interactions is essential as it provides
a cutoff for the integral over the instanton scale size ρwhich
otherwise diverges in the IR in any QCD-like theory when
no explicit external scales (such as the scalar field vacuum
expectation values (VEVs), highly virtual momenta, or
high temperature) are present. This theoretical approach
was first presented and applied recently in [1]. We
improved on the results of [1] here by using a more robust
integration method by directly computing integrals over all
instanton–anti-instanton collective coordinates that corre-
spond to positive modes of the quadratic fluctuation
operators in the instanton–anti-instanton background.
This resulted in an increase to the instanton cross section
by approximately an order of magnitude, compared to the
saddle-point approximation used previously. We then also

calculated the mean number of gluons in the final state
using a novel and more direct approach based on comput-
ing the expectation value of the instanton–anti-instanton
interaction potential.
Most of the earlier studies of QCD instanton-induced

processes, prior to Ref. [1], were specific to deep-inelastic
scattering (DIS) [25,27,47]. In this case, it was the deep-
inelastic momentum scale Q that was essential for
obtaining infrared safe instanton contributions in the DIS
settings and at relatively low CoM energies. The H1 and
ZEUS Collaborations have searched for QCD instantons at
the HERA collider [48–50]. In the electroweak sector of the
Standard Model, phenomenological consequences of sim-
ilar nonperturbative processes were also studied in detail in
the literature, including recent papers [51–53], and refer-
ences therein. In particular, Ref. [54] relied on applying the
theoretical formalism developed here and in [1], with the
conclusion that electroweak instanton contributions at
colliders are exponentially suppressed at all energies.
In this paper we have reexamined the phenomenology of

QCD instanton contributions to high-energy scattering
processes at hadron colliders. We showed that although
the instanton cross sections are very large in a hadron
collider; surprisingly such colliders have little sensitivity to
instantons due to the trigger criteria necessary to reduce the
data rate. Although instantons produce many final state
particles, the event is isotropic and the energy is divided
between all particles resulting in few particles with large
pT , one of the principle trigger requirements in a hadron
collider. The higher energy instantons which could poten-
tially pass such triggers have a vanishingly small cross
section and would not be seen in sufficient numbers in the
LHC to be distinguishable from the QCD background.
However, examination of data collected with a minimum
bias trigger [42,43] showed that it should be possible to
either discover instantons or severely constrain their cross
section with such data, which was previously only used for
luminosity calibration. We also examined data from the
Tevatron and showed that certain triggers should have
recorded many instanton events on tape but the selection
criteria used in later analyses would render the analyses
insensitive to instantons. With a new set of selection criteria
this would also be another possible avenue for discovery.
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APPENDIX A: INSTANTON–ANTI-INSTANTON
VALLEY CONFIGURATION

The forward elastic scattering amplitude is obtained from
the LSZ-reduced Green’s function is calculated using the
path integral in the instanton–anti-instanton background,
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Gðp1; p2; p1; p2Þ

¼
Z

DAμ½DqDq̄�Nf

Y4
i¼1

ALSZðpiÞe−SE½Aμ;q;q̄�: ðA1Þ

The definition and the meaning of the instanton–anti-
instanton field configuration is provided by the valley
method approach of Balitsky and Yung [8,22], and the
computation of the instanton cross section using the optical
theorem approach follows the approach developed in
[7,23,24,31] and applied to QCD instantons at proton
colliders in the recent paper [1].
Usually when performing a functional integral such as

this, we would expand the action around the minimum,
recalling that the linear term vanishes as instantons satisfy
the equations of motion, and we would get the functional
determinant of δ2S

δA2, but here we must be careful. If this
operator possesses small or zero eigenvalues, then the usual
ðdetÞ−1

2 will become very large or singular as the Gaussian
approximation fails. We must treat these zero/quasizero
modes carefully. These modes arise when there is a
symmetry or approximate symmetry of the system leaving
the action unchanged.
A typical example of a zero mode is the center of the

BPST instanton, the corresponding collective coordinate x0
does not affect the value of the instanton action, and so
translation is a symmetry. In general each symmetry of the
system that is broken by the background field configuration
(in our case the instanton) will have an associated collective
coordinate, τ, with zero mode ∂AclðτÞ

∂τ , where AclðτÞ denotes the
background field.
Quasizero modes can be understood in a similar

fashion even though they do not correspond to an exact
symmetry of the system. A typical example of a
quasizero mode is the separation between the positions
of the instanton and the anti-instanton in the instanton–
anti-instanton configuration. At large separations, the
individual (anti-)instantons interact very weakly and the
collective coordinate that corresponds to their separation
becomes a nearly flat direction of the instanton–anti-
instanton action. Once again we denote the background
instanton–anti-instanton field configuration AclðτÞ and the
quasizero mode is given by ∂AclðτÞ

∂τ . In general τ will now
denote the set of all collective coordinates, for the zero
and quasizero modes.
The background field configuration with a quasizero

mode (i.e., a nearly flat direction in the action parametrized
by the τ coordinate) can now be defined as a solution of the
gradient flow equation, also known as the valley equation
of Balitsky and Yung [8,22],

δS
δA

����
A¼AclðτÞ

∝ ϵ2ðτÞ ∂A
clðτÞ

∂τ : ðA2Þ

If the background field is an exact classical solution, then
the τ-collective-coordinate parametrizes an exact zero
mode and we have ϵ2ðτÞ ¼ 0 so the valley equation
collapses to the Euler-Lagrange equation. However, in
the case of a quasizero mode, τ is a pseudoflat direction;
the action is not at the exact minimum at any fixed value of
τ. In this case Eq. (A5) holds with a nonvanishing but small
right-hand side, so that ϵ2ðτÞ ≪ 1. The smallness of the
parameter ϵ2ðτÞ characterizes how flat the corresponding
quasizero mode is.
To proceed with our calculation of Green’s function one

uses the Fadeev-Popov procedure [8,22]:

1 ¼
Z

dτ

���� det
�
d
dτ

�
A − AclðτÞ;

∂AclðτÞ

∂τ
�

w

�����
× δ

��
A − AclðτÞ;

∂AclðτÞ

∂τ
�

w

�

¼
Z

dτ det

��∂AclðτÞ

∂τ ;
∂AclðτÞ

∂τ
�

w

�

× δ

��
A − AclðτÞ;

∂AclðτÞ

∂τ
�

w

�
; ðA3Þ

where AclðτÞ is the minimum of the action for fixed τ and
hA;Biw denotes the scalar product or an overlap of two
field configurations,

hA; Biw ¼
Z

d4xwðxÞAðxÞBðxÞ: ðA4Þ

Note that the definition of the overlap above uses a positive
weight function wðxÞ—the freedom to choose a convenient
form of wðxÞ is a well-known simplifying feature used in
path integral expansions around instantons [5,8,55] and
will be utilized in what follows. Taking into account the
weight factor, the valley equation reads

δS
δA

����
A¼AclðτÞ

¼ ϵ2ðτÞwðxÞ ∂A
clðτÞ

∂τ : ðA5Þ

Inserting one of the factors of 1 in the form (A3) for each
collective coordinate, and expanding the action SðAÞ
around the background field AclðτÞ,

SðAÞ ¼ SðAclðτÞÞ þ
�
δSðAclðτÞÞ

δA
; ðA − AclðτÞÞ

�
w

þ 1

2
hðA − AclðτÞÞ;□ðAclðτÞÞðA − AclðτÞÞiw

þ � � � ; ðA6Þ

we get
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G ¼ N
Z Y

i

dτi det

��∂Aτi

∂τ ;
∂Aτj

∂τ
�

w

�

×
Z

DA
Y
i

δ

��
A − AclðτÞ;

∂AclðτÞ

∂τi
�

w

�

×
Y4
m¼1

ALSZðpmÞe−SðAclðτÞÞ−1
2
hðA−AclðτÞÞ;□ðAclðτÞÞðA−AclðτÞÞiw ;

ðA7Þ

where □ðAclðτÞÞ ¼ δ2S
δA2 jA¼AclðτÞ . We note that the term linear

in fluctuations in the expansion of the action [the second
term on the right-hand side of (A6)] in fact does not
contribute to the integral in (A7). Indeed, the valley
equation (A5) requires that δS=δA is proportional to
∂A=∂τ when computed on our background configuration
AclðτÞ and then the delta function in the integrand (A7)
ensures that this linear term vanishes.
Now we can perform the functional integration [8],

G ¼ N
Z Y

i

dτi det

��∂Aτi

∂τ ;
∂Aτj

∂τ
�

w

�

× det−1=2
��∂Aτ

∂τi ;□
−1ðAτÞ

∂Aτ

∂τj
��

× det−1=2ð□ðAτÞÞ
Y4
m¼1

ALSZðpmÞe−SðAclðτÞÞ: ðA8Þ

Since the ∂AclðτÞ
∂τ play the role of zero and quasizero modes of

the action, they are the eigenfunctions of □ðAclðτÞÞ, and so

□ðAclðτÞÞ ∂A
clðτÞ

∂τi ¼ λi
∂AclðτÞ

∂τi : ðA9Þ

This equation is valid at the leading order in the small
parameter ϵ2 and follows from differentiating both sides of
the valley equation with respect to τ and neglecting the
ϵ2ðτÞ∂2AclðτÞ=∂τ2 term.
This allows us to simplify the product of the three

determinants in (A8) into

det1=2
��∂AclðτÞ

∂τi ;
∂AclðτÞ

∂τj
��

ðdetð2pÞð□ðAclðτÞÞÞÞ−1=2;

ðA10Þ
where detð2pÞ denotes the determinant with the 2p zero
and quasizero modes fλig2pi¼1 removed (p modes for the
instantons and p modes for the anti-instanton).
To the leading order in the small-ϵ expansion we can

also factorize the quadratic fluctuation determinant in
the instanton–anti-instanton background AclðτÞ ¼ AIĪ
into the product of the instanton and the anti-instanton
quadratic fluctuation determinants, detð2pÞ ð□ðAIĪÞÞ≈
detðpÞ ð□ðAIÞÞ detðpÞ ð□ðAĪÞÞ.

This gives us finally [8]

G ¼
Z

dμ1dμ2
Y4
m¼1

ALSZðpmÞe−SðAclðτÞÞ; ðA11Þ

where

dμa ¼ N
Yp
i¼1

dτa;idet1=2
��∂Aa

∂τa;i ;
∂Aa

∂τa;j
��

× ðdetðpÞð□ðAaÞÞÞ−1=2 ðA12Þ
are the instanton and anti-instanton collective coordinate
integration measures.
Having established the form of the collective coordinate

integrals for the instanton–anti-instanton case, what is left
for us to determine is the instanton–anti-instanton configu-
ration itself and in particular its action as the function of
(anti-)instanton collective coordinates.
The instanton–anti-instanton valley trajectory AIĪ

μ was
obtained in Ref. [8] by finding an exact solution of the
valley equation (A5) for a particular choice of the weight
function wðxÞ by exploring conformal invariance of the
classical Yang-Mills action. The action on this configura-
tion was computed in [23] and [7,24], and it takes the form

SIĪðzÞ ¼
16π2

g2

�
3

6z2 − 14

ðz − 1=zÞ2 − 17

− 3 logðzÞ
�ðz − 5=zÞðzþ 1=zÞ2

ðz − 1=zÞ3 − 1

��
; ðA13Þ

where the variable z is the conformal ratio of the
(anti-)instanton collective coordinates,

z ¼ R2 þ ρ2 þ ρ̄2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ ρ2 þ ρ̄2Þ2 − 4ρ2ρ̄2

p
2ρρ̄

: ðA14Þ

z plays the role of the single negative quasizero mode of the
instanton–anti-instanton valley configuration.
In the limit of the large separation between the

instanton centers, R=ρ; R=ρ̄ → ∞, the conformal ratio z →
R2=ρρ̄ → ∞, and instanton–anti-instanton action SIĪðzÞ
becomes the sum of the individual instanton and anti-
instanton actions,

lim
z→∞

SIĪðzÞ ¼
8π2

g2
þ 8π2

g2
þOð1=z2Þ ¼ 16π2

g2
ðA15Þ

and

AIĪ
μ ðxÞ → AI

μðx − x0Þ þ AĪ
μðx − x0 − RÞ: ðA16Þ

In the opposite limit of a vanishing separation between the
instanton centers, R=ρ; R=ρ̄ → 0, the conformal ratio z → 1
and the expression for the action SðzÞ goes to zero. This is
in agreement with the expectation that in this limit the

SEARCHING FOR QCD INSTANTONS AT HADRON COLLIDERS PHYS. REV. D 103, 014017 (2021)

014017-15



instanton and the anti-instanton annihilate to the perturba-
tive vacuum Aμ ¼ 0.
We can plot the action SIĪ as the function of the

separation between the instanton centers R normalized
by the instanton scale sizes. For simplicity, if we assume
that the sizes are equal, ρ ¼ ρ̄, we can write down the action
SIĪ as the function of the variable χ ¼ R=ρ. It is plotted in
Fig. 6 in units of 16π2=g2.

APPENDIX B: INTEGRATION OVER THE
RELATIVE ORIENTATIONS

To be able to integrate over relative orientations in the
internal SUð3Þ space, we need to know the form of the
instanton–anti-instanton action for arbitrary values of their
relative orientation matrix Ω. However, our exact valley
configuration is only known for the maximally attractive
channel, i.e., where the interaction potential Uintðz;ΩÞ is
maximized over the relative orientations at each fixed value
of z.
What is known, however, is the form of the interaction

potential Uintðz;ΩÞ in the limit of large separations. In this
large-separations regime (i.e., z ≫ 1) the instanton and
the anti-instanton are known to have dipole-dipole inter-
actions [56],

Uintðz;ΩÞ ¼
1

z2
ð2trOtrO† − trðOO†ÞÞ þO

�
1

z4
log z

�
;

ðB1Þ
where O is the 2 × 2 matrix in the upper-left corner of
the 3 × 3 matrix Ω describing the relative instanton–anti-
instanton orientation.2

Lacking the precise solution of the instanton–anti-
instanton valley for general orientations at arbitrary sep-
arations, we will simply assume that the full interaction
potential can always be written in the form [cf. (2.29)]

Uintðz;ΩÞ ¼ UintðzÞ
1

6
ð2trOtrO† − trðOO†ÞÞ; ðB2Þ

whereUintðzÞ is the maximally attractive-orientation poten-
tial (2.27), (2.20). Clearly at large separations, to order 1=z2

this expression coincides with the known dipole-dipole
interaction.
We can now represent the integral over the relative

orientations as follows:Z
dΩe−

4π
αsðμrÞSðz;ΩÞ ¼ e−

4π
αsðμrÞ

Z
dΩeUintðzÞ16ð2trOtrO†−trðOO†ÞÞ:

ðB3Þ
These types of integrals over SUð3Þ matrices have

been previously computed in the instanton literature [see
Eq. (2.15) in [25] ]:Z

dΩeλð2trOtrO†−trðOO†ÞÞ ¼ 1

9
ffiffiffi
π

p ð2λÞ−7=2e6λ: ðB4Þ

Substituting λ ¼ 1
6
UintðzÞ to the expression above, we now

obtain the answer for our relative orientation integral in (B3),Z
dΩe−

4π
αsðμrÞSðz;ΩÞ ¼ 1

9
ffiffiffi
π

p
�

3

UintðzÞ
�

7=2
e−

4π
αsðμrÞSðzÞ; ðB5Þ

which agrees with the expression (2.32) quoted in Sec. II.
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