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Correlations in totally symmetric self-complementary
plane partitions

Arvind Ayyer and Sunil Chhita

Abstract

Totally symmetric self-complementary plane partitions (TSSCPPs) are boxed plane partitions
with the maximum possible symmetry. We use the well-known representation of TSSCPPs as a
dimer model on a honeycomb graph enclosed in 1/12 of a hexagon with free boundary to express
them as perfect matchings of a family of non-bipartite planar graphs. Our main result is that
the edges of the TSSCPPs form a Pfaffian point process, for which we give explicit formulas for
the inverse Kasteleyn matrix. Preliminary analysis of these correlations are then used to give a
precise conjecture for the limit shape of TSSCPPs in the scaling limit.

1. Introduction

Totally symmetric self-complementary plane partitions (TSSCPPs) of order n are the subset of
plane partitions in a (2n) × (2n) × (2n) box with the maximum possible symmetry. They have
been intensely studied since the initial analysis by Mills, Robbins and Rumsey conjecturing
that the number of TSSCPPs of order n are the same as the number of alternating sign matrices
(ASMs) of size n [34] (see the formula for An in (2.1)). The fact that the number of TSSCPPs of
order n is given by An was established by Andrews in a difficult paper [1]. It was this paper by
Mills, Robbins and Rumsey that led Stanley to initiate the study of symmetry classes of plane
partitions [43]. The fact that ASMs are also enumerated by the same sequence of numbers
is known as the Alternating Sign Matrix theorem and was proven first by Zeilberger [46] by
directly comparing them with TSSCPPs and later by Kuperberg [33] using a connection with
the six-vertex model in statistical mechanics. See the book by Bressoud [11] for more about
the history of this and related fascinating problems.

Boundary correlations in ASMs have been studied almost from the very beginning. A formula
for the enumeration of ASMs according to the position of the unique 1 in the first row is
known as the Refined Alternating Sign Matrix theorem and this was proven by Zeilberger [47].
Stroganov [44] gave a formula for the number of ASMs according to the position of the
unique 1 in the first and last rows (the top-bottom formula), and according to the position
of the unique 1 in the first row and left column (the top-left formula). The latter formula
was subsequently improved in [5]. Other refined enumeration formulas include the top two
formula [20, 29], the top two and bottom formula [19], the top-left-bottom formula [2, 19]
and the top-left-bottom-right formula [2, 4]. The problem of computing bulk correlations seems
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like a difficult and interesting open problem. On the TSSCPP side, no formulas are known for
any correlation functions.

On the other hand, correlations for some plane partitions have been established in recent
years [3, 38, 40]. The typical perspective here is to view the plane partition as a rhombus
or lozenge tiling. Randomness is introduced by picking each configuration at random from
the set of all possible configurations in some prescribed manner, the simplest being picking
each configuration uniformly at random which is the case considered here for TSSCPPs. For a
specific class of tiling models, interesting probabilistic features are observed when the system
size becomes large, such as a macroscopic limit shape, which is a type of law of large numbers
result. Around this limit shape, there are still microscopic fluctuations which are believed to
be governed by universal probability distributions originating in both statistical mechanics and
random matrix theory. This assertion has been proved primarily for domino and lozenge tiling
models; see [22] and references therein for details.

To study these fluctuations, one of the more successful approaches has been to study
the correlations of an associated particle system to the random tiling model using methods
originating from random matrix theory. For many types of tiling models, these correlations are
governed by the determinant of some matrix, called the correlation kernel. Probability measures
of this form are known as determinantal point processes; see, for example, [42]. Finding the
correlation kernel can be computationally tricky, but there are now some relatively standard
approaches such as using the Eynard–Mehta Theorem [8, 24] which has been particularly
useful for those in the Schur process class [7, 16, 18, 25, 40] as well as those that are not
Schur processes [6, 12, 17]. Put bluntly, this theorem gives the correlation kernel when the
model is expressed in terms of nonintersecting lattice paths with fixed endpoints. There are
other approaches for computing correlation kernels, such as vertex operators [9, 10, 38] and
also the Harish-Chandra/Itzykson–Zuber integral [36].

The Eynard–Mehta theorem has a Pfaffian analog where the final positions of the noninter-
secting lattice paths are free. In this case, the correlations of the associated particle system
to the tiling model are given by a Pfaffian point process; see [3] for an example where the
authors give a formula for the correlation kernel for both symmetric plane partitions and plane
overpartitions. The TSSCPP is another example of this and so the Eynard–Mehta theorem
immediately shows that the particle system defined through the nonintersecting lattice paths
for TSSCPP is a Pfaffian point process with some correlation kernel†. Unfortunately, the
formula for this correlation kernel is not known, due to computational difficulties in inverting
an arbitrary sized matrix that is found in the Eynard–Mehta theorem. In this paper, we use
dimer model techniques to settle this problem and find a formula for the inverse Kasteleyn
matrix for TSSCPPs, where the inverse Kasteleyn matrix can be heuristically thought of as
the dimer model equivalent to the correlation kernel of a particle system. Since lozenge tilings
and its associated particle system are in bijection, this implies a formula for the correlation
kernel of the associated particle system.

The rest of the paper is organized as follows. In Section 2, we convert plane partitions to
perfect matchings of a class of nonbipartite graphs bijectively to be able to explain our main
results. We then summarize the main results of this article in Section 3, giving a formula for the
inverse Kasteleyn matrix and stating a sum rule. Sections 4 and 5 are devoted to computations
of this formula at special locations. Section 6 completes the proof of the formula for the inverse
Kastelen matrix. The proof of the main result use combinatorial identities whose proof is
deferred to Section 7. We present boundary recurrences for the inverse Kasteleyn matrix of
independent interest, which we use to prove the sum rule, in Section 8. Finally, we end with
heuristics for the limit shape and a precise conjecture in Section 9.

†As far as we are aware, this observation is due to Dan Romik, who gave a talk at the Clay Mathematics
Institute, Oxford in May 2015 pointing out the difficulty in finding the specific form of the correlation kernel.
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Figure 1 (colour online). The region of the regular hexagon bounded by the blue lines whose
tiling is sufficient to determine a totally symmetric self-complementary plane partition. The pink
and orange lozenges are forced.

2. From TSSCPPs to hexagonal graphs

As mentioned earlier, a plane partition inside an a× b× c box can be equivalently viewed as
a lozenge (or rhombus) tiling of a hexagonal region of side lengths a, b, c, a, b, c of a triangular
lattice [32]. A totally symmetric self-complementary plane partition of order n is then a
rhombus tiling of a regular hexagon with side length 2n with the maximum possible symmetry.
In this case, all the information about the tiling is contained in (1/12)’th of the hexagon [34,
Section 8].

This is illustrated in Figure 1, where the region enclosed by the blue lines is to be tiled with
lozenges in a maximal way. This means that among the 2(n− 1) pendant edges, only n− 1
will be matched. This is known as a free boundary condition. Equivalently, we have to find
maximum matchings of the dual graph drawn in black. (Recall that a maximum matching of
a graph is one which has the largest number of matched edges.)

Let Tn−1 denote this dual graph for TSSCPPs of size n. Figure 2 shows the dual graphs for
TSSCPPs of sizes 3 and 4. Define, for n � 1,

An =
n−1∏
i=0

(3i + 1)!
(n + i)!

. (2.1)

Theorem 2.1 (Conjectured in [34], proved in [1]). The number of maximum matchings of
Tn is given by An+1.

Recall that Tn has 2n pendant vertices on the right. We now define a related family of
graphs Gn starting from Tn as follows. We add 2n + 1 (respectively, 2n + 2) vertices if n is
even (respectively, odd) in a column on the right of the pendant vertices and connect them in
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Figure 2. The left figure shows the graph T3 while the right figure shows T4.

Figure 3. The left figure shows the graph G3 while the right figure shows G4.

a triangular fashion as illustrated in Figure 3. Note that if n is odd, the topmost vertex is a
leaf, that is, a pendant vertex.

Proposition 2.2. The number of perfect matchings of Gn is An+1.

Proof. We will construct a bijection between maximum matchings of Tn and perfect
matchings of Gn. Starting with a perfect matching of Gn and removing the vertices in the
rightmost column, we obtain a maximum matching of Tn. To go the other way, we will show
that there is a unique way to complete a maximum matching of Tn.

Consider a maximum matching as shown in Figure 4. We will now match the remaining
vertices in Gn. We start from the leftmost vertex v1 and match it to the leftmost available
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u1

v1

u2n

v2n+1

Figure 4 (colour online). An illustration of the pendant vertices of the graph Tn embedded in
Gn. The vertices in the top row are labeled u1, . . . and those in the bottom row are labeled v1, . . . .
The maximum matching of Tn is shown in red. The rightmost vertex exists only if n is odd.

vertex. We then find the leftmost unmatched vertex and match it to the second unmatched
vertex on the left. We continue this way until all vertices are matched.

To see that we do not run into a contradiction, consider the leftmost available vertex at
any stage. Suppose it is vi. If ui is matched, we match vi to vi+1, and if not, we match it to
ui. Suppose it is ui. Then we match it to vi+1. This is always possible, since vi+1 cannot be
matched to vi as ui is unmatched. The rightmost vertex has to be matched since there are an
even number of unmatched vertices initially. This completes the proof. �

3. Summary of results

To state our main result, we will need to introduce some notation. We write [x]2 to denote
x mod 2. For a,m ∈ Z with m > 0, we denote by Γa,a+1,...,a+m a positively oriented contour
containing the integers a through to a + m and no other integers. In particular, Γ0 is a positively
oriented circle around the origin with radius less than 1. We denote i =

√−1. We denote ZG

to be the number of dimer configurations of the graph G. For a subset of vertices U , we let
ZG\U denote the number of dimer configurations on the subgraph of G induced by removing U .
When Gn is the TSSCPP graph of size n defined above, we write Zn ≡ ZGn

. We will also use
the notation Z

{v1,...,vm}
n ≡ ZGn\{v1,...,vm}, that is the partition function of the dimer model on

the induced graph of Gn on the vertex set Vn\{v1, . . . , vm}. Finally, we will use the convention
that

(
m
−1

)
= 0 for all m ∈ N ∪ {0} throughout the paper.

For the graph Gn = (Vn, En), the coordinates of the vertices are given by

Vn = {(x1, x2) | 0 � x1 � 2n, x1 � x2 � 2n + 1}\{(2n, 2n + 1)1n∈2Z+1} (3.1)

and the edges are given by

En = {((x1, x2), (x1 + 1, x2) | 0 � x1 � 2n− 1, x1 � x2 � 2n + 1, [x1 + x2]2 = 1}
∪ {((x1, x2), (x1, x2 + 1) | 0 � x1 � 2n− 1n∈2Z+1, x1 � x2 � 2n}
∪ {((x1, x1), (x1 + 1, x1 + 1)) | 0 � x1 � 2n− 1};

(3.2)

see Figure 5.
We let b denote the vertex (2n, 2n + 1 − [n]2). The entries of the skew-symmetric Kasteleyn

matrix, Kn = Kn(x, y)x,y∈Vn
are given by

Kn((x1, x2), (y1, y2)) = kn((x1, x2), (y1, y2)) − kn((y1, y2), (x1, x2)) (3.3)

where

kn((x1, x2), (y1, y2)) =

⎧⎪⎪⎨
⎪⎪⎩

1 if [x1 + x2]2 = 0, x2 = y2, x1 − y1 = 1
1 if [x1 + x2]2 = 0, |y2 − x2| = 1, x1 = y1

1 if x1 = x2, y1 = y2 = x1 − 1
0 otherwise.

(3.4)

Here the Kasteleyn orientation is chosen so that the number of counter-clockwise arrows around
each face is an odd number. From [27, 28], |PfKn| is equal to Zn.
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(0, 0)

(0, 2n + 1)

(2n, 2n) = b

(0, 0)

(0, 2n + 1)

(2n, 2n)

(2n, 2n + 1) = b

Figure 5. The left figure shows G3, while the right figures shows G4. The coordinates are for the
top left, rightmost and bottom left vertices. The Kasteleyn orientation is chosen so that vertices
with odd parity are sinks, those with even parity not on the diagonal are sources, and the edges
along the diagonal point toward the origin.

Define

p(n, k, �) =
(n + k − 2� + 1)!(2n− k − � + 1)!

(k − �)!(3n− k + 2 − 2�)!
(−1)k(3n− 3k + 2)Cn−k, (3.5)

where Cn = 1
n+1

(
2n
n

)
is the n’th Catalan number. We now introduce notation helpful for stating

the main theorem. Recall that Γ0 is a positively oriented circle around the origin with radius
less than 1. Introduce the following formulas for 0 � i � 2n− 1:

h0,b
n (i) = −[i + 1]2 +

n∑
k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

(1 − r)ri−2k
, (3.6)

and

h1,b
n (i) =

n∑
k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

ri−2k+1
. (3.7)

We will first state the formula for K−1
n in the special case when the second vertex is b. This

will prove useful for the general result.

Theorem 3.1. If (x1, x2) = (i1, i1 + 2i2 + 1) with 0 � i2 � n− �i1/2�, then

K−1
n ((x1, x2),b) =

i1∑
l=0

(−1)i2+l

(
i2 − 1 + l

l

)
h1,b
n (i1 − l), (3.8)

and if (x1, x2) = (i1, i1 + 2i2) with 0 � i2 � n− �i1/2	, then

K−1
n ((x1, x2),b) =

i2∑
l=0

(−1)i2
(
i2
l

)
h0,b
n (i1 + l). (3.9)

Finally, when n is even, K−1
n ((2n, 2n),b) = −1.
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Introduce the following formulas for 0 � i, j � 2n− 1:

t0,0n (i, j) = 1[i<j][i + 1]2[j]2 − 1[i>j][i]2[j + 1]2 + [j + 1]2h0,b
n (i) − [i + 1]2h0,b

n (j)

+
n∑

k1=0

k1∑
�1=0

n∑
k2=0

k2∑
�2=0

p(n, k1, �1)p(n, k2, �2)
1

(2πi)4

∫
Γ0

dr1
∫

Γ0

dr2
∫

Γ0

ds1

∫
Γ0

ds2

× (1 + r1)n−k1(1 + r2)n−k2

(1 − r1)ri−2k1
1 (1 − r2)r

j−2k2
2

s1 − s2

(s1s2 − 1)s�1+1
1 s�2+1

2

,

(3.10)

t1,0n (i, j) = [j + 1]2h1,b
n (i)

+
n∑

k1=0

k1∑
�1=0

n∑
k2=0

k2∑
�2=0

p(n, k1, �1)p(n, k2, �2)
1

(2πi)4

∫
Γ0

dr1
∫

Γ0

dr2
∫

Γ0

ds1

∫
Γ0

ds2

× (1 + r1)n−k1(1 + r2)n−k2

ri−2k1+1
1 (1 − r2)r

j−2k2
2

s1 − s2

(s1s2 − 1)s�1+1
1 s�2+1

2

,

(3.11)

t0,1n (i, j) = −[i + 1]2h1,b
n (j)

+
n∑

k1=0

k1∑
�1=0

n∑
k2=0

k2∑
�2=0

p(n, k1, �1)p(n, k2, �2)
1

(2πi)4

∫
Γ0

dr1
∫

Γ0

dr2
∫

Γ0

ds1

∫
Γ0

ds2

× (1 + r1)n−k1(1 + r2)n−k2

(1 − r1)ri−2k1
1 rj−2k2+1

2

s1 − s2

(s1s2 − 1)s�1+1
1 s�2+1

2

,

(3.12)

and

t1,1n (i, j) =
n∑

k1=0

k1∑
�1=0

n∑
k2=0

k2∑
�2=0

p(n, k1, �1)p(n, k2, �2)
1

(2πi)4

∫
Γ0

dr1
∫

Γ0

dr2
∫

Γ0

ds1

∫
Γ0

ds2

× (1 + r1)n−k1(1 + r2)n−k2

ri−2k1+1
1 rj−2k2+1

2

s1 − s2

(s1s2 − 1)s�1+1
1 s�2+1

2

.

(3.13)

We are now ready to state the formula for K−1
n . Below, we make repeated use of K−1

n (x, y) =
−K−1

n (y, x) for x, y ∈ Vn since Kn is antisymmetric.

Theorem 3.2. Suppose that (x1, x2) = (i1, i1 + 2i2 + εi), (y1, y2) = (j1, j1 + 2j2 + εj) with
0 � i1, j1 � 2n− 1 and εi, εj ∈ {0, 1}, where 0 � i2 � n− �(i1 + εi)/2	, and 0 � j2 � n−
�(j1 + εj)/2	.

• If εi = εj = 1, then

K−1
n ((x1, x2), (y1, y2)) =

i1∑
�1=0

j1∑
�2=0

(−1)i2+j2(−1)�1+�2

×
(
i2 − 1 + �1

�1

)(
j2 − 1 + �2

�2

)
t1,1n (i1 − �1, j1 − �2).

(3.14)
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• If εi = εj = 0, then

K−1
n ((x1, x2), (y1, y2)) =

i2∑
�1=0

j2∑
�2=0

(−1)i2+j2

(
i2
�1

)(
j2
�2

)
t0,0n (i1 + �1, j1 + �2). (3.15)

• If εi = 1 and εj = 0, then

K−1
n ((x1, x2), (y1, y2)) =

i1∑
�1=0

j2∑
�2=0

(−1)i2+j2(−1)�1
(
i2 − 1 + �1

�1

)(
j2
�2

)

× t1,0n (i1 − �1, j1 + �2) − (−1)i2+j21x1�y11x1+x2<y1+y2

(
j2 − i2 − 1
i1 − j1

)
.

(3.16)

Note that the case of εi = 0 and εj = 1 in Theorem 3.2 is settled by the antisymmetry of Kn.
Theorems 3.1 and 3.2 could be proven in principle by verifying the matrix equation Kn.K

−1
n = I

directly. However, this approach seems computationally very difficult.
Our proof strategy is as follows. We first establish Theorem 3.1 in Section 4. Once this is

established, we use graphical condensation [31] to establish K−1
n (x, y) for x and y on the top

boundary of the TSSCPP. We can then recover the other entries using recursions obtained from
the matrix equations K−1

n .Kn = Kn.K
−1
n = I viewed entrywise. The proof is given in Section 6,

while postponed proofs of results used in proving Theorem 3.2 are given in Section 7.
This leads to the question whether there is a set of recurrences that establishes K−1

n uniquely,
without relying on a priori expressions for K−1

n (·,b). Such recurrences are known for domino
tilings of the Aztec diamond [13] and are expected to hold for lozenge tilings [37]. In fact,
there is an additional recurrence, along with the recurrence from graphical condensation given
in Lemma 5.3 which parametrizes K−1

n on the boundary. These two recurrences give a concrete
and explicit example of the additional recurrences postulated in [37] for lozenge tilings. These
recurrences combined with the recurrences from the matrix equations Kn.K

−1
n = K−1

n .Kn = I

give a unique way to determine K−1
n . This additional recurrence is given in Section 8.

One consequence of finding K−1
n is a formula to compute local statistics [30, 35]. We restate

this here in a form that applies to our situation.

Theorem 3.3 (Montroll–Potts–Ward [35], Kenyon [30]). The probability of edges e1 =
(v1, v2), . . . , em = (v2m−1, v2m) on Vn is given by

P[e1, . . . , en] =
m∏

k=1

Kn(v2k−1, v2k) Pf
(
K−1

n (vi, vj)
)T
1�i,j�2m

. (3.17)

The term ‘sum rule’ refers to certain sums of correlation functions that are of importance.
In many cases, these sum rules have simple formulas. For the so-called quantum Knizhnik–
Zamolodchikov equation, sum rules have been conjectured relating them to the q-enumeration
of TSSCPPs by Di Francesco [14], and Di Francesco and Zinn-Justin [15, 49] and proved by
Zeilberger [48].

We now state a formula for a sum rule for TSSCPPs. For 0 � j � 2n− 1, let

gb
n(j) = |K−1

n ((j, j),b)| = (−1)j+1K−1
n ((j, j),b) =

Z
{(j,j),b}
n

Zn
. (3.18)

Theorem 3.4.

2n∑
j=0

gb
n(j) =

{
n + 1 n even,

n + 1
2 n odd.
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Figure 6 (colour online). A simulation, using Glauber dynamics, of a uniformly random TSSCPP
of size 100. Here, we have rotated the hexagonal graph in Figure 3 by π/6. The simulations only
show the dimers on this graph, drawn in different three different colors (see online version for
colors).

We remark that the entries gb
n(j) themselves are not so simple. For example,

(gb
2 (j))4j=0 =

(
1,

2
7
,
1
7
,
4
7
, 1
)
,

and

(gb
3 (j))6j=0 =

(
1,

1
6
,
1
3
,
11
14

,
17
21

,
17
42

, 0
)
.

The formula given in Theorem 3.2 is not in the most convenient form for asymptotic
analysis. Nonrigorous computations show that the terms in the formula can be approximated
by double contour integral formulas, that share some similarities with lozenge tiling models in
the Schur class, for example, see [23] and references therein. Furthermore, these nonrigorous
computations show a limit shape and Airy kernel statistics at the edge, which also appears
in simulations; see Figure 6. We will not attempt to pursue these here as the computations
appear to be long and involved. However, we will give a conjecture of the limit shape, based
on a short computation in Section 9.

Conjecture 3.5. Rescale the TSSCPP of size n so that the three corners are given by
(−2, 0), (0,0) and (−2,−2/

√
3) as n → ∞, that is, for (x1, x2) ∈ Vn, rescale so that x1 = [(X +

2)n] and x2 = [(
√

3Y + 2)n]. Then, the limit shape curve is given by

X2 + Y 2 = 4, (3.19)

so that the region X2 + Y 2 � 4 in the rescaled TSSCPP is frozen.
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4. Proof of Theorem 3.1

Before giving the proof of Theorem 3.1, we give two combinatorial identities which will be used
below. Their proofs are given in Section 7.

Theorem 4.1. Let n ∈ N. Let

fn(k) = p(n, k, 0)2n−k =
(n + k + 1)!(2n− k + 1)!

k!(3n− k + 2)!
(−1)k2n−k(3n− 3k + 2)Cn−k.

Then

n∑
k=0

fn(k) =
1
2
(1 + (−1)n) =

{
1 if n is even,

0 if n is odd.

Krattenthaler has kindly shown us how to derive Theorem 4.1 starting from an identity in the
book by Gasper and Rahman [21, Equation (3.8.12)]. However, we use Zeilberger’s algorithm
to prove it in Section 7.

Theorem 4.2. Let n ∈ N and 0 � i � n. Define

gn,i(k, j) =
1

2n−k
fn(k)

(
2n + 1 − i− k

j

)
.

Then, we have

Gn,i =
n∑

k=0

n+i−2k∑
j=0

gn,i(k, j) = 2n−i, (4.1)

and

G′
n,i =

n∑
k=0

n+k−2i∑
j=0

gn,i(k, j) = (−1)n2n−i. (4.2)

The proofs of Theorem 4.1, and 4.2 are given in Section 7. First, we need the following two
results.

Proposition 4.3. When n is even, we have K−1((2n, 2n),b) = −1.

Proof. Note that for n even, Kn((2n, 2n),b) = 1. By Theorem 3.3, the probability of
observing the edge ((2n, 2n),b) is equal to

Kn((2n, 2n),b)K−1
n (b, (2n, 2n)) = −K−1

n ((2n, 2n),b).

Since the edge ((2n, 2n),b) is always observed when n is even, the result follows. �

Proposition 4.4. From the formulas for K−1
n (·,b) given in (3.8) and (3.9), we have that

K−1
n ((2n− 2, 2n− 2),b) + K−1

n ((2n− 2, 2n− 1),b) + K−1
n ((2n− 1, 2n),b)

=

{
1 if n is even,

0 if n is odd.

(4.3)
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Proof. We expand out the left side using the definitions of K−1
n (·,b) as given in (3.8)

and (3.9) which involves the formulas (3.7) and (3.6). This gives

n∑
k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(

(1 + r)n−k

(1 − r)r2n−2−2k
+

(1 + r)n−k

r(2n−2)+1−2k
+

(1 − r)n−k

r2n−1+1−2k

)

=
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

(1 − r)r2n−2k
=

n∑
k=0

p(n, k, 0)2n−k,

(4.4)

where the first equality follows from simplifying the integrand and the last equality follows from
pushing the contour through infinity and computing the residue at r = 1. The claim follows
from Theorem 4.1. �

We will also repeatedly use the standard integrals,

1
2πi

∫
Γ0

dr
r

(1 + r)b

ra
=

(
b

a

)
, (4.5)

1
2πi

∫
Γ0

dr
r

(1 + r)b

(1 − r)ra
=

a∑
j=0

(
b

j

)
, (4.6)

∫ ∞

0

dr rae−r = a!, (4.7)

and

1
2πi

∫
Γ0

dr
r

er

ra
=

1
a!

(4.8)

for positive integers a and b.

Proof of Theorem 3.1. We will prove the following, assuming (3.8) and (3.9).

Kn.K
−1
n (x,b) = Ix=b. (4.9)

The determinant of Kn is nonzero because it is the square of the partition function. Therefore
the equations from (4.9) are linearly independent and they guarantee the uniqueness of
K−1

n (·,b). For the purposes of the proof, we introduce

En = {(x1, x2) ∈ Vn\{b} : [x1 + x2]2 = 0}, (4.10)

On = {(x1, x2) ∈ Vn\{b} : [x1 + x2]2 = 1}, (4.11)

and

Dn = {(x1, x2) ∈ En : x1 = x2}. (4.12)

We will verify (4.9) in each of the four cases: x ∈ En\Dn, x ∈ Dn, x = b and finally x ∈ On.
Case (i): We first consider x = (x1, x2) ∈ En\Dn. Expanding out the left side of (4.9)

entrywise gives

K−1
n (x + (−1, 0),b)1x1>0 + K−1

n (x + (0, 1),b)1x2<2n+1 + K−1
n (x + (0,−1),b). (4.13)
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Write x = (i1, i1 + 2i2) and suppose that x1 �= 0 and x2 �= 2n + 1. Then (4.13) becomes by (3.8)

(−1)i2
(

i1−1∑
�=0

(−1)�
(
i2 − 1 + �

�

)
h1,b
n (i1 − �− 1)

+
i1∑
�=0

(−1)�
(
i2 − 1 + �

�

)
h1,b
n (i1 − �) −

i1∑
�=0

(−1)�
(
i2 − 2 + �

�

)
h1,b
n (i1 − �)

)

= (−1)i2
(

i1−1∑
�=0

(−1)�
(
i2 − 1 + �

�

)
h1,b
n (i1 − �− 1)

+
i1∑
�=0

(−1)�
(
i2 − 2 + l

�− 1

)
h1,b
n (i1 − �)

)
= 0,

(4.14)

where we have used
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
in the last step. This verifies (4.9) when x =

(x1, x2) ∈ En\Dn and x1 �= 0 and x2 �= 2n + 1. We now consider (4.13) when x1 = 0. Note
that K−1

n ((0, 2i2 + 1),b) = h1,b
n (0)(−1)i2 and so by (3.8) we have also verified (4.9) for

(0, x2) ∈ En\Dn. Next we consider when x2 = 2n + 1, which means that (4.13) becomes

K−1
n (x + (−1, 0),b)1x1>0 + K−1

n (x + (0,−1),b). (4.15)

Take x + (−1, 0) = (x1 − 1, 2n + 1) = (i1, 2n + 1) so that i1 = x1 − 1. This means that we have

x + (−1, 0) =
(
i1, i1 + 2

2n− i1
2

+ 1
)

and

x + (0,−1) =
(
i1 + 1, i1 + 1 + 2

2n− i1 − 2
2

+ 1
)
.

Using (3.8), we have that (4.15) becomes

i1∑
�=0

(−1)n−
i1
2 +�

(
n− i1

2 − 1 + �

�

)
h1,b
n (i1 − �)

+
i1+1∑
�=0

(−1)n−
i1
2 −1+�

(
n− i1

2 − 2 + �

�

)
h1,b
n (i1 + 1 − �)

= −
i1+1∑
�=0

(−1)n−i1/2+�

(
n− i1

2 − 1 + �

�

)
h1,b
n (i1 + 1 − �),

(4.16)

where the last equation is found from rearranging the relation in (4.14). We need to show that
the right side of the above equation is equal to 0. To do so, we expand out the above term
using (3.7) which gives

(−1)n−i1/2
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
r

(1 + r)n−kr2k

ri1+1

i1+1∑
�=0

(−r)�
(
n− i1/2 + �− 1

�

)
. (4.17)
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The inner sum in the integrand equals

i1+1∑
�=0

(−r)�
(
n− i1/2 + �− 1

�

)
= (1 + r)

1
2 (i1−2n)

+ (−1)1+i1r2+i1

(
n + i1/2 + 1

2 + i

)
2F1

[
1, 2 + i1/2 + n

3 + i
;−r

]
,

(4.18)

where the 2F1 terms is the Gaussian hypergeometric function. Since the hypergeometric term
is nonsingular in r, we see that (4.17) is equal to

(−1)n−i1/2
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
r

(1 + r)i1/2−kr2k−(i1+1). (4.19)

By (4.5), the integral above is equal to
(

i1/2−k
i1+1−2k

)
= 0. We have thus verified (4.9) for x ∈

En\Dn.
Case (ii): Next we consider x = (x1, x2) ∈ Dn provided that x1 < 2n− 1. For this case, we

have that the left side of (4.9) entrywise is equal to

(
K−1

n (x− (1, 1),b) + K−1
n (x− (1, 0),b)

)
1x1>0 + K−1

n (x + (0, 1),b) −K−1
n (x + (1, 1),b).(4.20)

When 0 < x1 < 2n− 1, the integral contribution in (4.20) from using (3.6) and (3.7) is

1
2πi

∫
Γ0

dr(1 + r)n−kr2k

(
r−x1+1

1 − r
+ r−x1 + r−x1−1 − r−x1−1

1 − r

)

=
1

2πi

∫
Γ0

dr
(1 + r)n−k

1 − r
r−x1−1+2k

(
r2 + (1 − r)r + (1 − r) − 1

)
= 0,

(4.21)

which verifies (4.9) when x = (x1, x2) ∈ Dn for 0 < x1 < 2n. When x1 = 0, we have that (4.20)
becomes

K−1
n ((0, 1),b) −K−1

n ((1, 1),b) = 0 (4.22)

by explicit evaluation (both terms have a contribution from k = 0 in the sum in (3.6) and (3.7)).
When x = (x1, x2) ∈ Dn and x1 = 2n− 1, the left side of (4.9) entrywise is equal to

K−1
n ((2n− 2, 2n− 2),b) + K−1

n ((2n− 2, 2n− 1),b) + K−1
n ((2n− 1, 2n),b) −K−1

n (b,b)(4.23)

if n is odd, and

K−1
n ((2n− 2, 2n− 2),b) + K−1

n ((2n− 2, 2n− 1),b)

+K−1
n ((2n− 1, 2n),b) −K−1

n ((2n, 2n),b) (4.24)

if n is even. From Propositions 4.4 and 4.3, we have that both (4.23) and (4.24) are equal to 0.
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Case (iii): Next we consider the left side of (4.9) entrywise when x = b when n is odd (the even
case is immediate from Proposition 4.3). Expanding out these terms using (3.8), (3.9), (3.7),
and (3.6) gives

K−1
n ((2n− 1, 2n),b) + K−1

n ((2n− 1, 2n− 1),b)

=
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

r2n−2k

(
1 +

r

1 − r

)

=
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

r2n−2k

1
1 − r

=
n−1∑
k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

r2n−2k

1
1 − r

=
n−1∑
k=0

p(n, k, 0)2n−k =
1
2
(1 + (−1)n) − (−1)n =

{
1 if n odd
0 if n even

(4.25)

where the third equality follows from the absence of a residue at r = 0 when k = n, the fourth
equality follows from (4.5), and we have used Theorem 4.1 for the fifth equality. We also need
the left side of (4.9) entrywise when x = (2n, 2n) which is given by

K−1
n ((2n− 1, 2n),b) + K−1

n ((2n− 1, 2n− 1),b) −K−1
n (b,b) = 0, (4.26)

where the sum of the first two terms follows from the proceeding computation and we have
used the antisymmetry of K−1

n . We have now verified (4.9) for x ∈ En ∪ {b}.
Case (iv): Finally, we verify (4.9) for x ∈ On. When x = (x1, x2) ∈ On, we have that the left

side of (4.9) entrywise equals

−K−1
n (x + (0, 1),b)1x2<2n+1 −K−1

n (x + (0,−1),b) −K−1
n (x + (1, 0),b). (4.27)

If x2 < 2n + 1, using (3.9) and writing x = (x1, x2) = (i1, i1 + 2i2 + 1), we have that (4.27)
becomes

−
i2+1∑
�=0

(−1)i2+1

(
i2 + 1

�

)
h0,b
n (i1 + �) −

i2∑
�=0

(−1)i2
(
i2
�

)
h0,b
n (i1 + �)

−
i2∑
�=0

(−1)i2
(
i2
�

)
h0,b
n (i1 + � + 1) = 0.

(4.28)

Finally, if x = (x1, 2n + 1), then (4.27) becomes

−K−1
n (x + (0,−1),b) −K−1

n (x + (1, 0),b). (4.29)

This means that we have

x + (0,−1) =
(
x1, x1 + 2

2n− x1

2

)

and

x + (1, 0) =
(
x1 + 1, x1 + 1 + 2

2n− x1

2

)
.
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Using (3.9), we have that (4.29) becomes

−
n− x1

2∑
�=0

(−1)n−
x1
2

(
n− x1

2

�

)
h0,b
n (x1 + �) −

n− x1
2∑

�=0

(−1)n−
x1
2

(
n− x1

2

�

)
h0,b
n (x1 + 1 + �)

=
n+1− x1

2∑
�=0

(−1)n+1− x1
2

(
n + 1 − x1

2

�

)
h0,b
n (x1 + �),

(4.30)

where we have used (4.28). We need to show the right side of the above equation equals 0.
Expanding the above term out using the formula for (3.6) gives

n∑
k=0

p(n, k, 0)
2πi

∫
Γ0

dr
(1 + r)n−k(1 + 1/r)n+1−x1/2r2k

(1 − r)ri
−

n+1−x1/2∑
k=0

(
n + 1 − x1

2

k

)
[k + 1]2

=
n∑

k=0

p(n, k, 0)
2πi

∫
Γ0

dr
(1 + r)2n−k+1−x1/2

(1 − r)rn+1+x1/2−2k
− 2n−x1/2

=
n∑

k=0

p(n, k, 0)
n+

x1
2 −2k∑
j=0

(
2n + 1 − x1

2 − k

j

)
− 2n−x1/2,

(4.31)

where we have used (4.6) for the second equality. We use Theorem 4.2 on the first term of the
last line of the above equation and so the above equation is equal to 0 as required.

We have thus verified (4.9) for all x, completing the proof. �

5. Both vertices at the top boundary

We will first establish a formula for K−1
n when both entries are top at the boundary using a

series of lemmas in Section 5.

Remark 5.1. We will repeatedly use the following property of perfect matchings. If a leaf
� is adjacent to a vertex v via an edge with weight 1, then removing both � and v from the
graph does not change the partition function.

We will make use of the following result below, which follows immediately from Theorem 3.3
by multiplying both sides of the equation in Theorem 3.3 by ZG.

Proposition 5.2 (Graphical Condensation [31]). Let G be a plane graph with four vertices
a, b, c, d that appear in that cyclic order on a face of G. Then

ZGZG\{a,b,c,d} + ZG\{a,c}ZG\{b,d} = ZG\{a,b}ZG\{c,d} + ZG\{a,d}ZG\{b,c}. (5.1)

Recall that Z
{v1,...,vm}
n is the partition function of the dimer model on Gn with the vertices

{v1, . . . , vm} removed. Introduce for 0 � i � n− 1,

Tn(i) = |K−1
n ((2i, 2n + 1),b)| =

Z
{(2i,2n+1),b}
n

Zn
, (5.2)
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Figure 7 (colour online). The left figure shows adding pendant vertices to a = (0, 7), 1 = (2, 7),

2 = (4, 7) and b from V3 (here n = 3) for considering Z
{a,1,2,b}
3 . These pendant edges are drawn

in dashed. Note that removing a vertex is the equivalent of adding a pendant edge to that vertex.
The right figure shows that adding a pendant vertex to a forces the blue dashed dimer as well as
the red solid dimers (see online version for colors).

and for 0 � i < j � n− 1,

Rn(i, j) = |K−1
n ((2i, 2n + 1), (2j, 2n + 1))| =

Z
{(2i,2n+1),(2j,2n+1)}
n

Zn
, (5.3)

with Rn(i, j) = −Rn(j, i) if 1 � j < i � n− 1 and Rn(i, i) = 0 for 0 � i � n− 1. We use the
convention that Tn(k) = 0 for k � n, R0 = 1 and that Rn(k, l) = 0 if k � n or l � n.

Lemma 5.3. For 1 � i, j � n− 1, we have

Rn(i, j) = Rn−1(i− 1, j − 1) + Tn(i)Tn−1(j − 1) − Tn−1(i− 1)Tn(j). (5.4)

Proof. For the purpose of the proof, write i = (2i, 2n + 1) for 1 � i � n− 1 and let a =
(0, 2n + 1). For i < j, we apply graphical condensation in Proposition 5.2† which gives

Z{a,i,j,b}
n Zn = Z{a,i}

n Z{j,b}
n − Z{a,j}

n Z{i,b}
n + Z{a,b}

n Z{i,j}
n . (5.5)

since a, i, j,b are in cyclic order on the face of TSSCPP. Note that removing a from
Vn transforms the graph to Vn−1\{b} since the edges ((0,0),(1,1)), ((0, 1 + 2k), (0, 2 + 2k)),
((1, 2 + 2k), (1, 3 + 2k)) for 0 � k � n− 1 must be matched by Remark 5.1; see Figure 7.

Hence, we have Z
{a,i,j,b}
n = Z

{i−1,j−1}
n−1 , Z{a,i}

n = Z
{i−1,b}
n−1 and Z

{a,b}
n = Zn−1. This means

that the above equation is reduced to

Z
{i−1,j−1}
n−1 Zn = Z

{i−1,b}
n−1 Z{j,b}

n − Z
{j−1,b}
n−1 Z{i,b}

n + Zn−1Z
{i,j}
n . (5.6)

We divide the above equation by Zn−1Zn and use the definitions of Rn and Tn to obtain the
equation. A similar computation holds for i > j. �

Lemma 5.4. For 0 � i � n− 1, we have Tn(i) = (−1)ip(n, i, 0) and sgn K−1
n ((2i, 2n +

1),b) = (−1)n.

Proof. Not e that (2i, 2n + 1) = (2i, 2(n− i) + 2i + 1). The lemma follows from using the
formula for K−1

n ((2i, 2n + 1),b) given in (3.8) and computing explicitly as follows:

†Here the face in Proposition 5.2 is the boundary face.
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K−1
n ((2i, 2n + 1),b) =

2i∑
�=0

(−1)n−i+l

(
n− i + �− 1

�

)
h1,b
n (2i− l)

=
n∑

k=0

p(n, k, 0)
2πi

∫
Γ0

dr
2i∑
�=0

(−1)n−i+�

(
n− i + �− 1

�

)
(1 + r)n−k

r2i−2k−�+1

= (−1)n−i
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k+i−n

r2i−2k+1

= (−1)n−ip(n, i, 0),

(5.7)

where the third equality uses the fact that the additional term proportional to

2F1[
1, 1 + i + n

2 + 2i ;−r] does not have a singularity in r and the fourth equality follows from

(4.5). Since sgn p(n, i, 0) = (−1)i, the result follows. �

Lemma 5.5. For 0 � i < j � n− 1, sgn K−1
n ((2i, 2n + 1), (2j, 2n + 1)) = 1.

Proof. Introduce an auxiliary edge directed from (2j, 2n + 1) to (2i, 2n + 1) for i < j. This
introduces a new face, but by this choice, the number of counterclockwise edges on the graph
remains odd and so is a valid Kasteleyn orientation. Let K̃n denote the modified Kasteleyn
matrix with this additional edge. Then, by Theorem 3.3 and the antisymmetry of Kn

0 �P[Edge ((2i, 2n + 1), (2j, 2n + 1)) in the modified graph]

= K̃n((2i, 2n + 1), (2j, 2n + 1))K̃−1
n ((2j, 2n + 1), (2i, 2n + 1))

= −K̃−1
n ((2j, 2n + 1), (2i, 2n + 1)) = K̃−1

n ((2i, 2n + 1), (2j, 2n + 1)).

(5.8)

Since we have K̃−1
n ((2i, 2n + 1), (2j, 2n + 1)) = K−1

n ((2i, 2n + 1), (2j, 2n + 1)), the result
follows. �

To get an explicit expression for Rn(i, j), we use generating functions and require some
further notation. Introduce

R(u, v, w) =
∞∑

n=0

n∑
i=0

n∑
j=0

Rn(i, j)uivjwn, (5.9)

and

Tn(u) =
∞∑
i=0

Tn(i)ui. (5.10)

Lemma 5.6. For 0 � i, j � n− 1 and n � 1,

Rn(i, j) =
1

(2πi)3

∫
Γ0

du

u

∫
Γ0

dv

v

∫
Γ0

dw

w

1
1 − uwv

1
uivjwn

×
( ∞∑

n=1

Tn(u)Tn−1(v)vwn − Tn−1(u)Tn(v)uwn

)
.

(5.11)
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Proof. Multiply the recurrence in Lemma 5.3 by uivjwn and taking sums gives

∞∑
n=1

n−1∑
i=1

n−1∑
j=1

(Rn(i, j)uivjwn −Rn−1(i− 1, j − 1))uivjwn

=
∞∑

n=1

n−1∑
i=1

n−1∑
j=1

(Tn(i)Tn−1(j − 1) − Tn−1(i− 1)Tn(j))uivjwn.

(5.12)

Using Rn(0, i) = Tn−1(i− 1) and Rn(i, j) = −Rn(j, i), we have that

−
∞∑

n=1

n∑
i=1

Rn(i, 0)uiwn =
∞∑

n=1

uTn−1(u)wn (5.13)

and

∞∑
n=1

n∑
j=1

Rn(0, j)ujwn =
∞∑

n=1

vTn−1(v)wn. (5.14)

Inserting the above two equations into (5.12) gives

R(u, v, w)(1 − uwv) = 1 +
∞∑

n=1

Tn(u)Tn−1(v)vwn −
∞∑

n=1

uTn−1(u)Tn(u)wn. (5.15)

We divide both sides by (1 − uwv) and it remains to extract out the coefficient of uivjwn in
the above equation to prove the lemma. �

Lemma 5.7. For |u| < 1,

Tn(u) =
1

(2πi)3

∫ ∞

0

dq

∫ ∞

0

dp

∫
Γ0

dt

∫
Γ0

dz

∫
S

ds e−p−q+ p2sq

t2
+t

× p2+nq3+2n(1 + z)2n+2(2 + z)
t3(1+n)z1+n(pq2s(1 + z)2 − t3uz)

,

(5.16)

where the s-contour S is chosen so that |t3zu|
pq2|s(1+z)2| < 1.

Proof. Note that Tn(u) =
∑n

k=0 Tn(k)uk since Tn(k) = 0 for k � n and so we use integral
expressions to find an explicit expression using geometric sums. We now use the expressions for
binomial coefficients and factorials given in (4.6), (4.7), and (4.8), as explained below, in the
formula for Tn(i) given in Lemma 5.4 by applying these integrals to terms in the expression
for (−1)kp(n, k, 0) (3.5). We obtain

Tn(k)uk =
1

(2πi)3

∫ ∞

0

dq
∫ ∞

0

dp
∫

Γ0

dz
z

∫
Γ0

dt
t

∫
Γ0

ds
s

e−p−q+s+t

× pn+k+1q2n−k+1(1 + z)2n−2k(2 + z)
skt3n−k+2zn−k

uk.

(5.17)

In the above equation, the integrals with respect to p and q are from the two factorial terms in
the numerator of (−1)kp(n, k, 0) using (4.7), while the integrals respect to s and t are from the
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two factorials in the denominator of (−1)kp(n, k, 0) using (4.8). For the integral with respect
to z, this comes from rewriting the term (3n− 3k + 2)Cn−k in (−1)kp(n, k, 0) as

(3n− 3k + 2)Cn−k = 2
(

2n− 2k
n− k

)
+
(

2n− 2k
n− k + 1

)
, (5.18)

and expressing each of these binomial terms as integrals using (4.5).
We choose the s-contour in (5.17) so that

p|tzu|
q|s(1 + z)2| < 1, (5.19)

and evaluate the geometric sum

∞∑
k=1

Tn(k)uk =
1

(2πi)3

∫ ∞

0

dq
∫ ∞

0

dp
∫

Γ0

dz
∫

Γ0

dt
∫
S

ds

e−p−q+s+tp1+nq2+2n(1 + z)2n+2(2 + z)
t3(1+n)z1+n(qs(1 + z)2 − ptuz)

.

(5.20)

Making the change of variables s → sp2q/t2 gives the result. �

In what follows below, we use the notation dp = dp1dp2 and similarly for the variables
q, t, z, s for compactness of notation.

Lemma 5.8. For 0 � i, j � n− 1,

Rn(i, j) =
1

(2πi)6

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

Γ2
0

ds

× e
−p1−p2−q1−q2+

p2
1s1q1
t21

+
p2
2s2q2
t22

+t1+t2 p1−i+n
1 p1−j+n

2 q1−2i+2n
1 q1−2j+2n

2

s1+i
1 s1+j

2 t3−3i+3n
1 t3−3j+3n

2

s1 − s2

s1s2 − 1

× (1 + z1)2n−2i(1 + z2)2n−2j(2 + z1)(2 + z2)
zn−i+1
1 zn−j+1

2

.

(5.21)

Proof. This lemma follows from a computation starting with the formula for Rn(i, j) given in
Lemma 5.6. For brevity, we only present the computation of the first term Tn(u)Tn−1(v)vwn;
the computation for the other term is completely analogous.

Introduce

R̃ =
p1p2q

2
1q

2
2(1 + z1)2(1 + z2)2

t31t
3
2z1z2

. (5.22)

We can use the integral expression for Tn(u) given in Lemma 5.7 to find that

∞∑
n=1

Tn(u)Tn−1(v)vwn =
1

(2πi)6

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

S1×S2

ds

× v

∞∑
n=1

wnR̃n e
−p1−q1+

p2
1s1q1
t21

+t1−p2−q2+
p2
2s2q2
t22

+t2
p2
1p2q

3
1q2(1 + z1)2(2 + z1)(2 + z2)

t31z1(p1q2
1s1(1 + z1)2 − t31uz1)(p2q2

2s2(1 + z2)2 − t32vz2)
,

(5.23)
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where the s1-contour S1 is chosen so that |t31z1u|
p1q2

1 |s1(1+z1)2| < 1 and the s2-contour S2 is chosen so

that |t32z2u|
p2q2

2 |s2(1+z2)2| < 1. We substitute the above expression into the right side of the equation
in Lemma 5.6 which gives

1
(2πi)3

∫
Γ0

du
u

∫
Γ0

dv
v

∫
Γ0

dw
w

1
1 − uwv

1
uivjwn

∞∑
n=1

Tn(u)Tn−1(v)vwn

=
1

(2πi)3

∫
Γ0

du
u

∫
Γ0

dv
v

∫
Γ0

dw
w

1
1 − uwv

1
uivjwn

R̃wv

1 − R̃w

× 1
(2πi)6

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

S1×S2

ds

× e
−p1−q1+

p2
1s1q1
t21

+t1−p2−q2+
p2
2s2q2
t22

+t2
p2
1p2q

3
1q2(1 + z1)2(2 + z1)(2 + z2)

t31z1(p1q2
1s1(1 + z1)2 − t31uz1)(p2q2

2s2(1 + z2)2 − t32vz2)
.

(5.24)

In the above expression, we rearrange the integrals and compute the w-integral first (no extra
contribution is picked up). We push the contour through ∞ picking up residue contributions
at w = 1/R and w = 1/(uv). The latter will not contribute since when computing the residue
at w = 1/(uv), there will be no residue at u = 0. This means that the above equation becomes

1
(2πi)8

∫
Γ0

du
u

∫
Γ0

dv
v

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

S1×S2

ds

× 1
R̃− uv

R̃n+1v

uivj
e
−p1−q1+

p2
1s1q1
t21

+t1−p2−q2+
p2
2s2q2
t22

+t2
p2
1p2q

3
1q2(1 + z1)2(2 + z1)(2 + z2)

t31z1(p1q2
1s1(1 + z1)2 − t31uz1)(p2q2

2s2(1 + z2)2 − t32vz2)
.

(5.25)

Next, we rearrange integrals to compute the u-integral by computing the residue contributions
at u = R/v and u = p1q

2
1s1(1 + z1)2/(t31z1) and so we obtain

1
(2πi)7

∫
Γ0

dv
v

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

S′
1×S2

ds

× R̃n−i

vj−1−i

e
−p1−q1+

p2
1s1q1
t21

+t1−p2−q2+
p2
2s2q2
t22

+t2
p2
1p2q

3
1q2(1 + z1)2(2 + z1)(2 + z2)

t31z1(p1q2
1s1(1 + z1)2 − t31vz1)(p2q2

2s2(1 + z2)2 − t32vz2)

+
1

(2πi)7

∫
Γ0

dv
v

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

S1×S2

ds

× t3i1 zi−1
1 e

−p1−q1+
p2
1s1q1
t21

+t1−p2−q2+
p2
2s2q2
t22

+t2
p2
1p2q

3
1q2(1 + z1)2(2 + z1)(2 + z2)

(p1q2
1s1(1 + z1)2)i(p1q2

1s1(1 + z1)2v −Rt31z1)vj+1t31z1(p2q2
2s2(1 + z2)2 − t32vz2)

,

(5.26)

where S′
1 is chosen so that |t31z1v|

p1q2
1 |s1(1+z1)2| < 1. We compute each of the above terms separately.

For the first term in (5.26), we rearrange the integrals to compute the v-integral and there
is a residue at v = 0, provided that j > i + 1, and further residue contributions at v =
t31R̃z1/(p1q

2
1s1(1 + z1)2) and v = t32z2/(p2q

2
2s2(1 + z2)2) due to exchanging contours. Summing

up these contribution gives zero because there is no residue at s1 = 0 after simplification (we
omit the details of this computation). Thus, (5.24) is equal to the second term in (5.26). For



CORRELATIONS IN TSSCPPS 513

the second term in (5.26), we perform the same computational steps as mentioned for the first
term and we arrive at

1
(2πi)6

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

dt
∫∫

Γ2
0

dse
−p1−q1+

p2
1s1q1
t21

+t1−p2−q2+
p2
2s2q2
t22

+t2

× p1−i+n
1 p1−j+n

2 q1−2i+2n
1 q1−2j+2n

2

s1+i
1 sj2t

3−3i+3n
1 t3−3j+3n

2 (s1s2 − 1)
(1 + z1)2n−2i

zn−i+1
1

(1 + z2)2n−2j

zn−j+1
2

(2 + z1)(2 + z2).

(5.27)

We have now evaluated (5.24) and the second term on right side of the equation in Lemma 5.6
follows by symmetry. �

6. Proof of the main result

We will now use the results from the previous sections to prove Theorem 3.2. For the proof,
we will need the following result.

Proposition 6.1. For 0 � j � 2n− 1

−K−1
n ((0, 0), (j, j + 1)) = K−1

n ((j, j + 1), (0, 0)) = K−1
n ((j, j + 1),b). (6.1)

Proof. The first equality is from antisymmetry of Kn. For the second equality, note that
K−1

n ((j, j + 1), (0, 0)) represents the ratio of a signed count on the graph formed from removing
the vertices (j, j + 1) and (0,0) along with their incident edges from the TSSCPP of size n and
Zn. The sign arises from having an even number of counterclockwise edges around the face
which surrounds the removed vertex (j, j + 1). For each of these dimer configurations (which
is part of the signed count) on Vn\{(0, 0), (j, j + 1)}, remove all dimers incident to the vertices
{(i, i) : 0 � i � 2n− 1}. Then, there is a unique way to extend to a dimer configuration on
Vn\{b, (j, j + 1)} as required. Note that this operation does not change the sign associated to
each dimer configuration. �

Proof of Theorem 3.2. We will first focus on the formula (3.13) for t1,1n (i, j). The formulas
for tk,ln (i, j) for (k, l) �= (1, 1) are obtained by very similar computations. Once these are found,
the rest of entries are obtained from the matrix equations Kn.K

−1
n = K−1

n .Kn = I.
To obtain t1,1n (i, j), first observe that t1,1n is a linear combination of binomial coefficients for

Rn(k, l) by using the formula Kn.K
−1
n = K−1

n .Kn = I. Indeed, note that from the equation
Kn.K

−1
n = I entrywise, we have

K−1
n ((i1, i1 + 2i2 + 1), y) = −K−1

n ((i1 − 1, i1 + 2i2 + 2), y) −K−1
n ((i1, i1 + 2i2 + 3), y) (6.2)

for 1 � i1 � 2n, 0 � i2 � n− �i1/2� − 1 and y = (j1, j1 + 2j2 + 1) (a similar relation holds for
y). Using the above equation, we see that

K−1
n ((i, i + 1), (j, j + 1)) = t1,1n (i, j) =

� i
2 �∑

k1=0

� j
2 �∑

k2=0

(−1)k1+k2

(
n− k1

i− 2k1

)(
n− k2

i− 2k2

)
Rn(k1, k2),(6.3)

since Rn(k1, k2) = K−1
n ((2k1, 2n + 1), (2k2, 2n + 1)) by (5.3) and Lemma 5.5. It suffices to

evaluate the right side of the above equation and show that it equals t1,1n (i, j) as given in (3.13).
To do so, note that by using the residue theorem

1
2πi

∫
Γ0

dt
t

1
t3n+2−2k

e
p2sq

t2
+t =

∞∑
�=0

(p2sq)�

�!(3n + 2� + 2 − 3k)!
. (6.4)
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Using the above two equations, the formula for Rn found in Lemma 5.8, and writing binomial
coefficients above as contour integrals in the r variables using (4.5), we obtain

∞∑
�1=0

∞∑
�2=0

� i
2 �∑

k1=0

� j
2 �∑

k2=0

1
�1!�2!

(−1)k1+k2

(2�1 + 3n + 2 − 3k1)!(2�1 + 3n + 2 − 3k2)!

× 1
(2πi)6

∫∫
R

2
+

dq
∫∫

R
2
+

dp
∫∫

Γ2
0

dz
∫∫

Γ2
0

ds
∫∫

Γ2
0

dr
(1 + r1)n−k1

ri−2k1+1
1

× (1 + r2)n−k2

rj−2k2+1
2

p1+2�1−k1+n
1 p1+2�2−k2+n

2

q1−2k1+�1+2n
1 q1−2k2+�2+2n

2

s1+k1−�1
1 s1+k2−�2

2

× s1 − s2

s1s2 − 1
(1 + z1)2n−2k1

zn−k1+1
1

(1 + z2)2n−2k2

zn−k2+1
2

(2 + z1)(2 + z2)e−p1−p2−q1−q2 .

(6.5)

In the above formula, we use the standard expressions for integrals to give closed forms. That
is, we use (4.7) to convert the integrals with respect to the variables p and q and use (4.8) to
convert the integral with respect to the variable s. The integral with respect to z is converted
using (4.5); see the discussion after (5.17) for the computation in reverse. Taking the change
of summation kε → �ε − kε for ε ∈ {1, 2} gives the formula for t1,1n (i, j) given in (3.13).

We now explain how to get the remaining formulas from (3.13). From expanding the equation
Kn.K

−1
n = I entrywise, we have the formula for i � 2

−K−1
n ((i, i), (j, j + 1)) + K−1

n ((i− 2, i− 2), (j, j + 1)) + K−1
n ((i− 1, i), (j, j + 1))

K−1
n ((i− 2, i− 1), (j, j + 1)) = I(i,i)=(j,j+1) = 0.

(6.6)

We now rearrange the above equation to obtain

K−1
n ((i, i), (j, j + 1)) =

i−1∑
r=0

K−1
n ((r, r + 1), (j, j + 1)) + [i + 1]2K−1

n ((0, 0), (j, j + 1)). (6.7)

Since K−1
n ((r, r + 1), (j, j + 1)) = t

(1,1)
n (r, j), we can push the sum through to the terms in

the integral in (3.13) and evaluate. This computation and Proposition 6.1 gives (3.12). The
formulas in (3.11) and (3.10) follow from similar computations.

It is not hard to see that (3.14), (3.15) and (3.16) follow from a straightforward applications
of Kn.K

−1
n = K−1

n .Kn = I. �

7. Proofs of the combinatorial identities

We now give the proofs of the combinatorial results used in Section 4.

Proof of Theorem 4.1. A minor issue is that the natural upper limit for the sum is k = n + 1,
not k = n, although this is what it seems at first glance. Moreover, fn(n + 1) = −(−1)n/2.
Therefore, we need to prove that

∑
k fn(k) = 1/2. Maple solves this using the Wilf–Zeilberger

algorithm. Then we need to check that

fn(k) − fn+1(k) = h(n, k + 1) − h(n, k),
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where the certificate is

h(n, k) = (−1)k2n−k+1(n + 2 − k)(n− k + 1)(5n− 3k + 8)

× (2n + 2 − k)!(n + 1 + k)!(2n + 2 − 2k)!
(k − 1)!(n + 2 − k)!2(3n + 5 − k)!

.

This guarantees that
∑

k fn(k) is constant. We now check that f0(0) + f0(1) = 1 − 1/2 = 1/2,
completing the proof. �

Before proving Theorem 4.2, we need another identity in the sequel, which we prove now.

Theorem 7.1. Let n ∈ N and 0 � i � n− 1. Define

f ′
n,i(k) = (−1)k+1 (3n− 3k + 2)(n + k + 1)!(2n− k + 1)!(2n− i− k)!

k!(3n− k + 2)!(n + i− 2k + 1)!(n + k − 2i)!
Cn−k.

Then
∑n

k=0 f
′
n,i(k) = 0.

Proof. Let F ′
n,i be the required sum. Then Zeilberger’s algorithm implemented in the

Mathematica package fastZeil [39] gives the recurrence

2(i + 1)(2n + 1 − i)(2n + 1 − 2i)F ′
n,i + (3n + 2 − i)(n− 1 − i)(n + 2 + i)F ′

n,i+1

= (−1)n
12(n + 1)2(n− i)!
(2n− 2i)!(i− n)!

. (7.1)

To prove (7.1), we define the certificate,

R(k, i) =
6k(i− n)(−2k + 2n + 1)(−k + 2n + 2)(−2i + k + n)

(−3k + 3n + 2)(i− 2k + n + 2)
,

and verify that

2(i + 1)(i− 2n− 1)(2i− 2n− 1)f ′
n(k, i) + (i− 3n− 2)(i− n + 1)(i + n + 2)f ′

n(k, i + 1)

= Δk(f ′
n(k, i)R(k, i)),

where Δk is the forward difference operator defined by Δk(f(k)) = f(k + 1) − f(k).
In (7.1), note that 1/(i− n)! = 0 and all other terms on the right-hand side are well-defined

for 0 � i � n− 1. Therefore, the right-hand side is zero for our region of interest. Because of
the factor (n− 1 − i) in the second term on the left-hand side, setting i = n− 1 also gives
Fn,n−1 = 0. (This can also be checked independently using Zeilberger’s algorithm.) Then, the
recurrence above guarantees that Fn,i = 0 for 0 � i � n− 1. �

Proof of Theorem 4.2. First, note that

n+i−2k∑
j=0

(
2n + 1 − i− k

j

)
+

n+k−2i∑
j=0

(
2n + 1 − i− k

j

)

=
n+i−2k∑

j=0

(
2n + 1 − i− k

j

)
+

n+k−2i∑
j=0

(
2n + 1 − i− k

2n + 1 − i− k − j

)
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=
n+i−2k∑

j=0

(
2n + 1 − i− k

j

)
+

2n+1−i−k∑
j=n+1−2k+i

(
2n + 1 − i− k

j

)

=
2n+1−i−k∑

j=0

(
2n + 1 − i− k

j

)
= 22n+1−i−k. (7.2)

Using (7.2), add the left-hand sides of (4.1) and (4.2) to get

n∑
k=0

1
2n−k

fn(k)

⎛
⎝n+i−2k∑

j=0

(
2n + 1 − i− k

j

)
+

n+k−2i∑
j=0

(
2n + 1 − i− k

j

)⎞⎠

=
n∑

k=0

1
2n−k

fn(k)22n+1−i−k = 2n−i(1 + (−1)n),

where we have used Theorem 4.1 in the last step. So we have shown that the sum of the
left-hand sides is what we want.

We now prove (4.1). Our first task is to prove Gn,i = 2Gn,i+1. Using Wegschaider’s
algorithm [45] in the Mathematica package MultiSum, we get the recurrence

gn,i(k, j) − 2gn,i+1(k, j) = Δj [gn,i+1(k, j) − gn,i(k, j)], (7.3)

where Δj is the forward difference operator defined above. This is easily verified by a
computation. Now, we perform the j-sum on both sides of (7.3). Since the right-hand side
telescopes, we obtain

n+i−2k∑
j=0

(gn,i(k, j) − 2gn,i+1(k, j))

= gn,i+1(k, n + i + 1 − 2k) − gn,i(k, n + i + 1 − 2k)

= (−1)k+1 (3n− 3k + 2)(n + k + 1)!(2n− k + 1)!(2n− i− k)!
k!(3n− k + 2)!(n + i− 2k)!(n + k − 2i)!

Cn−k.

We perform the k-sum on both sides of the above equation and compensate for the j = n +
i + 1 − 2k term to obtain that Gn,i − 2Gn,i+1 is equal to

n∑
k=0

(−1)k+1 (3n− 3k + 2)(n + k + 1)!(2n− k + 1)!(2n− i− k)!
k!(3n− k + 2)!(n + i− 2k)!(n + k − 2i)!

Cn−k

− 2
n∑

k=0

(−1)k
(3n− 3k + 2)(n + k + 1)!(2n− k + 1)!(2n− i− k)!
k!(3n− k + 2)!(n + i− 2k + 1)!(n + k − 2i− 1)!

Cn−k

=
n∑

k=0

f ′
n,i(k),

where f ′ is defined above. Now, using Theorem 7.1, we obtain that this is equal to 0.
All that remains to be done is to prove that Gn,n = 1. But this is easily performed since the

j-sum becomes
2n−2k∑
j=0

(
n− k + 1

j

)
= 2n−k+1,

and we now use Theorem 4.1. This completes the proof. �
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Figure 8 (colour online). The blue dashed dimers represent the removal of the vertices (1,1)
and b from the graph. The red solid dimers are those that are induced when the vertex (1,1) is
removed (see online version for colors).

8. Boundary recurrences

Recall that gb
n is given in (3.18) and define, for 0 � i < j � 2n− 1,

gn(i, j) = |K−1
n ((i, i), (j, j))| = −K−1

n ((i, i), (j, j)) =
Z

{(i,i),(j,j)}
n

Zn
, (8.1)

with gn(j, i) = −gn(i, j) and gn(i, i) = 0. The relevant signs given above are evaluated by using
a similar argument given in Lemma 5.5; we omit this computation.

We obtain some formulas immediately.

Lemma 8.1. We have that for 2 � j � 2n− 1,

gb
n(1) =

Zn−1

Zn
, (8.2)

gn(1, j) =
Zn−1

Zn
gb
n−1(j − 2), (8.3)

and gb
n(0) = 1.

Proof. The first two equations are immediate from writing the definitions of gb
n(1) and

gn(1, j) as a ratio of partition functions, see also (3.18), and removing the vertex (1,1) from
the graph forces edges to be covered by dimers; see Figure 8.

For the last equation, for each dimer configuration of Zn on Vn, remove all dimers incident to
the vertices {(i, i), 0 � i � 2n− 1}. For each of these dimer configurations, there is a unique way
to extend to a dimer configuration on Vn and Vn\{(0, 0),b}. This shows that Zn = Z

{(0,0),b}
n

as required. �

We then have the following system of equations for gn(i, j) and gb
n(j):

Theorem 8.2. For 0 � i < j � 2n− 1, we have the recurrence

gn(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − gb
n(j) if i = 0, j > 0,

Zn−1

Zn
gb
n−1(j − 2) if i = 1, j > 1,

gn−1(i− 2, j − 2) − gb
n(j)gb

n−1(i− 2) + gb
n(i)gb

n−1(j − 2) if i, j � 2.

(8.4)
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v1 v2

v4 v3

v1 v2

v4 v3

a

b

c

d

A

C

B D

G H

Figure 9. The spider move.

1 1

Figure 10. The edge contraction move.

Theorem 8.3. For 0 � j � 2n− 1, we have the recurrence

gb
n(j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if j = 0,

Zn−1

Zn
if j = 1,

Zn−1

Zn

(
1 − gb

n−1(j − 2) +
n−1∑
r=0

(−1)r
(
n + 1
r + 2

)
gn−1(r, j − 2)

)
if j � 2.

(8.5)

These two recurrences determine K−1
n ((i, i), (j, j)) for 0 � i, j � 2n− 1, and along with the

equations K−1
n .Kn = Kn.K

−1
n = I viewed entrywise fully determines the entries of K−1

n .
To prove these results, we need two local moves for dimers.

(1) Spider move: Suppose we have a large square with edge weights a, b, c and d (clockwise
labeling) on some graph G. This square can be deformed to smaller square with additional
edges added between the vertices of the original square and the vertices of the smaller square
as shown in Figure 9 to form a new graph called H. If the new edge weights in H around
the smaller square, A,B,C and D are related to the old weights in G by A = a/Δ, B = b/Δ,
C = c/Δ and D = d/Δ, where Δ = ab + cd and the edge weights for the additional edges is
1, then local configurations and weights of matchings are preserved under the transformation
from G to H. This transformation is called the spider move [41], and we have ZG = ΔZH .

(2) Edge Contraction: If a vertex is incident to two edges each having weight 1, contract the
two incident edges. This does not change the partition function; see Figure 10.

Proof of Theorem 8.2. For the purpose of the proof, write i to be the vertex (i, i) for
1 � i � 2n− 1 and let a denote the vertex (0, 2n + 1).

We start with the proof of (8.4). The first two conditions are immediate by definition. For
0 � i < j < 2n− 1, we apply graphical condensation, similar to (5.5) in the proof of Lemma 5.3,
which gives

Z{a,i,j,b}
n Zn = Z{a,i}

n Z{j,b}
n − Z{a,j}

n Z{i,b}
n + Z{a,b}

n Z{i,j}
n . (8.6)

We first consider the above equation when i � 2. As in the proof of Lemma 5.3, removing
a freezes off edges; see Figure 7. This means that Z

{a,b}
n = Zn−1, Z

{a,i}
n = Z

{i−2,b}
n−1 and

Z
{a,i,j,b}
n = Z

{a,i,j,b}
n−1 . Dividing both sides of (8.6) by Zn−1Zn gives the last condition in (8.4).
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Next, when i = 0, note that removing both a and 0 has no impact on the forced edges, which
means that Z

{a,0,j,b}
n = Z

{j−2,b}
n−1 . Dividing (8.6) by Zn−1Zn in this case gives

gn−1(0, j − 2) = gb
n(j) − gb

n−1(j − 2) + gn(0, b) (8.7)

and so

gn−1(0, j − 2) + gb
n−1(j − 2) = gb

n(j) + gn(0, j). (8.8)

The equality in (8.8) is equal to 1 when n is even which follows immediately from the last
equation in Lemma 8.1. We now consider (8.8) when n is odd. To do so, set i = 0 and j = 1
in (8.6) to get

Z{a,0,1,b}
n Zn = Z{a,0}

n Z{1,b}
n − Z{a,1}

n Z{0,b}
n + Z{a,b}

n Z{0,1}
n . (8.9)

Note that due to edges being forced Z
{a,0,1,b}
n = Zn−1 and Z

{a,1}
n = 0, where the latter follows

since the dimer covering of Vn\{a, (1, 1)} is zero as the induced dimers from removing a from
the graph are incompatible with removing (1,1) from the graph; compare Figures 7 and 8.
Dividing the above equation by Zn−1Zn gives

1 = gb
n(1) + gn(0, 1). (8.10)

We have shown (8.8) is equal to 1 when n is odd, which verifies the third condition in (8.4).
Finally, when i = 1 in (8.6), gives

Z{a,1,j,b}
n Zn = Z{a,1}

n Z{j,b}
n − Z{a,j}

n Z{1,b}
n + Z{a,b}

n Z{1,j}
n . (8.11)

Due to their being no dimer covering of Vn\{a, (1, 1)} as mentioned above, the above equation
becomes

0 = −Z{a,j}
n Z{1,b}

n + Z{a,b}
n Z{1,j}

n . (8.12)

Using that Z
{a,j}
n = Z

{j,b}
n−1 and dividing by Zn−1Zn and using Lemma 8.1 gives the fourth

condition in (8.4). �

Proof of Theorem 8.3. The first two conditions follow from the third and first conditions in
Lemma 8.1. The last condition in (8.5) is more involved and we illustrate the steps to find a
recurrence of the partition function first.

We perform an edge contraction on the edges ((0, 2n), (0, 2n + 1)) and ((0, 2n + 1), (1, 2n +
1)). This means that there is an edge between (1, 2n) and (0, 2n) as well as a square face with
coordinates (0, 2n− 1), (1, 2n− 1), (1, 2n) and (0, 2n); see the left graph in Figure 11. Label
this graph H0. To the square above, we apply the spider move and edge contraction on the
bottom two edges protruding from the new (smaller) square; see the right figure in Figure 11.
These operations have:

(1) deleted the edge ((0, 2n), (1, 2n)) on H0;
(2) added an edge between ((0, 2n− 2), (1, 2n− 2)) on H0;
(3) changed the edge weights on the edges ((0, 2n− 2), (1, 2n− 2)), ((1, 2n− 2), (1, 2n− 1)),

((0, 2n− 1), (1, 2n− 1)) and ((1, 2n− 2), (1, 2n− 1)) to 1/2 on H0.

Label this new graph H1. This operation gives

ZH0 = 2ZH1 . (8.13)

We now proceed iteratively and describe the step from Hk−1 to Hk by applying the square
move for 2 � k � n− 1. On the graph Hk−1, we apply the spider move on the square face whose
center is given by (1/2, 2n− 2k + 3/2) and applying edge contraction on the two bottom edges
protruding from the new (smaller) square; see Figure 12.

We call this new graph Hk. These operations have:
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(0, 0)

(0, 2n) (2n, 2n)

H0

(0, 0)

(0, 2n) (2n, 2n)

1/2

H1

Figure 11. The left graph H0 is obtained after applying an edge contraction. Now, a square
appears where we can apply the spider move. After applying the spider move and contracting
edges, we obtain the right graph H1.

k−1
k

k−1
k

k−1
k1

k

k−1
k

k−1
k

k−1
k

k−1
k

k−1
k

k−1
k

1
k+1

k
k+1

k
k+1

k
k+1

1
k+1

k
k+1

k
k+1

k
k+1

Hk−1 Hk

Figure 12. The local moves taking Hk−1 to Hk. In each of the three graphs, the top left vertex
is (0, 2n− 2k + 3). All unlabeled edges have weight 1.

(1) deleted the edge ((0, 2n− 2k + 2), (1, 2n− 2k + 2)) on Hk−1;
(2) added an edge between ((0, 2n− 2k), (1, 2n− 2k)) on Hk−1;
(3) changed the edge weights of the edges, ((1, 2n− 2k), (1, 2n + 1 − 2k)), ((0, 2n− 2k +

1), (1, 2n− 2k + 1)) and ((1, 2n− 2k), (1, 2n− 2k + 1)) to k/(k + 1) and changed the
edge weight of the edge ((0, 2n− 2k), (1, 2n− 2k)) to 1/(k + 1) in Hk−1.

Label this new graph Hk. This operation gives

ZHk−1 =
k + 1
k

ZHk
. (8.14)

From (8.13) and (8.14), we have

Zn = nZHn−1 . (8.15)

From the above operations, the edges ((1, 2n− 2k), (1, 2n− 2k + 1)) have weight k
k+1 for 1 �

k � n− 1. Since the graph Hn−1 contains a pendant edge ((0, 2n− 1), (0, 2n)), this can be
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(0, 0)

n−2
n−1

n−1
n

1
n

Figure 13. The situation after removing pendant edges from Hn−1. All unlabelled edges have
weight 1.

removed inducing another pendant edge. Iteratively removing these pendant edges ((0, 2n−
1 − 2k), (0, 2n− 2k)) for 1 � k � n− 2 from Hn−1 leaves us with the graph in Figure 13.

For the vertex 0 = (0, 0), either there is a dimer on the edge (0, (0, 1)) or there is a dimer
on the edge (0, (1, 1)). For the former, this forces a dimer on the edge ((0,2),(1,2)) (which
has weight 1/n) and forces dimers on the edges ((1,1),(2,2)) and ((1, 2k + 1), (1, 2k + 2)) for
1 � k � n− 1, leaving us with the graph with vertices Vn−1\{0,b}. It follows from Lemma 8.1
that the number of dimer covers on this graph is Zn−1. For the latter, this induces a dimer on the
edge ((0,1),(0,2). In this case, only one of the edges ((1, 2 + 2k), (2, 2 + 2k)) for 0 � k � n− 1
can be covered by a dimer and since the edges ((1, 2n− 2k), (1, 2n− 2k + 1)) have weight k

k+1
for 1 � k � n− 1, we find using (8.15) that

Zn = Zn−1 +
n−1∑
k=0

(n− k)Z{0,(0,2k+1)}
n−1 . (8.16)

We can now prove the third equation in (8.5). To so, we consider the same steps that lead
to (8.16) but replace the graph of Vn by the induced graph of Vn with the vertices (j, j) and b
for j � 2 removed. We then arrive at

Z{j,b}
n = Z

{j−2,0}
n−1 +

n−1∑
k=0

(n− k)Z{(0,2k),j}
n−1 . (8.17)

Dividing the above equation by Zn and using the first condition in (8.4) gives

gb
n(j) =

Zn−1

Zn

(
1 − gb

n−1(j − 2)
)

+
Zn−1

Zn

n−1∑
k=0

(n− k)
Z

{(0,2k),j−2}
n−1

Zn−1
. (8.18)

Since the vertex (0, 2k) for 0 � k � n− 1 is on the leftmost boundary, this can be moved to
the boundary {(j, j) : 0 � j � 2n− 1} by applying the matrix equation Kn.K

−1
n = I entrywise.

This gives

gb
n(j) =

Zn−1

Zn

(
1 − gb

n−1(j − 2)
)

+
Zn−1

Zn

n−1∑
k=0

(n− k)
k∑

r=0

(
k

r

)
(−1)r

Z
{r,j−2}
n−1

Zn−1
. (8.19)

Rearranging the sums and evaluating the k-sum gives the final equation in (8.5). �
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We now prove the sum rule.

Proof of Theorem 3.4. Substituting (3.9) and (3.6) into (3.18), we have that

2n∑
j=0

gb
n(j) =

2n∑
j=0

(−1)j+1K−1
n ((j, j),b) =

2n∑
j=0

(−1)j+1h0,b
n (j)

=
2n∑
j=0

−(−1)j+1[j + 1]2 +
2n∑
j=0

(−1)j+1
n∑

k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

(1 − r)rj−2k
.

(8.20)

Both sums in j can be evaluated on the right side of the above equation giving

2n∑
j=0

gb
n(j) = n + 1 −

n∑
k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k

(1 − r)(1 + r)r2n−2k
, (8.21)

where we have only kept the term with a residue contribution at r = 0 when evaluating the
geometric sum. Note that the second term on the right side of the above equation does not
have a residue contribution at r = 0 when k = n and so we have

2n∑
j=0

gb
n(j) = n + 1 −

n−1∑
k=0

p(n, k, 0)
1

2πi

∫
Γ0

dr
(1 + r)n−k−1

(1 − r)r2n−2k

= n + 1 − 1
2

n−1∑
k=0

p(n, k, 0)2n−k,

(8.22)

where the last line follows from pushing the contour through ∞ picking up the residue at r = 1.
The result then follows from Theorem 4.1 and from the fact that p(n, n, 0) = (−1)n. �

9. Heuristics for the limit Shape

To obtain the conjectured limit shape formula, we only consider the asymptotics of
K−1

n ((x1, x2),b) for x2 ∈ 2Z + 1 for (x1, x2) rescaled as given in Conjecture 3.5. Strictly
speaking, this term does not contain any probabilistic information but we expect to see a
similar structure when analyzing other entries of the inverse Kasteleyn matrix when both
terms are close to the limit shape curves. To find these asymptotics, we express the formula
for K−1

n ((x1, x2),b) as a single contour integral and apply the method of steepest descent.
This will give a function whose double roots parameterize the limit shape curves. This is a
fairly standard approach in the asymptotics of random tilings, see, for instance, [22, Lecture
15] for a good exposition, and so we only give a brief outline of the main steps. Even though
we can give the computations below in full detail, we cannot analyze the rest of the entries of
the inverse Kasteleyn matrix with this method, as they are currently not in the best form for
asymptotic analysis.

Since we have (x1, x2) = (i1, i1 + 2i2 + 1), we use the expression gathered from (3.8)
and (3.7). Note, we can truncate the k-sum to � i1

2 	 since there are no residues at r = 0 for
k > � i1

2 	. We obtain
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K−1
n ((x1, x2),b) = (−1)i2

� i1
2 �∑

k=0

p(n, k, 0)
2πi

∫
Γ0

dr
r

(1 + r)n−k

ri1−2k

i2∑
�=0

(
i2 − 1 + �

�

)
(−r)�

= (−1)i2
� i1

2 �∑
k=0

p(n, k, 0)
2πi

∫
Γ0

dr
r

(1 + r)n−k−i2

ri1−2k
,

(9.1)

where we have used
i2∑
�=0

(
i2 − 1 + �

�

)
(−r)� = (1 + r)−i2 − (−r)i1+1

(
i1 + i2
1 + i1

)
2F1

[
1, 1 + i1 + i2

2 + i2
;−r

]
, (9.2)

and the fact that the latter term will have no residue at r = 0 in the middle equation in (9.1).
Computing the integral in the last equation in (9.1), using (3.5) and writing factorials as gamma
functions gives

(−1)i2
� i1

2 �∑
k=0

(−1)k

k!(n− k)!
Γ(n + k + 2)Γ(2n− k + 2)Γ(2n− 2k + 1)

Γ(3n− k + 3)Γ(n− k + 2)

× (3n− 3k + 2)
Γ(n− k + i2 + 1)

Γ(i1 − 2k + 1)Γ(n + k − i1 − i2 + 1)
.

(9.3)

Using

(−1)k

k!(n− k)!
=

∫
Γk

dw
(−1)n∏n

r=0(w − r)
, 0 � k � n, (9.4)

and the residue theorem, we have that (9.3) is equal to

(−1)i2

2πi

∫
Γ0,...,�i1/2�

dw
(−1)n∏n

r=0(w − r)
Γ(n + w + 2)Γ(2n− w + 2)Γ(2n− 2w + 1)

Γ(3n− w + 3)Γ(n− w + 2)

× (3n− 3w + 2)Γ(n− w + i2 + 1)
Γ(i1 − 2w + 1)Γ(n + w − i1 − i2 + 1)

.

(9.5)

Using the rescaling x1 = [(X + 2)n] and x2 = [(
√

3Y + 2)n] given in the statement of
Conjecture 3.5 gives that i1 = [(X + 2)n] and i2 = 1

2 ([(
√

3Y + 2)n] − [(X + 2)n] − 1). In (9.5),
we make the change of variables w → wn and apply Stirling’s formula, see [40, Proposition
7.3] for the exact form. Then we obtain

(−1)i2+n

2πi

∫
Γ̃

dw h(w)ens(w)+O(1/n), (9.6)

where Γ̃ is a positively oriented contour that surrounds the points 0, 1
n , . . . , � i1

2 	 1
n , h(w) is a

rational function in w and

s(w) = (1 + w) log(1 + w) + (2 − w) log(2 − w) + (2 − 2w) log(2 − 2w)

+

(
1 − w −

√
3Y −X

2

)
log

(
1 − w −

√
3Y −X

2

)
− w log(−w)

− (3 − w) log(3 − w) − 2(1 − w) log(1 − w) − (X + 2 − 2w) log(X + 2 − 2w)

−
(

1 + w − (2 + X) −
√

3Y −X

2

)
log

(
1 + w − (2 + X) −

√
3Y −X

2

)
.

(9.7)
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Figure 14 (colour online). The contours of steepest descent and ascent for s(w). The contour of
steepest descent leaves the double critical point with angle +π/3 and passes through the point
(X + 2) > 0 and then returns to the double critical point. The crossing points of the real axis can
be determined explicitly.

The exact form of h(w) is not important (in fact, it can be computed explicitly). What is
important is that it does not influence the saddle point function s(w), nor does it contain any
additional poles when we deform the contours. The roots of s(w) can be determined by solving
s′(w) = 0 in w which gives

2X − Y 2 + 4 ±√
Y 2(X2 + Y 2 − 4)

4 − Y 2
. (9.8)

This has double roots when Y = 0, which corresponds to the top boundary of the rescaled
TSSCPP, and when X2 + Y 2 = 4, which is precisely the conjectured limit shape curve. We
focus on the latter and set Y = −√

4 −X2. Due to the rescaling of the TSSCPP, we have that
−2 < X < −√

3. The contour Γ̃ can be deformed to pass through the double root, following the
contours of steepest descent; see Figure 14 for a description. No other poles are crossed when
performing this deformation and so the main contribution comes locally around the double
critical point. This leads to Airy function type asymptotics, which can easily be computed;
see [26] for an example. We omit the details and the explicit computation since we have
already evaluated the limit shape curves.
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31. E. Kuo, ‘Graphical condensation generalizations involving Pfaffians and determinants’, Preprint, 2006,

arXiv:math/0605154 [math.CO].
32. G. Kuperberg, ‘Symmetries of plane partitions and the permanent-determinant method’, J. Combin.

Theory Ser. A 68 (1994) 115–151.
33. G. Kuperberg, ‘Another proof of the alternating-sign matrix conjecture’, Internat. Math. Res. Not. 1996

(1996) 139–150.
34. W. H. Mills, David P. Robbins and H. Rumsey, ‘Self-complementary totally symmetric plane partitions’,

J. Combin. Theory Ser. A 42 (1986) 277–292.
35. E. W. Montroll, R. B. Potts and J. C. Ward, ‘Correlations and spontaneous magnetization of the

two-dimensional Ising model’, J. Math. Phys. 4 (1963) 308–322.
36. J. Novak, ‘Lozenge tilings and Hurwitz numbers’, J. Stat. Phys. 161 (2015) 509–517.
37. A. Okounkov, ‘Noncommutative geometry of random surfaces’, Preprint, 2009, arXiv:0907.2322

[math.AG].
38. A. Okounkov and N. Reshetikhin, ‘Correlation function of Schur process with application to local

geometry of a random 3-dimensional Young diagram’, J. Amer. Math. Soc. 16 (2003) 581–603.
39. P. Paule and M. Schorn, ‘A Mathematica version of Zeilberger’s algorithm for proving binomial

coefficient identities’, J. Symb. Comput. 20 (1995) 673–698.
40. L. Petrov, ‘Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes’, Probab. Theory Related

Fields 160 (2014) 429–487.
41. J. Propp, ‘Generalized Domino-Shuffling’, Theoret. Comput. Sci. 303 (2003) 267–301.
42. A. B. Soshnikov, ‘Determinantal random fields’, Encyclopedia of mathematical physics (eds J.-P.

Francoise, G. Naber and T. S. Tsun; Elsevier, Oxford, 2006) 47–53.

http://doi.org/10.37236/1903


526 ARVIND AYYER AND SUNIL CHHITA

43. R. P. Stanley, ‘Symmetries of plane partitions’, J. Combin. Theory Ser. A 43 (1986) 103–113.
44. Yu. G. Stroganov, ‘The Izergin-Korepin determinant at a cube root of unity’, Teoret. Mat. Fiz. 146

(2006) 65–76.
45. K. Wegschaider, ‘Computer generated proofs of binomial multi-sum identities’, Master’s Thesis, J. Kepler

University, Linz, 1997.
46. D. Zeilberger, ‘Proof of the alternating sign matrix conjecture’, Electron. J. Combin. 3 (1996) 84

(electronic).
47. D. Zeilberger, ‘Proof of the refined alternating sign matrix conjecture’, New York J. Math. 2 (1996)

59–68 (electronic).
48. D. Zeilberger, ‘Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the

qKZ equations and to Dave Robbins’ two favorite combinatorial objects’, Published in the Personal
Journal of Shalosh B. Ekhad and Doron Zeilberger at https://sites.math.rutgers.edu/∼zeilberg/mamarim/
mamarimhtml/diFrancesco.html, 2007.

49. P. Zinn-Justin and P. Di Francesco, ‘Quantum Knizhnik-Zamolodchikov equation, totally symmetric
self-complementary plane partitions, and alternating-sign matrices’, Theoret. Math. Phys. 154 (2008)
331–348.

Arvind Ayyer
Indian Institute of Science
Department of Mathematics
Bangalore 560012
India

arvind@iisc.ac.in

Sunil Chhita
Department of Mathematical Sciences
Durham University
Durham DH1 3LE
United Kingdom

sunil.chhita@durham.ac.uk

The Transactions of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus
income from its publishing programme is used to support mathematicians and mathematics research in the
form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion
of mathematics.

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/diFrancesco.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/diFrancesco.html
mailto:arvind@iisc.ac.in
mailto:sunil.chhita@durham.ac.uk

	1. Introduction
	2. From TSSCPPs to hexagonal graphs
	3. Summary of results
	4. Proof of Theorem 3.1
	5. Both vertices at the top boundary
	6. Proof of the main result
	7. Proofs of the combinatorial identities
	8. Boundary recurrences
	9. Heuristics for the limit Shape
	References

